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ABSTRACT

We report in this paper a series of experiments
aiming at automatically extracting phonetic
features in speech, using a specific family of
neural networks, namely TDNNs. The results
show the interest that eXxists in using phonetic
knowledge to guide speech recognition. The
visualisation of connection weights inside the
optimised networks illustrates the various
strategies used by TDNNs for classifying sounds
into features, after their acoustic content.

RESUME

Cet article présente un ensemble d'expériences
visant a l'extraction de traits phonétiques 3 partir
de signal de parole, 2 l'aide d'une famille
particuligre de réseaux neuro-mimétiques : les
TDNN:. Les résultats montrent I'intérat d'utiliser
des connaissances phonétiques pour orienter la
tiche des réseaux, en reconnaissance de parole. La
visualisation des poids des connexions dans les
TDNNs apres optimisation illustre la fagon dont
ceux-ci utilisent les caractéristiques acoustiques
des sons pour déterminer les différents traits,

INTRODUCTION

Connectionnist networks are one of the possi
tools for performing classification !asks,ps?xchb:::
those required in particular for speech recognition.
Mulu-la‘yer neural networks are made of several
layers of cells (or nodes), each of them delivering
as an output, a (usually) non-linear transform of
the input; for instance a'sigmoid. The input itself
Is obtained as the weighted sum of the activations
of the nodes in the previous layer that are
connected to the current node, A multi-layer neural
network can be viewed as a black box made of a
large number of elementary units with a rather
simple individual function, the global behaviour of
which makes it possible to model quite
complicated non-linear transfer functions.

The number of nodes in each layer and the
connection structure (i.e. what is called the
architecture) is usually fixed a priori, whereas the
yalue§ of each weight (what could be called the
furniture") are task specific and classically
esumated by the back-propagation algorithm,
given a set of training examples. In other words it
15 possible, with neural networks, to automal.icaily
learn some non-linear discriminations between
fgamxhes of patterns, without any careful human
time-consuming specification of classification

rules. However, the computing tim ired i
rather high. ’ PIERE Hime required i3

THE TDNN

Waibel et al introduced TDNNs Time-Dx
Neu{a] Networks) as a specific neﬁral netwecl)‘:i
erchneqture that can take into account the
dynamxg: nature of speech” [1]. Indeed, such a
network is able (o represent temporal relationships
between successive acoustic time-slice (frames)
which is a property of major importance, since
static characteristics of the speech signal are
certainly unsufficient for a proper identification of
sounds or sound features. Moreover, TDNNs
provide some invariance under time-translation
which lessens the sensitivity of the processing in
front of unavoidable segmentation inaccuracies
Figure 1 illustrates the TDNN structure. )
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Figure 1: A TDNN (adapted from Waibel).

TDNNs have 4 layers (an input layer, 2 hi
layers and an output layer). Sgocess}i,ve' laye;(siie;:
sparsely connected (in practice, some connections
weights are Set 1o zero). Moreover, there exist
groups of weights that are constrained to be
:;‘l;r;usc}?.lfm. one another, in order to warrant the
-Shit invariance property. More detailed
descriptions of TDNNs can be fi i
papers (1) ] 1 ound in several
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In recent publications, TDNNs proved to be very
efficient for tasks such as classifying
[b] vs [d] vs [ﬁ] among a set of observation
containing phonetic realisations of these
3 phonemes, in japanese [1], or in french [4).
Waibel et al. also showed that a modular all-
phoneme classification network could be
successfully designed on the basis of the
collaboration of a collection of such elementary
networks (one for [bdg], one for [ptk], one for
[fsfl, ...), provided an other network makes
concurrently a rough classification of each sound,
in order to decide which of these elementary
networks is to be resorted to. In parallel to these
developments, Haffner et al. proposed fast leaming
methods for TDNNs that bring down the training
time to reasonable figures [2].

All these properties make of TDNNs appealing
tools for classifying speech sounds, with the
ultimate goal of speech recognition. Our approach
of phonetic features extraction is slightly different
from the modular all-phoneme recognition process
proposed by Waibel et al. For the latter, a
hierarchical decision is needed, whereas, for the
former, several lel classifications are made and
then integrated 1n a final phoneme identification.

PHONETIC FEATURES

The phonetic description of speech events is

classically based on distinctive features. Features *

are usually binary, since they indicate the presence
or absence of a specific characteristic for a given
sound (or family of sounds).

Features can be defined according to acoustical,
articulatory, or even linguistic properties. For
instance, the grave / acute opposition is based on
acoustical considerations, while front / back is
articulatory and vowel / consonant based on
higher-level linguistic concepts.

Each phoneme (or, more precisely in our case,
each phone) results from the simultaneous
realisation of several elementary binary features,
which Trubetzkoi describes as a "Korrelazions-
biindel" (i.e. a bundel of correlations), and which
Jakobson qualifies as a "bundle of concurrent
binary distinctive features” [5].

Several systems of features have been proposed,
among which must be mentioned those of
Malmberg [6] and Rossi [7] for the french
language, those of Jakobson [5] and Chomsky [8],
in english. Jakobson's classification was the first
one to rely on acoustical criteria only.

A few speech recognition systems have been
calling for feature extraction (or macro-classes
identification) strategies, most of them using
expert systems that track cues on the acoustic
signal, with the help of rules.

The approach using neural networks can te
understood as a mean of expressing and modeling,
with a mathematical non-linear tool, the
(sometimes) complex relationship existing
between the abstract notion of phonetic feature and
its physical manifestation through acoustic cues.

PROTOCOL AND CORPUS

We have been evaluating the use of TDNNs for
different feature extraction tasks, for the french

language.

A set of 13 binary features was thus designed,
relying on the most classical phonetic
oppositions, This set allows a total description of
the french phonetic system. It is however not
minimal, but our %_oal was to investigate what
type of oppositions TDNNs are best adapted to.

An other set of 6 discriminative and minimal
"random" features was artificially built, so that it
opposes 34 phonemes with one another. This set
has, of course, no phonetic background, since
phonemes that have "nothing to do" with each
other are member of the same random class and
opposed to an other (complementary) class of
phonemes that have "nothing to do” with each
other either ! These artificial features however
serve as a point of comparison for judging the
relevance and the usefulness of classical phonetic
oppositions versus arbitrary ones.

Other sets or "ternary” features have also been
used [3], but results are not reported in this article.

The corpus for the experiments contains 200
french phonetically balanced sentences [9), uttered
by one male speaker in excellent recording
conditions and sampled at 16 kHz. Each phoneme
realisation was coarsely labeled at the center by
hand, and represented by 16 time frames (8 on each
side of the label) of 16 Mel-scaled filter-bank
coefficients; in other words, a quite low resolution
(256 pixels? spectrographic representation, with
non-linear frequency scale. The corpus contains
5270 tokens (unbalancedly dispatched between the
thonetic classes), which were halfed between a
earning set and a test set.

The corpus was transcribed prior to its production
and labeled according to this normative
transcription, using 34 symbols :

iy u #
e ¢ o

€ @® 23 € 3

a ]

pt ok b d g iy w
f s | vz 3

ma p 1 »

The phonetic system used in our experiments.
[#) denotes "silence”. [3] = [e].

Automatic phonological rules were applied to
modify the features of some phonemes, to account
for basic contamination effects.

Evaluations were done on the whole corpus, on the
sub-corpus of vowels only (2952 items) and on the
sub-corpus of consonants only (2318 items). Sub-
corpuses were also halfed in training and test sets.

The cross-validation strategy was used to decide
when to stop the learning phase [3].
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RESULTS TDNNS can be viewed as typical patterns that are
searched for in the spectral picture of the input
Performances on the whole corpus, on the vowels- wken to classify {10]. In other words, TDNNg
only corpus and on the consonants-only corpus, develop in some ways their own expertise for
for each feature, are shown in Table 1 below. Two classifying speech sounds, a litle bit like a human
scores are given for each experiment : one (in bold) expert would do, from experience.
is the score of correct feature identification on the
test set (i.e. for the the data that were not used to In figure 2 (last page), we have visualised 3 sets of

train the network), while the second score (in weight matrices, for 3 features : wiced / umvoiced,
standard characters) corresponds to the score nasal | non-nasal, and vowel | consonant. A full
obtained on the training set itself (seif- comment is givea with the figure : the cues used
consistency). Naturally, the second score is usually by the network are most of the time in accordance
higher than the first one, and the difference with the classical acoustic descriptions of

between the two gives a hint of the generalisation phonetics, and thus directly interpretable, which
capability of the network; that is its ability to was not at all a priori warranted.

solve a similar problem to the one it was trained

for, with data that it has not seen yet. CONCLUSION

On the whole corpus, all scores (but one) range Phonetic knowledge can thus be used to help
between 90 % and 99 %, with more than half of TDNN in their task : not only to a priori choose
them over 95 %. Moreover, all scores for phonetic the kind of task that is the most likely to be
features (but one) are higher (by approximately 10 successfull, but perhaps also to initialise the
%, in the average) than the average score for weights of the network using human expertise on
arbitrary random features. This clearly evidences the problem to be solved. This last point is a
the contribution of phonetic knowledge for challenging topic for further research.

determining what kind of task the TDNN is most

likely to work with. Beside this, while features Conversely, TDNNS can learn automatically from
related to manner of articulation are very efficiently a set of typical examples (like other neural
detected (features III, V, XI, XII, XIII), those networks); but because their architecture is speech
linked to the more abstract notion of place of dedicated, they certainly represent a new tool for
articulation provide less satisfactory results. phoneticians’ investigations.

Not all phonetic features that were tested on the REFERENCES
whole corpus were also experimented for the vowel

and the consonant sub-corpuses, but only some of [1T1 WATBEL et ol : it i
them that allow a discriminative non-redundant ‘ #orka. /EEE-ASSP, vol 37, n° 3, 1989.
system, The improvement of feature extraction (2] HAFENER et al : -

; methods for large phonemic peural nets. g

when moving from the whole corpus to the {31 BIMBOT : e -

consonants-only corpus is rather disappointing, Delay Neural Networks, /CSLP 90.

gut must be owed to afchange of the repartitions. [4) DEVILLERS e al : Reconnaissance monolocuteur dey
onversely, scores for vowels-only improve

significantly, in general. In both cases, the self- (5} AKOBxsgng?ﬁmw

consistency tends to increase, since the number of MIT. Press, 1951,

learning examples is smaller and makes it possible (6] MALMBERG :

for the TDNN to memorise the particularities of f?‘ﬁf&w La Linguistique, vol 13

the training data (which is clearly undesirable). Jase I, 1977 pustase, vo =

(8] CHOMSKY et al : The sound pattem of english. Harper

& Row, 1968.
[9] COMBESCURE : Zunu_mn_nbmx_fhm
i ili Rev. d'Acoustique, n° 56, 1981.

It can be shown that, under certain constraints, the {10] BIMBOT et al :

VISUAL EXPLORATION

matrices of weights within the first layer of ion, ICASSP 91.

phonetic feature whaole corpus vowels only consonants ont

1 vowel vs non-vowel 958 % (962 %) - -

IT vocalic vs non-vocalic 96.5 % (97.0 %) - -
Tl voiced vs unvoiced 98.9 % (99.4 %) . 98.8 % (100 %)

1V sonant vs non-sonant 96.9 % (984 %) - -
V nasal vs non-nasal 9.7 % (99.5 %) 97.7 % (9.6 %) 982 % (99.7 %)

VI grave vs acute 90.6 % (965 %) 95.7 % (99.8 %) -

VII exireme vs central 844 % (921 %) 87.5 % (96.6 %) -

VIIl compad vs diffuse 917 % (960 % 940 % (97.8 %) -

1X rounded vs unrounded 948 % (975 %) 932 % (94.5 %) -

X bemol vs non-bemol. 90.1 % (98.8 %) - -
X1 delayed vs non-delayed 97.1 % (98.7 %) - 89.4 % _ (99.1 %)
XII discontinuous vs cont. 97.9 % (99.1 %) - 939 % (97.6 %)

X!II fricative. vs non-fric. 97.3 %499. %) - 95.1 % (99.9 %) L]
Average for 6 random features 85.3 % (92.1 %) - .

Table 1 : Scores for feature extraction on the 3 corpuses : scores on test set, (on training set).
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voiced / unvoiced
sigmoid [0; 1]

nasal / non-nasal
sigmoid [0; 1)

vowel / consonant
sigmoid (0; 1]

asks) in TDNNs for phonetic features extraction.
(top : voiced / unvoiced, center : nasal / non-nasal, bottom : vowel / consonant).

i i iti hite to negative.
de of the weight. Black corresponds to positive values, w!
the‘rln .Ss:)l::k: (4 x 16). Tgime is horizontal, frequency vertical (Mel-scale).

di joned for the task. The

Figure 2 : Visual display of weight matrices (m

The side of each square is progon.ioml 10
Only the first layer of weights is represented

i ite simi her, which evid: that the rk is over-dim sk Th
[+/- voiced) : All 8 masks are guite similar to each other, whi denoes that he network 18 o1 o panens, especialy for
pmsencse oé' en; 4 g‘uth: o 3 b‘angs Gom l;l: ;?:h2901Hz) G de(;lgsuﬂz and 4685 Hz bands), i)inl.ly wpn:l ‘:w‘xquuhl:nlc‘:iv::
maskt 5. 6 e o an indication of [+ voiced] (masks 2, 3, 4,7 and perhaps S and €). This is SBER Y COF 1 phoneti
rabimatior “u:ch as iced plosive / fricative + voiced sound, for which the sudden change of spec

beginning of voicing.

i igni le played by the joint

. : redundancy. Masks 1, 2,3 and 4 undesline the significant rol ed by _{ L
[ti'::::ed lf' l?:ﬂf(r;;mit:'?n.&?lggn}iz band (alcly ngn.l: are voxced:..) -n;m I:I: "::;e:;;cf:?l; r::lasrt:u’n :ih emne:ldui':m?l:w
requencies (around 435 Hz). This is fully consistent with the observations o et His for masks 1 and

uencies, for nasal sounds. These 4 masks differ mainly by the location of u]r‘nro:’h‘;l; :m S her. They search for joint encrgy

N 7 are very simi
X -95135 i for mask 3, 1703 Ha for mack 2. Mois 3 s d pecﬂry ifically to nasal vowels that usually have a first formant
:oluit(l)% 5;32 -I“7z()(.)“}‘-ilz‘.ie ::;e .n h7;(g)llxo|hl1nrg %Z:gnglnm'[};;on(;‘ﬁ:? I;.EB Hz]’. The mleyof mask 8 is not clear yet (no energy around 770

Hz nor 2010 Hz). ' o
/- vowel] : Here, masks 1 to 8 are ordered ding to a noticeable prog : from leﬂfto ru;l‘l‘ti 2 ;;-En::przmomly
gy vome here between 290 Hz and 770 Hz (region covering roughly all possible first e:ﬂmn b i
::::gc:o::em :nr:skl with & different ime-shift. Note that the 1(;\;!;:! 'ljul;\ld ll; ;c::ﬁr::]llx‘ us/ l.“:e,c:aused Lis amb fi sous with
ici ¢ of energy around 2720 Hz (just beyond the cal maximum secon fo
;‘:@;‘egley;w of‘l :eg;l:ot;b;?gs H:Z:tgxon for several third formants) are both considered as in favour of [+ vowel ]
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