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ABSTRACT 

We report in this paper a series of experiments atmtng at automatically extracting phonetic features in speech, using a specific family of neural networks. namely TDNNs. The results show the Interest that exists in using phonetic knowledge to guide speech recognition. The visualisation of connection weights inside the optimised networks illustrates the various strategies used by TDNNs for classifying sounds into features, after their acoustic content 

RESUME 

C_et article présente un ensemble d'expériences vrsant a l'extraction de traits phonétiques à partir de signal de parole, à l'aide d'une famille particulière de réseaux neuro-mimétiques : les TDNNs. Les résultats montrent l'intérêt d'utiliser des connaissances phonétiques pour orienter la tâche des réseaux, en reconnaissance de parole. La Visualisation des poids des connexions dans les TDNNs apres optimisation illustre la façon dont ceux-ci utilisent les caractéristiques acoustiques des sons pour déterminer les différents traits. 

INTRODUCTION 

Connectionnist networks are one of the o i tools for performing classification taslcs,ll‘sufcsltbä‘s> those required in particular for speech recognition. Multi-layer neural networks are made of several layers of cells (or nodes), each of them delivering as an output, a (usually) non—linear transform of _the input; for instance a sigmoid. The input itself is obtained as the weighted sum of the activations of the nodes in the previous layer that are connected to the current node. A multi-layer neural network can be viewed as a black box made of a large number of elementary units with a rather Simple mdrvrduaifunction, the global behaviour of which makes it possible to model quite complicated non-linear transfer functions. 

The number of nodes in each la er connection structure (i.e. what isy 08121122 3:: architecture) is usually fixed a priori, whereas the salues of each weight (what could be called the furniture") are task specific and classically estimated by the. back-prepagation algorithm given a_ set of training examples. In other words if is possrble, with neural networks, to automatically learnsorne non-linear discriminations between families of patterns, without any careful human time-consuming specification of classification rules. However. the com utin ° ' ' 
rather high. p g time required is 

THE TDNN 

Waibel et al introduced TDNNs (Time-Delay Neural Networks) as a specific neural network architecture that can take into account the dynamrc nature of speech" [1]. lndeed, such a network is able to represent temporal relationships 
acsustic time-slice (frames), _ 0 ma or im r ' static characteristics of die sœähmgäaîlïâ certainly unsufficient for a proper identification of sounds or sound features. Moreover, TDNNs provrde some invariance under time-translation sensitivit of the r ' " front of unavoidable segmgntation gngggsuiläcgielg 

between successive 
which is a property 

which lessens the 

HONETIC FEATURES 

Figure 1 illustrates the TDNN structure. 
+ _ 

integration 

Figure l : A TDNN (adapted from Waibel). 
TDNNs have 4 layers (an in ut la er ' layers and an output layer). Sgœessïve'lâygigïg sparsely connected (in practice, some connections weights are set to zero). Moreover, there exist groups of weights that are constrained to be identical to_ one another, in order to warrant the time-shift invariance prOperty. More detailed descriptions of TDNNs can be found in several papers [1] [2] l3]. 
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In recent publications, TDNNs proved to be very 
efficient for tasks such as classifying 
[b] vs [d] v s [  ] among a set of observation 
containing p onetic realisations of these 
3 honemes, in japanese [1], or in french [4]. 

aibel et al. also showed that a modular all- 
phoneme classification network could be 
successfully designed on the basis of the 
collaboration of a collection of such elementary 
networks (one for [lids]. one for [ptk], one for 
[s], ...), provided an other network makes 
concurrently a rough classification of each sound, 
in order to decide which of these elementary 
networks is to be resorted to. In parallel to these 
developments. Haffner et al. proposed fast learning 
methods for TDNNs that bring down the training 
time to reasonable figures [2]. 

All these properties make of TDNNs appealing 
tools for classifying speech sounds, with the 
ultimate goal of speech recognition. Our approach 
of phonetic features extraction is slightly different 
from the modular all-phoneme recognition process 
proposed by Waibel et al. For the latter, a 
hierarchical decision is needed, whereas, for the 
former, several parallel classifications are made and 
then integrated in a final phoneme identification. 

PHONETIC FEATURES 

The phonetic description of speech events i s ‘  
classically based on distinctive features. Features 
are usually binary. since they indicate the presence 
or absence of a specific characteristic for a given 
sound (or family of sounds). 

Features can be defined according to acoustical, 
articulatory, or even linguistic properties. For 
instance, the grave I acute opposition is based on 
acoustical considerations, while front I back is 
articulatory and vowel I consonant based on 
higher-level linguistic concepts. 

Each phoneme (or. more precisely in our case. 
each phone) results from the simultaneous 
realisation of several elementary binary features, 
which Trubetzkoï describes as a "Korrelazions- 
bündei" (i.e. a bundel of correlations), and which 
Jakobson qualifies as a “bundle of concurrent 
binary distinctive features” [5]. 

Several systems of features have been proposed. 
among which must be mentioned those of 
Malmberg [6] and Rossi [7] for the french 
language, those of Jakobson [5] and Chomsky [8], 
in english. Jakobson's classification was the first 
one to rely on acoustical criteria only. 

A few speech recognition systems have been 
calling for feature extraction (or macro-classes 
identification) strategies. most of them using 
expert systems that track cues on the acoustic 
signal, with the help of rules. 

The approach using neural networks can t e 
understood as a mean of expressing and modeling, 
with a mathematical non-linear tool, the 
(sometimes) complex relationship existing 
between the abstract notion of phonetic feature and 
its physical manifestation through acoustic cues. 

PROTOCOL AND CORPUS 

We have been evaluating the use of 'l'DNNs for 
different feature extraction tasks, for the french 
language. 

A set of 13 binary features was thus designed, 
relying on the most classical phonetic 
oppositions. This set allows a total description of 
the french phonetic system. It is however not 
minimal, but our oal was to investigate what 
type of oppositions DNNs are best adapted to. 

An other set of 6 discriminative and minimal 
"random" features was artificially built, so that it 
opposes 34 phonemes with one another. This set 
has, of course, no phonetic background, since 
phonemes that have "nothing to do" with each 
other are member of the same random class and 
opposed to an other (complementary) class of 
phonemes that have "nothing to do” with each 
other either! These artificial features however 
serve as a point of comparison for judging the 
relevance and the usefulness of classical phonetic 
oppositions versus arbitrary ones. 

Other sets or "ternary” features have also been 
used [3], but results are not reported in this article. 

The corpus for the experiments contains 200 
french phonetically balanced sentences [9]. uttered 
by one male speaker in excellent recording 
conditions and sampled at 16 kHz. Each phoneme 
realisation was coarsely labeled at the center by 
hand, and represented by 16 time frames (8 on each 
side of the label) of 16 Mel-scaled filter-bank 
coefficients; in other words, a quite low resolution 
(256 pixels? spectrographic representation, with 
non-linear requency scale. The corpus contains 
5270 tokens (unbalancedly dispatched between the 
honetic classes), which were halfed between a 
earning set and a test set. 

The corpus was transcribed prior to its production 
and labeled according to this normative 
transcription. using 34 symbols: 

i y  u # 
e d  0 

s œ a  ! 5 
a I 

p t k  b d g  ‚ | |  w 
f s ]  v 2 3  

m n p  I n  

The phonetic system used in our experiments. 
[#] denotes ”silence“. [a] : [œ]. 

Automatic phonological rules were applied to 
modify the features of some phonemes. to account 
for basic contamination effects. 

Evaluations were done on the whole corpus. on the 
sub-corpus of vowels only (2952 items) and on the 
sub-corpus of consonants only (2318 items). Sub- 
corpuses were also halfed in training and test sets. 

The cross-validation strategy was used to decide 
when to stop the learning phase [3]. 
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RESULTS 

Performances on the whole corpus. on the vowels- 
only corpus and on the consonants-only corpus, 
for each femme. are shown in Table l below. Two 
scores are given foreach experiment : one (in bold) 
is the score of correct feature identification on the 
testsetfie. forthethedatathatwerenotusedto 
train the network), while the second score (in 
standard characters) corresponds to the score 
obtained on the training set itself (self- 
consistency). Naturally. the second score is usually 
higher than the first one, and the difference 
between the two gives a hint of the generalisation 
capability of the network; that is its ability to 
solve a similar problem to the one it was trained 
for,with datathatithasnotscenyet. 

On the whole corpus, all scores (but one) range 
between 90 % and 99 %, with more than half of 
them over 95 %. Moreover, all scores for phonetic 
features (but one) are higher (by approximately 10 
%, in the average) than the average score for 
arbitrary random features. This clearly evidences 
the contribution of phonetic knowledge for 
determining what kind of task the TDNN is most 
likely to work with. Beside this, while features 
related to manner of articulation are very efficiently 
detected (features III, V, XI, XII, XIII), those 
linked to the more abstract notion of place of 
articulation provide less satisfactory results. 

Not all phonetic features that were tested on the 
whole corpus were also experimented for the vowel 
and the consonant sub-corpuses, but only some of 
them that allow a discriminative non-redundant 
system. The im ovement of feature extraction 
when moving rom the whole corpus to the 
consonants-only corpus is rather disappointing, 
but must be owed to a change of the reparations. 
Conversely, scores for vowels-only improve 
significantly, in general. In both cases, the self- 
consistency tends to increase, since the number of 
learning exam les is smaller and makes it possible 
for the TDN to memorise the particularities of 
the training data (which is clearly undesirable). 

VISUAL EXPLORATION 

It can be shown that, under certain constraints, the 
matrices of weights within the first layer of 

TDNNs can be viewed au typical patterns that are 
searched for in the spectral picture of the input 
token to classify [10]. In other words, TDNNs 
develop in some ways their own expertise for 
classifying speech sounds, a little bit like a human 
expert would do, from experience. 

In figure 2 (last page). we have visualised 3 sets of 
weight matrices, for 3 features : voiced I unvoiced, 
nasal I non-nasal, and vowel I consonant. A full 
comment is given with the figure : the cues used 
by the network are most of the time in accordance 
with the classical acoustic descriptions of 
phonetics, and thus directly interpretable, which 
was notatall apriori warranted. 

CONCLUSION 

Phonetic knowledge can thus be used to help 
TDNNs in their task : not only to a priori choose 
the kind of task that is the most likely to be 
successfull, but perhaps also to initialise the 
weights of the network using human expertise on 
the problem to be solved. This last point is a 
challenging topic for further research. 

Conversely, TDNNs can learn automatically from 
a set of typical examples (like other neural 
networks); but because their architecture is speech 
dedicated. they certainly represent a new tool for 
phoneticians’ investigations. 
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Table l : Scores l'or feature extraction on the 3 corpuses : scores on test set, (on training set). 
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Figure 2 : Visual display of weight matrices (masks) i n TDNNs for phonetic features extraction. 

(top : voiced I unvoiced, center: nasal I non-nasal, bottom : vowel l consonant). 

The side of each square is proportional to the magnitude 

Only the first layer of weights is represented, as 8 masks 

[+I- Voiced] : All 8 masks are 3 
presence of ene y in the first 
masks 5. 6 and . But a temporal d 

hands (160 Hz and 290 Hz) is clearly 

' ‘ ' ' rh 5 and 6). This _ _ 

frequencies " also an indication 0f l"'] 3:39: (F:;Ëzeâ'sâiufd,}o:nählp:h Êtïsudden change of the spectral tilt eVIdcnccs the 

combinations such as invoiced plosive 
beginning of voicing. 

[+l- nasal] : Masks show here again some redundancy. Masks l, 2. 
' hite weights 

' ' th 160 Hz band (all nasals are voiced...) and the absence (w 

resence Of low fmqugcg;).m1hi: is fully consistent 'with the observation: oonotîehrruilg spect 

fre uencies for nasal sounds. These 4 masks differ mainly by the location 9 TI w'îlrt onpectnle anoth 

2. 135 Hz. for mask 3, 1705 Hz for mask 4). Mask 5, 6 and 7 are very sum ar i 

' ’ al ow ls 
around 595 Hz and between 2010 and 2720 Hz. This may coneæoîiidzipätefiäyotfoâïk avis :“ clear yet (no energy around 770 
requencies (around 4 

in [500 Hz - 700 Hz] and a high third formant in [2300 Hz - 28 

Hz nor 2010 Hz). 

[+I— vowel] : Here, masks 1 to 8 are ordered according to I notic 
' ' hl all si _ _ _ 

energy somewhere between 290 Hz and 770 $.(Heäemmifäflgwrägba'r'td hat?! really used. because it is ambiguous with 

' d th theoretical maximum second formant for lil), and 

d 27:10 t'l'u'zrdoär'mbfnyg)‘ are goth considered as in favour of [+ vowel]. 
retrieved in all masks. with a different time-s 

voicing. Note also that an absence of energ aroun 

the presence of energy around 3135 Hz (region for seve 
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the ' ht. Black corresponds to positive values, white to negative. 

€: : l6ïc'igune is horizontal, frequency vertical (Mel-scale). 

uite similar to each other, which evidences that the network is over-dirnensioned for the task. The 

used as a cue for identifying voiced patterns, especially for 

ecrease in high frequencies (3135 Hz. and 4685 Hz bands), Jointly with an increase in low 
is certainly owed to phonetic 

' ° ' le la ed b the 'oint 
3 and 4 underline the significant ro f0? "medium-low" 

ral zeros around the medium-low 

hollow (2345 Hz for masks 1 and 

er. They search for jomt energy 
that usually have a first formant 

eable progression : from left to right, a pattern of important 

ble first fortnants) can be approximately 


