Fo DECLINATION AS A CUE TO DISCRIMINATION OF TONAL CLASSES AND PHRASING IN FRENCH

Pascal Roméas

Institut de Phonétique d'Aix-en-Provence, France.

ABSTRACT

Fo keypoints follow an overall decay from the beginning to the end of French utterances. This is best accounted for when the keypoints are distributed into 3 tonal classes ($\mathrm{L}, \mathrm{H}, \mathrm{S}$). We compare the significance of linear and 2nd-order polynomial regressions to account for the Fo declination of these 3 classes. This latter regression generally shows a negative second derivative, which leads to a discussion. We find that class S determines the occurrence of declination resettings. The regression significance may be better, under certain conditions, inside sections delimited by S-points than in the span of the whole utterance. We discuss whether regressions may be a cue to resettings.

1. BACKGROUND.

This study deals with the organisation of the melody keypoints in French utterances, from both frequential and temporal points of view.
The speech material is taken from a French simulated man-machine dialog in which only users' requests have been taken into account.
Our earlier works ([10], [11], [12]) have shown the existence of a two-mode organisation of tone in this type of utterances. We distinguish between :
1-suprasyllabic tonal patterns, whose domain and function refer to the lexical relative information load,
2 -intrasyllabic contours, which, along with other redundant cues (pauses, etc.), assume a function at the syntactic level (marking of phrase ends).
These two tonal phenomena can be distinguished from three different points of view : acoustic features, phonological association with the syllable string,
functions (at lexical, syntactic, and informative levels).
2. AIM OF THIS STUDY.

Considering that the approaches involving sequences of Fo targets (e.g. [1], [7]) have to be tested on our material, we now examine this tonal organisation in a new manner. The pitch maxima of suprasyllabic patterns have been labelled as H . Those of intrasyllabic contours have been labelled as S. All syllables located off these patterns and contours are considered as unstressed (which for French means : low tone). The center of their vocalic part has been labelled as L. Both time and Fo values of these keypoints have been saved in appropriate files.
Our aim is to show that satisfactory regression functions in the time x Fo space can be found to account for these (x, y) keypoints, under some conditions :

- the functions must be calculated independently for each class of keypoints ($\mathrm{H}, \mathrm{S}, \mathrm{L}$),
- polynomial functions (generally second order) may often provide a better model than linear regressions
- the model may often be improved when the utterance has been parsed into sections delimited by the S-points (these sections generally match phrasing, since S-points have a syntactic function).
This paper actually draws the first trends, but complete results and general conclusions will be available in our thesis dissertation by September 91 .

3. METHODOLOGY

We deal with 125 utterances, produced by 5 speakers. Fo calculation and representation, as well as tonal labelling has been run on a Masscomp- 5400 mini-
computer, using the SIGNAIX speech signal processor [4]. Data have been transferred to a personal computer in order to run staístics.
The necessity for calculating independen The necessity ortions for H, S, and L, is regression functions way, since it relies on shown in an indiret variance of the three the analysis of variance of the three groups.
Froups utterance, and for each tona or each we compared the R-squared and the probability for linear and for polynomial probabity
When the utterance had S-points, the same When the utterance been tested on the regressions have by these points. We sections delimited R-squared and p were could then see if the R-squas better in the case of sections.

4. RESULTS.

4.1. Regressions must be applied separately to 3 tonal classes.
We said that acoustic features allow a distinction between tonal events involving H (the so-called suprasyllabic patterns) and tonal events involving S (intrasyllabic contours). The major two features are F glide threshold and vowel duration. The gerge vowel duration in the corpus for all syllables except those bearing an S -point is 5 ms . As shown in figure 1, vowels 55 ms . As shown S -point have much longer durations:
durations.
\%

Fig 1: S -vowels duration, all speakers (ms) mean: 153 m standard deviation: $\quad 40$ to 304 ms (for 113 values)

The Fo glide magnitude between S and the preceding L is bigger than the Fo glide magnitude between H and the preceding L :

Ratio $\mathrm{FO}(\mathrm{H})$ / FO (L), all speakers
mean $\mathrm{Fo}(\mathrm{S}) / \mathrm{Fo}(\mathrm{L}): \quad 1.23$ standard deviation: 0.11 (for 113 values)

Ratio $\mathrm{Fo}(\mathrm{S}) / \mathrm{Fo}(\mathrm{L})$, all speakers:
mean $\mathrm{Fo}(\mathrm{H}) / \mathrm{Fo}(\mathrm{L}): \quad 1.16$
standard deviation:
(for 466 values)
Otherwise, the regression functions applied to the S group alone have a higher constant than the regression functions applied to the H croup alone in 98% of cases.
The group alysis of variance of the three The analysis of confirms that the Fo groups ($\mathrm{H}, \mathrm{S}, \mathrm{L}$) confirms that dimension values organisation in the time dimension must be studied for each group separately We shall call these groups tonal classes.

4.2. linear vs seco

polynomial regressions. Fo declination is generally dift from the progressive Fo downdrift from ance. beginning to the end of the utterance, Declination models often make a distunction between top-line and base-line downdrift ([1], [8], [9], [13]). As seen in (4.1.), and (11, shown in figure 2 , we find it useful to as s lyse this phenomenon for 3 separate analyse which provide an L-line, an H classes, which pre
line, and an S-line.
These lines are obtained by regression functions. S-lines have low significance sunce utterances have few S. However the Since utterances ha not usually differ S-lines slopes do the slopes of other significantly from the she of the downdrif classes. The genera shapergence between shows a slight contict parallelism.
classes rather than a strict parauensit

Fig 2. L- line H -line and S -line obtained by linear Fig 2.L-ine, He is in milliseconds, Fo in Hertz. regressions. The is ais connaitre le temps prévu le Utterrance: " aimerais cent quare vingt deux sur le douze juin mille neur cestes.
The number of H points in the H -lines may 4 (nean 4.3 per ut) so that lower han 4 (mean 4.3 per be calculated no significant regression can becurrences) in these cases lines are better accounted for by a linear regression although
approximately 2β of these do not reach the probability $p=0.1$. Actually, if we consider utterances with a greater number of H , the 2nd-order polynomial regression appears to be a better model. This is the case for 27% of H-lines, out of which more than $2 / 3$ have $\mathrm{p}<0.05$.
The same tendency can be noticed for L lines, which gather more keypoints than H lines (mean 9.6 per utt.). We found that 60% of the L-lines (generally the ones provided with a greater number of L points) are better accounted for by 2ndorder polynomial functions. Most of them provide a satisfactory R-squared, and over 95% have $\mathrm{p}<0.05$
The x^{2} coefficient was found to be negative for over 90% of L-lines. In most cases, the lines can be divided into two temporal phases : first, they increase, but they have a negative second derivative (shorter phase); second, Fo drifts down and the second derivative remains negative (which means that Fo steepens with regard to time). See figure 3.

Fig 3: L-line and H -line obtained by a 2 nd-order polynomial function. This utterance has only one S -point. R -squared for L is $0.887, \mathrm{p}<0.0001$. Rsquared for H is $0.915, \mathrm{p}<0.0855$

A discussion of these results is presented below.
Yet 40% of L-lines are better accounted for by linear regressions. One explanation is that most of these L-lines are provided with few L-points. Moreover, only $1 / 3$ out of those cases reach $\mathrm{p}<0.1$ (which is partly due to the low number of points).

4.3. Utterance vs sections.

Trying to find one function to account for keypoints has less and less justification as utterances get longer. Many authors ([1], [3], [13]) have noticed that the course of declination may be reset at major boundaries. Our material provides many long utterances interrupted by silent
pauses. The pauses generally occur immediately after S -tones.
We found that roughly half of the L-tones that immediately follow an S-tone (L2) have a higher Fo value than the L-tone that immediately precedes the S (L1). Moreover, if we now consider the Fo difference between L-tones and the y values of the regression function provided with the same respective x -values, we find that most of the L1 have a negative difference while most of the L2 have a positive difference. This seems to indicate that the resettings must be interpreted with regard to an overall downdrift which covers the whole utterance, rather than to the rough Fo scale. This point deserves further investigation and will not be discussed in this paper.
Another criterion for resetting is the significance of the regression applied to sections delimited by the S-tones, as compared to the regression on the whole utterance.
This criterion is disappointing at first sight. Our hypothesis was that the utterances could be successfully parsed into sections delimited by S-tones. Some utterances do not have S-tones. Otherwise parsing has been attempted as long as S split the utterance in a way which provided the resulting sections with at least one L and one H (thus excluding final S). Finally both linear and polynomial regressions were run on the span of sections. The main problem that we encountered is the lack of points in the sections, especially for H points.
In cases where the section slopes are obviously reset (relative Fo difference between L2 and L1, silent pause interruptions), the significance of section regressions often remains low. It is lower than the corresponding utterance regressions for 87% of sections, although 38% still provide a p below 0.05 .
Yet if we now assume that there is no linguistic reason why the declination models obtained above by regressions on models obuained above by regressions on implemented on shorter sequences, we may consider that the R-squared is a better cue than the probability (which is directly related to the degree of freedom). Actually, 63\% of section R-squared are higher than the corresponding utterance R -squared.
See illustration in figure 4 \& 5 .

Fig 4: Utterrance "Quelles sont les temperatures maxima et minima aux environs de Gérardmer à plus de huit cents metres aujourdhui". R-squared for L-line: $0.561, \mathrm{p}=0.0108$. R-squared for H -line: $0.302, p=0.4076$. See next figure for section results.

Fig 5: 2nd-order polynomial regressions for the first section of the same utterance as in figure 4. The section ends in the S-point represented by a black triangle. R-squared for L-line: 0.83 , $\mathrm{p}=0.0049$. R -squared for H -line: $0.99, \mathrm{p}=0.0011$.

Further discussions about resetting cues will take place in later publications. We wow prefer to focus on the point of the negative second derivative that has been found for most of the declination slopes.

5. DISCUSSION

Negative x^{2} coefficient does not confirm the previous observations on the general slope of declination ([1], [5]), which was found to follow an exponential decay (phrase component in Fujisaki's model). This shape of the overall decay has been claimed to be conditionned either by subglottal pressure [6] or by crico-thyroid activity [2]. Beyond this controverse, it may be assumed that declination is mostly determined by the linguistic struture of utterances, and therefore pre-planned independently from physiological constraints ([8], [9], [13]). Since the keypoint values are linguistically conditioned, the exponential decay model cannot be conceived as language- and context-independent. We infer that the steepening slope in our material is due to
the specific structure of these French utterances. Since the slope remains a function of time, its shape cannot be conditioned by lexical or syntactic factors. On the contrary, the phatic function may be assumed to weaken smoothly as the S-tone linguistic information nears. The steepening slope may be a pre-indicative cue for the perception of S-tones (i.e boundaries). As a consequence, the pitch boundaries). As a of unstressed syllables in these French utterances should be consider
of a controlled active process.

REFERENCES.

[1] BRUCE, G., (1984), "Aspects of declination in swedish", Lund Working papers in Phonetics, 27, swedish
21COLLIER, R., (1985), "Setting and resetting of 2) of Tokyo.
3] CRYSTAL D (1969), Prosodic systems and ntonation in english Cambridge University Press. [4] ESPESSER, R., BALFOURIER, O., (1989), [4] ESPESSER, R., BALFOURIER,
[5] FUJISAKI, H., (1981), "Dynamic [5] FUSISAKI, H., characteristics of voice fundamental frequency in. speech and singing
Venice, Apr. 21-24.
[6] GELFER, C., HARRIS, K., COLLIER, R., BAER, T., (1983), "Speculations on the control of fundamental frequency declination", Haskins Status Report on Speech Research, 76, 51-63.
[7] HIRST, D.J., (1980), "Un modèle de production de l'intonation", Trovaux de l'Institut de Phonétique d'Aix, 7, 297-315.
[8] MAEDA. S., (1976), A characterization of [8] MAEDican english intonation, Ph.D., M.I.T.
[9] PIERREHUMBERT, J., (1979), "The [9] PILRRE fundamental frequency declination" perception $66,2,363-369$
[101 ROMEAS, P (1990,1), "Prosodie el lexique: [10] ROMEAS, P., (190,1), "en dialogue hommetendances majour abs machine", Proceedings of the $1^{\text {St }}$ French Congress on Acoustics, Lyon, April 9-13 1990, Editions de Physique, pp545-548.
[11] ROMEAS, P., (1990,2), "Apport d'information lexicale et marques prosodiques", $18^{\text {emes }}$ Journées d'Etudes sur la Parole, Montréal, 28-31 Mai 1990, pp17-20, Pub. de I'Université de 28-31 Mai
[12] ROMEAS, P (1991), "Organisation proso [12] ROMEAS, ., (1ical en dialogue hommedique et acces lex en machine", $2^{\text {emes Journées du PRC-GRECO }}$ Communication Homme-Machine, Toulouse January 29-30 1991.
[13] SORENSEN, J., COOPER, W., (1980), Syntactic coding of fundamental frequency in speech production", in COLE, R.(ed.), Perception and production of fluent speech, 399-440, LEA, Hillsdale.

