In addition to some consensus on the preference of lower left quadrant vowellike sounds, there is some general tendency to favor different areas of expansion on the vowel space (i.e. toward high-front area for English and back for Cantonese: See [5]); such trends have also been tested in perceptual experiments [4].

MacNeilage and Davis theory of speech production [10] addresses the problem of coarticulation in acquisition of speech : an elementary unit of speech production is postulated, a pure "syllabic frame", observable in single or repeated episodes of mandible oscillation; when these episodes are accompanied by vocalization, the basic sequence of Labial consonant + Central vowel is produced.

Elementary movements of the tongue can cooccur with the frame provided by mandible oscillation: pre-fronting or "consistently-held" tongue fronting would result in a sequence of Alveolar consonant + Front vowel and a pre-backing, or "consistently held" tongue backing, would result in a Velar + Back vowel sequence. The $C$ and $V$ segments, at this stage ("nonvariegated babbling"), would not be independent, but produced with the "frame", as a whole unit.

In variegated babbling, local modifications due to tongue positioning on the front-back/low-high axes, can appear: in these forms, real differentiation between segments begins to emerge and the segments start to be produced independently within the frame.

This view of early babbling differs basically from the classical hypothesis on coarticulation in adult speech, that assumes "a) discrete and invariant units serving as input to the system of speech production and b) eventual obscurations of the boundaries between units at the articulatory or acoustic levels"[7].

## 2. METHOD

### 2.1. Subjects

The subjects studied were 3 French monolingual children, Camille, Louis and Myrtille, and 3 Italian monolingual children, Luca, Francesco and Evelina. The age range was $0 ; 9$ to $1 ; 5$.

An average of 4 sessions has been considered for each child.

### 2.2. Data collection

The French material has been kindly provided by the Experimental Psychology Lab.,C.N.R.S., Paris.

Two of the Italian children have been recorded in Rome, by a procedure similar to the one used for the French children in Paris: the sessions took place at ome, every 15-20 days, in the presence of at least one parent and one or two experimenters; Luca's recordings have been kindly provided by the Phonetics Lab., C.N.R., Padua.

### 2.3. Data analysis

IPA Transcriptions of the disyllabic utterances by the babies have been stored on MacIntosh computer by IPAPlus fonts, kindly made available by Prof. G. Boulakia, of the Institute of Phonetics of the Charles V University, Paris.

A distributional analysis has been performed on the database by the software "Quatrieme Dimension": ad hoc formats and procedures were created by Mme C. Carcassonne of the Center of Mathematics applied to Humanities, C.N.R.S., Paris.

Two analysis have been performed separately on babbling and speech:
I) Computation of total number of vowels by class (nine classes are considered :BackHigh,
BackMid,BackLow,CentralHigh,CentralMi d, CentralLow, FrontHigh, FrontMid, FrontLow).
II) Computation of child vowels in first syllable vs. second syllable, with respect to the consonant preceding every vowel (four consonant classes have been considered: Labials, Alveolars/Dentals, Palatals, Velars).

## 3. RESULTS

Results of the vowel frequency analysis show an overall preference for the MF LC and MB vowels (Fig.1) by French and Italian babies, in both babbling and speech: LC appear to be more frequent, both in babbling and in speech; higher numbers of LC and MB, though, are found in Italian than in French.


Fig. 8: Totel distribution of vovela in betbling ( $B$ ) and spoech ( S ) of italit
and Fronch chifidren (exprossed ss percentagos).


A comparison of the percentages shown above (Fig.1) with the frequency of occurrence of the phoneme classes in each language (from [6], [1]) shows that the LC presence in the data reflects the situation of he adult languages: [a] has a frequency of $31 \%$ in Italian and of $17 \%$ in French; actually, in Italian this vowel appears twice as often as in French

MF vowels, the second preferred set, have $25 \%$ frequency altogether in Italian and $31 \%$ in French, although according to my classification, the French MF space contains a higher concentration of phonemes than the Italian one (see Fig.2).

Overall French and Italian patterns are very similar, although Italian babies have significantly less MF in speech with respect to the French ones.

The CVCV results (Table 1) show highest frequency of cooccurrence of Front vowels with Palatal consonants in Italian, whereas in French Front vowels tend to be articulated after Palatal and Denta consonants.

Central vowels cooccur consistently with Labials in Italian, but they are equally frequent with Labials and Velars in the French data.

Finally, Back vowels cooccur with Velar consonants in two Italian subjects and with Labials in Luca, whereas in French they show a different tendency to be coarticulated with Palatals.

A comparison with the frequencies of vowels in CV syllables from the most frequent 200 disyllables in Italian (from [3]) and from the most frequent 100 words in French ([9]), shows some correspondence between the French babies preferences for Front Vowels to occur with A/D consonants, and the frequency of this constraint in the language ( $20 \%$ ); also, Central vowels in French show high frequencies with Labial and Velar consonants (19-14\%), as well as in the babies productions. In French, though, occurrence of Central vowels is also high after A/D consonants (19\%). Finally, Back vowels appear most frequently in an A/D environment in French (13\%), but they are preferred after Palatals in the data.

The Italian language frequency pattern favors $A / D$ consonants in the
environment of all classes of vowels ( $\mathrm{F}: 29 \%, \mathrm{C}: 15 \% ; \mathrm{B}: 22 \%$ ): this tendency is not reflected by the Italian children.

## 4. DISCUSSION

The differences that have emerged between the French and Italian patterns and the English patterns reported in MacNeilage and Davis [12] can be interpreted as follows:

1) The higher number of LC found in Italian with respect to French/English can be attributed to a target-language influence.
2) The drop in MF vowels from babbling to speech, stronger in Italian than in French, reflects different properties of the target-vowel spaces, as well: French children are drifting toward a space where four phonemes are concentrated in the MF area (see Fig.2), whereas the Italian space is more [a]-centered, and MF vowels are represented only by two phonemes ([e][ $E$ ]).

Overall French and Italian patterns differ from English in the following: a) MF are not present in high percentages in English babbling; accordingly, MF have a low frequency ( $11 \%$ ) in the language.
b) The greater number of LF vowels reported by MacNeilage and Davis [11] reflects the high frequency of [ae] in English; the result could also be due to the classificatory system adopted in this study, where both French and Italian [a]'s are included in the LC category, even if the French articulation is intermediate between the English and the Italian one (see Fig. 2).
3) The Italian CVCV data reflect the scenario postulated by the 'frame/content' theory; French data, on the other hand show an overall preference for Front and Back vowels to be produced in Palatal/Dental context, and for Central rowels to occur in Labial/Velar context.
The question therefore arises as to whether there exists a progressive shift towards coarticulatory patterns preferred in the target language, as has been shown for single vowels.

The comparison with the frequencies of vowels in the most frequent CV syllables in the language shows some evidence for a drift towards target coarticulatory patterns for Front and Central vowels in French children; this trend is absent in Italian children.

This effect might be due to a slower rate of transition from infant to adult articulatory patterns. It could be argued that the acquisition of coarticulatory constraints develops after the ability to produce independent segments is acquired: in this view, acquisition of speech production consists in separating segments from a holistic production frame' and consequently reassemble them as independent units in the speech chain.

## REFERENCES

1] ANTONETTI, P. and ROSSI, M (1970), "Précis de phonétique de l'italien", in Publications des Annales de la Faculté de Lettres Aix-en-Provence. Série: Travaux et Mémoires, N. LVIII, Aix-en-Provence.
[2] BICKLEY, C. (1983), "Acoustic evidence for phonological development of vowels in young children", Utrecht, Tenth International Congress of Phonetic Sciences.
[3] BORTOLINI, U., Tagliavini, C. and ZAMPOLLI, M. (1971), "Lessico di frequenza della lingua italiana contemporanea", Milano
[4] DeBOYSSON BARDIES, B. et al. vow (1984), "Discernible differences in the babbling of infants according to the target language", Journal of Child Language, 11, 1-15.
[5] DeBOYSSON BARDIES, B. et al. (1989), "A cross-linguistic investigations of vowel formants in babbling", Journal of Child Language, 16, 1-17.
[6] DELATTRE, P. (1965), "Comparing the phonetic features of English, German, Spanish and French", Heidelberg.
[7] KENT,R.D. and MINIFIE, F.D. (1977), "Coarticulation in recent speech productin models", Journal of Phonetics 5, 115-133.
[8] KENT, R.D. and MURRAY, A. (1982), Acoustic features of infant vocalic utterances at 3, 6, and 9 months", Journal of Acoustical Society of America, 72, 353365.
[9] JUILLAND, A. (1970), "Frequency dictionary of French words", The Hague, Mouton.
[10] MACNEILAGE, P.F. and DAVIS, B.L. (1989), "Acquisition of speech: frames, then content", in: M. Jeannerod (Ed.) Attention and Performance, XIII, Motor Representation and Control, Hillsdale, N.J., Lawrence Erlbaum.
[11] MACNEILAGE, P.F. and DAVIS, B.L. (1990), "Acquisition of speech production: the achievement of segmental independence." In Hardcastle, W.J. and Marchal, A. (Eds.) Speech Production and Speech Modelling. Kluwer, Dordrecit (in press).
[12] MACNEILAGE, P.F. and DAVIS, B.L. (1991), "Vowel-Consonant relations in babbling", this volume.


TiE 2 - A vowel chan of the Ancrican, French and latian vowels
(Adapted from : P. Ladefoged: " A courre in Phorecics ${ }^{-1}$ "


Haken: Le Luan


fresoal:


