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Abstract 

We present an algorithm for formant estimation in 
continuous speech which is designed to work under 
”online" conditions in a speech recognition system. 
The algorithm combines heuristic knowledge about 
the spectral and temporal behaviour of formanls in 
speech. Reclassification into broad phonetic cate— 
gories allows to use different algorithms for formant 
estimation in vowel- and consonant-like regions of 
speech. Recognition experiments show that formant 
parameters are a powerful feature set for speech 
recognition and can compete with other standard 
feature vectors. 

1 Introduction 
Fonnants appear as prominent peaks in the 
short-time spectra of speech and are defined 
as the characteristic resonance frequencies of 
the vocaltract ordered by frequency. Formants 
can-y important information about acoustic- 
articulatory relations, because they change their 
frequency and amplitude values according to 
different vocaltract shapes. They can be 
viewed as an important source of information 
in acoustic-phonetic decoding. Thus formants 
have become a standard in phonetics for de- 
scribing complex acoustic-phonetic relations. 

Formants also seem to be an ideal parameter 
set for speech recognition, but so far they have 
not become a standard in this area. The rea- 
son is. that automatic formant extraction is not 
a trivial problem. Already existing algorithms 
for automatic formant extraction, e.g. [1], [3] 
show the evidence that formant extraction with- 
out any errors is impossible. The significance 
of information carried by forrnants is revealed 
by severe recognition enors in the case of in— 
correct formant estimation. 

'The next chapter briefiy introduces into the 
problem of automatic formant extraction. Then 
the different parts of the algorithm are pre- 
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sented. Finally some speech recognition exper- 
iments with formant parameters are described. 

2 The Problem 
Contrary to commonly used feature sets in 
speech recognition, formants are not defined by 
a mathematical method, which allows to calcu- 
late them directly from the speech wave. They 
are defined by articulatory phonetics as vocal- 
tract resonances. Formants only can be calcu— 
lated indirectly via peaks or roots of the power 
spectrum. 
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Ham 1: Formant estimation problem. 

In terms of estimation theory. we can there- 
fore formulate the following problem (also see 
figure 1): Suppose the peaks and roots f 0; (also 
called "formant candidates") of the power spec- 
trum are the only data which can be measured 
and which give us some information about the 
unknown quantity ”formants” f 0; inside the 
system. 80, depending on f c; we have to make 
an estimate for the fonnants fakcf ci) that the 
estimation error E = f om“ c;) — f 0); is "small". 

However, this estimation process is heavily 
influenced by two different noise sources en and 
c..: The errors caused by e. have their ori- 
gin in the articularory system. The formant 
order may be confused by zeros in the vocal- 
tract transfer function. Thus some fonnants are 
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highly damped and are not detectable. Noise 

source e... causes measurement errors; e.g., as 

the fundamental frequency is superseeded to the 

short-time spectra, prominent pitch peaks may 

be confused with formant candidates. 

Existing methods for automatic formant cs— 

timation simply try to map these measured and 

noisy peaks or roots to formants by tempo- 

ral smoothness criteria. e.g. [ l] .  [3]. The 

background for these procedures is the assump- 

tion that. due to the inertia of the articulators. 

the temporal behaviour of real vocaltract reso- 

nances (=formants) is indicated by continuity. 

The algorithm we present in this paper does 

not exclusively use smoothness criteria. be— 

cause this is an oversimplification; we will illus- 

trate this point by two examples; firstly, imagine 

a vowel-segment where a highly darnped for- 

mant is missing, smoothness criteriado net help 

at all to classify the measured peaks into for- 

mants; secondly. smoothness criteria may lead 

to crucial errors at places where formants jump 

significantly in frequency; tracks of different 

formants may be connected with each other. 

3 The Algorithm 

Analyzing carefully the temporal and spectral 

behaviour of forrnants in speech and also the 

nature of possible errors we designed an al— 

gorithm which can be divided into four steps 

(see also figure 2): (1) spectral analysis and 

preclassification into broad categories of man— 

ner of articulation. (2) formant identification 

(FJD ) in vowel-like segments without smooth- 

ness criteria. (3) formant tracking (PTR) in 

vowel-consonant (VC) and consonant-vowel 

(CV) segments with smoothness criteria and 

(4) preparation and normalization of formant 

parameters for SpCCh recognition. 

Preclassification 

Rootsolving 

Peak-Picking 

l 
Formanl- 

Idenfificafion 

1 
F ormanl- 

Tracking 

Figure 2: Schematic flow graph for formant- 

extraction. 

The algorithm uses 128-point FFT-spectra 

with a bandwidth of 8kHz. The spectra are 

calculated via a 16-th order LPC- analysis with 

a 20m Hamming window, which is shifted in 

10m steps. The formant candidates are deter- 

mined both by peak—picking and root solving. 

3.1 Preclassification 

Initially, the Speech signal is preclassified into 7 

broad phonetic categories (silence, weakfrr‘ca- 

tive, strong fricative, voiced plast've, nasal, 

sonorant, vowel) which correspond to manner 

of articulation. This is due to the assump- 

tion, that there is no overlap of formant fre- 

quencies in segments with constant manner of 

articulation. This makes the following steps 

of the presented procedure, eSpecially step 2 

formant identification. more easily. Classifica- 

tion into categories of manner of articulation is 

performed by mixture density Hidden Markov 

Models (CDHMM) similar to [4]. using very 

simple acoustic features like energy contour. 

zero-crossings rate, low frequency energy (up 

to 1000 Hz) and the ratio of high to low fre- 

quency energy. 

3.2 Formant Identification 

Formants are extracted in vowel-like (V) seg- 

ments first, because they usually are more 

prominent in vowels than in  consonants and 

therefore may be detected more easily. The 

main task of this step is to allocate formant 

candidates to formants, taking into account that 

formants may be missing over the whole du- 

ration of a V—segment (see also the example in 

figure 2). M,: formant candidates are calcu— 

lated every 10msec; Mf‘. is set to the number 

of LPC-roots minus one. Formant identifica- 

tion first tries to find the dominant formant re— 

gions within a segment. This is accomplished 

by approximating the distribution of formant 

candidates in V—segments by Mfg cluster cen- 

ters with gaussian distributions. The procedure 

itself consists of three steps: (1) initialization of 

the cluster procedure, (2) calculation of cluster 

centers by k-means clustering and (3) classifi— 

cation of the formant candidates into formants 

by a mean square estimator. 

( l )  Initialization: To initialize the segment 

Specific formant clusters, we first calculate the 

mean m; c, and variance of c, of the formant can- 

didate frequencies x; c, over all NV frames t' of a 

V—segment: 
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Assuming that we already know mfg" the 

speaker specific long term formant means f ok, 
the centers of the cluster ck are initialized to 

me. = (m, + mot)/2- 
(2) Cluster procedure: The k-means cluster 

procedure is used to calculate Mfc cluster cen— 
ters. The resulting clusters mg,, ordered by fre— 
quency. characterize the segment Specific for— 

mant frequency regions. They are defined by 

the mean and variance of Mc, formant candidate 

frequencies which belong to the k — rh cluster: 
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The Speaker-Specific formant means mf ,,, and 

vari ances a; c, are calculated by the same cluster 
procedure, however using a sufficient number 

of speech frames (about one minute). 

(3) Classification: The V-segment Specific 

formant distributions (cluster centers me,) are 
used to classify the formant candidates into for— 
mants. The classification procedure maximizes 

the probability p(xf.,,(i) | xfc,(i)) over all for- 

mant candidates ! = l...,Mfc, ie. the proba- 
bility that a measured peak frequency xfc,(r') at 
time i belongs to formant f ok, when it was mea- 

sured as formant candidate f ci. The probability 
may be written as: 

p(xf0g(i) | If c; (i)) = 

TL; cxp(—-'2-(x;c.(i) — m...? / «à) 

Applying the mean square error criterion [2] 
to the estimation of formant frequencies leads 
to the following equation: The estimated fre— 
quency if“ of formant f 0; is given by the sum 
of the segment Specific mean frequency value 
mc, plus the difference of the nearest formant 
candidate to me,, weighted by the maximized 

Pmbabilîiy Puma; «(i) | 1mm): 
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3.3 Formant Tracking 

This part of the algorithm continues the for— 
mants of the vowel-like (V) segments into 

neighboured consonant-like (C) speech seg- 
ments. i.e. formant tracking works on CV— and 

VC—segments. The CV— and VC—segments are 
well defined by preclassification. As the for- 
mants of the V—region are already known, this 
part of the algorithm has the task to correct and 
complete comrpted formant tracks by smooth— 
ness criteria (see example in figure 2). A non— 

linear smoothing algorithm based on dynamic 
programming was choosen for this task. This 
method is  able to keep frequency jumps in some 

fonnants by Optimizing the overall smoothness 
of the formant tracks. 

The smoothness of the trajectory of formant 
fg  is measured by a cost function “(Li | h, i’). 
It measures the deviation of formant candidates 
to the trajectory of formant f ok. Assuming that 
the formant candidates f c;(t') in frame t' and 

f ch(i') in frame :" belong to the trajectory of 
formant f 0; at time t', the costs are given by: 

chant | hit—') : 
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with i' =i— r,..t—it; l,k= t,.Mfc; cl 
and C; being constants. 

The cost function consists of three main 
terms: The first term corresponds to the fre- 
quency distance in Hz, the second term mea- 
sures the temporal distance between the for- 

mant candidates and the third one is a weighting 
term which corresponds to the reverse pmb- 

ability that the formant candidates belong to 
formant f ok. The function accepts small val- 
ues for smooth and large values for comrpted 
trajectories. 

The optimization criterion for the allocation 
of formant candidates to forrnants is given by 
the next formula. The criterion states that the 
total error E given by the sum of the costs over 
all frames c for a VC—, c for a CV-segment 

respectively. has to be a minimum: 
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over all [,le and i'. 

This equation can be elegantely solved by dy— 
namic programming. A solution for this prob- 
lem is presented in [6]. 

3.4 Formant Parameters 

The formant parameter set which is used for 

speech recognition consists of 7 formant fre- 

quencies and of two energy terms for each 

formant (a total of 21 parameters). The en— 

ergy terms correspond to the logarithmic power 

which is contained in the frequency region ex- 

tending from a formant center to the left ml or 

the right minimum mr in the spectrum. With 

s(x) being the log. power at frequency x, the 

energy to the left and right and right sidcfefa, 

of a formant center is calculated by: 

r w ! ”  (""'/0!) 
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All formant parameters are finally normal- 

ized to the speakers mean values and variances. 

With fpkû') now being one the 21 formant pa— 

rameters at time t' and m… and of“ being the 

speaker specific means and variances of these 

formant parameters, the normalized formant pa- 
rarneters f n,,(i) are calculated by: 

f nk ( i )  = kO') _ mfpt 

"k 

Expresscd in filter bank terminology: The 

resulting parameters which are used for speech 

recognition are filterbank coefficients, where 

the filter channels have variable center frequen- 

cies and bandwidths. 

4 Experimental Results 
The presented algorithm for automatic formant 

extraction was tested with speech material of 3 

speakers (each with 2 versions of 100 phoneti- 

cally balanced sentences, i.e. about 10 minutes 

of continuously spoken speech per speaker). 

The extracted formant parameters were used for 

classifying the speech signal into 14 categories 

of place of articulation (silence, glottal, velar, 

palatal, alveolar: dental-alveolar; labio—denral, 

bilabial. u-like, o-like, a-like, (J'—like, e-lt’ke und 

i-lr‘ke). This task is part of an articulatory based 
approach for speech recognition [6]. 

For each articulatory category we built con- 

tinuous mixture density Hidden Markov models 

as they are described in [4] and [6]. One version 

of 100 sentences was used for training, the other 

version was used for testing. The recognition 

results on 1 Oms frame level are shown in Table 

2. The pairs of numbers show the class specific 

mean recognition rates (left) and the overall 

frame recognition rates. The formant parame- 

ters were compared to a 16—component cepstral 

vector and to a 64-component feature vector as 

it is used in [5]. It consists of 32 mel—spectrum 

coefficients and differential and curvature coef- 

ficients, taking into account i40ms of context. 

The overall mean recognition rate over three 

speakers (two male, one female) for 21  formant 

parameters is 74.9 %, for the cepstrum 67.4 % 

and for the mel-spectrum difference vector 78.5 

%. The results show that the formant vector 

outperforms the cepstral vector (about 7 % bet- 

ter). The recognition performance compared to 

the the 64-component vector is about 4 percent 

lower, but it has to be taken into account that 

the dimensionality of the formant vector is three 

times lower than for the (EA-component vector 

and that no temporal context was considered for 

classification. 

64 mel 
21 formant 16 cepstral differential 

speaker parameters coefficients coefficients 

male] 74.7 / 84.9 66.8 / 80.3 78.4 I 86.7 
maleZ 74.2 I 84.1 67.3 / 79.5 78.0 I 86.7 

female 75.9 / 86.0 68.1 [ 81.1 79.2 I 87.9 

Table 2: Frame recognition rates [%] for differ- 

ent speakers and different feature sets. 
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