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ABSTRACT 
In this paper we report results from a 
study of using feedforward neural net- 
works with error back-propagation in or- 
der to see their inherent ability to Icam 
speaker independent classification and 
formant analysis of Finnish vowels. 

1. INTRODUCTION 
The recognition and analysis of vowels is 
an important problem in the field of 
speech recognition and phonetics. Neural 
networks [5] are shown to give excellent 
performance in many speech recognition 
subtasks [l],[2]. They can be described 
as “black-boxes” that when given an in- 
put and desired output can actually learn 
to associate the input with the output. The 
performance levels achieved with neural 
nets can be very high and their use is an 
attractive method when performing vowel 
recognition or analysis [5]. 

In our study we used feedforward nets 
with error back—propagation. Figure ] 
shows a possible net topology where data 
flows from the input layer to the output 
layer via a hidden layer. Each layer is ful— 
ly connected with the next one. The di— ' 
mensionality of the net can be stated as 
the number of nodes in each layer (10-6-2 
rn figure 1). 

This paper describes the application of 
neural networks to vowel recognition and 
analysrs. Experimental results of vowel 
recognition and formant analysis are pre— 
sented along with a summary regarding 
the usefulness of neural ncts in this prob- 
lem domain. 

Input Layer 
Figure 1. A possible network tcpology 
(general structure of a feed-forward net). 

2. VOWEL RECOGNITION 
For our vowel recognition experiments 
we used speech taken from 12 female and 
24 male speakers. Static auditory spectra 
(288 in total) each consisting of a 48 
point real-valued vector were used as the 
input representation [2]. The topmost 
curve in figure 2 shows the auditory 
spectrum of the vowel av. The 0-24 Bark 
critical-band scale corresponds to approx- 
imately 0—15 kHz. 

We defined a criterion for when a neural 
net had learned all of the input material: a) 
all of the inputs had to be correctly classi— 
fied, and b) a 0.75 minimum level had to 
be measured for the correct output layer 
node. The target values during training 
were 0.0 or 1.0. 

In the first experiment we determined 
how many nodes were required in the 
hidden layer as well as which spectral 
representation performed best to correctly 
learn 8 vowels from a single male speak— 
er. What is meant by spectral representa— 
tion is the scale or resolution of the input 
data. We applied a Gaussian band-pass 
filter to the original auditory spectra to 
obtain a fine-scale representation that 
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would emphasize formant-like local struc- 
tures in the spectrum. A higher level of 
smoothing was also applied to yield a 
coarse—scale representation that empha— 
sized more global spectral trends. The 
fine and coarse representations for the 
vowel lä/ can also be seen in figure 2. 

Vowcl W 

W 
Fine 

L
o

u
d

n
e

s
s

 
D

e
n

s
i

t
y

 
- 

Bark Channel (0—24 Bark) 

Figure 2. Original, fine, and coarse audi- 
tory spectrum representations of läl. 

We then trained 100 separate nets with 
similar initial parameters of dimension 
48-3-8 (48 input nodes, 3 hidden nodes, 
and 8 output nodes each corresponding to 
one of the eight Finnish vowels). We re- 
peated this test for 4 to 9 hidden nodes, 
and for all three representations. The re- 
sults which can be seen in figure 3 indi- 
cate that the fine spectral representation 
learned the 8 vowels most frequently, fol- 
lowed by the original and coarse repre— 
sentations. This result is explainable since 
emphasized formants help to distinguish 
each of the eight vowels of a single 
speaker. 

For a larger input set (24 male speakers, 
192 vowel spectra) these results changed 
somewhat and are shown in figure 4. 
Here the number of nodes was varied be- 
tween 3 and 14 and only the original and 
fine spectral representations were com— 
pared. The ability of learning the input set 
perfectly when using the fine resolution 
was always lower than for the original 
representation. A possible explanation for 
this is that in general the fine representa- 
tion will emphasize formants, and since 
several examples of each vowel exist in 
the training set with different formant fre- 
quencies, the variability of the input rep- 
resentation increases making it more diffi— 
cult for the net to learn the differences. 
For this reason we decided to use only 
the original spectral representation in the_ 
remaining tests. 
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Figure 3. 48-X-8 Net’s Ability to beam 8 
\bwel Spectra 
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Figure 4. 48-X-8 net’s ability to learn 192 
male spectra. 

2.1 Effect of F0 on Classification 
A central part of the study was to see if 
the pitch frequency as additional informa— 
tion to the auditory spectrum could im- 
prove the classification performance of 
the nets by providing extra information 
for spectral normalization. For this test 
we created three training sets: male (24 
speakers), female (12 speakers), and : 
male+female set (36 speakers), in order 
to see the degree of speaker independence 
and difficulty of the learning problem in 
each set. 

For all three sets the number of hidden 
nodes was varied from 3 to 48. Figure 5 
shows the learning ability for the 24 male 
set. Each test was repeated 100 times to 
gain statistical confidence. With eight hid- 
den nodes approximately 80% of the nets 
were able to learn the male training set en- 
tirely. No significant difference in perfor- 
mance level was observed if F0 was in— 
cluded or not. This result is somewhat 
surprisin g because it is often assumed 
that human listeners do spectral normal- 
ization based on the pitch of the speaker. 

For the female and male+female training 
sets the results were similar to the male 
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Figure 5. 24 male speakers with and 

without pitch information. 

training set test, Le no significant im- 

provement or degradation of learning fre- 

quency was found by including pitch in- 

formation. 

3. F ORMANT ANALYSIS 
The second main topic of this study was 

to investigate the usefulness of neural net— 

works in analyzing continuous parame— 

ters or features of vowels. Specifically 

wc wished to teach nets to be able to 

identify the location of the first two for— 

mant frequencies of vowels in the audito- 

ry spectrum. A traditional method to per- 

form this task automatically is to calculate 

the envelope of the spectrum and peak— 

pick the formants. Another method uti- 

lizes solving for the poles by LPC. 

We trained networks of dimensions 48— 

X-2, X € [2,15] to estimate the two first 

formant frequencies F1 and F2 of vow- 

els. These estimates were based on the 

auditory spectrum input and we hyp0the— 

sized that the network could be more ro- 

bust than traditional methods to find and 

label the formant frequencies. The output 

level nodes of the net were modified by 

removin g the sigmoid non—linearity thus 

allowing continuous valued output values 

to be realized. As a training set we select— 

ed 64 vowels and diphthongs from a sin— 
gle male speaker. The formant frequen- 

cies were located by hand by an experi— 

enced speech scientist. 

Figure 6 shows the average F1 and F2 

absolute errors as a function of the num— 

ber of hidden nodes. F2 exhibits a larger 

error since a larger input variation exists 
for it but drops down to ~0.15 Bark 

when the number of hidden nodes is sev- 

en or higher. This error corresponds to 

approximately 35 Hz at 1.5 kHz. The F1 

error being considerably smaller was 

found to be 0.08 Bark which corresponds 
to 10 Hz at 400 Hz. 
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Figure 6. Average Formant Analysis Er- 
ror of 64 Male Spectra as a Function of 
Net Size. 
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We evaluated the performance of the 48- 
12-2 net on three independent (with re- 
spect to the training set) evaluation sets: 
male (3 speakers), female (3 speakers), 
and male+female (3 male and 3 female 
speakers). As can be seen in figure 7 the 
average absolute error for F1 (labelled 
“F1 error") when evaluated on the male 
set of spectra (3M) was ==0.5 Bark, and 

for F2 (labelled “F2 error”) 0.8 Bark. 
The F2 error was very large when evalu— 
ated on the female set (3F) — 2.2 Barks 
which corresponds to =600 Hz at 1.5 
kHz. Notice that the net was trained by 
data from a single male speaker. 

To see if we could reduce the average ab- 
solute F2 error for females we trained a 
similar net with the original 64 vowels 
and diphthongs but also included eight 
static vowels from one female speaker. 
When re-evaluated on the independent 
sets the F2 error (labelled “F2 error IF”), 
as seen in figure 7, was substantially 
smaller dropping to =l.3 Barks which 
corresponds to «830 Hz at 1.5 kHz for 
the female (3F) evaluation set. 

The overall accuracy for the formant anal— 

ysis tests was not always good but the 

nets showed a robust behaviour avoiding 

gross errors such as incorrect formant or— 

derin g, which is very difficult to achieve 

by traditional methods. We also observed 

that networks based the formant estimates 

on the general shape of the auditory spec- 

trum but didn’t generalize to search for 

exact auditory peaks. Further studies are 

needed to see how accurate and robust the 

method could be if a more complex net is 

used with more training material. 
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Figure 7. Evaluations of Trained Net on Independent Spectra. 

4. COMPUTATIONAL ENVIRON- 
MENT 
These experiments were carried out on an 

object-oriented signal processing environ- 

ment called QuickSig [3], develOped in 

our laboratory. QuickSig, which is an ex- 

tension to the Symbolics Common Lisp 

and Flavors environment runs on Sym- 

bolics Lisp Machines. To speed up the 

tests by a factor of 150 over the Symbol- 

ics Lisp Machines a Texas Instruments 

TMS320C30 digital signal processor was 

used. 

S. SUMMARY 

This study has shown that neural net— 

works are very useful tools in the classifi- 

cation and analysis of vowels. The ability 

of a neural network to generalize is an at- 

tractive feature since this means that a 

trained net, even if it has never seen a cer- 

tain input before, can make an intelligent 

decision. 

Specifically we found that F0 does not 

help in achieving better performance lev- 

els for vowel recognition. This continus 

earlier work [4]. The number of nodes in 

the hidden layer was found to affect the 

learning potential. With too many nodes 

the net will learn but will not generalize (it 

will learn each training element individu— 

ally). On the otherhand, given too few 

nodes all the inputs will not be classified 

correctly. We also found that the preferred 

Spectral representation when having to 

choose from a set of representations de- 

rived from the auditory spectrum was the 

unmodified auditory spectrum itself. 

In the formant frequency analysis experi- 

ments more spectra need to be used to 

verify the accuracy and potential of the 

approach. Eventhough performance may 

not reach the levels of other well estab— 

lished methods such as LPC, neural net— 

works may provide a useful general indi- 

cation of formant locations for later, more 

detailed analysis, or rule—based combina- 

tion of multiple methods. 
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