CONSONANT CLUSTERS: A COMPARISON BETWEEN WORD INTERNAL AND WORD JUNCTURE

Christine Meunler

Institut de Phonétique, Aix-en-Provence, France

ABSTRACT

We analyze the acoustic organisation of French consonant clusters (with two consonants) in three contexts: word internal position, word juncture provided with major boundary and word juncture provided with minor boundary. We use a specific classification of consonant clusters. Durations and acoustical transitions between both consonants are analysed in this paper.

1-INTRODUCTION

Some studies describe the acoustic and/or articulatory structure of the consonant structure [4] [5].The aim of our study is to evaluate the acoustic differences which can appear between a French word internal consonant cluster (two consonants) and the same cluster linking two words. We suppose that the acoustic features, we observed in word consonant clusters, may support modifications if we change the boundary between the two consonants.
2. CONSONANTS AND CONSO.

NANT CLUSTERS

We classified the French consonants in order to draw up a consonant cluster (GC) classification.
2.1.Consonant classes [1]
-Stops: $/ \mathrm{p} / \mathrm{A} / \mathrm{k} / \mathrm{d} / \mathrm{s} / \mathrm{d} / \mathrm{l} / \mathrm{g}$
-Fricatives: /f//s/is/ $/ \mathrm{v} / / \mathrm{zf} / \mathrm{B} /$

- Vocalic consonants: glides $/ j / / y \mid / w /$, liquids $N / \mathrm{h} /$ and nasals $/ \mathrm{m} / \mathrm{m} / \mathrm{m} /$.
2.2.Consonant clusters classification [2] [3]
We divided the GC into two groups:
Homogeneous consonant clusters (both consonants belong to the same consonant class), and heterogeneous consonant clusters (both consonants belong to
different consonant classes). In these two groups, three types of GC can be deduced from the consonant classification:
Homogeneous GC:

> Hol --> stops + stops

Ho2 $\rightarrow->$ fricatives + fricatives
Ho3 --->voc.cons.+ voc. cons.
Heterogeneous GC:
Hel ---> stops + fricatives
He2 - --> fricatives + vocalic cons.
He3 ---> stops + vocalic cons.

3-SPEECH MATERIAL

We selected two corpuses. In the first, the Word Corpus (CM, "Corpus Mots" in French), the GC are word internal; word initial for the heterogeneous groups (plat) and medial for the homogeneous ones (obtus). We took into account only the GC from French lexical words. All the words are included in the same sentence: "Ce n'est pas ${ }_{x \times x}$ qu'il faut dire". In the second corpus, the Juncture Corpus (CJ, "Corpus Joncture" in French), we considered two levels of junctures: the first in a major boundary and the other in a minor boundary. In fact, the sentences of CJ follow the very simple syntactic structure: $\mathbf{S N + S V}$. The first type of structure: $\mathrm{SN}+\mathrm{SV}$. The first type of
juncture (CJa) is between SN and SV (the major syntactic boundary), the second (CJb) is inside SV (between V and N, the minor boundary). We expected to obtain different acoustic effects with regard to the type of juncture which separate the first and the second consonant (Cl and C2). As a consequence, for each GC we analysed a triple comparison: example:
CC: "ce n'est pas près quil faut dire" CJa: "l'Equipe ralentit son allure" CJb :"ce retard handicape Robespierre"

We recorded two speakers (male) who read the three corpuses twice. The total number of recorded words is 336 (112 for each corpus).

4-ACOUSTICAL ANALYSIS

-1.Duration

We observed the variations in duration between CM , CJa and CJb (means and coefficient of variation) for the consonant clusters (duration of C1, C2 and GC) and for each consonant class. In the same way we compared the correlations of the durations of $\mathrm{CC} / \mathrm{CJa}, \mathrm{CC} / \mathrm{CJb}, \mathrm{CJa} / \mathrm{CJb}$, for each class of GC and for all together. 4.2.Transition phase [2] [3]

An important point in the study of the consonant clusters is to observe the transition phase between C 1 and C 2 . Two possibilities are considered:
The Direct Passage (PD): the GC is composed by Cl acoustical characteristics + C2 acoustical characteristics without any other segment.
The Transitory Segment (ST): a segment The Transitory Segment (SI): a segment different from the acoustic characteristics
of Cl or $\mathrm{C2}$, appears toward the boundary; it can be either a transformation or an insertion. In order to evaluate the distribution of the Transitory Segments, we have to draw up the acoustical characteristics of each consonant class:
-Stops : silence (or voicing with regard to - Stops : silogical description) and burst the phonological description) and burst Fricatives : noise with a stable
frequency (voiced or unvoiced).
-Vocalic cons: voiced formantic structure Any possible variations of these simple descriptions (with regard to the phonotypical transcription) will tell us if the transition phase is PD or ST realised.

5-HYPOTHESES

When we defined the Juncture Corpus we drew up hypotheses about the acoustical variations brought by the boundary degree between Cl and C :

- the data of CJb would be closer to the data of CC (as long as we consider that the word boundaries disappear in continuous speech in French).
- the CJa clusters would be longer than - the CJa clusters would be longer than
the CJb ones (as long as the major boundary acoustic effect could be a duration increase of $\mathrm{Cl}, \mathrm{C} 2$ or both)
- the disappearance of ST in the CJa clusters (as long as the ST presence is a cue for strong coarticulation), and
apparition of pauses between $\mathrm{C1}$ and C 2 (evidence of a major boundary).
- the increase of partial and total assimilation numbers in the CJb clusters, and decrease in CJa ones (comparing them to CC clusters).
The results of the acoustical analysis will confirm or not our hypothesis.

6-RESULTS

6.1.Mean duration :

Table 1: Mean duration (M) and Table 1: Mean duration (M) and coefficient of variation (C) of ail the consonant
corpuses:

		CH	CJA	CJP
		K C	M C	HC
$\begin{array}{\|c} U \\ 0 \\ u \\ y \end{array}$	C 1	105	1234	7835
	C2	95134	7631	67135
	GC	$198{ }^{1} 23$	25926	14530

In the three contexts, Cl is always longer than $C 2$, but the difference seems to decrease in the CJa context. The general means of CIa are slightly longer than those of CJb. We can explain the long durations of CC remaining that the CC clusters always belong to accented syllables.

Table 2: Mean duration (M) and coefficlent of variation (C) of consonant classes in $\mathbf{C l}$ position (C1), C2 position (C2) and in general (STOP, FRI, VOC) for the three corpuses:

		CK	CJA		8
		H C	H C	M	
$\begin{aligned} & a \\ & 0 \\ & 0 \\ & m \end{aligned}$	1	10432	7728	77	8
	C2	90 !33	60 28	56	23
	STOP	101 í32	73130	73	138
$\left\lvert\, \begin{aligned} & \mathbf{n} \\ & \hline 10 \end{aligned}\right.$	C 1	107 \% 36	96 ! 32	83	:29
	C2	88 :27	$95: 25$	86	:32
	121	10135	96 ¢30	84	
$\left\|\begin{array}{l} u \\ 0 \\ 0 \end{array}\right\|$	c 1	10632	68 ¢ 39	69	39
	C2	97 ! 35	75	65	32
	voc	99134	74 131	66	[31

We do not notice changes in the three werpuses for stops: stops are alway longer in C 1 than in C 2 position. For fricatives, we see a difference between CC and $\dot{C J}$ (a and b): CC fricatives are longer in first than in second position; in CI (a and b) they tend to have the same duration whatever their position. Vocalic consonants are longer in first than in second position in CC; we notice the same
for CJb (but with a slighter difference), and the opposite for CJa. We must notice consonant class), and the similarity between CJa and CJb with the exception of vocalic consonants. Consonants seem to be longer in CJa than in CJb.

6.2.Correlations :

Table 3: Correlation matrix of C1, C2 and consonant clusters for the three corpuses in general (number: 92)

Significant correlations for 0,01 and 0,02 probability : CM/CJb, CJa/CJb, CM/CJa (only for C 1).
Not significant: :CM/CJa (for C2,GC).
Table 4: idem table3: Hol (number: 16)

	CM				cJA		
	\downarrow	61	62	\cdots	61	62	\cdots
	c1	-0.152					
\bigcirc	ci		0.073				
	ふ			0.385			
	Cl	0.182			0.052		
$\stackrel{1}{6}$	ca		0.476			0.212	
	∞			0.617			0.252

Significant correlations for 0,01 and 0,02 probability : CM/CJb (GC only).
Not significant: : CM/CJa, CM/CJb (for $\mathrm{C} 1), \mathrm{CJa} / \mathrm{CJb}$.

Significant correlations for 0,01 and 0,02 probability: none.
Not significant: : all.

Table 6: idem table3: He2 (number: 28)

Significant correlations for 0,01 and 0,02 probability : $\mathrm{CM} / \mathrm{CJa}$ (for Cl), $\mathrm{CM} / \mathrm{CJb}$ (for Cl and CC), $\mathrm{CJa} / \mathrm{CJb}$ (for Cl). Not significant: $\mathrm{CM} / \mathrm{CJa}$ (for $\mathrm{C} 2, \mathrm{GC}$), $\mathrm{CM} / \mathrm{Cbb}$ (for $\mathrm{C} 2, \mathrm{GC}$), CJa Crb (for C 2).

Table 7:idem table3: He3 (number: 32)

Significant correlations for 0,01 and 0,02 probability : CM/CJa (for Cl), $\mathrm{CM} / \mathrm{CJb}$ (for C1 and GC).
Not significant : CM/CJa (for C2), $\mathrm{CM} / \mathrm{CJb}$ (for C 2), $\mathrm{CJa} / \mathrm{CJb}$ (for Cl and GC).

We do not give tables for Ho2 nor He1 because we have not enough values for the results to be relevant. In table 3, all the correlations are significant with the exception of $\mathrm{CM} / \mathrm{CJa}$ (for C 2 and GC); our hypotheses are partially confirmed: there is a better relation between CM/CJb than between CM/CJa. We observe very bad correlations in Hol and Ho 3 (tables 4 and 5). For He1 and He2 (tables 6 and 7), and 5). For Hel and He2 (tables 6 and 7),
the correlations are quite similar, with the correlations are quite similar, with
particulary good results for $\mathrm{CM} / \mathrm{CJb}(\mathrm{Cl}$ and C 2) and $\mathrm{CM} / \mathrm{CJa}(\mathrm{Cl})$. C seems to support variability when we change the context, instead of Cl which is the stable consonant of the cluster in all contexts. But C 2 , in He 2 and He 3 is the vocalic consonant and this phoneme seems to be instable in all cases (see table 5).
6.3.Transition Phases Table 8: Distribution of the Transitory Segments in the six consonant cluster classes for the three corpuses; voicing elasses (Opp de vst) and similar opposity (vst simi) inside clusters are separated in each class:
separated

Here our hypotheses are not confirmed: we do not notice a decrease of ST in the CJa realisation, nor an increase in CJb ones. In fact, the tables show stability in the distribution of ST whatever the context. These data confirm the correation context. These data confim for $\mathrm{He} 2, \mathrm{He} 3$; results: strong stabilit Ho 2 and Hel variation for Hol, Ho3 (Ho2 and He

We observe a great proportion of ST when the two consonants are differently voiced: here the voiced consonant is in general partly (or, more rarely, completly) devoiced. When the consonants are not in voicing opposition, some ST are also present: it can be an insertion of a vocalic preme (particulary in Hol) or the element (particulary in Hol), vocalic "consonantification of the $(\mathrm{j} /$ following stops or fricatives). We did not note any pause in CJa context.

7.CONCLUSION

Some of our hypotheses seem to be partially confirmed by the results of the pacoustical analysis: CJa clusters tend to be acoustical anan CIb ones; the acoustic longer than organisation of CJb clus like CM one, instead of CJa. In fact, acoustic organisation seems to be more stable when clusters are inside a word; but we must specify that the sentence in CC was always the same, it could also tabilise the GC production. Stability also aracterises stops and fricatives instead fracterilic consonants which are acoustically more heterogeneous.

REFERENCES

1] AUTESSERRE, D., ROSSI, M. 1985), "Proposition pour une segmentation et un étiquetage hiérarchisé. Application à la base de donnees Application du GRECO Communication acoustique du GRECO 14 emes Journées Parlée, Actes des d^{\prime} Etudes sur la Parole, Paris, 147-152. d^{\prime} Etudes sur la Parole, Paris, 147-152. [2] MEUNIER, C. (1990), "Groupes consonantiques: premier inventaire des réalisations acoustiques des phases des I6èmes Journées transition", Actes des 16èmes Jour 73 . detudes sur lar, C. (1990), "L'analyse [3] Meustique des groupes consonantiques: acoustique des groupes con hétérogènes ${ }^{*}$ deux exemples de groupes heterogenes Proceedings of the $L P^{\prime} 90$ Conference, Prague, (in press).
[4] NISHINUMA, Y., et al. (1989), "Duration of Consonant Clusters in French: Automatic Detection Rules" Proceedings of the European Conference on Speech Communication and Technolon Speech Communic
ogy, Paris, $260-264$
ogy, Paris, 260-264.
[5] ROCHETTE, C. (1973), Les groupes [5] ROCHETTE, C. (1973), Les groupes Klincksieck

