ACOUSTIC DESCRIPTION OF SPANISH NASAL CONSONANTS IN CONTINUOUS SPEECH

María Jesús Machuca Ayuso

Departament de Filologia Espanyola Laboratori de Fonètica-Spain

The aim of this paper is to compare some acoustic cues of the Spanish nasal consonants in two different speaking styles: Continuous speech versus laboratory speech.

The items analized in continuous speech have been obtained from an hour recording of speech produced by a male native Spanish speaker. In order to obtain the items in laboratory speech, the same subject was instructed to read the set of analized utterances in citation form. Broadband spectrograms were made with a MacSpeech Lab II programme to analyse the consonant duration and nasal formant frequencies. The results suggest that between the analyzed speaking styles, differences in duration are more important than in formant frequencies. is a correspondence of N1 to F1, N3 to F2, and in some instances N4 to F3. This correspondence is a matter of continuity since a formant may be equally dependent on the nasal oral cavities.

Fujimura (1962) distiguishes between variable and invariant formants.

According to this author there are some formants that remain relatively unaffected by the context: The second formant of the [n], for example, is located always around 1000 cps. for all samples of [n] (p.246).

In our work, we have taken into account the consonant duration and nasal formant frequencies.

PROCEDURE

INTRODUCTION

There is an agreement among phoneticians on the relevance of the following features that characterize the nasals as a class (Delattre[1]; Fant[2]; Fujimura [3]): a low first formant at about 300Hz, with higher intensity than the upper formants, the existence of the antiformant and a set formants which have a lower intensity level than those of neighbouring vowels. Furthermore, Fant (1960) states than there is a relationship between nasal and vowel formants. There We used for this experiment an hour recording of speech produced by a male native speaker of Spanish. Natural continuous speech was obtained by asking questions about the subject's work, military service, his village and his family.

"Laboratory speech" refers to utterances read in citation form by a speaker.

In order to obtain the items in laboratory speech, the same subject was instructed to read the set of utterances that appear in continuous speech corpus as naturally as possible at a normal speech rate. The order of these utterances was randomized. The recordings were made in a sound proof room at the phonetics laboratory at the Autonomous University of Barcelona, using a Revox A/77 tape recorder and a Shure 515 Sb Unidyne microphone.

Formant frequencies were made of nasal consonant in intervocalic context. In some of the cases, the vowel that followed the consonant was stressed and in other cases it was unstressed. The number of items was eight hundred and thirty: three hundred and seventy samples of which correspond to the first context and four hundred and sixty to the second one. Table I shows the number of analyzed cases for each consonant.

Tablel: Number of analyzed cases for Spanish assal consonants in both contexts.

-	vc∳	∜cv
m]	199	142
n]	153	249
(j)	24	70

The recorded speech material was digitised at 10 KHz and analysed by means of spectrograms using a MacSpeech Lab II programme. In the selected sequences the duration and the formant frequencies were measured.

RESULTS

The data obtained from the acoustical analysis were subjected to a statistical treatment. The mean values of the given parameters (X) as well as the standard deviation (sd) are shown in the following tables. Table II correspond to laboratory speech values of nasal formants in the context VCV and VCV in laboratory speech and Table III shows the same values in continuous speech.

Table II: Nasal formant values in laboratory speech when the nasal consonant is followed by a stressed or by an unstressed vowel.

vcŕ	х	sd	ýcv	х	sd
նայ	351	33	[m]	348	28
()	1071	74		1070	43
	1038	282		783	116
	2194	68		2239	69
նոյ	361	29	[n]	370	21
. - 2	1032	45		1039	28
	1606	172		1599	183
	2318	51		2323	51
ពោ	375	24	[n]	375	20
ur)	1062	29		1064	30
	2001	134		2076	141

Table III: Nasal formant values in continuous speech when a nasal consonant is followed by a stressed or by an unstressed vowel.

vcv	x	sd	vcv	x	sd
ſm]	400	66	[m]	414	64
[m]	1060	99	• •	1022	70
	1309	151		1118	417
	2123	96		2177	90
նոյ	427	64	[n] _	430	54
[u]	1002	66		1042	54
	1562	167		-1500	192
	2261	90		2287	77
	160	44	[n]	433	44
មោ	400	28	ų.	1048	40
	1040	120		2009	126
	1943	120		2455	67
	2334	28		2433	07

If we compare these results, it can be observed that the first formant frequencies in continuous speech are higher than in laboratory speech. In the second formant frequencies there are no significant differences in both speaking styles. In the third formant, the frequencies are higher in laboratory speech, except to the consonant [m]. It can be noted that in laboratory speech N3 of the consonant [m] has values below N2. This finding is due to the influence of the vowels. The fourth formant frequencies have similar results for [m] and [n] consonants, if we compare both speaking styles.Nevertheless, in laboratory speech, this formant is impossible to be distinguished in the palatal consonant. On the other hand, standard deviation values of the N3 (Tables II and III) show an important dispersion in our data.For this reason, the results of the third nasal formant have been separated depending on vowel contexts. Tables IV and V show these results in continuous speech (CS) and in laboratory speech (LS) taking into account the vowel stress.

Table IV: Values of N3 when the consonant is followed by an unstressed vowel ("pal" and "vel" are palatal and velar contexts and the stress means that the preceding vowel to the consonant is stressed).

vcv	CS LS	
pál [m] vel	1378 834	
pál (m) a	1651	
pál (m) pal	1253 1275	
vél [m] pal	1348 1203	
vél [m] a	797	
vél [m] vel	735 727	
á [m] vel	749	
á (m) a		
á [m] pal		
		-
pál [n] vel	1565 1643	
pál (n) a	1616 1695	
pál [n] pal	1740 1712	
vél [n] pal	1431 1485	
vél [n] a	1231 1269	
vél [n] vel		
á [n] vel	1299 1340	
á [n] a	1290 1388	
á [n] pal	1475 1477	
		-
pál [ŋ] vel	1981 2192	
pál (n) a	2162 2242	
pál (n) pal		
vél (n) pai		
vél [n] a	1998 2212	
vél [n] vel		
á [n] vel	1943 2044	
á [p] a	2003 2111	
á [n] pal		
4		

It can be observed in table IV that laboratory speech results are lower than continuous speech ones for the consonants [m], but in the other nasal consonants they are similar. In some contexts, there are not any data because the number of cases is insufficient for a statistic treatment.

Table V: Values of N3 when the consonant is followed by a stressed vowel ("pal" and "vel" are palatal and velar contexts and the stress means that the following vowel to the consonant is stressed).

vc∜	CS LS
nal [m] vAl	
pal [m] s	
pal (m) pái	1339 1271
vel [m] pái	916
vel [m] á	776
vel [m] véi	700
a [m] vél	745
a [m] á	
a [m] pál	1246
pal [n] vél	1697 1722
pal [n] á	1464 1599
pal [n] pái	1630 1705
vel [n] pál	1327 1436
vel [n] a	
vei [n] vei	1222
	1357 1261
ន [11] ដ ១ [១] ១√1	1419 1339
a [11] par	1409 1497
pal [p] vél	2088 2061
pal [n] á	2094 2118
pal (n) pál	1985
vel [n] pál	
vel [p] á	
vei [p] véi	
a [n] vél	
ន [រា]ន	1917 2000
a falbar	1926 2013

In table V, the continuous speech results are usually lower than the results in laboratory speech. On the other hand, very different results are shown in both tables if we compare velar and palatal context. N3 goes down in velar context and it goes up in palatal one.

The duration results are shown in table VI. We have separated the cases depending on the vowel stress and the speaking style.

Tabla VI: Duration of nasal consonants according to vowel context.

Context	LS	SD	CS	SD	
Ý (m) V	92	16	55	16	
√ [n] V	64	12	41	11	
V [n] V	98	13	64	16	
V [m] V	66	11	61	13	
V [n] V	48	9	37	12	
V [s] V	69	12	59	11	

It can be noted in table VI that the duration is much smaller in continuous speech. But when the consonant is followed by an unstressed vowel the duration difference between both styles is greater (47 ms for [m], 23 for [n] and 38 for [p]). In these cases, it ican be observed that [p] > [m] >[m] in all samples.

Nevertheless, when the nasal consonant is followed by a stressed vowel [m] > [n] > [n] = [n] in continuous speech and [n] > [m] > [n] in laboratory speech.

CONCLUSIONS

The results presented in the tables above show the relevance of the duration when we compare continuous speech versus laboratory speech. The difference is more significant if we take into account the vowel stress.

The frequency results show differences in the first formant: in continuous speech it is higher than in laboratory speech. But we don't observe important differences in N2, N3 and N4. Only, the third formant frequency in [m] consonant goes down in laboratory speech with relation to continuous speech results.

On the other hand, in both styles, the frequency of N1, N2 and N4 formants is relatively constant while the N3 frequency varies considerably with the context, having a high frequency before the vowels [i] and [e] and a low frequency before the vowels [o] and [u].

This fact could be explained following Fant's assumptions about the dependence between formants and cavities:N3 could be dependent on the oral cavities.

Future research would be necessary in order to decide if this dependence on the oral and nasal cavitiy is related to the speaker.

REFERENCES

 DELATTRE, P. (1958), "Les indices acoustiques de la parole", Phonetica, 2, 1-2:108-118; 3-4: 226-251.
FANT, G. (1960), "Acoustic theory of speech production", The Hague: Mouton & Co.
FUJIMURA, O. (1962), "Analyisis of nasal consonants", Journal Acoust. Soc. Amer., 34,1865-1875.