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ABSTRACT
Nasality in this paper refers to voiced
nasal consonants, nasal vowels, and
nasalized vowels produced by non-
pathologic speakers. An algorithm is
presented, that segments the speech
waveform into nasal and non-nasal
parts. The decision whether nasality
exists is based on two features of the
speech signal: (1) Presence of vocal
cord vibration (voicing) and (2) presence
of a resonance in the range 200 Hz -
400 Hz. The frequency of this resonance
may vary between speakers but is
constant for a single speakers. The '
algorithm is validated by comparing it to
results of a perception experiment. The
problems to define and measure nasality
are sketched before the algorithm is
presented.

1. INTRODUCTION
Nasality is defined in difierent ways in
different fields. It can be determined by
underlying or surface structures of the

-speech material, it can be deScribed by
‘ articulatory movements or physiological

data, it can be related to signal
characteristics that are expected on the
basis of theoretical considerations, and it
can be determined in perception tests
where subjects use their native or
experience listening skills. Each field
defines nasality within its system and
the definitions must not necessarily
coincide. For example, [10] reported
velar opening on (phonetically) non-
nasal sounds and [6] found coupling to
the nasal cavities even if the sound was
not perceived as nasalized by listeners.
Inadditiontotheproblemhowtodefine

nasality comes the problem how to
measure it. In articulatory experiments it
is a complicated task to determine the
position of the velum that lies hidden in
the back of the mouth. Physiological
experiments have to measure (nasal) air
flow accurately without effecting normal
articulatory behavior. Acoustical analyses
have to separate properties of the nasal
system from the oral and pharyngeal
system. In perception tests it is not
trivial to create listening conditions that
are similar to everyday speech
perception situations. If in any field
indirect measurements are performed, it

‘can happen that the coherence between
the measured quantity and the related
quantity does not exist in the expected
way. For example, nasal airflow is not
necessarily a measure for the size of the
velar opening and it has been reported
that changes in velar heights occur even
though the velar port is closed ([2]).
In this paper an acoustical measure will
be used that intends to be related to
perceptual nasality. First we will brief
some acoustical properties of nasal
sounds and ways to measure them. In
the following chapter an algorithm to
extract low-frequency resonance will be
presented. After describing a perception
experiment the relation between the low-
frequency resonance and the perception
results is demonstrated and discussed.

2. SOME ACOUSTIC PROPERTIES
AND MEASUREMENTS
Acoustic theory predicts extra anti-
resonances and resonances for the
additional shunting branch of the nasal
cavity system ([3]). These effects can be
found in the speech signal, though they
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arenoteasytoidentify([3]).Comrnon
acousticalfeaturesfoundintheliteramre
are low-frequency energy and
brosdeningoftheoverallspectralpattem
([4]).Theoccurrenceofalow—frequency
resonance can be explained by a
Helmholtz resonating cavity. [7]
observedaresonatingfrequencyofthe
sinusmaxillaresintherange of200-
800 Hz. [1] computed a '
cavityofabout800cm’fora2501-Iz
resonanceandproposed(partsof)the
scalp as possible resonator. ‘lhe
flattening of the spectrum can be
explained by the complicated nasal
cavity structure inducing many partial
resonatingmdshuntingcavities([7]).
Spectrographic (or FFT) analyses have
theadvantagetopreserveallinfonnation
oftheacoustical signal.Thiscanbea
handicapbecausethegmundfrequency
(andthewindowsizefisapparentinthe
spectrogram. Smoothing these spectra
reducestheappearanceoftheseefi‘ects
bruslsoreducesthespectralresolution.
Source-filter models separate the
propertiesofthesourcesignalGOHmm
the oral and nasal tract, but add
Issrunptions about the model to the
esfimatedspecnaAll-poleIPCdoesnot
include shunting cavities in its model
tndthereforeseemstobeinadequate.
Fitting the model to the analyses
purposes (i.e. detenniningthenumber of
poles) is done by rules of‘thumb.
Specnalestimationmethodsthatinclude
zeros in their models (like analyses-by-
synthesis schemes or ARMA models)
inherit the problem to estimate the
number of poles and zeros. A problem
tintisnon—deterministicbecauseazero
canbeapproximatedbyalargenumber
ofpoles([8]). .
In this study the low-frequency
resonance will be used as'a gross
mdicatorforaphenomenonthatlisteners
would call nasaliry. This feature is
Nportedinmanyarticles studyingthe
lcoustical properties of nasaliry and
seems to us‘more obvious in the
sPectmrn than the theoretically more
fonmledexistenceofzeros.Wearenot

mterested' in Mathg zeros at all and
choose LPC analyses as the spectral
mm‘on method. This has several
advantages: it is easy to compute, it is
commonly available, and it suppresses
theeffectofthegroundfrequencyinthe
estrmat' ed spectrum.

3. ALGORITHM
In a pre-processing step the speech
signal is separated in voiced and
unvoiced parts using a pitch extraction
algorithm ([11]). This reduces the
amount of computing to be performed
in the following steps and excludes
background or friction noise that might
show low-frequency prominence.
In the next step high order
autocorrelation LPC analyses with
parabolic interpolation is carried out on
the voiced parts (25.6 ms Hamming
window, 12.8 ms step rate). The order
of the LPC must be adjusted manually
to the recording and voice quality. For
a 10 kHz recording, values between 14
and 28 poles were found to practical.
In the last step a low-frequency
resonance is searched that lies below

' 400 Hz, is constant in frequency, and
lastsforatleast40msec. Constantin
frequencymeansherethatthecenter
frequencyoftheresonance does not
vary more than 10% inthe adjacent
frames.

' 4. ÉVALUATION
The performance of the algorithm is
compared to the results of a lexical
decision experiment canied out by [5].
The study included a gating experiment
on British English monosyllabic words
of the form CVC and CV'N. Listeners
were presented gradually incrementing
intonation (gates) from word-onset
until the entire word was heard. The
listeners’ task was to write down the
word they were hearing.'l'he length of
the gates were incremented by about 40
msfromsteptostep.0negate ofeach
word were set at the offset of the
vowel. 20 minimal CVN-CVC pairs (40
words) sp0ken by one male speaker
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were presented with 9 to 13 gates giving
a total of 441 gates. Details of the
experimental procedure can be found in
[5]-
The responses of the subjects were
classified in the following manner (this
classification was not part of the
experiment of [5]): If more than 50% of
the listeners wrote down a CVN word
for a gate then it was called nasal,
otherwise oral. Because the listeners
heard gates with increasing length, it
happens that a gate was judged oral,
while the next, longer gate, was judged
nasal (or vice versa). By this it is
possible to make a statement about the
40mincrementalpartofagate
whether it were or were not perceptually
nasal. Wewillnarneanincrementalpart
ofagateandthefirstgateofaseries
segment from now on.
The speech recordings used in the
perception test were analyzed by the
described algorithm as well. If the
bandwidth of the low-frequency
resonance as found by the algorithm was
below 150 Hz the sounds were classified
as nasal. otherwise as non-nasal. If the
results of the perception test and the
algorithm for a segment did not coincide
it was counted as an error.
Of the 441 segments, 322 were
perceived as nasal and 119 as oral. 67
(15%) of the segments were mist-labelled
by the algorithm. 50 segments perceived
as oral were classified nasal, in 17 cases
a perceptual nasal segment was
classified oral by the algorithm. We will
first characterize the errors of the 50
false alarms then the 17 missings.
Of the 50 false alarms, 10 were
segments where the algorithm classified
them too early as nasal in front of
perceptually nasal segments. 9 segments
were clustered in 2 cases were a vowel
infrontofanasalconsonantwas
perceived as oral by the listeners. 29
times classified the algorithm the pre-
voicing of voiced stops as nasal. And 2
segmentsof/l/inCLADwereclassified
by the algorithm as nasal.

Of the 17 Missing; were 4 segments,
where the algorithm classified them too
late as nasal at the beginning of
perceptually nasal segments. The other
l3 nasal segments 'were missed in 4
clusters inside oral or nasalized contents:
in [U in CLOWN, and in the vowels of
BRAN, VAIN, and TRADE.

5. DISCUSSION
The errors made by the algorithm can
be grouped in 4 categories: (1) too early
or too late indication of nasality, (2)
judgment of pro-voicing as nasal, (3)
mis-classification of III. (4) and mis-
classification of nasalized vowels.
The first category of errors can be taken
into account as jitter between perceptual
and acoustic segmentation.
The second category 7 the classification
of pie-voicing as nasals - is an
interesting result. Airflow measurements
have observed nasal airflow at the
beginning of pre-voicing, either due to
insufficiem velar closure together with
oral closure and increasing intra-oral
pressure,orduetoanupwardpushof
the uvula extinguishing air from the
nasal tract. Whether a nasal coupling
existsandinhowfaraperceptiontest
without context information will yield
nasal responses in these cases stays
unclear.
The third category - nus-classification of
Ill-appearsinbothdirections.'l‘hisis
a frequently mentioned effect ([9]).
The mitt-classification of nasalized
vowels reflects the more complicated
structure of these sounds. It should be
taken into account that 50% of all words
contained (phonetical) nasalized sounds
and that in most of these cases the
resultsofthealgorithmwent alongwith
the results of the ' test: When
the listeners heard a word as nasal from
an early stage of the vowel. the
algorithm did so. When the listener!
perceived the‘nasality at the end ofsuch
a vowel, so did the'algorirhm. Only in
4 cases we found a nus-labelling.
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6. CONCLUSION
The algorithm uses a very gross feature
to identify nasality ignoring context
effects and formant transitions as used
by [9]. He found the mean centroid
frequency below 500 Hz to be the most
useful conu'ibutor to the total
categorization score. He observed further
that a value for the first resonance near
250 Hz is a necessary but not sufficient
condition for the existence of nasal
murmurs (because this property is shared
by the first formant frequency of high
vowels). Most of his false indications
result from the confusion of liquids,
glides and semivowels with nasals.
The simpler algorithm used here shares
obviously some of these results. But to
come to a stronger statement about the
behavior of the proposed method and to
get more evidence for the applicability
of the algorithm as a valid nasality
classificator more investigation will be
performed. A larger set of words of
different speakers including a significant
set of nasal vowels must be tested. An
open question is, whether the algorithm
measures a low-frequency resonance
originated by the coupling of nasal tract,
or whether F0 or a harmonic of it is
detected. [4] and [1] observed this
resonance independent of the F0
frequency and informal tests with the
proposed algorithm yielded the same
result. Analyses of high pitched voices
have given mixed results: some voices
showed good results, while other voices
were classified as nasal for most of the
voiced segments. Whether these are only
artifacts of the algorithm or whether
those voices are nasal has not been
proved by perceptual tests. Application
to ninning speech gave the impression
that nasal consonants and voiœd stops
are consistently detected by the
algorithm.
Weareawareofthefactthatthe
algorithm does not have any n ' '
mechanisms and does not perform any
analyses of transitions. To some extend
thesefeaturescouldbemodelledbyan
adaption strategy for the number of

poles and an investigation of the
development of the bandwiths in time.
But we first want to study the algorithm
at the present state and collect
experience about its behavior before
extending it.
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