DEPHONOLOGIZATION OF SYLLABIC INTONATION
IN LITHUANIAN URBAN SOCIALECTS

L. Grumadiené

Institute of the Lithuanian Language,
Vilnius, Lithuania

ABSTRACT
Under the influence of present-day vowel length dephono-
logization the tendency of dephono-
logization of syllabic intonation has arisen in Lithuanian urban
socialelts. The basis of syllabic intonation realization is being lost. Such
variants are common phenomena.

1. INTRODUCTION
The tendency of dephono-
logization of vowel length in
Lithuanian urban socialelts is rather obvious, though it is not typical to any
Lithuanian dialect. The results of the experimental investigation show that
only 4-24% of unstressed final vowels are being realized in the fluent speech.

2. SPECTRAL ANALYSIS
The spectral pecularities of acute and circumflex diphthongs /ai/, /au/ /ei/ have been investigated. The experimental corpus consisted of 8 similar word pairs in which the diphthongs under the investigation are between voiceless consonants: kaoğ - paşo, tâjko - kâta, kâus - kâjka, kâiks - peikka, akâ - âuk, tâjko - tâjko, kâik - peik. The spectral analysis was made according to the computer program compiled by prof. V. Undzēns at Vilnius University. The results obtained show that a/ the quality of 1st component of stressed acute and circumflex diphthongs differs significantly, b/ the durational difference of such diphthongs is less significant.
F₁ and F₂ characteristics of first components of acute diphthongs are more like to F₁ and F₂ corresponding monophthongs /3/; with circumflex being more different (tables 1-3). For instance, F₁ and F₂ of the 1st component of /į/ in the word 'kaštis' (table 1) is between /3/ (F₁=400 Hz, F₂=1200 Hz) and [e] (F₁=600 Hz, F₂=1800 Hz). "Nordaï" [a'] has F₁=800 Hz, F₂=1200 Hz; compare with [1:600 Hz, 12:1800 Hz] z and s [1:600 Hz, 12:1800 Hz]. "Karin" [a'] has F₁=800 Hz, F₂=1200 Hz; compare with the first component of the word 'tšiko' - /6/. The comparison of the results of present investigation with the ones of previous Lithuanian dialectal investigations carried by other linguists show that qualitative difference of the first component of acute and circumflex diphthongs is not a unique phenomenon in Lithuanian. There are some changes of the same kind in eastern dialects where syllabic intonation has a quantitative origin. For instance, /'kštis/ - /'kštis/ in 'kštis' it is /'kštis/; in 'laukas' the pronunciation is /'laukas/. The changes in western dialects are of different character: the vowels of the second component of stressed diphthongs in western dialects are narrower than those of eastern, for instance, /u/ in the word 'jautis' in western dialects it is pronounced like /'jautis/ while the pronunciation with /'jautis/ is met only in eastern dialects /5/. Because of this speakers from eastern dialects living in urban sphere may take acute syllables for circumflex ones. The opposition of syllabic intonation is realised not only by tone or intensity modulation changes, but by the place of stress contrast too. The fact that acute diphthongs are longer than circumflex ones in the urban dialect may be explained by the qualitative characteristics of stressed diphthongs.

3. CONCLUSION

The tendency of columnal stress, the qualitative changes of stressed diphthongs and hypercorrection show the tendency of dephonologization of syllabic intonation opposition in the Lithuanian urban dialect. The dephonologization of long and short vowel opposition is the main condition for the above mentioned dephonologization. Due to it the quantitative word stress is being formed. There is no opposition of stressed short syllables in Lithuanian. It is typical only for stressed long syllables. Though at present time this opposition is disappearing in the long syllables in the Lithuanian urban dialects, what leads to the disappearing of syllabic intonation, the opposition of them.

4. REFERENCES

/6/ KAZLAUSKAS, J. (1968), "Lietuvių kalbos istorinė gramatika", Vilnius, 13 etc.

TABLE of F₁ and F₂ in Standard Lithuanian (According to /7/)

/1/ F₂=2100 Hz F₁= 300 Hz
/6/ F₂=1800 Hz F₁= 350 Hz
/e'/ F₂=1200 Hz F₁= 600 Hz
/a'/ F₂=1200 Hz F₁= 800 Hz
/o'/ F₂= 900 Hz F₁= 400 Hz
/u'/ F₂= 600 Hz F₁= 300 Hz