The absolute semitone scale is a scale combining the properties of both physical modified Fletcher's formula,
$P(s t)=12 \log _{2} F_{o}(H z)$,
to relate fundamental frequency to its correlate perceptual units of pitch, viz., semitones above 1 Hz ($1 \mathrm{~Hz}=0 \mathrm{st}$) The
absolute pitch units are much more conveabsolute pitch units are much more conve-
nient than Hz for the presentation, comnient than Hz for the presentation, compitch differences) and other processing of raw data obtained in instrumental prosodic research.

In prosodic research the presentation of fundamental frequency in cycles per second ment data are concerned. Any further manipulation and discussion or interpretation of the data should be carried out in units of perception. Even the graphs of F movement applying the linear irequency give a wrong idea of an extensive pitch movement which is never perceived by listeners as such. The logarithmic scale is a solution for graphs, although not very
convenient for plotting unless one has special charts where every cps (Hz) can be plotted accurately.
The comparison and statistical processing of raw data in Hz in terms of perception speaker, let alone speakers with different F_{0} ranges. The perceptually relevant comparison of two tones can be carried out by calculating their ratio, which further may be converted into semitones. Thus,
given two measured frequencies, 150 Hz and 100 Hz , it is useless to state, in a dism cussion of their perception, that their difference is 50 Hz : the perception of the
50 Hz difference here is 50 Hz difference here is quite unlike the
perception of $a 50 \mathrm{~Hz}$ difference, say, beperception of a 50 Hz difference, say, be-
tween 250 Hz and 200 Hz . Instead, one can state that the ratio of the pirst pair of irequencies is $3: 2$ whereas that of imagination, however, it is an untrained to atate that the (musical) in it elearer
is a 7 between the first two frequencies is 7 semitones, or a fifth, and that between the other two
tones, or a third. tones, or a third.
is of very doubtfulat value, ${ }^{\text {Bo }}$, values in Hz conclusions from differences between such values or such averages. To say that one F contour individually or on an average differs from another by a 10 Hz difference
between their peaks is quite meaningless. As long as we believe that the perception logarithmic in the same way as it is for pure tones, the only possibility to process F_{0} data mathematically is in linear units on the logarithmic scale to which the data should be converted. The basic
unit of pitch is the octave. The convenient unit for the analysis of fundamental pitch is the semitone. Proceeding from FLETCHER (1929) who introduced a scale of
octaves and centioctaves above 1 kHz for octaves and centioctaves above 1 kHz for
the whole of the audible pitch range, it is possible to modify Fletcher's formula for calculating the pitch of the voice fundemental in a b so.l ute semi$\left.t \circ n \underset{P}{e} \underset{(s t)}{a}=12 \log _{2} \frac{1}{F_{o}\left(\mathrm{~Hz}_{z}\right.} \approx=\mathrm{cps}\right)$.
According to this formula,
$1 \mathrm{~Hz}=0$
$1 \mathrm{~Hz}=0$ st, $2 \mathrm{~Hz}=12 \mathrm{st}, 4 \mathrm{~Hz}=24 \mathrm{st}$,
$64 \mathrm{~Hz}=72$ st, $512 \mathrm{~Hz}=108$ st $(\mathrm{Fi}$ That is, instead of operating with figures in the F range of (roughly) $64 . .512 \mathrm{~Hz}$, we can operate in the pitch range of 72 .. . 108 st. The figures of the latter scale are suited for any kind of mathematical processing without notably violating the pairs of numerical data (depicted in Fig. 2), we can easily find the average pitch of the latter pair to be 90 st; the pitch and the average as well as between the higher pitch and the average is 18 st (1.5 octaves). The result is perceptually informative, unlike the average of the two former figures, 288 Hz , where the lower 10 st of the upper interval.
Data in Hz can easily be converted into absolute semitones by means of a table
where every Hz is given its correlate

256

Fig. 1. (Left.) Linear frequency scale in Hertz (left) and the correlate pitch val. ues in semitones (right).
(lig. 2. (Right.) Linear pitch scale in st in Hz (right) the correlate frequency values in Hz (right). Plotting of two fundamentHz , on the linear pitch scale and $\mathrm{F}_{2}=512$ correlate logarithmic frequency scale. \bar{F} is the mean frequency, \bar{P} is the mean
value in st with the accuracy of .1 st (higher precision is unnecessary in phonetics). This table is printed on the 4th page of the present paper. In computerbe done auiomatically, applying the above formula. For a programming language applying natural logarithms (such as BASIC used for computing the given conversion $P=12 \times 1.442695 \times 12$
It would be highly advisable ${ }^{\circ}$
ven raw data in these absolute to present al units. The investigator himself could immediately estimate the perceivable differences between the measured parameters ematical operations with the data without the ad hoc calculation of ratios or finding of logarithms. Intervals could be calculated by simple subtraction. Pitch drawn on ordinary square paper The reader, too, could at once see what the measured pitches, intervals and ranges mean in terms of perception, Also, absolute semitone scale could easily compare the data of different authors without the need to convert the Hz into ra-
tios and then back into the traditional but unnecessary Hz if he wants to publish ine and process the results and initial data for further generalizations, compute averages of pitch contours of differen uthors (including one's own), etc. or example, the paper of LIN et al. the average pitch in $2-$ and 3 -syllable tone groups of Chinese. Pitch is expressed in Hz. Let us consider a line of their Table 1 - tone $4+$ tone 3:
male speaker $\quad 196-110 \quad 104-82-11$ female speaker 242-152 143-82-156 The figures are given as averages. Al though it is wrong in phonetics to average hertzes (what can be averaged is thei as representing single speech acts. All we can see is that both speakers pronounc the first syllable with falling pitch and the second with a fall-rise which is
steeper for the female speaker. Now let us convert the hertzes into semitones:
$\begin{array}{lll}\text { male speaker } & \begin{array}{ll}1 \text { st syll. } \\ 91.4-81.4 & \text { 2nd syll. } \\ \text { 20.4-76.3-82.0 }\end{array}\end{array}$ male speaker ${ }^{\text {female speaker } 95.0-87.0}$ 85.9-76.3-87.4 Here the extent of pitch movement is at make a 10-st fall in the 1 st syllable against the female speaker's 8 st; the 2nd syllable starts 1 st below the end of the lable are 4 st and nearly 10 st and sylively, and the final rises about 6 and 11 st, respectively. Further comparison
with the other tone groups in the table
what extent these findings Another aspect.

In 0 pitch contours of the above tone Hz , we would have to draw both of them on logarithmic paper and calculate the aver age contour geometrically (Fig. 3). Yet it is much simpler to average the parameters expressed in st arithmetically, and draw the resulting contour of the same shape on square paper.

Fig. 3. Plotting and averaging of two ontours of a Chinese tone group on the semitone scale. semitone soale.
_____ male speaker
-.-.-. the average contour
hen synthetic speech is used in prosodic research, it is expedient, with a view to their subsequent mathematical/statistical analysis, to make up the tonal contours for the synthetic stimuli in absolute pitch units, varying the pitch of certain of n Hz . It will considerably facilitate, for instance, correlation analysis beween the input pitch data and the listeners' responses when the former are expressed in semitones on the absolute easy to interpret the results of such analysis.
The absolute semitone scale was first inroduced in Tallinn in 1972 (VENDE 1972) and has since been successfully applied ere (e.g., PIIR 1985).
he mel scale or the icient for plotting psychoacoustic data or frequencies above 500 Hz , i.e. for pectrum analysis, but apparently not sensitive enough and too clumsy to hande otherwise why should prosodists have frequency. It remains to hope that the absolute semitone scale, which is likewise oth physical and perceptual, will graduing break through the hitherto dominatng prosodic research root and spread

REPERENCES

Fletcher, H. 1929. Speech and Hearing. in, M.C., Yan, T.Zh., Sun, G.H. 1984 . orrelates in Beijing Mandarin. - In: The Proceedings of the Tenth International Congress of Phonetic Sciences. 504-514. Foris Publications, p.
Piir, H. 1985. Acoustics of the Estonian diphthongs.
netics: Esp
1982-198ian Papers in Pho-5-96.
Vende, K. 1972. Intrinsic pitch of Estonian vowels: measurement and perception - Eatonian Pap.
Tailinn, p. $44-108$.

TABLE
Conversion of Hertzes into Semitones

Abstract

z

$$
206 \mathrm{~m}
$$

 WWN

