
#### Abstract

An experimental high-quality speech syn thesis system ts described. Demisyllables are use as phonetic units for concatenation; in a first step it is shown that 1665 demisyllables requiring about 0.5 MByte of memory at a data rate of $7.2 \mathrm{kbit} / \mathrm{s}$ are sufficient to synthesize a very large German special variable-frame-rate vocoder synthesizer


.

Text-to-speech synthesis systems principally conist of three major components: 1) an orthographic to-phonetic transcription (including prosody con-
trol); 2) the concatenation block; and 3) a vocoder ynthesizer. Usually the output of the orthogra-hic-to-phonetic transcription block is a string of ers for prosody control. The concatenation comonent converts this string into a data stream o ocoder parameters which are then transformed
nto synthetic speech by the vocoder synthesizer into synthetic speech by the vocoder synthesizer.
In the last years work on speech synthesis has oncentrated upon higher-level tasks, i..., ortho-
graphic-to-phonetic transcription and prosody con-graphic-to-phonetic transcription and prosody con-
trol. Nevertheless, there are still a number of unsolved problems in connection with a number of and even with the vocoder synthesizer; due to
these problems, the quality of synthetic speech mase prioblems, the quality of synthetic speech
may se unsatisfactory even for synthetic
utterances with and atterances with a well-modeled pron for synthetic This paper
deals with possibilities of improving the quality of deals with possibilities of improving the quality o
synthetic speech by optimizing the concatenation synthetic speech by optimizing the concatenation
block (Dettweiler, 1981 , 1984) and by designing a
vocoder that is speech synthesis system by well adapted to a
2. Concatenation System for Demisyllable Elements Concatenation is a central problem in any system between the phonetic level'and the parametric leve of the system. In practice concatenation is controlseech data. This data base may contain experimenowever, it may tables of formant frequencies however, it may also consist of (parameterized
natural speech. The design of the concatenation component is determined by a tradeoff between the on the one hand and the size of the memory re-
quired for the data base on the other hain. rucial question in this respect is that of the phon etic units to be applied.
2.1 The Demisyllable Approach

Besides phonemes and diphonemes, syllabic units supply a viable data base for high-quality synthe (Fujimura, when a syllable boundary is crossed (Fujimura, 1981; Ohman, 1966). When syllabic units are used, the number of elements is minimized
when the syllables are split up into demisyllables (DSs). Demisyllables as units of speech processing
were first proposed by Fuimura both for speech recognition froposed by Fujimura both for speec
(1975) (1976). For German DSs were taken up by Ruske
and Schotola (1978) for a speech recognition sysand Schotola (1978) for a speech recognition system; for synthesis by rule they were first used by
Dettweiler $(1980,1981)$. Usually a syllable is defined to consist of the
syllabic nucleus (in German this is always a or a diphthong) which is preceded and followed by a number of consonants, the so-called consonant clusters (CCs). The consonants preceding the syl-
labic nucleus form the initial consonant cluster and the consonants following the nucleus represent the final consonant cluster. A syllable is subdivided into demisyllables by cutting it within the syllabic syllabic nucleus form the initial demisyllable whereas the remainder of the nuleus and the final
CC make up the final demisylable
2.2 The DS Inventory. Synthesizing Monosyllabic
Words

A representative DS list for German was compiled 1984). The initial CCs contain from also Schotola ants, whereas up to 5 consonants may exist in a final CC. The number of CCs is rather limited due 51 inguitial and constraints: we have to deal with only cerning the syllabic nuclei, 23 vowels, 1984 3 . Ciph-
thongs must be taken into thongs must be taken into account.
Contrary to speech recognition,
labic nuclei and the CCs can be treated sepe syl(Ruske and Schotola, 1978 , the transitions between the syllabic nuclei and the CCs are essential for be generated by rule and must be available as stored data. For the complete DS inventory the
number of elements thus becomes
$\mathrm{Nc}=26$.
Since coarticulation has a strong tendency (Delattre, 1968; Fujimura, 1981) it is ant gestures establish the DS boundary within the first part of
the vowel. Fujimura's proposal (1976) to place the the vowel. Fujimura's proposal (1976) to place the part of
boundary 50 ms after the begining boundary 50 ms after the beginning of a vowel is
also applied in our system (Dettweiler, 1981; cf Fig.1).
 Fig.la-c. Concatenation within the syllabic nucleus
(rule CR1). (a) Initial DS, (b) final DS; (c) complete word after concatenation. The thick vertical line
indicates the interconnection point; the smoothing interval is indicated by the dashed lines. Th asterisk in the phonetic transcription refers to the position of the syllabic nucleus

### 2.3 Inventory Reductio

To reduce the number of DSs, two ways seem feas ible: 1) vowel substitution, and 2) further splitting of CCs. Both these possibilities have been used in
our system; the most important rule being the prin
ciple of rudiment and suffix our system; the most important rule being the prin-
ciple of rudiment and suffix
(Dettweiler, 1981 ciple ${ }^{\text {a }}$.
Certain consonants, when occurring in final
position of a DS, may be split off from the DS and form separate units, the so-called affixes (Fujimur et al., 1977). As the experiments suggest, fricative
and stops in final position, like vowels in the syland stops in final position, like vowels in the sylrier; i.e., sounds following this barrier do not
(substantially) affect previous sounds. A splitting scheme which is particularly efficient for German is the principhe of rudiment and suffix (Dettweiler
1981, cf. Fig.2). A suffix is defined to consist of 1981, cf. Fig.2). A suffix is defined to consist o
any (existing) any (existing) combination of the four consonant
/f/, /s/, /S/, and /t/, whereas the remainders of
the final DSs form the rudiments. The linguin the final DSS form the rudiments. The linguistic
constraints of German state that once a suffix conconstraints of German state that once a suffix con-
sonant, $i . e .$, cone of the 4 consonants named above has occurred in a final CC, the following conson ant(s) of that final CC, if existing at all, must be In practice the rudiment is formed by uttering a DS that contains the remainder of the consonan final /t/ and then removing the /t/ together with final /t/ and then removing the /t/ together with
the pertinent silence before the burst Fig. 2 b )
Since the Since the rudiment contains all the coarticulatory influences by the following /t/, it is easy to see
that the rudiment and the final $D S$ containing an identical consonant cluster without the /t t are different (cf. Fig.2a,b). Any rudiment and any suffix
may be simply concatenated without any smoothing may be simply concatenated
at the interconnection point.
Using all these possibititite
Using all these possibinities of inventory reduc-
tion, the total number of elements now decreases to $N_{R}=1665$. Note that these inventory reductions do not degrade the quality of the synthetic speech.
With an average duration of 0.3 s per element the menory required for this inventory is less
than 0.5 MByte if a vocoder at $7.2 \mathrm{kbits} / \mathrm{s}$ is used.



Fig. $2 a-\mathrm{c}$. The principle of rudiment and suffix. (a) Ordinary consonant cluster: example /*am/. (b) the rudiment $/ *$ am. $/$ / and the suffix $/ t / /$ (the dotted line represents the boundary). (c) Concatenation using rudiment and suffix: $/ *$ *am./ it $/ S / \rightarrow / *$ am $/ /$ are needed to complete the word, but do not per ain to the DSs involved in rule CR2

### 2.4 Synthesizing Polysylabic Words

Polysyllabic words contain intervocalic consonant clusters between subsequent syllabic nuclei. This requires additional rules for the concatenation of
CCs (Dettweiler, 1984). The procedure is carried out in two steps. First an intervocalic CC is split up into a final CC followed by an initial CC, and the CCs are joined to the respective syllabic, nuclei
to form DSs. In the second step the DSs are concatenated.
The ICCs are split according to three rules Firstly, an intervocalic CC must always be split up regarded as valid if it is contained in the DS invenory. If this rule does not yield a solution, the $D S$ this rule provides several solutions, a second rule states that the one solution is selected where as many consonants as possible are grouped within
the initial CC. This "pragmatic" boundary takes the initial CC. This pragmatic boundary takes
into account the anticipatory effect of coarticula-
tion; even when a DS boundary as established by tion; even when a DS boundary as established by
this rule, differed from a given morph boundary. These two rules thus represent an adequate means to split up intervocalic CCs without requiring mor phologic knowledge at this level.
When the intervocalic CC only contains one consonant, a third rule switches the system into a diphone mode by assigning this consonant to both The way in which intervocalic CCs are concatenated strongly depends or the consonants involved be discussed here. A flow diagram is depicted in Fig. 3 ; the labeling of the concatenation rules (CR 3-12) corresponds to that in (Dettweiler and is referred to that publication.



Fig.4. Vocoder configuration for speech synthesis Fig.4. Vocoder configuration for speech synthesis
by rule. The analysis
dashed line) is done offline dashed line) is done offline


Fig.5. Example for the evolution strategy for a VFR
vocoder system. After Heiler (1985)

In subjective listening experiments Heiler (1985) showed that, compared to a vocoder with constant principle permits reducing the bit rate by a factor of 3 without a perceptible loss of quality

## Discussion and Conclusiona

The work descibed in this paper concentrates on quatimizimp the front-end steps, i.e., the concatena on block and the vocoder synthesizer.
ge great advantage that about 20 rules and 1650 the great advantage that about less than 0.5 MByte are sufficient to synthesize (nearly) unrestricted
German text. A special variable-frame-rate vocoder ynthesizer provides an optimal quality at a give data rate and helps minimizing the required amoun At the
At the moment the synthesis system by rule and
he VFR vocoder still exist as separate units. Efforts are under way to combine the two systems,
thus improving the quality of the vocoder in con nection with the stored data. A signal bandwidth of kHz requiring a sampling frequency of 16 kH the fricatives / $\mathrm{f} / \mathrm{and} / \mathrm{s} / \mathrm{present}$ in the actua $5-\mathrm{kHz}$ system, and a VFR scheme permitting a minithe overall amount of memory will particularly in
prove the quality of synthetic stop consonants.

Acknowledgement. The major part of this paper wa extracted from the Dr.-Ing. dissertations b
Dr. H. Dettweiler and Dr. J. Heiler. References
Delattre P. (1968): $\begin{gathered}\text { From acoustic cues to distinc- } \\ \text { tive features." } \\ \text { Phonetica } 18, \quad 198-230\end{gathered} \quad 703-706$ (VDE-Verlag, Berlin)
Dettweiler H. (1981): "An approach to demisyllab ettweiler H. (1981): "An approach to demisyllabee
synthesis of German words." Proc. IEE synthesis
IIASSP-81, $110-113$
etweiler H. (1984): Automatic synthesis of German wettweiler h. (1984): Automatic synthesis of German
words by means of sylable-oriented segments
Dr--Ing dissertation, Technical University of Munich (in German)
Dettweiler H., Hess W. (1985): "Concatenation rules for demisyllable speech synthesis." Acustica 57
ujimura O. (1975): "Syllable as a unit of speec
Fujimura O. (1976): "Syllable as the unit of speech synthesis. Unpublished
ujimura 0. (1981): "Temporal organization of articulatory movements as a multidimens
al ujimura O., Macchi M.J., Lovins J.B. (1977): "Demi
syllables and affixes for speech synthesis. sylables and affixes for spech synthesis."
Proc. ${ }^{\text {th }}$ Int. Congr. on Acoustics, Madrid 1977, paper 1107
iler
J. (1982): eiler J. (1982): "Optimized frame selection for vari-
able frame rate synthesis."
ICroc.
IEEE ICASSP-82, Paris 1982, 586-589
eiler J. (1985): Minimization of the memory requirements of speech synthesis systems by optimizing
the parameter approximation. Dr.-Ing. dissertation, Technical University of Munich (in German)
Huggins A.W.F., Viswanathan R., Makhoul J. (1977): Speech-quality testing of some variable frame
rate (VFR) linear predictive vocoders." Acoust. Soc. Am. 62, 430-434
speech recognition using An approach to
 chotola Th. (1984): "On the use of demisyllables in 3utomatic speech recognic 3, 63-87

