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ABSTRACT

A new approach to vowel recognition is described, which begins

‘by reducing a spectrographic representation to a set of straight~line

segments that collectively sketch out the formant trajectories. These

I‘line—formants’l are used for recognition by scoring their match to a

set of histograms of line-formant frequency distributions determined

from training data for the 16 vowel categories in the recognition set.

Speaker normalization is done by subtracting F0 from line-formant

frequencies on a Bark scale. Although the formants are never enumer-

ated or tracked explicitly, the frequency distributions of the formants

are the main features influencing the recognition score. Recognition

results are given for 2135 vowels extracted from continuous speech

spoken by 292 male and female speakers.

INTRODUCTION

The formant frequencies are probably the most important in-

formation leading to the recognition of vowels, as well as other

sonorant and even possibly obstruent sounds. Therefore, re-

searchers have spent a considerable amount of effort designing

robust formant trackers, which attempt to associate peaks in the
spectrum with formant frequencies, using continuity constraints

to aid in the tracking of the formants. Once the formant tracks

are available, it then becomes possible to identify directions and

degree of formant movements, features that are important in
recognizing diphthongs, semivowels, and place of articulation of

adjacent consonants.

It is impossible to design a “perfect” formant tracker. The

most serious problem with formants is that when they are wrong

there are often gross errors. Therefore, we have decided to adopt

a somewhat different approach, one that can lead to information
about formant movements without explicitly labelling the for-
mant numbers. The method also collapses the two stages of for-

mant tracking and track interpretation (e.g., “rising formant”)

into a single step. The outcome is that a spectrographic repre-

sentation is reduced to a skeleton sketch consisting of a set of

straight-line segments, which we call “line-formants,” that col-

lectively trace out the formant tracks. The recognition strategy

then involves matching all of the line-formants of an unknown

segment to a set of templates, each of which describes statis-

tically the appropriate line-formant configurations for a given

phonetic class (which could be as detailed as “nasalized /a:/”

‘This research was .supported by DARPA under Contract N00039—85-C-

0254, monitored through Naval Electronic Systems Command.

or as general as “front vowel”). Usually the number of line-

formants for a given speech segment is considerably larger than

the number of formants, because in many cases several straight-

line segments are required to adequately reflect the transitions

of a single formant.

SIGNAL PROCESSING

Spectral Representation

The system makes use of two spectrogram-like representa-

tions that are based on our current understanding of the human

auditory system. These have been described in detail previously

,[l,2], and will only be discussed briefly here. The analysis sys-

tem consists of a set of 40 critical band filters, spanning the

frequency range from 160 to 6400 Hz. The filter outputs are

processed through a nonlinearity stage that introduces such ef-

fects" as onset enhancement, saturation and forward masking.

The outputs of this stage are then processed through two in-

dependent analyses, each of which produces a spectrogram-like

output. The “Mean Rate Spectrogram” is related to mean rate

response in the auditory system, and is used for locating sono-

rant regions in the speech signal. The “Synchrony Spectro-

gram” takes advantage of the phase-locking property of auditory

nerve fibers. It produces spectra that tend to be amplitude-

normalized, with prominent peaks at the formant frequencies.

The amplitude of each spectral peak is related to the amount of

energy at that frequency relative'to the energy in the spectral

vicinity. The line-formant representation is derived from this

Synchrony Spectrogram.

Line-formant Processing

The line-formants are bbtained by first locating sonorant re-

gions,‘ based on the amount of low frequency energy in the Mean

Rate Spectrogram. Within these sonorant regions, a subset of

robust peaks in the Synchrony Spectrogram is selected. Peaks

are rejected if their amplitude is not sufficiently greater than the

average amplitude in the surrounding time-frequency field. For

each selected peak, a short fixed-length line segment is deter-

mined, whose direction gives the best orientation for a proposed

formant track passing through that peak, using a procedure 85

outlined in Figure 1. The amplitude at each point on' a rect-

angular grid within a circular region surrounding the peak m

question is used to update a histogram of amplitude as a func-

tion of the angle, 0. Typical sizes for the circle radius are 2.0

ms in time and L2 Bark in frequency. The maximum value In
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Figure 1: Schematic illustration of process used to deter-

mine an orientation for a formant passing through a peak. (a)
Synchrony Spectrogram with cross-bars indicating a referenced
peak. (b) Schematic blow-up of region around the peak, outlin-
ing procedure to generate a histogram of amplitude as a function
of angle. (c) Resulting histogram for the example-in part a.

the histogram defines the amplitude and corresponding 0 for the

proposed track, as marked by an arrow in Figure 1c. '

At each time frame several new short segments are gener-

ated, one for each robust spectral peak. A short segment is

then merged with a pre-existing partial line-formant whenever

the two lines have a similar orientation, and the distance be-

twaen each endpoint and the other line is sufficiently small.

The merging process is accomplished by creating a weighted-

average line-formant that incorporates the new line. If a given

new segment is sufficiently unique, it is entered as a new partial

line-formant.

The resulting Skeleton Spectrogramfor the /a/ inthe word

‘shock’is illustrated in Figure 2a, along with a Schematized

SPBClroyramin Figure 2b, included to facilitate visual evaluation.

The latter is constructed by replacing each line-formant with a

time sequence of Gaussian-shaped spectral peaks with ampli-

tude equal to the line’s amplitude. The corresponding Syn-

chmny spectrogram is shown in Figure 2c, with line-formants

81merimposed. For direct comparison, Figure 2d shows a Syn-

chmny Spectral cross section at the time of the vertical bar,

011 Which is superimposed a cross section of the Schematized

spectrogram. For this example, we see that peak locations and

amlitudes in the vowel are accurately reflected. In addition, for-

mant transitions appropriate for the palatal fricative on the left

and the velar stop on the right are also captured.

RECOGNITION EXPERIIVIENT

Thus» far, we have focused our studies on speaker-indepen-

dent recognition for 16 vowels and diphthongs of American En-

glish in continuous speech, restricted to obstruent and nasal

coNext. The semivowel context is excluded because we believe

that in many cases vowel-semivowel sequences should be treated

a“ a Single phonetic unit much like a diphthong.
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Figure 2: Sample line-formant outputs: (a) Skeleton Spectro-

gram for word “shock," (b) Corresponding Schematized Spectro-

gram, (c) Synchrony Spectrogram with line-formants superimposed.

(d) cross-sections from b and c at the cursor, superimposed.

Speaker Normalization
Our first task was to devise an effective speaker-normaliza-

tion procedure. Many investigators have noted the strong corre-

lation between formant frequencies and F0 [3]. The relationship

is clearly nonlinear - the second formant for female /i/ is higher

on average by several hundred Hz, whereas the Po difierence is

on the order of 100 Hz. However, on a Bark (critical band) scale

the male-female difference in F2 for /i/ becomes much more sim-

ilar to that in F0. Thus we decided to try a very simple scheme —

for each line-formant, subtract from the line's center frequency

the median F0 over the duration of the line, on a Bark scale.

We found this normalization procedure to be remarkably ef-

fective, as illustrated in Figure 3. Part a shows a histogram

of the center frequencies of all of the lines for 35 male and.35

female /3/ tokens. Part 6 shows the same data, after median

Fo has been subtracted from each line’s center frequency. The

higher formants emerge as separate entities after the F0 nor-

malization. The normalization is not as effective for F1, but

the dispersal in F; is due in part to other factors such asvowel

nasalization. A valid question to ask is the following: if it is

supposed that speaker normalization can be accomplished by

subtracting a factor time: F0 from all formant frequencies, then

what should be the numerical value of the factor? An answer

can be obtained experimentally using autoregressive analysis.

We defined F}, = F” - of}, to be the normalized formant fre-

quency for each line. Using vowels for which the formants are

well separated, we associated a group of lines With a particular

formant such as F2. The goal was to minimize total squared er-

ror for each remapped formant among all speakers, with respect

to a. The resulting estimated value for a was 0.975, proViding

experimental evidence for the validity of the proposed scheme.
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fects" as onset enhancement, saturation and forward masking.
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Figure 1: Schematic illustration of process used to deter-

mine an orientation for a formant passing through a peak. (a)
Synchrony Spectrogram with cross-bars indicating a referenced
peak. (b) Schematic blow-up of region around the peak, outlin-
ing procedure to generate a histogram of amplitude as a function
of angle. (c) Resulting histogram for the example-in part a.

the histogram defines the amplitude and corresponding 0 for the

proposed track, as marked by an arrow in Figure 1c. '
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average line-formant that incorporates the new line. If a given

new segment is sufficiently unique, it is entered as a new partial
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Figure 2: Sample line-formant outputs: (a) Skeleton Spectro-

gram for word “shock," (b) Corresponding Schematized Spectro-

gram, (c) Synchrony Spectrogram with line-formants superimposed.

(d) cross-sections from b and c at the cursor, superimposed.
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Figure 3: Histograms for center frequencies of all line-formants for

35 female and 35 male tokens of [a], (a) without Fo normalization,
and (b) with F0 normalization.

Scoring Procedures

Our goal in developing a recognizer for the vowels was to

emphasize the formant frequency information without ever ex-

plicitly identifying the formant numbers. We wanted to avoid

traditional spectral template-matching. schemes, because they

depend too heavily on irrelevant factors such as the loudness or
the overall spectral tilt. On the other hand, we did not want to
specify, for example, the distance between F; and a target F2,
because this relies on accurately enumerating the formants.

We decided to construct histograms of frequency distribu-
tions of spectral peaks across time, based on data derived from
the line-formants. The scoring amounts to treating each his-
togram as a probability distribution, and matching the unknown
token’s line-formants against the appropriate distributions for
each vowel. To construct the histograms for a given vowel, all of
the line-formants in a training set were used to generate five his-
tograms intended to capture the distributions of the formants at
significant time points in the vowel. All lines were normalized
with respect to F0, which was computed automatically using
a version of the Gold-Rabiner pitch detector [4]. Each line-
formant’s contributions to the histograms were weighted by its
amplitude and its length.

Only left, center and right frequencies of the lines were used
in the histograms. The left frequency of a given line-formant
falls into one of two bins, depending upon whether or not it is
near the beginning of the vowel. Right frequencies are sorted
similarly, with a dividing point near the end of the vowel. Center
frequencies are collected into the same histogram regardless of
their time location. Such a sorting process results in a set of
histograms that reflects general formant motions over time. For
example, the F2 peak in the histograms for [e/ shifts upward
from left-on—left to center to right-on-right, reflecting the fact
that /e/ is diphthongized towards a /y/ off-glide, as illustrated

, in Figure 4.
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Figure 4: Histograms for (a) left-on-left, (1)) center, and (C)
right-on~right line-formant frequencies for 128 tokens of /e/, Fo nor
malized.
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2135 Vowels, 288 Speakers

uilecao‘n’n‘kooyouur

90 220 268 128 153 155 131 92 103 147 156 96 83 114 96 103

Table I: Distributions of vowels in recognition experiment

To score an unknown token, the left, center, and right fre-

quencies of all of its lines are matched against the appropriate

histograms for each vowel category, which are treated as prob-
ability distributions. The score for the token’s match is the

weighted sum'of the log probabilites for the five categories for

all of the line-formants. The amplitude of the line does not en-
ter into the match, but is used only as a weight for the line’s

contribution to the score. This strategy eliminates the problem
of mismatch due to factors such as spectral tilt or overall energy-

Recognition Results

The vowels used for recognition were extracted from sen-
tences in the TIMIT database [5]. The speakers represented a
wide range of dialectical variations. A total of 2135 vowel t0-

kens spoken by 206 male and 82 female speakers were used as

both training and test data, using a jackknifing procedure. The
distributions of vowels are shown in Table 1. Each speaker’s

vowel tokens were scored against histograms computed from all

of the line-formants ezcept those from that speaker. The scor-

ing procedure was as discussed above, with histograms defined
for sixteen vowel categories. The endpoints for the vowels wcr“

taken from the time-aligned phonetic transcription.
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u i l e e a: 0" o’ u A a 3’ o u u s

u 49 15 ll 6 3 l 4 8 3

i 11 70 5 8 1 1 1 2 1

i ll 10 32 16 ll 5 2 6 5 2

e 5 9 5 60 7 6 1 1 l 3 2

c 3 l 12 14 37 16 l 1 6 2 3 l

a l 1 1 10 9 59 4 7 4 1 1 2 1

a" 2 13 39 6 13 7 7 2 7 3
.Y 1 7 4 58 15 2 l 8 2 2
u 3 7 15 40 4 27 5

A l 1 1 7 6 2 5 17 39 2 2 5 6 5 1
3 3 3. 29 l 46 4 12 1 1 1
,1 1 l 10 1 3 67 8 6 2

o 4 7 1 5 6 l4 4 53 5 l

u 20 1 ll 4 l l 5 3 3 9 28 11 4 .

u 11 2 2 2 1 l l 1 2 4 l 2 9 17 40 3

r 8 , 4 3 3 1 l 1 3 l l 5 5 3 62

Table 2: First choice confusion matrix for the vowels

Row = Labeled Category, Column = Recognized Category.

A matrix of first-choice confusion probabilities is given in

Table 2, in terms of percent correct in the phonetic category. For

the most part, confusions are reasonable. We feel encouraged by

this performance, especially considering that multiple dialects
and multiple contexts are included in the same histogram.

Figure 5 summarizes recognition performance in terms of

percentage of time the correct answer is in the top N, for all
speakers, and for male and female speakers separately. Recog-
nition was somewhat worse for females, who represented only

25% of the population. Also shown are the recognition results
for female speakers when the Fo-normalization scheme is omit-
ted, both in collecting the histograms and in scoring. Significant
gains were realized as a consequence of the normalization. The

performance for the male speakers without Fa normalization
hOWever (not shown) did not change.

FIJTWJICEIPIuAPJS

We believe that recognition performance can be improved by
extensions in several directions. One is to divide each vowel’s
histograms into multiple subcategories, based on both general
features of the vowel and coarticulation effects. General cate-

gories, useful for the center-frequency histogram, would include
“nasalized,” “Southern accent,” or “fronted.” Left- and right-

Context place of articulation, such as “velar,” could be used to

define corresponding histogram subcategories. We also plan to

fXPlore an alternative recognition strategy for explicitly match—

mfi each line-formant against a set of template line-formant:

describing a particular phonetic category, instead of reducing
the line to three “independent” points. We believe that such an

aPpl‘oach 'will better capture the fact that a given left frequency

and a giVen right frequency are connected. Finally, we plan to
Erfidually expand the scope of the recognizer, first to vowels in

all contexts and then to other classes such as semivowels.
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Figure 3: Histograms for center frequencies of all line-formants for

35 female and 35 male tokens of /a=/, (a) without F0 normalization,
and (b) with F0 normalization.

Scoring Procedures

Our goal in developing a recognizer for the vowels was to
emphasize the formant frequency information without ever ex-

plicitly identifying the formant numbers. We wanted to avoid

traditional spectral template-matching. schemes, because they

depend too heavily on irrelevant factors such as the loudness or
the overall spectral tilt. On the other hand, we did not want to
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token’s line-formants against the appropriate distributions for
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tograms intended to capture the distributions of the formants at
significant time points in the vowel. All lines were normalized
with respect to F0, which was computed automatically using
a version of the Gold-Rabiner pitch detector [4]. Each line-
formant’s contributions to the histograms were weighted by its
amplitude and its length.

Only left, center and right frequencies of the lines were used
in the histograms. The left frequency of a given line-formant
falls into one of two bins, depending upon whether or not it is
near the beginning of the vowel. Right frequencies are sorted
similarly, with a dividing point near the end of the vowel. Center
frequencies are collected into the same histogram regardless of
their time location. Such a sorting process results in a set of
histograms that reflects general formant motions over time. For
example, the F2 peak in the histograms for /e/ shifts upward
from left-on-left to center to right-on-right, reflecting the fact
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Figure 4: Histograms for (a) left-on-left, (b) center, and (c)
right-on-right line-formant frequencies for 128 tokens of /e/, F}, nor-
malized.
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To score an unknown token, the left, center, and right fre-

quencies of all of its lines are matched against the appropriate

histograms for each vowel category, which are treated as prob-
ability distributions. The score for the token’s match is the

weighted sum'of the log probabilites for the five categories for

all of the line-formants. The amplitude of the line does not en-
ter into the match, but is used only as a weight for the line’s

contribution to the score. This strategy eliminates the problem
of mismatch due to factors such as spectral tilt or overall energy-

Recognition Results

The vowels used for recognition were extracted from sen-
tences in the TIMIT database [5]. The speakers represented a
wide range of dialectical variations. A total of 2135 vowel t0-

kens spoken by 206 male and 82 female speakers were used as

both training and test data, using a jackknifing procedure. The
distributions of vowels are shown in Table 1. Each speaker’s

vowel tokens were scored against histograms computed from all

of the line-formants ezcept those from that speaker. The scor-

ing procedure was as discussed above, with histograms defined
for sixteen vowel categories. The endpoints for the vowels wvrt'

taken from the time-aligned phonetic transcription.
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u i l e e a: 0" all u A a 3’ o u u a

u 49 15 ll 6 3 l 4 8 3

i 11 70 5 8 1 1 1 2 1

r 11 10 32 16 11 5 2 6 5 2

e 5 9 5 6O 7 6 1 1 l 3 2

c 3 l 12 14 37 16 1 1 6 2 3 l

a l 1 1 10 9 59 4 7 4 l 1 2 1

a" 2 13 39 6 13 7 7 2 7 3
«Y 1 7 4 58 15 2 1 8 2 2
u 3 7 15 40 4 27 5

A l 1 1 7 6 2 5 17 39 2 2 5 6 5 l
a 3 3. 29 l 46 4 12 1 1 1
or 1 l 10 1 3 67 8 6 2

o 4 7 1 5 6 l4 4 53 5 l

u 20 1 11 1 l 5 3 3 9 28 11 4 .

u 11 2 2 2 1 l l 1 2 4 l 2 9 17 40 3

r 8 , 4 3 3 1 l 1 3 1 l 5 5 3 62

Table 2: First choice confusion matrix for the vowels

Row = Labeled Category, Column = Recognized Category.

A matrix of first-choice confusion probabilities is given in

Table 2, in terms of percent correct in the phonetic category. For

the most part, confusions are reasonable. We feel encouraged by

this performance, especially considering that multiple dialects
and multiple contexts are included in the same histogram.

Figure 5 summarizes recognition performance in terms of

percentage of time the correct answer is in the top N, for all
speakers, and for male and female speakers separately. Recog-
nition was somewhat worse for females, who represented only

25% of the population. Also shown are the recognition results
for female speakers when the Fo-normalization scheme is omit-
ted, both in collecting the histograms and in scoring. Significant
gains were realized as a consequence of the normalization. The
performance for the male speakers without Fa normalization
however (not shown) did not change.

FIJTWJICEIPIuAPJS

We believe that recognition performance can be improved by
extensions in several directions. One is to divide each vowel’s
histograms into multiple subcategories, based on both general
features of the vowel and coarticulation effects. General cate-
gories, useful for the center-frequency histogram, would include
“nasalized,” “Southern accent,” or “fronted.” Left- and right-

cOntext place of articulation, such as “velar,” could be used to

define corresponding histogram subcategories. We also plan to

FxPlore an alternative recognition strategy for explicitly match—
mg each line-formant against a set of template line-formant:

describing a particular phonetic category, instead of reducing
the line to three “independent” points. We believe that such an

aPproach'will better capture the fact that a given left frequency

and a given right frequency are connected. Finally, we plan to
Eridually expand the scope of the recognizer, first to vowels in

all contexts and then to other classes such as semivowels.
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