the role of Intensity in breathy voiced stops: a close link

IESELOTTE SChIEFER

Institut fur Phonetik und Sprachliche Kommunikation
Ler Ludwig-Maximilians Universität München, FRG

material and Informants
For the acoustic analysis a list of words stops /bh dh ghich contained the breathy tion. Each stop was followed by the
phonemi-
cally long vowels /a e i ou/ and occurre either one, two, or three syllables. The material was not controlled for the consonant following the initial CV syllable. Twenty lists were prepared, each containing The lists were read by three informants (i female, 2 males, aged 23 to 40), all native speakers of Hindi, originating from New Delhi or Uttar Pradesh. The recordings were the Centre of German Studies, School Languages of the Jawaharlal Nehru Univer sity using a Uher Report and a Senheiser
MD421N microphone. The distance to the microphone was set at about 50 cm . The same word list was recorded from. another informant (35 years, female) in Munich in the soundproofed room of the Institute using a Telefunken M15 tape recorder and a
Neumann
U87 microphone. This recording served as font for the manipulation and generation of the stimuli employed in the perception tests.
procedure
The material was digitized on a PDP1/1/50 with a sample was digitized of 20 kHz , filitered wit a cut off frequency of 8 kHz , and store for further analysis. The material was segmentation routine (for further information cf. (5]). Four different parts in the lead, burst + voiceless aspiration, breathy part of the vowel, and steady part of the vowel. All periodic portions were segmented into single pitch periods [5]. For the acoustic analysis the intensity was calcuover all periods of the breathy and steady vowel portion, respectively, for each speaker. Separate analyses of variance were applied to all comparisons of means for all checked by a chi-square procedure, while homogeneity of variance was controlled for by applying the chi-square statistics for independent measurements. The level of sig-
nificance was set to p 05 . Multiple comparisons of means were calculated by the
use of an a
of

For the perception tests dhe where selected for mani-
ldha dho dhu dhi $/$ were
pulation in order to test the interaction bulation intensity and the vowel. A set of programs was used to generate the stimuli. The procedure has been described in detail elsewhere $[4,5]$ The first CV syllable was
separated from the rest of the words and
the breathy portion of the vowel was eliminated totally. The resulting syllable consisted of voicing lead and burst (which of the vowel. The fundamental frequency of the vowel was adjusted to 210 Hz for all CV combinations, with a rise over the first five pitch periods and a fall over the last
five periods. The first stimulus of each five periods. The first stimulus of each
continuum was generated by superimposing a quasi-linear intensity curve on the first 21 pitch periods, the first period being
adjusted to 25 dB , the 24 st to 55 dB . The adjusted to 25 dB , the 21 st to 55 dB . The
intensity was kept constant for the rest of the vowel, with a decrease over 5 periods at the end of the contour. The other 6 stimuli of each continuum were derived from
the first stimulus by increasing the intenthe first stimulus by increasing the inten-
sity onset in the 1 st period by 5 dB . For each cv condition identification and discrimination tapes were prepared. In the identification test each stimulus occurred 3.5 sec after each stimulus and a pause of 10 sec after a block of 10 stimuli. For discrimination the AX paradigm was used with the step size $=2$. Both presentation
orders AB and BA as well as AA occurred. orders AB and BA as well as AA occurred.
The interstimulus interval was 500 ms , pairs were separated by 3.5 sec , blocks of 10 pairs by 10 secs. Each pair occurred 3 limes in randomized order. Answer sheets
were prepared to allow responses for either breathy or voiced stops in a forced-choice paradigm in the identification task, had to in the discrimination task subjects pair sound the "same" or "different". All perception tests were run in the language
lab of the lab of the Centre of German Studies in New With using a Telefunken language trainer comfortable phones. The tests were run at a
listening
level. About
15 subjects participated in the tests. All
were staff or students of the School of languages an
participation

RESULTS

dcoustic analysis. Fig. 1 displays the averaged over all stops and vowels. Fig. 2 to 4 display the results for the vowel, separately to ${ }^{7}$ for the stop conditions obvious that the intensity of the breathy Vowel portion differs significantly from on the othe steady portion in all speakers. between both. portions is not the same in all subjects: portions is not the same in in for RPJ (11.1 (7.22 and smaller for PUN (7.9 dB) and MAN the intensity in influence of the vowel on

Fig. 1: Intensity of the breathy and steady stops and vowels; plotted separately for the speakers MAN(F), RPJ(M), and PUN(M)

 But the vowels do not contribute in the
same way to the intensity difference bet ween the breathy and steady portion as ca be seen from the following diagrams, which show the significance between the singl
vowels

(The diagrams should be read as: vowel underlined by a common dotted line do not differ significantly, whereas vowels no underlined by a common line do.) MAN shows more influence of the tongue
position on the intensity difference as it is largest for the back vowels 10 u/ whereas the influence of the tongue height
plays an important role in RPJs
 productions: The results from pun are not clear, as /o/ and /a/ produce the largest,
high vowels the smallest intensit high vowels if the smallest intensit
difference. if summarized over al difference. the following rank order appears:

$$
\begin{array}{lllll}
\text { i } & \mathbf{u} & \text { a } & \text { e } & 0 \\
6 & 7 & 7 & 11 & 14
\end{array}
$$

In other words: the intensity difference between the breathy and steady portion (of
the vowel) is a function of the tonque the vowell is a function of the to The influence of the stop's place of arti culation is less compared with the vowel

Perception tests. The results from the identification task are plotted in Fig. 8 . The number of participants is given in the
figure. It is obvious that subjects did divide the continuum into two parts only in

Fiq. 2 to 4: Intensity of the breathy and
steady vowel portions as a function of the
vowel ploted separately for the three
speakers

FIG, $8:$
played forcentage breathy responses dis-
for four vowel conditions dho dhi dhu/ the four vowel conditions/dha

$\frac{\text { Fid. } 5 \text { to 7: Intensity of the breathy and }}{\text { steady vowel }}$ portionas a function of the steady vowel portion as a function of the speakers

$\frac{\text { fig. 9: Percentage breathy responses dis- }}{\text { played for the four vowei conditions /dha }}$
the assumptions of categorical perception. In the other tests only the first stimulus was assigned to the breathy category. He
asked if these results may be due to an asked if these results may be due to an
interaction between intensity and the vowel, or if they reflect a difference in subjects ability to make use of that spe-
cial acoustic cue. Therefore we reanalyzed cial acoustic cue. Therefore we reanalyzed
the results and included only those sub-
jects jects in the analysis who unambigously assigned two categories to the continuum.
These results are given in fig. 9 This These results are given in Fig. 9. This
time, the identification function improoved for all conditions. The boundary between breathy and voiced occurs latest in the /dho/ condition (cf. Table 1), earlier in
/dha/ and /dhi/, earliest in /ghu/ where tha/ and 'ghi/, earliest in /qhu/ where of continua is significant ($F(3,26$) $=$ 3.644; $p<.05$), but on the other hand, the continua do not differ significantly from

TABLE 1: Points of intersection between the identification function and the

/dho	/dhi/	/dha/	/ dhu/
4.06	3. 34	3.26	2.68

The results from the discrimination tasks correspond well with those predicted from formulantification task using the haskins peak or the obtained discrimination func-
tion correspond in location and height with the carculated one. On the other hand, subjects could discriminate slightly better significant.

discussion

The results from the acoustic analysis confirm that vowels contribute in difrerent the breathy and steady vowel portions after breathy voiced stops. This difference is
largest for the mid vowel iof inall spealargest for the mid vowel /olin all spea-
kers examined. on the other hand, the per-
in ceptiontests gave best results in the ldhol condition which showed the steepest boundary and the latest intersection bet-
ween the identification function and the
sion 50\% line. This means, that the back vowel
$10 /$ line $10 /$ needs less intensity digference in perception than do the high and low vowels. ain these results by a close link between the production and perception: the acoustic cue intensity" is most powerful when it it applied to mid vowels, less powerful with
other vowels. In order to make sure that no other acoustic cue was involved, we reexamined the acoustic structure of the syllab-
les used formanipulation with regard to les used for mani pulation with regard to
the relationship between the amplitude of the relationship between the amplitud
the first and second harmonic in the so
called steady portion of the vowel, where no breathiness could be detected audito
rily. The results are as follows:

This means, that the amplitude of $H 1$ is higher in the high vowels ii ul, whereas $H 2$ /a/. These relationsships are undoubtediy due to the formant structure of the vowels, where f1 interacts with $H 1$ in the high vowels, and with H 2 in lo/ No interaction believe that our results reflect an inter action between the overall intensity, the amplitude of $H 1$ and $H 2$ as well as P1. A ther investigations are needed to explain the extent of that interaction.

REPERENCES

[1] Bickley, C.: Acoustic analysis and perception of breathy vowels. Horking papers Vol. 1, MIT Speech Communication, pp. 73-83 (1980)
[21 Huffman, M. K.: Measures of phonation types in Hmong. Uni versity of Califor
nia Horking Papers in Phonetics 54:1nia
25 (Morkin
(1985)
[3] Ladefoged, P.: The linguistic use of different phonation types. University of California Horking Papers in Phone tics 54: 28-39 (1982)
[4] Schiefer, L. - Rotten, R.: Amplitude envelope and the perception of breathy stops in Hindi. Proc. 10th Int. Congr Phon. Sci., Utrecht, pp. 459-463,
(Cinnaminson, Dordrecht, 1984)
(5) Schiefer, L.: Fo in the production and perception of breathy stops: evidence
from Hindi. Phonetica 43: 43-69 (1986)

> cknowledgment

This research was supported by German This research was (DFG) grant Schi 181/2-1 I am grateful to Prof. R. P. Jain and Prof P. Talgeri for their helpinserticipants for the perception tests and participants for the permission to use the Language Lab, as well as Swaran Thakur-Heifenbach, Manorama, R. P. Jain,
informants.

