THE PERCEPTION OF VOICING IN DUTCH TWO-OBSTRUENT SEQUENCES

R.J.H. van den Berg

Institute of Phonetics, University of Nijmegen
P.O. Box $9103,6500 \mathrm{HD}$ Nijmegen, The Netherlands

0. Abstract

Perceived voicing in Dutch two-obstruent sequences $\left(C_{1} C_{2}\right)$, tested in synthetic VCCV nonwords, was shown to depend not only on the amount of periodicity present in the sequence (VOT and VTT), but also on
the intensity of frication noise, and on the durations of the second consonant and the preceding vowel. The duration of the first consonant and the peed and range of formant transitions showed no

. Introduction
Because of obligatory final devoicing in Dutch no voiced obstruents occur word-finally, e.g. goed
oct (good): /xud/ $->/ x u t /$. Therefore, no phonological
voicing opposition exists word-finally, and words as voicing opposition exists word-finally, and words as
bod (bid) and bot (bone) are phonetically equivalent. As a consequence assimilation in two-obstruent equences ($C_{1} C_{2}$) with respect to the feature 'voice' can only take place in sequences of which the first consonant (C_{2}) is voiceless and the second (C_{2}) is place) voicing status of the obstruents is the one ccurring in an environment in which assimilation good). (this book ssimilat.
non [4]. Thereforentially an articulatory phenomially) voiceless C_{1} and voiced sequence of an (iniespect to 'voice' did take place, both consonants ory feature 'voice', that is both of the articulaither vibrating or non-vibrating vocal folds.
ver the years, assimilation of 'voice' in Dutch, well as across word boundaries, has received a good deal of attention. So far, the aim of the research has been to discover linguistic (and extralinguision. Two phonological assimilation rules assimilaformulated.
that is C_{1} a takes on the voicing status of C_{2}. The
result is a sequence of two voiced consonants e.g. Wit boek (white book): /wit buk/ \rightarrow /wId buk/ If $^{\text {I }} \mathrm{C}_{2}$ is a fricative, assimilation is progres
sine, that is C_{2}. sive, that is C_{2} adapts to C_{1}. The result is a zand (white sand):/wit zant/ \rightarrow /wit sant/. These rules were formulated on the basis of dat often only to one occurrence as in radio brterances, r lectures, and noted down cases of assimilation. The decisions about the voicing status of the obstrthey were more often than not of what one heard and only, the researcher. Moreover, these researchers implicitly assumed that if a voiced (or voiceless)
consonant was perceived, a voiced (or voiceless) consonant was produced. However, it is a well-known affected by the acoustic correlate of presence or absence of vocal fold vibrations, but also by a num ber of other acoustic cues [6]. In view of this and process, the data obtained by means an articulatory tual method can at best be considered as only indirect evidence of assimilation.
A more direct method of establishing whether assimilation did occur would be to measure vocal fold sequence. Slis [8] took this methodological conse quence and performed articulatory/acoustic voice measurements of two-obstruent sequences in which
assimilation could occur. The voicing status of the obstruents was established by relating the measurements to those obtained for single voiced and voice less consonants. In the light of the data thus obtained rule (1) above in particular became con
Slis [9] also made a direct comparison of articulatory/acoustic voice measurements and percep tual voicing judgements of the same natural speech one-to-one relationship exists between the two types of data: the voicing status assigned on the basis o the presence or absence of vocal fold vibrations wa not an adequate predictor of the voicing judgement
obtained. However, it is possible that the two con sonants did become more alike in some other articu latory feature(s), the acoustic correlates of which may have triggered the perception of two voiced As stat
are based on perceptual data. The researchers who formulated them may have been able to distinguish the acoustic correlate of presence or absence of
vocal fold vibration from other acoustic cues relevant to the perception of voicing. But these other cues may also have (mis) guided their voicing judge ments. Therefore, the study of the relation between acoustic cues and
obstruent soicing judgements
sequences is of importance for the description of assimilation with respect to the fea Ture 'voice' in Dutch.
The question of what acoustic parameters affect the perception of voicing in two-obstruent sequences was thetic speech stimuli of experiments employing syn since it allowed for anthetic speech was chosen parameter(s) under investigation and for a strict control on the other parameters. In order not to complicate matters, only one parameter at a time was somed knowledge was gained about the effects on persome knowledge was gained about the effects on per in
ception of the various parameters an experiment which they were covaried was performed. The results of all these experiments are presented below. Investigated were the effects of voice onset time
(VOT), voice termination
intensity, and duration and range of formant tran itions [1] as well as duration of C_{1} and C_{2}, and eding vowe 1 [2]
2. Hethod

The stimuli were generated by a 'speech-synthesis y-rules' system. In this system a string of phoeme labels and a string of labels indicating successive egments. Parameter values for each segment are read from a table containing target values and timing
data for each parameter (a phoneme' representadata for each parameter (a 'phoneme' representation). These values are adapted for context and pro-
sodic conditions by a set of rules (into an 'allohone' representation). Subsequently, these parameter values for allophone-sized segments are converted into parameter values for segments of pitch period size. These are used as input for the
calculation of the synthetic speech signal. The funlanental frequency depended on the intrinsic F_{0} tress, and declination, and varied around a mean of out 150 Hz . At the allophone-size level the prochosen values.

1. Speech material

To preclude effects due to phonetic context [3] the $C_{1} C_{2}$ sequences were part of VCCV nonwords with a strict control on the vowels. The obstruents includ-
ed in the research were the labial and alveolar ploves and fricatives. Velar consonants were excluded fecause in Dutch the phoneme $/ 8$ / occurs only in loan wrds, and the voicing opposition in the velar friatives is of a doubtful status.
The sequences are described as a voiceless plus
oiced consonant, because these were the labels used in the input string for the synthesis system.
acause informal listening showed that synthesizing C_{1} plosives with the release burst counteracted the coustic signal to be ambiguous with regard to cues hat were not under investigation, all C_{1} plosives sare synthesized without a release burst. For the the stimuli in the VOT and VTT experiments) were ynthesized without periodicity but for the first 10 us of the C_{1} segment in which the periodic source
2.2. Subjects

In each experiment 12 subjects participated. In the experiment on the durations of C_{1} and C_{2}, and in the
covariation 20. All subjects were university students (ages 3) and were paid for their services
2.3. Procedure
fter the stimuli were synthesized they were recordonto audiotape in random order. Each stimulus was recorded three times in successsion, with a one-
fecond
interval between repetitions and an htertrial interval of five seconds, in which the subjects made their response. The subjects task lus, to isten to all three repetitions of a stimusequence, identify the consonantal sounds in the
to indicate in a forced choice task hat sequence they had heard. To this purpose the response alternatives were orthographically repre-
sented on ented on a score sheet, for example abda, appa,
epta, and abta, standing for /abda/, /apda/, /apta/, nd /abta/. The last response category, the voicedsible less sequence, which is phonologically inadmis
cation noise intensity experiments. Subjects wer
ested individually in a sound-treated booth. The stimuli were presented over headphones at a comfortable listening level. Experimental trials
were preceded by ten practice trials to allow the subjects to get used to the synthetic speech and to the task. Informal interviews after the tests showed that none of the subjects had experienced difficulin performing the task, and that all
4. Data analysis

The response categories were labelled (++) for voiced-voiced responses, (-+) for voiceless-voiced $(-)$ for voiceless-voiceless and (+-) for voiced oiceless responses. For each stimulus the frequen cies of the response categories were assessed. The ing to Goodman's loglinear model [5]. This model was specifically developed for frequency data with re than one independent variable. The statist
. Voice Onset Time (VOT)
The effect of VOT was tested in 16 sequences, all Combinations of $/ \mathrm{p}, \mathrm{t}, \mathrm{s}, \mathrm{f} /+1 \mathrm{l}, \mathrm{d}, \mathrm{z}, \mathrm{v} /$. A uniform VOT
cont inuum was opted for, and therefore the durations f the consonantal segments were set at a constant the plosives and the noise portion of the fricatives. The durations of the preceding and following vowe were set at 90 and 170 ms respectively. Five
voT. values were employed: $-150,-75,-30,0$ and +20 VOT. values were employed: $-150,-75,-30,0$, and +20 ent representing C_{2}, that is the end of the silent nterval for plosives and the moment of frication The effect of VOT was significant: $x^{2}=246.23, \mathrm{df}=8$, p<0.001. VOT did not interact with sequence type the same general pattern was observed for al equences. From the data in Table 1 it is clear that ate VOT's (that is with no periodicity present in ould be expected. With earlier vot's the responses hift via $(-+)$ towards (++)

Table 1: Response frequencies for five VOT's (in \%)

vot	$(++)$	$(-+)$	$(--)$
-150	55.7	33.9	10.4
-75	39.6	46.4	14.1
-30	21.4	52.6	26.0
0	13.5	29.7	56.8
+20	9.9	26.6	63.5

Comparison of the -30 and 0 ms Vor conditions shows that the 30 ms stretch of periodicity at the end of the C_{2} segment is a strong cue to C_{2} perception: it
raises the number of [tvoice] C_{2} percepts by 30.8% raises the number of [+ voice] C_{2} percepts by 30.8%
But the number of But although to a lesser extent (7.9\%). Apparently, es, astretch of periodicity is also taken as a voicing cue to C_{1}. This seems to indicate that cues fro be integrated into a perceptual unit. However, th be integrated into a perceptual unit. however, the increasing distance.
4. Voice Termination Time (VTT)

In testing the effect of VTT the same 16 sequences were used. The durations of the segments were as in
$0,40,75,110$, and 150 ms . These values are rela-
tive to the beginning of the C segment. As can be seen from Table 2 VTT affect As can be seen from Table ${ }^{2}$ VTT affects perception
significantly: $x^{2}=451.16, \mathrm{df}=8$, p<0.001. Again there was no interaction with sequence type: the the
same pattern was found for all sequen same pattern was found for all sequences. The responses were in line with what was expected: short
$V T T ' s ~ l e d ~ t o ~(--) ~ a n d ~ l o n g ~ V T T ' s ~ t o ~(++) ~ r e s p o n s e s, ~$ whereas for the intermediate VTT's (40 and 75 ms) the highest frequencies for $(+-)$ were observed, although the frequencies for $(++)$ and ($(+)$ also
increased in comparison with a VTT of 0 ms. This is most likely due to the fact that a voiced-voiceless sequence is phonologically inadmissible in Dutch. Probably, phonological restrictions affected perceptiont ${ }^{7] \text {, and the subjects (having perceived period }}$ icity) resorted to the (++) and (-+) categories.
Table 2: Response frequencies for five VTT's (in \%)

VTT	$(++)$	$(-+)$	$(--)$	$(+-)$
0	3.1	16.7	66.1	14.1
40	6.8	24.5	37.5	31.3
75	28.6	32.3	14.1	25.0
110	55.7	32.3	4.2	7.8
150	62.5	31.8	2.6	3.1

These data, too, show indications that cues from integrated into $\underset{a}{ }$ perceptual unit acousic signal are stretch of periodicity at the beginning of the ms segment not only raised the number of $\left[+\right.$ voice ${ }^{2} \mathrm{C}_{1}$
percepts by 20.9\%, but also the number of [+voice] percepts by 20.9%, bu
C_{2} percepts by 11.5%.
5. Frication Noise Intensity

Again the same 16 sequences were tested. The durations of all segments were controlled by the timing
rules of the synthesis system. Since C_{1} plosives rules of the synthesis system. Since C_{1} plosives
contained no release burst, the variation of the nontained no release burst, the variation of the tion of the fricatives and the release burst of the plosives). The six amplitude values used were chosen so as to cover the voiced-voiceless continuum without exceeding naturalness limits. This resulted in a
3 dB step size for fricatives and 6 dB steps for plosives.
Table 3: Response frequencies for six noise level
values (in \%). Obstruent-plos

noise	$(++)$	$(-+)$	$(--)$
low	21.9	35.4	42.7
	19.8	36.5	43.8
V	11.5	38.5	50.0
V	6.3	36.5	57.3
high	12.5	22.9	64.6

The overall effect of noise intensity was signifi-
cant: $x^{2}=30.74, d f=10, p<0.01$. However, the interaction with sequence type was also significant: noise intensity did show an effect for obstruentplesives, but not for obstruent-fricatives. The dif-
ference is most likely due to the different step sizes involved. The direction of the effect is as Was expected: with increasingly higher noise levels more $(--)$ responses were given at the cost of (++)
and $(-+)$. As may be clear from the data in table the effect was rather weak, which may have been due to the fact that other parameters were not set at adequate values. Most likely the segmental dura-
tions, controlled by the built-in synthesis rules
were too long and biased the responses to (--) and
6. Formant transitions

Range and duration of the F1, F2, and F3 transitions into and out of the $\mathrm{C}_{1} \mathrm{C}_{2}$ sequence were tested in
$/ \mathrm{pd} /, / \mathrm{tb} /, / \mathrm{fd} /$, and $/ \mathrm{sb} /$. The consonantal dura tions were set at $60+65 \mathrm{~ms}$ for $/ \mathrm{pd} /$ and $/ \mathrm{tb} /$, and at $70+70 \mathrm{~ms}$ for $/ \mathrm{dd} /$ and $/ \mathrm{sb} /$. Speed and range of the transition onset and the time within which the shift takes place. For VC_{1} transitions moment of onset was relative to the beginning of the C_{1} segment, for $C_{2} V$ transitions it was relative to the boundary between Only a limited range of values could be because in informal listening it appeared that long transitions led to the perception of glides and short transitions to the loss of the principal perceptual cue to the place of articulation. Three
ypes of VC_{2} transitions:.$-40 ; 40,-40 ; 60$, and $-20 ; 40$ (moment of onset and transition time respec. ively) were combined with four types of $C_{2} \nabla$ ransitions: $-10 ; 95,-10 ; 75,0 ; 75$, and $0 ; 55$. o overall effect on perception was observed: $\chi^{2}=$
$31.10, d f=33$, ns. Also, the interaction between $V C=$ and $C_{2} V$ transitions and the main effect of $C_{2} V$ transitions were not significant. A small effect of VC_{1} sequence only (/pd/), the responses to which showed no coherent pattern.
7. Durat ions of C_{2} and C_{2} Since the durations of both C_{1} and C_{2} were varied it
seemed advisable to have a clear acoustic boundary between the two consonants. So, only combinations
f a fricative (noise) with a plosive (silent interval) were used: $/ \mathrm{fd}, \mathrm{sb}, \mathrm{pz}, \mathrm{tv} /$. The durations of the preceding and following vowel were set at 90 and 160 ms respectively. While limiting the total duration of the sequence to 150 ms , both the durations of C_{1} and C_{2}. Were varied in 5 steps of 15 ms starting at
45 ms . This resulted in 15 combinations of durations (C_{1} and C_{2} respectively): 45-45, 45-60, \quad 45-105,
$60-45, \ldots 0-90$, $60-45, \ldots 60-90, \ldots 105-45$. A11 stimuli were syn-
thesized under two stress conditions: stress on the first or on the second syllable. Stress was synthesized by means of a prominence lending rise and fall of F_{o}.
The interactions of sequence type and stress pattern with duration were not significant. This signifies hat duration had a similar effect for the various sequences and both stress patterns, so for the duration results the data were pooled over these condiand C_{2} duration, the effect of C_{1} duration could only be tested for the various levels of C_{2} duration separately, and the effect of C_{2} duration only for For none of the levels of the C_{2} duration variable did the factor of C_{1} duration affect the frequency distribution of the four response categories. Even fonly the responses to C_{1} were considered, no sig were not affected by C_{2} duration.
On the other hand, for a C_{1} of 45 ms (C_{2} ranging rom 45 to 105 ms), for a C_{2} of 60 ms ($C_{2}: 45-90$ $\mathrm{ms}) \dot{C}_{\text {and }}$ and a C_{2} of $75 \mathrm{~ms}\left(\mathrm{C}_{2}: 45-75 \mathrm{~ms}\right)$ the effect
of C_{2} duration was significant. Longer C_{2} durations $(-+)$ led to more ($(-)$ and (+-$)$, and less $(++)$ and $(-+)$ responses. The picture becomes even clearer if C_{2} responses only are considered: longer C_{2} durations
led to more [-voice] C_{2} percepts. No effect of C_{2} duration on C_{1} perception was observed. So, what the effect of this manipulation seems to be
boiling down to is that C_{2} duration affects C_{2} perception, longer durations giving rise to more l-voice $]$ percepts. This effect is strong enough to
affect the frequency distribution of the four affect the frequency distribution of the four
response categories, wheras C_{2} duration does not response categories, wheras C_{1} duration does no
have any effect at all. The significant effect of stress pattern manifested
itself in that more (++) and less (--$)$ responses itself in that more (++) and less ($(-)$ responses
were given if stress was on the first than if it was were given if stress was on the first than if it was on the second syllable.
8. Preceding Vowel Duration

This effect was tested in the sequences / $\mathrm{pd}, \mathrm{tb}, \mathrm{fd}$, were either a phonologically long /a:/ or a phonolosically short $/ \varepsilon /$, to test a possibly differential effect of preceding vowe 1 duration for vowels of and /tb/ were $60+65 \mathrm{~ms}$, of the other sequences $70+70$
ad $/ \mathrm{l}$ ms. The following vowel had a duration of 160 ms . Stress was either on the first or on the second sylby a prominence lending rise respectively), realized by a prominence lending rise and fall. To avoid a
clash between stress and duration longer preceding vowel durations were used in the stress-1 condition (55, 80 , and 180 ms). than in the stress- 2 condition (55,80 , and 120 ms).
vowel duration, so the data were not interact with conditions. Preceding vowel duration significantly ($\mathrm{X}^{2}=21.25$, $\mathrm{d} \mathrm{f}=6, \mathrm{p}<0.001$) affected the response the stress-2 in the stress-1 condition, but not in
condion. Under stress-1 longer durations led to more $(++)$ and $(+-)$, and to less $(-+)$
and $(-)$ les. and (--) responses (see Table 4),
Table 4: Response frequencies for three preceding
vowel durations (in

stress -1	$(++)$	$(-+)$	$(--)$	$(+-)$	$\mathrm{C}_{1}=(+)$	$\mathrm{C}_{2}=(+)$
80	10.4	31.8	38.0	19.8	30.2	42.2
120	17.7	30.2	31.3	20.8	38.5	47.9
180	26.6	22.4	27.6	23.4	50.0	49.0
stress -2	$(++)$.	$(-+)$	$(--)$	$(+-)$	$\mathrm{C}_{1}=(+)$	$\mathrm{C}_{2}=(+)$
55	12.5	27.6	45.3	14.6	27.1	40.1
80	10.4	28.6	42.2	18.8	29.2	39.1
120	15.6	29.2	31.3	24.0	39.6	44.8

under stress-1 with the same conditions under
stress-2, it appeared that the non-significant
effect effect for stress-2 is not due to the difference in
stress, but rather to the smaller absolute range in durations. However, if only C_{1} responses are considered, the effect of vowel duration is significant
for stress -1 ($x^{2}=15$ vel for stress-1 $\left(x^{2}=15.82, \mathrm{df}=2, \mathrm{p}<0.001\right)$ as we 11 as
effess $\left(x^{2}=7.76, \mathrm{df}=2, \mathrm{p}<0.05\right)$, although the effect is still larger for stress-1. Perception of C_{2} was not affected significantly in both stress So, $^{\text {, preceding }}$ vowel duration affects C_{2} perception, with longer durations leading to more [+voice] C_{1} percepts. In stress-1 this effect is large enough to
influence egories
The int
nifinteraction vowel type x duration was not sig affected. However, since vowel duration mainly
C_{1} responses, the interaction was also tested with C_{1} responses, the interaction thes as the dependent variable.
For st ${ }^{2}$. 6.78, $\mathrm{df}=2$, $\mathrm{p}<0.05$ interaction was significant the number of [tvoice] percepts increased more rap-
idly
s perceived as longer than an /a:/ of the sam
duration. From this it may be inferred that a internal representation of a vowel's intrinsic dura tion might play a role in its perceived duration.

Covariation of parameters

experiment was run in which thotween parameters an experiment was run in which those parameters that sequences were used: $/ \mathrm{fd}, \mathrm{sb}, \mathrm{pz}, \mathrm{tv} /$. The duration o the C_{1} segment was 50 ms , that of the second vowe 60 ms . The six parameters that were varied were VOT in three steps of $0,-25$, and -50 ms), VIT (in two
teps of 0 and 40 ms), noise intensity of the fricaives (two levels with a difference of approximately dB), duration of C_{2} (in three steps of 50,75 teps of 80 and 120 ms), and stress pattern (stress on the first or on the second syllable).
ome parameters interacted with sequence type due to fact that for some sequences the effect of som parameters was more powerful, rather than to a
totally different response pattern. Therefore, the ata were analyzed for all four sequences separate y. It appeared that for each sequence all six fac perception and that the response patterns were in line with the earlier findings. The few significant interactions that were obtained seemed to be inci ental, since, if an interaction was observ
10. Conclusion

These results show that perception of voicing in butch two-obstruent sequences does not depend solely on the presence/absence of periodicity. Further ors that affect the perception of voicing in two obstruent sequences (viz. VOT, VTT, frication nois intensity, stress pattern, C_{2} duration,
ing vowel duration) do so independently.

References [1] R.van den Berg, "The effect of varying voice and noise parameters on the perception of voicing in Dutch two-obstruent sequenc.
[2] R.van den Berg, "Effects of duration on the pereption of voicing in Dutch two-obstruen
(3) R.van den Berg, I.Slis, "Phonetic context effects in the perception of voicing in $\mathrm{C}_{1} \mathrm{C}_{2}$ A.Crystal,' "A first dictionary of linguistics and phonet ics", Andre Deutsch, London, 1980.
[5] L. Goodman, "The analysis of multidimensional contingency tables when some variables are pos
terior to others: a modified path analysis terior to others: a modified path
approach", Biometrika $60: 179-192,1973$.
[6] L.Lisker, "Rapid vs Rabid: a catalogue of acous tic features that may cue the distinction ${ }^{\text {Has }}$
kins Lab.Stat.Rep.Speech Res. SR-54: 127-132, kins Lab.Stat.Rep.Spe
1978 . D.Massaro, M.Cohen, "Phonological context
speech perception", Perception and Psychophysics 34(4): $338-348$, 1983. van stem in het Neder
[8] I.Slis, "Assimilatie van stem in het Neder"Rules' for assimilation of voice in Dutch", in: R.Channon \& L. Shockey (eds) In honour of Mse lications, Dordrecht, 225-240, 1986.
19] I.Slis, "Assimilation of voice in Dutch as a function of stress, word boundaries, and sex of
speaker and listener", J.Phonetics 14: $311-326$, speaker
1986.

