CATEGORICAL PITCH PERCEPTION

KLAUS J. KOHLER

Institut für Phonetik und
digitale Sprachverarbeitung
Universität Kiel
2300 Kiel, FRG

ABSTRACT
This paper shows that the paradigm of
categorical perception also applies to
pitch contours. In LPC-synthesized
stimuli, an F0 peak is shifted through an
utterance in 30-ms steps. The stimuli of
this physical continuum are identified in
a contextualization experiment. The
response function shows an abrupt change
when the F0 peak is moved into the vowel
of the stressed syllable. When stimuli
from the continuum are paired with 0, 1 or
2 steps between them, the differentiation
functions show maxima at the category
boundary established by the identification
test. The ordering in each pair has an
influence on the differentiation function.

INTRODUCTION
The paradigm of categorical perception is
well-known in the area of sound seg-
ments /1/. It means that a physical con-
tinuum of a sound property is partitioned
into sections inside which the same categ-
ory is identified and between which categor-
y boundaries change. The corollary of
this is that differentiation along the
physical continuum is sharpest across the
category boundaries and weakest inside the
categories. The evidence for this phenom-
emon in the perception of prosodic fea-
tures, e.g. word tones in tone languages,
is contradictory /1, 2, 3/, and it certainly
has not been demonstrated for utterance
pitch contours. To show its relevance in
the field of intonation the following
experiments were carried out.

PROCEDURE
In the German sentence "Sie hat ja
gelogen." ("She's been lying.") with
focus stress on the syllable "-lo-" /lo:/,
the F0 peak can be on the syllable "ge-",
preceding the stress, or at the centre of
the stressed syllable, or at its end (cf.
/3/). This shift in the F0 peak position
is correlated with a change in meaning
from 'established' to 'new' to 'emphatic'.
A token of this sentence was pronounced by
a male speaker, LPC-analyzed, and resyn-
thesized with 11 F0 contours, in which the
peak was shifted in 30-ms steps from "ge-
" to "-en" (for further details cf. /3/).

Experiment 1.
The first 8 stimuli out of this series
of '1' (counting from left to right) were
each paired with the preceding context
"Jetzt versteh ich das erst." ("Now I
understand."); spoken by the same speaker,
and LPC-resynthesized). This precursor
sets a semantic frame of reference for
something new to follow in the test
utterance. Since the 8 test stimuli span
the continuum of F0 peak positions from
"ge-" to the centre of the stressed
syllable "-lo-", they either contain the
same semantic component as suggested by
the context frame, i.e. 'new', or the
different meaning feature 'established',
which would be appropriate as a summing-up
at the end of a chain of arguments, for
instance after "Once a lyer, always a
lyer; this also applies to Anne: ...".
Thus the chosen context and each of the 8
test stimuli either form a semantic match
or they do not. A test tape was prepared
with a randomization of 80 pairings of
context and test stimuli (8 stimuli x
10 repetitions) and presented to 19 list-
eners who had to indicate on prepared
answer sheets whether context and test
sentence were semantically congruous.

Experiment 2.
Stimuli from the series of 11 were
paired in such a way that they differed by
0, 1, or 2 steps of F0 peak position. All
1- and 2-step combinations were formed in
both orders (2x10 and 2x9, respectively),
and supplemented by identical stimulus
pairings at the uneven rank numbers in the
series (6). Two test tapes were prepared:
(I) for the ascending rank order in
stimulus pairs (i.e. left-to-right shift
of the F0 peak), and (II) for the descend-
ing rank order (i.e. right-to-left shift).
For each test tape, the 6 identical
stimulus pairs were added; the resulting
25 pairs were then repeated once and
randomized.
A group of 39 subjects listened to test tape (I), a different group of 34 subjects to test tape (II). Listeners had to indicate on prepared answer sheets whether they perceived a difference between the members of a pair.

RESULTS AND DISCUSSION

Figure 1 gives the identification function for Experiment 1; it shows an abrupt change from "matching" to "non-matching" judgments, despite of the gradual change along the physical continuum, and is thus clearly categorical. The responses "matching" or "non-matching", respectively, can be interpreted as the identification of two sentence meanings: 'summing-up conclusion' (A) versus 'point of argumentation' (B). Stimuli 1-4 represent semantic category (A), stimuli 6-8 category (B); stimulus 5 is on the border between the two. The latter is characterized acoustically by being the first stimulus in the whole series (from left to right) that has the F0 peak in the stressed vowel /ο/; approximately 30 ms after vowel onset. In the stimuli 1-4, the F0 peak precedes the stressed vowel, and there is thus only an F0 fall in it; in the subsequent stimuli, the F0 fall in the stressed vowel is preceded by a rise of increasing extent, which reaches a peak position of 60 ms into the vowel has become prominent enough to signal a different category in an identification task. We thus have a time span of about 60 ms into the vowel where the F0 peak is in a boundary area between two categories, and therefore has an equivocal meaning attached to it.

Figures 2a-c provide the discrimination functions for Experiment 2. The pairs of identical stimuli show a maximum of false alarms at the category boundary found in identification, i.e., for stimulus 5. This is what one would expect if the associated meaning is equivocal: listeners overdifferentiate at the perceptual level when the semantic attribution is unclear. In the pairs of different stimuli in the ascending order, the maximum of discrimination occurs at the category boundary of the identification function, as long as one member lies outside the transition span, i.e., for the pairings 4/5, 5/6; 3/5, 4/6, 5/6; 6/7, 7/8. The pairs with descending order; the maximum is generally shifted to the next higher rank in categories. Therefore, the phenomenon of categorical perception also applies to the field of prosody, i.e., to perceptual categories. At the same time, however, a strong order effect which results from the perceptual testing procedure and which disturbs the differentiation functions has to be taken into account. It is found in segment perception too, but has largely passed unnoticed because it has not been factored out.

REFERENCES

