ON UNIVERSAL AND SPECIFIC FEATURES IN VOWEL PERCEPTION

K.S. OGORODNİKOVA

Dept.of Phonetios
Leningrad State Univ.
Leningrad, USSR, I99I64

ABSTRAC T

The results of a cross-language study of the perception of a set of synthetic steady-state vocalic stimuli using mimicking and identification methods are reported. The subjeots were native speakers of Russian, French and Georgian. The results show the influence of the vocalic system of the mother tongue on vowel perception. A close correlate to the given stimulus occuring in the native vowel system induces significant changes in mimicking and identification responses. This influence may be manifest even in cases where this correlate is a con-text-bound allophone. A superficial aquaintance with the vocalic system of a sec ond language changes the identification results, which has implications for the analysis of experimental perceptual data.

Introduction

The present paper attempts to establish, to what extent vowel perception of different language speakers is determined by the vowel system of their mother tongue, and to what extent - by the universal perceptual abilities of human listeners.
A number of researchers have maintained that speakers of different languages are able to identify more vowels than the number of vowel phonemes in the language they are speaking. However, neither a finite inventory of such perceptual vowel units, nor their relation to linguistic phonemes has as yet been established for any language.
Tro possible solutions have been suggested for native speakers of Russian: I) this set of internal vowel representations might correspond to context-bound allophones in Russian vowels $/ 3,2 /$; 2) it might conform to cardinal vowels $/ I /$. But these solutions are not fully supported by the actual experimental data in different perceptual tests.
A combination of mimicking and identifi--ation was used. There is evidenoe to
believe that the transformations of the initial signal in mimicking and identifioation coincide up to the phonetic feature level. In mimicking, transformation of the phonetic representation into motor commands then takes place. Identification requires the phonetic labelling step. Mimicking does not seem to imply a necessary phonemic classification, and when it is difficult, no deoision in terms of phonological categories is made. The comparison of mimicking and identification results makes it possible to isolate motor and labelling factors.
It is important to realize that in analysing mimicking data purely in terms of FI and F2 values we lose a great deal of information about the phonetio quality of vowel responses.

PROCEDURE

Three groups of IO male adult subjects, native speakers of Russian, French and Georgian, took part in the experiments. A set of 8 synthetic steady-state vocalic stimuli with Fo increasing from 100 Fz to I25 Hz was used (phonetic symbols with a letter n^{n} are assigned to each stimulus).

Pormant frequencies of synthetic vooalic stimuli

Stimuli	FI	F2	P3	P4
Stis	260	2760	2930	3500
y_{s}	240	1880	2660	3500
${ }_{\phi}{ }_{\text {S }}$	350	1560	2200	3250
$2 s_{s}$	840	I7IO	2200	3250
${ }_{u s}$	240	660	2420	3250
${ }_{0}{ }_{5}{ }^{*}$	290	600	2420	3250
Qs	570	800	2420	3250
a_{s}	760	1060	3220	4000

The stimuli were recorded in random order at 5 ms interval, each stimulus was repeated 5 times.
There are eleven oral vowels in French: $l i, e, \varepsilon, a, y, \phi, \infty, u, o, v, a / ; \operatorname{six}$
in Russian $/ i, e, \Delta, u, o, a / ;$ five in in Russian $/ \iota, e, b, u, o, a / ;$ five in
Georgian: $/ i, e, a, u, o /$. The Russian and the Georgian vowel systems are considerably poorer than the French one. On

[^0]he other hand, large allophonic variations occur in Russian, unlike French and eorgian. Vowels differ in quality accordng to stress position and to the phonoloiaal palatalization of adjacent conso-
iculation). $a_{s} u_{s}$ have correlates in 311 three languages; y_{s} and ϕ_{S} - front labial vowels - ocour only in French. The timuli \varkappa_{s}, $\} s$, ates in any of the three languages. How ever, x_{S} is phonetically nearer to the French than to Russian or Georgian vowels.

MIMIC KING TEST

All the subjects were instruoted to reeat as closely as possible the stimu ubject went through the mimicking test wice and gave IO responses to each stiulus, which were recorded onto tape Before mimicking, subjects pr
The FI and F2 values of the response owels were measured from spectrograms and plotted as dots on the FI/F2 plane. The accumulations of such dots formed the response areas for each stimulus by eac group (see Fig. I a,b,o).
ing phonetic symbols and finer phonetic symbols and signs for netician (see Table I for the results). The response areas to different vocalic Stimuli partly overlap, less in the case case of Georgian speakers.
All the subjects responded to i_{s}, a_{s}, u_{s} stimuli with their own corresponding vowels.
niy French subjects were successful in mimicking ${ }^{\text {showed much poorer results and those of }}$ Georgian subjects were on the whole inadequate.
French and Russian subjects gave similar responses to oes; the Georgians r
Russian and Georgian subjects tended to substitute their own vowels for 9 s and stimuli. French subjects responses wer sometimes phonetically rather close to Q_{S} and 0_{S}.
Thas, mimicking results were strongly determined by the linguistic experience of when the stimulus has a correlate in the vocalic system of the mother tongue. It was therefore to be expected that the mimicking of French subjects would be most accurate.
But a vowe without correlates in the accurately responded to. The better micomparison with of Russian subjects in comparison with Georgian ones seem to b

Fig. I a, b, c. Mimicking response areas in he FI/F2'plane of French (a), Russian (b) and Georgian (c) subjects. Dots with symbols. a_{F}, a_{F} etc. show the locations and $a_{6}, i G-G e o r g i a n ' v o w e l s$ (the mean f2 values are also shown).

Russian / $u, o, a /$ ad jacent to the palatalized consonants. The peroeptual independence of such allophones is reinforced ber in the pussion alphabet

		L_{S}	y_{3}	ϕ_{s}	\mathscr{L}_{s}	a_{s}	Ps	P,	u_{s}
i	$\begin{array}{\|l\|} \hline \frac{1}{2} \\ 3 \\ \hline \end{array}$	$\begin{array}{r} 100 \\ 60 \\ 67 \\ \hline \end{array}$	36	15				I	2
$1 / 1$	$\begin{array}{\|l\|} \hline I \\ 2 \\ 3 \\ \hline \end{array}$	$\begin{array}{r} 34 \\ 29 \\ \hline \end{array}$	$\begin{array}{r} 9 \\ 3 \mathrm{I} \\ \hline \end{array}$	20					
1	$\begin{array}{\|l\|} \hline 1 \\ 2 \\ 3 \\ \hline \end{array}$	$\begin{aligned} & 5 \\ & 3 \\ & \hline \end{aligned}$	$\begin{array}{r} \mathrm{I} \\ \mathrm{I} 6 \\ 8 \\ \hline \end{array}$	25 26					I
61	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & \hline \end{aligned}$		$\begin{aligned} & 35 \\ & 12 \end{aligned}$	24 16					
y	$\begin{array}{\|l\|} \hline 1 \\ 2 \\ 3 \\ \hline \end{array}$	I	$\begin{array}{r}97 \\ 28 \\ 13 \\ \hline 1\end{array}$	$\begin{array}{r}5 \\ \hline 2 \\ \hline\end{array}$					I
ϕ	$\begin{array}{\|l\|} \hline I \\ 2 \\ 3 \\ \hline \end{array}$		$\begin{aligned} & 2 \\ & 7 \end{aligned}$	$\begin{array}{r} 100 \\ 7 \\ 7 \end{array}$					I
\propto	$\begin{array}{\|l\|} \hline 1 \\ 2 \\ 3 \end{array}$	I	4	22			$\begin{aligned} & 2 \\ & 7 \\ & \hline \end{aligned}$		
∂	$\begin{array}{\|l\|} \hline \mathrm{I} \\ 2 \\ \hline \end{array}$			$\begin{array}{r}17 \\ \hline\end{array}$	I			I	I
ε	$\begin{array}{\|l\|} \hline \mathrm{I} \\ 3 \\ \hline \end{array}$			3	$\begin{array}{r}29 \\ 37 \\ 6 \\ \hline\end{array}$	I			
æ	$\begin{array}{\|l} \hline 1 \\ 2 \\ 3 \\ \hline \end{array}$				$\begin{aligned} & \text { I9 } \\ & \text { I4 } \end{aligned}$				
2	$\begin{array}{\|l\|} \hline 1 \\ 2 \\ 3 \\ \hline \end{array}$				47 33 41	$\begin{array}{r} 8 \\ 28 \\ 14 \end{array}$			
$2 / a$	$\begin{aligned} & I \\ & 2 \\ & 3 \\ & \hline \end{aligned}$				IO	$2 I$ 26 24	I		
a	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 3 \end{aligned}$				5 5 40	71 46 61	28		
b	$\begin{aligned} & 1 \\ & 2 \\ & 2 \\ & 3 \\ & \hline \end{aligned}$						149		
0	$\begin{array}{r} T \\ 2 \\ 3 \\ \hline \end{array}$						$\begin{aligned} & 2 I \\ & 36 \\ & 12 \end{aligned}$		
0	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 3 \end{aligned}$						$\begin{array}{r} 34 \\ 88 \\ \hline \end{array}$	8	
0/4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & \hline \end{aligned}$		I					36 31 32 5	19 22 20 78
u	$\begin{aligned} & \mathrm{I} \\ & 2 \\ & 3 \end{aligned}$							$\begin{aligned} & 55 \\ & 69 \\ & 67 \\ & \hline \end{aligned}$	78 75 80

Table I. Mimicking responses to synthetio vowels by groups of French /I/, Russian Vowels by groups of French $/ 2$ and Georgian $/ 3$ / speakers.

Russian, and only rarely Georgian peakers responded to $y s$ and ϕ with the racted $/ 1 /$, reailizing the same low values of F2 owing to vowel retraction and not to vowel rounding

IDENTIFICATION TEST

The same subjeots after a delay of sepossibly exact graphical representation of the same set of stimuli as in the mi micking test. See the results of the lassificati In Table ${ }^{2}$.
to each stimin and mimicking responses subjects have much in common: the best results in the three groups were for is a_{s}, u_{s} vowels; the most adequate reswere better responses from Russian than from Georgian subjeots to $y_{s}, \phi_{S}, \mathscr{C}_{S}$ stimuli eto. It should be specially noted, that a Russian subject identified e_{s} /a/ - after a palatalized consonant, while a Georgian one-as $h /$, that is, dered it to be the most prominent feature. A supplementary test was conceived to verify our assumption that even a superficial aquaintance with the vocalic sys tem of a sec ond language may influeno the perception ot ver tongue as context free allophones. The identification of the same set of vocalio stimuli was tested with a group of native speakers of Georgian, all - first year students in physics at Tbilisi University - I6 had studied total of 38 subjects language at school and 22 - French and German. It was found that those who had studied English did not respond to y_{s} with rounded vowels a all and gave almost no responses to ϕ_{S} with a front rounded vowel identified 4 g studied French and German identified ${ }^{\text {as }}$ a as a rounded vowel in $I / 3$ of their responses. Thus, the results of mimicking and of identification of vocalic stimuli proved to be similar, but mimicking was stid more accurate: the subjects responded With similar vowe types in both each In general, subjeot. Sometimes, however, subjects answered with different vowels from test to test: for example, mimioking responses to s as a and 1 , responses as / / / of a French subject. If mimicking responses were influenced individual artion responses even in a freechoice experimental situation were to a great extent determined by the subjects resourcefulness in choosing an appropriate symble as "fi" - the consonant

	i_{s}	y_{s}	ϕ_{S}	$æ_{S}$	a_{s}	O_{8}	φ_{S}	u_{s}
i	$\begin{array}{r} 100 \\ 98 \\ 92 \\ \hline \end{array}$	$7 \begin{array}{r}4 \\ 7\end{array}$	56					
$i / \square \square$		IO	$\begin{array}{r} \text { I2 } \\ 6 \end{array}$					
\square	2	$\begin{array}{r} 30 \\ 10 \end{array}$	$\begin{aligned} & 28 \\ & 18 \end{aligned}$					
y		100 50 10	I0					
ϕ			$\begin{aligned} & 78 \\ & 48 \end{aligned}$					
œ			22					
∂	6	8	4	2				
e / ε			$\begin{array}{r} 10 \\ \hline \end{array}$	30 14 20				
a / ε				28 40 2				
h			2	10				
'a				8				
a				36	60			
a/a				$\begin{array}{r} 6 \\ 34 \\ 68 \\ \hline \end{array}$	$\begin{array}{r} 6 \\ 100 \\ 1000 \\ \hline \end{array}$			
a					34	IO		
\%/a						18		
$0 / 2$				2		72 16 10		
0						84 90	8	
u/o							18 8	2
u	2	6					74 92 100	98 100 100

Table 2. Identification responses to symthetic vowels by groups of French (top figure for each classification unit), Russian (middle figure) and Georgian (bottom figure) speakers.
seemingly carried the feature of "lip articulation", i.e. "rounded").

C ONC LUSION

The results reported above suggest the influence of the vooalic system of the mother tongue on vowel perception. The set of synthetic vowels was most compatible with the linguistic experience of the French subjects, and they had the best results in identification.
But this influence is more complex than the presenoe of a close corresponding vowel to the stimulus in the vocalio system. We may assume a certain role of acoustical properties of the native vowels involved as references in the perceptual process.
Furthermore, we may speculate that not only the phonetic properties of the context-free allophones, but also of the most perceptually distinct context-bound allophones of the native vowels exert a certain influence on vowel perception. The better results in mimicking and identification of y_{s}, ϕ_{s}, x_{S} achieved by native speakers of Russian than by the Georgians seem to be due to the actual advancement of the Russian / u, o, a / allophones adjacent to palatalized consonants.
on the contrary, large allophonic variations do not occur in the Georgian language and Georgian subjects tend to give more "categorical" responses. The obtained results cannot be explained only by the influence of the phonological system of the mother tongue, but also reflect the universal perceptual abilities of different language users.
And finally, it is suggested that even a superficial aquaintance with the vowel system of a second language has an effect on vowel perception which should be borne in mind when interpreting the results of perceptual experiments.

REFERENCES

/I/ Chernova E.I., Beliakova G.A., Dialinnikova T.G. A Study in Peroeption of Cardinal Vowels by Native Speakers of Russian. - Z. Phon.Sprachwiss.Kommunik. forsch., 39(4), Berlin, I986, 472-483 /in Russian/.
/2/ Chistovich L., Fant G., Serpa-Leitão A., Tjernlund P. Mimicking of Synthetio Vowels. - Speech Transm. Iab.Quart. Progr. and Status Report, Stockholm, I966, II 2, I-I8.
$13 /$ Verbitskaya L.A. On Perceptual vowe 1 Units in Russian Speech. - Ucheniye Zapisky Ieningradskogo Universiteta, 325(69), Ieningrad, 1964, 55-7I/in Russian/.

[^0]: * O-closer quality, 设-more open quality.

