Valeria Kuznetsova

Department of Philology, Moscow State University Moscow, USSR, 119899

ABSTRACT

In the present paper the problem of decoding the results of the first stage of speech recognition into vocsbulary units is discussed. The open syllable is proposed as the basic element for such decoding. The final decision is made with consideration both lexic and phonetic oontext. The context function is carried out by specially organized vocabulary module in the system.

INTRODUCTION

Lately the problem of mapping the results of preliminary acoustic analysis onto linguistio units draws great attention of different researohers. This problem is very important both for the description of the model of human speech perception and for developing the systen of automatic speech recognition and understanding.

The purpose of the present paper is to suggest the solution of this problem in relation to the system of automatio speech recognition. Not discussing in detail the problem of human speech perception, we adopt the following startingpoint hypothesis:
I. The decision about signals phonetic content is made for elements corresponding to syllables. 2. Until the content is correlated with the semantio meaning of the unit it is considered to be preliminary and is represented by a limited set of variants or by generalized phonetio content.
3. To arrive at the final interpretation of the signal (to correlate it with some vocabulary unit and to define its phonetic composition more accurately) multifold strategy is implemented on the basis of the information supplied by phonetio and higher levels of analysis.

The present paper deals with the problem of the phonetic structuring of vocabulary module, so without taking into consideration higher levels of linguistic analysis we'll describe some possible model of transition from signal representation (in teras of the first stage alphabet) to vocabulary units.

PHONETIC SYLLABLE RECOGNITION

The basic element of our recognition model is an open syllable. The selection of this unit is supported both by the acoustic-phonetic lite-
rature data regarding it to be the minimal unit of speech perception and production $/ 1 /-/ 5 /$ and by the possibility of automatic segmentation of the results of the first stage recognition into elements corresponding to open syllables /5/, /6/.

The results of the first stage recogrition presented in /6/ were used to test the model's reliability. Signal, corresponding to syllable, automatically having been singled out and reoorded in terms of the first stage alphabet (FSA) is oompared with syllable sample (SS) from the systen's memory. Each SS is correlated to phonetic syllable. Thus the result of the first stage reoognition goes into the input of the given submodale while in the output there are syllables in phonetic transcription.

These SS were designed on the basis of analysis of the results of the first stage recognition of the definite system with regard to possible within-syllable coarticulation and the duration of syllable's constituents. Thus SS are in their nature idealized, generalized concept of the results of the first stage recognttion and are recorded in terms of FSA. The SS set is determined by the requirements put on the recognition system vocabulary. It is rather small in case of limited vocabularies. For evolving systems of automatio speech recognition with extensive and unlimited vocabularies the SS set must be compiled with regard to syllab:le statistics. The existing syllable statistics for Russian speeoh /7/, /8/ do not fully answer the requirements of this problem as they are received on the basis of idealized transcription of written texts. Contrary to the statement in / // syllables constituting these statistics cover no more than 60% of different type oral texts, as it was shown in our experiment. Thus taking the statistics presented in $/ 8 /$, as the starting point we are now compiling a fuller statistics that would comprise up to 1000 open syllables revealed from the recordings of different types of oral texts. This statistios would supply the basis for SS set of the speech recognition system with extensive vocabulary in which every syllable would get SS representation. The model was tested with SS set of 100 syllables and vocabulary of 200 words.

The syllable corresponding to signal is selected by means of comparing the entering signal to each SS and is determined by minimal
stance between them. The distance $1 s$ measure means of conseoutive comparison of each sihelp the to elements of the sauple (PD) stored in the systen's memory. MPD comp ses conventional distances between element FSA constituting the signal and SS.

We used the following technique for crealing urD. Each element of FSA oorresponds to haraoterized by presence/absence of some feat ure and the strength of its manifestation (e.g. absence of fundamental frequency is characterires of its eanifestation along ith ther features voiced obstruents, sonorants and vovels are distinguished)

The difference between FSA elenents regarding each feature was estimated by assigning ertain marks to them. The results of our ana in ion. The distance between reliable feature as given a higher mark, while the distance between less reliable ones was given a low mark, hat is the scaies of distances were not line. Thus the scales were made not for elements lements are characterized, ance between the constituents of the coupared eatures of FSA elements was put into MPD. In he process in a number of cases frequent subsitution of elements of the alphabet in the signal or complete absence of such substitution The teohnique desoribed
above can be preseents of PSA, and M is characterized by the set f features $/ x_{1}, \ldots, x_{i} /$ while $\mathrm{s}-/ x_{1}^{\prime}, \ldots, x_{i}^{\prime} /$ then
$R_{M, N}=r_{\left(x_{1}, x_{i}^{\prime}\right)}+\ldots+r_{\left(x_{i}, x_{i}^{\prime}\right)}+k_{M, N}$
here ${ }^{\mathrm{R}}, \mathrm{M}_{1}$ is the distance included in MPD, . $x_{i}, X_{i}^{\prime} /$ - the distance in the soale for each sitution frequency of elements in the definite eoognition system.

IVe have distinguished and soaled the folowing acoustic features:
2. Presence of formant structure and degree of ts manifestation
. Intensity
. Main area of energy concentration
5. PII frequency

These acoustio features are highly analoous to syllable contrasts desoribed by L. Bonnce of durational difference here seales. It is impossible to introduce this feature into KPD because the decision is made about each tie segment of the signal, and not about segment corresponding to some phonetic unit (whether son between signal duration and sample duration is introduced into algorithm for calculation of distance between the result of the first
stage reoognition and SS. It seens interestin to oompare our data with those obtained on the basis of /I/. By means of the teohmique described above we have construoted MPDI on the basis of the soales corresponding to syliable contte distance rarely ooinoide as singled out fes tures do not match coupletely, although some general tendency in the sequence of elements of the alphabet which are arranged according to the degree of eloseness to each element can be observed. He are planning to oompare the efficiency of the matrix in the recognition systen. SS set allow us to put forward a prelininary hypothesis about some syllable corresponding to the certain signal. As it was mentioned above suoh decision is represented by either a set of syllables with ninimal distances from the signal (in our case 3 minimal distances were taken the syllable, reflecting generalized phonetio content (e.g. TA - a syllable consisting of unvoiced atop and non-front vowel). Whether a set of variants or a generalized content would be selected for syllable recording depends on the signal's oharacter (the degree of manifestation rete sound with greater or lesser preoision) or on its distance from the sample. Such attitud seems quite reasonable as not always in the signal there are acoustic cues that would allow sit to correlate it with some definite sound syllable or even word /II/, /I2/.
the structuring and use of the vocabulary As the result of the program for oomparing the signals of the first stage recognition with llables' string. This faot determines the oharacter of phonetio description of the vocabula ry. The constructing of the vocabulary oan b divided into 2 stages.
On the first stage lexical units in the Corm close to idealized phonetio transcriptio are reoorded as strings of open syllables. on the most frequent substitutions in recognition being singled out in the preliminary analysi are inoluded into transoribed word recording. I 11mited vocabulary is used on this stage it it dvisable to, set apart possible quasizomonys ach the consonants at the beginning of the secon syllable are phonetically very similar and pratically undistinguishable in the process of recognition or are distinguished irregularly).

Each transoribed recording is correlated with corresponding word or words and in the case of reliable syllable recognition we get
lling of the words on the vocabulary output.

The program for syllable joining compar all possible strings of syllable-candidates ith those reoorded in the vocabulary and corresponding to real words. These equivalents a hen reoorded into speling and sent syllables
that do not correspond to any vocabulary unit are eliminated. This programinitates the role In sone cases it's possible that a whole group of syllable strings would correspond to vocabulary units, thus we'll get 2 or more words at the output. During program approbation such cases were rather few and the number of words at the output didn't exceed 3. This can be explained by the small size of the vocabulary. Theoretically the number of variants for the selected number of syllable candidates $/ 3 /$ is 3 ,
where X stands for number of syllables in the siven word. He suppose that in such cases the clinination of extra variants 18 possible on a higher level of analysis and it corresponds to the role of syntactic, pragmatic and semantio A more complex perception.
situation when some syllables are identified incorreotly and none of the strings of syllables at the input of the vocabulary module corresponds to the vocabulary units. In this case uliple strategy of word search must be impleented. This strategy must be based on some fabal with a lexical unit and its seguent cosposition /in other words the strategy is phone-tic-context dependent/. The number of syllables In a mord, stress position, rhythmical structuof a word as a whole, basio /most reliable in the prooess of reoognition/ syllables, inias such phonetic factors here. The can be named seleoted factors and their number cause the vooabulary structure, the determining of absolurely reliable factors cause in its turn the trategy of word search in general: consequent aroh beginning with subrocabularies, composed isarding to absolutely reliable word charaotetion/ and onto subvocabularies based on less reliable phonetio word oharacteristics, were only oandidates selected with the help of "reliable" subvocabularies are taken into consideation. As the first stage recognition results tor ahsolum to consider every selected faorallel word search se, one has to turn to parather complicated procedure.
The vocabulary has the following structure. The vocabulary is reoorded in the form of its in aciants /subvocabularies/, which are organized subvocardance with the selected factors. Some siullar rhythis derived into parts coaprising ted at the basic syllables and so on. Strings of syllable candidates which have no corresponang lexioal elements in the main vocabulary re entered into all these subvooabularies and hididates are seleoted every subvocabulary word oaristios identical /in the structural oharactered string. Ford oandidates are entered into the analyser which in the output delivers words present in all registers. If no such words can be identified word oandidates with the highest arks are seleoted. For this purpose to each of
the subvooabularies a certain rank is assigned according to the reliability of the factor ref oted in xt .

At present we are conducting an experiment ained at selecting faotors used in word recogation and defining the degree of their reliability. For this purpose the results of syllable recognition with false deaision were given to a group of experts, who using the words phonetio features and unlinited vocabulary put tion of these results. The group consists of 4 linguists who can theoretically ground their deoisions. The data thus obtained are of prelithary charaoter but it should be pointed out that the experts pay attention to the words ${ }^{\prime}$ rhythaical strioture and to the segnent compo
vocabulary module

Fig.

The generalized scheme of the vocabulary odule work

With the use of limited vocabulary and pragmatically oriented recognition system the strategy of word prediction can be used
In this case the reliability of recognition of syllables and the probability of their substitution must be taken into account. The vocabulary must be built in the form of a matrix ref leoting the consecutive member of eaoh syllable the vocabulary beginning with the nost rellable syllable to its possible left or right neigh bours. If the supposed neighbouring syllables coincide with the result of the recognition or If they are not oontradictory to it / that is, are inoluded into the register of possible subcontent/the search is conducted further on. On the basis of some given text pragmatics semantically and syntactically oriented subvocabularies can be selected to conduct the search whi le the sequence of entering into each subvoca bulary will be determined by the previously re gnized words
This mode

This model has no computer-progran reali-
zation, yet we present it here in accordance with the concept that in speeoh recognition as well as in human speech perception it's impossible to liait oneself to one particular strategy. The final decision can be made on the basas of identification of the word image as a whole, on the basis of the analysis of the factors /phonetical as well as relating to other levels of analysis/ determining this image, on the basis of prediction of syllables and larger units /words and word combinations/ by limiting the oommunicative vocabulary according to the pragmatic oontent of the text.

MODEL'S EXPERIMENTAL APPROBATION

Model's partial approbation /syllable recognition and word selection in the vocabulary with the help of the vocabulary of basic syllables/ was conducted on the vocabulary of 200 words and a set of 100 syllable samples. Syllable candidates are obtained as the result of the realization of the program for comparing of the first stage signals with SS. Strings formed of syllable candidates are recoded into vocabulary units. As the experiment demonstrates, for a small vocabulary it's sufficient to introduce 1 or 2 subvocabularies. 3 operational variants of the program are possible: simple joining of recognized syllables, word prediction by means of the subvocabulary of basic syllables, refusing to make final decision in case of false recognition or absence of the basic syllable in the string. For the purpose of limiting the number of analysed strings the syllables undoubtedly falsely recognized /initial and final syllables that got into middle position, middle syllables that got into initial or final position/ are eliminated. The result appears in the spelling form with an index showing the ratio between the number of correctly recognized syllables and the total number of syllables in the word. Below some examples of different variants of the decision are given:

The experiment was conducted on oomputer SM-4 with positive results.

REPERENCES

/I/ Бондарко Л.В. Фонетическое описание языка и фонологическое описание речи. Л., I98I.
/2/ Вондарко Л.В. Слог: правила интуиция, механизмы. - В кн.: функмиональнал просодия текста.М., 1982.
/З/ Бондарко Л.В. Акустические характеристини речи. - В кн. : Слух и речь в норме и патологии /внп. І/. Л., I974.
/4/ Уровни языка в речевой деятельности: к проблеме лингвистического обеспечения автоматического раепознавания речи./Под ред. Л.В. Бондарко. - Л. 1986.
/5/ Белявский В.М., Светозарова Н.Д. Слоговая фонетика и три фонетики Л. В. ІІербы. - В кн.: Теория яэка. Методы его исследования и преподавания. Л., I98I.
/6/ Белявский \mathcal{B}. М. Автоматичесная сегментация слитной речи. - В сб.: IX Всесоюэная акустическая конференция. Тезисы понлапов. М., I977.
/7/ Елкина В.Н., Ппина Л.С. Статистика открытых слогов русской речи. - В сб.: Вьчислительные системы, I4. Новосибирск I964.
/8/ Златоустова л.В. и др. Алгоритмы преобразования русских орфографических текстов в фонетическую запись. М., โ9'70.
/9/ Москаленно Т.А. Акустический анализ согласных звуков в целнх автоматического распознавания руссной речи. - В сб.: Автоматическое распознавание слуховнх образов: Тезисы покл. и сообщ. АРСО-I4. Каунас, 1986.
/IO/ Кузнецова В.Б., Смирнова О.Н. Анализ надежности автоматичесного распознавания фонетических признанов. - Там же̂.
/II/ Проблемы и методы энспериментальноФонетического анализа речи. Л., t981.
/І2/ Кузнецова В.Б. О возможном способе Пормирования словарных эталонов.В сб.: Автоматичесное распознавание слуховнх образов: Тезисн I2-го $^{\text {- }}$ Всесоюзного семинара АРСО-І2. Үиев, I982.

