DIFFERING IN DISTINCTIVE QUANTITY

G. Kuhn
96 Leigh Avenue Princeton, NJ 08540 USA

ABSIRACT

We report the results of an experiment on talker-dependent, connected recognition of 10 Estonian CVCV words that differ in distinctive quantity. The words were spoken, and recognized, in sentence pairs of the form "Did you say (word 1, word 2, word 3)? No, I said (word 4, word 5, word 6)." The test sentences were spoken either at the same rate as the training sentences, or at a much faster rate. Each word was modelled with spectral estimates for four variable-duration states.

The best recognition results obtained on the test words spoken at the training (faster) rate, were 88x (64\%) without probabilities or likelihoods of durations or duration ratios, 87% (68%) with likelihoods of durations, and 85\% (77\%) with likelihoods of duration ratios.

We conclude that speech rate can be a major problem for automatic recognition of these words, and that in these experiments the problem was not completely overcome using ratios of successive state durations.

INTRODUCTION

In the field of automatic speech recognition, there is new interest in implicit [1] and explicit [2,3] modelling of speech state durations. However, unless there is a correction for speech rate, expected state durations may be inappropriate. In languages which use distinctive quantity, like Estonian or Finnish, inappropriate state durations could lead to misrecognition of a large number of words.

In this paper, we report the results of an experiment on automatic recognition of 10 Estonian CVCV words that differ in distinctive quantity.. Estonian is described as having three consonant quantities and three vowel quantities: short, long and overlong $[4,5,6,7]$. Within our vocabulary of 10 Estonian words to be recognized, 4 words participated in 2 two-way quantity contrasts: tee:de-teete and kude-kuu:de; and 6 Words participated in $2 \cdot t h r e e-w a y$ contrasts: toode-tootetoo:te and kade-kate-katte.

[^0]randomization of 36 occurrences of each of the 10 mords, embedded in 60 repetitions of the sentence pair "Kas sa Uitlesid (Did you say) 'word 1, word 2, word 3'? Ei ma ütlesin (No I said) 'word 4, word 5, word 6'". The randomization was constrained so that each word occurred 6 times in each position in each sentence of the pair.

The text was recorded 3 times. In the first two recordings, one sentence pair was spoken every 6 seconds. In the thitd recording, one sentence pair was spoken every 4 seconds. The first recording was used to train the word models, while the second and third recordings were used for the recognition tests.

Each recording was digitized at 10000 samples/s. The digitized recordings were parameterized in centisecond frames using a 10 -channel, filter-bank spectrum analyzer.

WORD MODELS

We used 95 "word" models, one each for Kas sa, ütesid, Ei ma, utlesin, (pause), and the 10 CVCV words. The models for uitlesid and Utlesin had six. states. The models for all other words had four states. Each state had an initial segment of fixed duration, a center segment of variable (possibly 0) duration, and a final segment, again of fixed duration. The minimum duration of a state was thus the sum of the durations of its initial and final segments. The minimum durations of the four states in the $10^{\circ} \mathrm{CVCV}$ words were $3+2,3+3,3+2$, and $2+3 \mathrm{cs}$.

The word models were trained using two passes through the training productions. Pass 1 started with DP alignments [8] to the "miniav". The miniav for each word is that training production which has minimum average distance to all training productions of the word. Pass 1 alignments minimized the distance between each training production and the miniav. Means and a covariance matrix were computed over the spectra aligned to each segment of each hand-marked state of the miniav. pass 2 alignments maximized the probability of the training productions given the Pass 1 means and covariances. Duration estimates (minimum, average, maximum) for each state were produced from the Pass 2 alignments.

In some experimental conditions, spectral estimates were tied across word models, j.e., the weighted average of the means and the weighted average of the outer-product matrices were computed over corresponding

segments of the states looped together below:

here we refer to the s is justified because of the good correspondance over alignments to the miniav). The weignts were the number of were tied, there each segment. When spectral estimates models 'in word pairs kude-kue:de, toote-too:te, and kate-katte.

recocnition

The routines for connected recognition computed a spectral match score for the best path through an entire recording $[9,10]$. That score was the maximum product of the likelihoods of the observed spectra, over all segments of all states of all words on the path. The itkelihood of a single spectrum O_{t} under the continuous for spectral shape

$$
L\left(0_{t} \mid j, i, w\right)=\frac{P\left(O_{t} \mid j, i, w\right)}{\Sigma_{j} \Sigma_{i} \Sigma_{w} P\left(0_{t} \mid j, i, w\right)}
$$

The recognition routines used the notion of a contrast expected to be confusable under a pure spectral that we score. Kas sa, Ei ma and (pause) were each assigned to one-word group. Ütlesid and ütlesin were assigned to a two-word group. The 10 CVCl words were assigned to four contrast groups, one for each $\mathrm{v}_{1}: / \mathrm{e} /$, /u/, /o/ or /a/.

The recognition options were:

1) expanded range of state durations;
2) restricted word order
3) independent probabilities of state durations;
4) independent likelihoods of state durations give 5) the contrast group;
5) multivariate likelihood of state durations given
6) indepentent likelin
7) independent likelihoods of a pair of state
8) independent likelihoods of a second

State duration ratios given the contrast group;
8) multivariate likelihood of the second pair of
state duration ratios given the contrast group.
With expanded state durations, durations in the range $0.5 * \mathrm{~min}_{i}, w$ through $1.5 *$ max $_{i}$, were permitted.

With restricted word order, kas sa could only
 could only follow (pause), utlesin could only follow Ei ma; while the other 10 words and (pause) could follow
with independent probabilities of state durations, the spectral score for each possible duration of each protability maltiplied by $P\left(d_{i} l l, w\right)$. $P\left(d_{i} \mid i, w\right)$ is the discrete binomial state duration of word w, under (mini,w, average $i, w, \max _{i, w}$).

With independent likelihoods of state duration given the contrast group, the spectral score for ea possible duration of each state was multiplied by

$$
L\left(d_{i} \|, w, G(w)\right)=\frac{P\left(d_{i} \|, w\right)}{\sum_{m \in G(w)} P\left(d_{i} \| ; m\right)}
$$

with the multivariate likelihood of state durations given the contrast group, the spectral score for each word w was multiplied. by the tri-vartate gaussia $L\left(d_{s-2}, d_{s-1}, d_{s} \mid w, G(W)\right)$, where S is the number of states word w .
with independent likelinowds of a pair of state duration ratios, the spectral score for each word x wis multiplied by $\pi_{r} t\left(\right.$ ratiol $\left._{\mathrm{r}} \mid \mathrm{w}, \mathrm{G}(\mathrm{w})\right), \mathrm{r}=1,2$. The underlying duration ratio pdf's, P(ratior $/ \mathrm{w})$, were discrete binomials parameterized by the (min, expected,max) value was he first palr of duration ratios tested (1) was

The second pair of duration ratios tested [12] was
ratio ${ }_{1}=d_{s-2} /\left(d_{s-2}+d_{s-1}\right)$
ratio $=\left(d_{s-2}+d_{s-1}\right) /\left(d_{s-2}+d_{s-1}+d_{s}\right)$
With the multivariate likelinood of the second pait of state duration ratios given the contrast group, the spectral score for each word was multiplied by the bi-variate gaussian L(ratio , ratio $_{3} / \mathrm{w}, \mathrm{G}(\mathrm{w})$).

result

Boxes are drawn on the confusion matrix in Table tet the count in the boxes divided by the count in the 10 rows be a "similarity score" (these words were at leasi recognized as a word in the same contrast group). Then this confusion matrix shows how a recognition score of baseline system was run on the 6 s/pair test recording. The baseline system used the observed range of state durations, separate spectral models, unrestricted word order, and a path score based only on the spectral match.

Figure 1 gives recognition results in terms of recognition scores on each test recording, and average of recognition scores for the $65 /$ pair test recording is labelled "G6". The curve of recognition scores for the 4s/pair test recording is labelled "4". The curve of average similarity scores is labelled "SIM".

Under conditions 0-3 in Figure 1, the baseline systed was three cumulative changes: expanded range of durations (condition 1), tied models (condition 2), and restricted word order (condition 3).

Not surprisingly, both the recognition score for the $4 \mathrm{~s} / \mathrm{pair}$ recording, and the average similarity score, improved with the expanded range of durations.

The recognition score for both recordings decreased with the tied models, because there was no dill between the models in word pairs kude-kuu:de, toote
too:te, and kate-katte, so the routines always chose the first insted word of each pair. However, the averag $97.2 x$ to $98.2 x$.

Restricted word order did not significantly affec the recognition or similarity scores.

Conditions 4-9 of figure 1 used expanded durations, tied models, and restricted word order. Conditions 4-6 used recognition options $3-5$, respectively. Conditions
$7-9$ used recognition options $6-8$, respectively.

discussion and conclusion

As figure 1 shows, the best recognition results obtained on the test words spoken at the training (faster) rate, were 88Z ($64 x$) without probabilities or
likelihoods of durations or duration ratios, $87 x$ (688) With likelihoods durations or duration ratios, 87x (68x) likelihoods of duration ratios.

Figure 2 is a plot of $L($ ratio, $\mid w ; G(w))$ for the cvcv contrast groups (from top to bottom) with $\mathrm{V}_{1}=/ \mathrm{e} /$, / $/ / /$, /o/ or $/ \mathrm{a} /$ /. Figure 3 is the analogous plot for ration. The solid curves are for the models made from the raining productions. The dashed curves are for models made post hoc from the 4s/pair productions. As modelled, the ratio, contrast between toote and too:te was

Figure 4 is a scatter plot of the values of ratio, and ratio ${ }_{3}$ observed while modelling the cycy words in the raining recording. Figure 5 is the analogous plot for the 45/pair test recording. Polar coordinates were used ngle these plots, i.e., the radius is ratio , and the contrast boundiries. Assuming independence, quantit
figure 6 is a scatter plot of the values of the rations of V_{1} and C_{2} observed while modelling the cVCV ords of the training recording. Figure 7 is the inogus plot for the 45/pair test recording. The hinimum permitted state durations were apparently someor the 4s/pair recording.

We conclude that speech rate can be a major problem or automatic recognition of these words, and that in hese experiments the problem was not completely overcome ing ratios of successive state durations.

REferences
II) R.K. Moore, M.J. Russell and M.J. Tomlinson locally constrained dynamic programming in automati peech recognition", Proc. leek Intl. Conf. Acoustics, 2] T.H. Signal Processing, 1982, pp. 1270-1273.
modelling of speech- A.S. House, Characterization and Conf. Acoustics, speen diti 2791-2794.
A. M. Russell and A.E. Cook, "Experimental evaluation ouration modelling lechniques for automatic speec cooustics, to appear in Ptoc. IEEE Inti. Conf. ACoustics, Speech and Signal Processing, 1987.
[4] P. Ariste, "A quantitative language", Proc. Third Int1. Cong. Phonetic Sciences, 1938, pp. 276-280.
vowels of three phonological degrees of length" Pron Fourth Intl. Cong. Phonetic Sciences, 1962, pp. 682 687.
(6)
[6] I. Lehiste, "Temporal Compensation in a quantity language", Onio State University working Papers in Ling 171 A. Cek. "Es, pi S3-67
ty: notes on the perceptio duration", Estonian Papers in Phonetics, 1979, po. 5
[8] H. Sakoe and S. Chiba, "Dynamic programming algorithm optimisation for spoken word recognition", LeE Trans. ASSP-26, february 1978, pp. 43-49
[9] T.K. Vintsyuk, "Element-wise recognition of contin kibernetika, 7, 1971, pp. 133-143. a given vocabulary" [10] J.S. Bridle, M.D. Brown and
tinuous connected word reconition using whole "Contemplates", Radio \& Electronic Éngineer, 53, 1983, pp. 167-173.
[11] U. Lippus, "Prosody analysis and speech recognition strategies: some implications concerning Estonian",
Estonian Papers in Phonetics, 1978, stonian Papers in Phonetics, 1978, pp. 56-62. ity in Estonian", Ph.D. Thesis, Univ. of Co 1976.

rable 1. Confusion matrix obtained when a baseline system was run on the $65 /$ pair test recording

[^0]: CORPUS

 Speech was recorded while one of the authors (KO) tead a prepared text. The text consisted of a

