on vowel height: acoustic and perceptual representation by the fundamental and the first formant frequency

Maria-Gabriella Di Benedetto (*)

Department of information and Communication (INFO-COMM)
University of Rome
LIa Sapainza'- Faculty of Engineering Universitit of Rome 'La Sapienza'- Faculty
Via Eudossiana, 18 -00184 Rome, Italy.
abstract
Acoustic properties of vowels, which can be hypothesized to classity
vowels along a dimension of height, are investigated. In paticular. vowels along a dimension or height, are investionated
vowel representation in the (F I-FO) dimension $F i$ and $F 0$ are expressed in Bark) tor five vowels of American English is presented and this analysis is compared with the analysis of the stame speech
materials in the traditional F1 vs F2 space. Results show th individual differences are reduced when the (F1-FO) dimension is
usved in the case of low vowels while for high and mid vowels the used in the case of low vowels while for high and mid vowels the
difference in FO values among speakers is largee than that of $F 1$ Values. Perceptual experiments have been carried out using CVC and one-formant synthetic stimuli to examine the influence of for on
the perception of vowel height. Results are in agreement with the observations on the acoustic analysis and suggest that either $F 1$ and Fo are related in a more complex way than the (F1-F0) Bark
ransformed difference or that the Bark scale should be modified al rransformed diffe
low frequencies.

INTRODUCTION
Traditionally, vowel sounds have been classitied along several dimensions: height, backness, tenseness, etc. The formant epresentative of the dififerent dimensions. For example, it is well kown that the first formant frequency ($F 1$) is an acoustic feature wowel backness.
Syrdal (1985) has introduced the Bark-ranstormed (F1-F) distance observes that the Bark-transtormed (F1-FO) dimension corresponds
 agreement with the perceptual results found by Traunmuller (1981) The latter proposes that the prevailing criterion for the perception of
vowel height is the distance between F and F expressed in Bark, when FO 0 is no between 350 and 400 Hz , approximately. distance to classity vowels according to vowel height. Acoustic

 which have been carried out, using CVC and one-formant synthetic
stimuli, to investigate the influence of FO in the percention of vowel stimuli, to investigate the influence of Fo in the perception of vowel
height are described. The egreement of the results obtained with the indings of the acoustic analysis and their interpretation are then

ACOUSTIC ANALYSIS
$\frac{\text { Experimental conditions and procedures }}{\text { Five vowels of American English }[1, \varepsilon, x,}$ analysis. In the vowel system of American B] are the object of this characterized by the feature (-round) and by being monophthongal while the other vowels are all either (+round) or diphththongizad.
 the context of voiced and voiceless stop consonants ([bdidered in
(ग) this work was carried out while the author was with the Speech
Communication Group at the Massachusetts Institue of Technology. Cambridge, MA, USA.
forming CVC syllables, pronounced in the sentence frame "The gaain. All the combinations between the vowels and the consonants espect of voicing. In addition, hVd and \#Vd syllables are analyzed. ales, uttered the speech materials. They were asked to pronounce hhe sentences care tully and clearly. if a mistake occurs, the senterce set of syllables is pronounced three times. Thus, three version ins of ach yowel in each consonantal context are available. The speech materials are recorded in a sound-treated room using high quality speaker's mouth is about 20 cm . The recorded materials are then evaluated by a phonetically sophisticated listener. The speech signal
is then stored on the MIT-Speech VAX-750. For this puposes, i is ow-pass fitered at 4.8 kHz and sampled at 10 kHz The speech materials are analyzed using a software program
KLSPEC developed by Dennis Klat (1984) This prowam conples a 512 -point DFT transform of slices of the signal (predifferenced and window is 30 ms at the sampling rate considered. in addition vindow is 30 ms at the sampling rate considered. in addifion
undamental frequency (Fo) is determined by colecting frequencies of local maxima coccuring below 3000 Hz and judging it to be thal
frequency (FO) which accounts for most peaks as harmonics. The program KLSPEC also calculates a spectrogram-like spectrum which is obtaines by windowing a slice of signal (255 samples and
computing a 256 -point DFT. A weighted sum of adiacent DFT samde energy is then computed for each of 128 spectrogram-like filiers Local maxima in this spectrum are most often indicative of the
requency positions of the formants. An interpolation algoritn requency positions of the formants. An interpolation alogrithn
impoves the accuracy over the 40 Hz resolution implied dy a 128 .
sample spectrum over 5 kHz . sample spectrum over 5 kHz . The spectrogram-tike spectum hai
been used for the estimation of the formant frequencies of the vowels under analysis. In some cases, in which thequencies algorithm is is nol successtul, the formant frequencies are manually extracted. Dfi
spectrum slices samoled every 5 ms are plotted and the frequenco spectrim slices sampled every 5 ms are plotted and the friquencon
positions of the formants are evaluated by visual examination of the evolution of the locations of the DFT spectrum peaars in time. The
temporal sampling point of $F 1$, F2 and $F 0$ is the time at which $F 1$
 values of Fo and F1 are convered into a critical band tonality scale
according to Zwicker and Terhardt's (1980) mathematical according to Zwicker and Terhardt's.
approimation as adopted by Syrdal (1985).
Results of cacoustic measw

$\frac{\text { Resulls of acoustic measurements }}{\text { As expected, the highest } F \text { Fi is }}$

As expected, the highest FO is found for the temale speaker (CR)
$(191 \mathrm{~Hz})$, while FO for the two male speakers (JP) and (KS) is comparable ($(1118$ and 127 Hz , respectively).
The results of the analysis of the vewels The results of the analysis of the vowels $[I, \varepsilon, 叉, a, a]$ tor the thee speakers considered in the (F Fr-F0) vs $F 2$ space and in theff 1 I the
space are extensively described in Di Benedetto (1987). In the present paper, results soro only one of the speakertio (KSS)/ and oneof
the versions are presented as show in Fig. Figure a ahows tha the versions are presented as shown in Fig.1. Figure ta shows tha
overrappoing occurs in the ($F 1$-FO) dimension only between $[9]$ and overlapping occurs in the ($F 1$ (-FO) dimension only between $[[d]$ an
A] In the $F 1$ vs F s space (Fig. 1b) overlapping occurs betwen
Al
 the [i], [I] and $\mathfrak{x}]$ areas are well separated. The use of the (fifer vowesls contiguous along the ($F 1$ 1-FO) dimension, for (KS). The restlis)
cbained tor the other versions ctained or the other versions and speakers (Di Beneredito, 1987 ,
a) f

b) F

Figure 1: Results of the analysis in the a) ($F 1$ 1-F0) vs F2, and b) in the F1vs F2 spaces of the vowels $[I, \varepsilon, \nsim, a, \wedge]$ (speaker ($K S$)). Each vowe is considered in 20 different consonantal contexts.

figure 2: Average F 1 -F2 values (Fig.2a) and (F 1 -FO)-F2 values (Fig 2b) of the vowels $[\mathrm{I}, \mathrm{\varepsilon}, \boxplus, a, \mathrm{~A}]$ for speakers (CR), (JP) and (KS)
he averaged values are oblained by pooling all the consonantaa contexts and versions.
grouping and separation of the vowel areas in the (F1-FO) dimension,
compared to what was obtained in the F1 dimension. Howeve probiems of overlapping still occur between vowel areas of a single
speaker in the (F1-FO) dimension. One should note that the difierences in ($F 1$ 1-FO) values between vowels in voiced and
1oiceless consonantal contexts are lower than in $F 1$ values (Di enedetto 1987) Conse (Senedetto, 1987). Consequently, one of the factors which
contributes to a better separation of the vowel areas is that in the (F1Fo) dimension the vowel areas are better grouped.
he results of the comparison the vowel areas of the three speakers lesangues), (JP) (open losangues) and (KS) (full squares) the F1 (ful
 nd consonantal contexts and versions. The comparison of Fig. 2 For different speakers is reduced using the (F 1-FO) parameter for the ow and front vowel [$\mathfrak{x}]$ and the two back vowels $[a, \lambda]$. For the mi
vowel $[\varepsilon]$, in the ($F 1-$ Fol dimension the $[\varepsilon$-area of the female speake
 (S) and (JP) and this effect is an he vowel [i]. Wwels by Peterson (1961) has been carried out. It is noticed on eeterson's datat that the difference in $F 1$ values between male and temale speakers, depends upon the range of 1 vilues. In partitutar
it observed that this difiterence for high vowels is much smaller than
tor non-hile Ior non-high vowels, and this difiterence increases when ${ }^{\text {F }}$,
increases. This result confirms what is observed in the present study Syrdal (1985) reports the Bark-dififerences means for ten vowels of American English on the Texas Instruments data base which consists women and 51 children. The data reported by Syrdal contirm that the lerence in ($F 1$-FO) values between male and female speakers epends on the height of the vowel considered. Note that bot Peierson's and Syrdal's results are based on vowels pronounced in
hVd or hVC words while the vowels of the present study are considered in several consonantal contexts.
conclusion, acoustic analysis of the five vowels $[I, \varepsilon, x, a, a, \lambda$ has Shown that, in the dimension representing vowel height, individual
difiererences for low vowels are reduced when the vowels are rpresented by the difference ($F 1$-FO) rather than by Fi. For high and mid vowels, on the other hand, a smaller shift in
dimension would be needed to correct the differences in Fo .

PERCEPTUAL EXPERIMENTS

All the stimuli used in the experiment described were synthesized
with the Klatt synthesizer (1980, 1984).
Description. The aim of this experiment is to investigate the
influence of fo on the perception of vowel height, using dVd Muence of FO on the perception of vowel height, 1 sing dVd
synthetic syllables. One set of stimuli is characterize dy $\mathrm{FO}=125 \mathrm{~Hz}$
125 -stimuili) while the two other sets of stimuli consists of stimuli 125 -stimulii) while the two other sets of stimuli consists of stimuli
which are identical to the previous ones as regards F 1 and higher tormant, while Foo of the stimulious this experiment is increased in two of 10 stimuli characterized by difiterent values of F 1 maximum ranging from 300 Hz (stimulus \#1) to 500 Hz (stimulus \#10) in steps
of 30 Hz . Experiment 1 consists of two phases: a vowel identification est and a "boundary" identificiction test.
The subjects were all non-naive listeners, native speakers of American English and members of the Speech Communication
 itterances as $[i, e l$ as justified by the results of a previous experiment itterances as $[i, e]$ as j
Di Bi Benedeto, 1987).
In the second dhase, 125 -stimulit, 185 -stimuli and 245 -stimuli were
ised. Sequences of stimuli (and the same sequences in reverse order) characteresized by the same Fo were played to the subiects who
were were asked to declare when their perception of the synthetic vowels
presented changed from $[1]$ to [e] or viceversa. Each sequence, in each order, was presented three times. Three subjects participated this test.The subjects' description is identical to that of the subjects Results. Results of the identification test are presented for $H Z$ in $F O$ does not result in a clear effect on the identification unctions for any of the subiects who participated in the test. The
anree subjects who participated in the "boundary" identification test teeo subjects who participated in the "boundary" identitication test
 perceived as [e], when the sequences presented are ordered with ascending stimuli number, or the last stimulus which is perceived as If], in the case of sequences ordered according to a descending hree subiects who participated in this test, an increase in FO from oundary between [i] and [e], while a variation in FO trom 125 to 245
 was observed in the results otataited in with sequences of stimuli with

$\frac{\text { Experiment } 2}{\text { Description. The aim of this experiment is to investigate the }}$
 Hz were generated. The one-formant stimuli with $\mathrm{FO}=125 \mathrm{~Hz}$ were
haracterized by five values of the lormant (F 1) $(300,350,400,500$,
 stimuli with $F O=185 \mathrm{~Hz}$ and values of $F 1$ ranging from the $F 1$ value of
the standard stimulus to the $F 1$ value that would give the same $F 1$ - $F 0$ the standard stimulus to the 1 value that would give the same Fi.f0
for comparison and standard stimuli. Each pair was played three
times. The same procedure was repeated with the same standard imes. The same procedure was repeated with the same standard
stimuli (FO=125 Hz$)$ but the comparison stimili were characterized by
 were non-naive listeners, native speakers of American English, and
members of the Speech Communication Group at the Massachusetts members of the Speech Communication Group at the Massachusetts
Institute of Technology. They all named English as their best
language. They were asked to indicate which pair of stimuli was most language. They were asked to
similar in terms of vowel height.

Figure 4: Results of the bound simuluid identification test for the three subicats. Each tor on the tigure eof dififerent shape tor each subject) [e], in the case of the three stimuli Fo types.
experiment 2. Figure 5 shows on the abscissa the standard 5 and 6 show the red (with $F O=125 \mathrm{~Hz}$) identified by the F 1 maximum value, and on the
ordinate the Orainate the comparison stimuli (with $F O==185 \mathrm{~Hz}$) which, ane mancthed
against the stand stimulus is matched against three comparison stimuli: one with the
same same F, one with the same ($F 1$-F0) (in Heriz) and one with a $F 1$ each standard stimulus, Fig. 5 shows the value of $F 1$ tor best match each stand
the case of each subject individually (1° column: subject (MA), 2 columne subject (TCC), etc, as shown on the figure). A full (open
symbol indicates that the corresponding comparison stimulus w a symbol indicates that the cortesponding comparison stimulus wa
never (alaways) Coosen as stimulus or best match by
Pube subiect Pever (aways) chosen as stimulus tor best match by the subject.
Partialy open symbols indicate the percentage of times that this
particular stimulus was chosen tor best match. Figure 6 is simila particular stimulus was chosen for best match. Figure 6 is similar to
Fig. 5 but indicates the results of the test in the case of the
cos comparison stimuli with Fo=245 Hz. In this case, each standard
stimulus can be matched against tive comparison stimuli: one with the stimulus can be matched against ive compariston stimuli: one witit the
same $F 1$, one with the same (F-FO) and tre with intermediate values of $F 1$, between the same $F 1$ and the same ($F 1$ 1-FO). As in
Fig. 5 , the value of $F 1$ for best match is indicated by partial or complete blanking of the corresponding symbol, for beach puatial oct Figure 5 shows that the $F 1$ value e or best math, in the ease of stimul watites $=185 \mathrm{~Hz}$, corresponds to a exact tormant match tor tow F
values 350 Hz . For other values of F the match is in generaal between an exact tormant match and values of $F 1$ leading to
similar ($F 1$ I-FO) values. Note that in the case of the highest $F 1$ value
 Tor the stancar and (CH) and is close to this value for (KS). One should
subject that when $F 1$ is high enough (tor values higher than 400 H ,
note the approximately) $F 1$ is out of linear Bark range. Consequently, the ($F 1$ 1-
FO) distance expressed in Bark is always lower for comparison stimuli
than tor standard stimuli when $F 1$ is in this range,
Figure 6 shows that the value for best match, in the case of stimu with $\mathrm{FO}=245 \mathrm{~Hz}$ is in general at intermediate values of 1 F1, belwee
an exact tormant match and values leading to similar (F -FO values lor comparison and standard stimulii. In the case of the lowest value with stimulit characterized by $F 1=330 \mathrm{~Hz}$ corresponding to the firs intermediate step. For values of $F 1$ in the middle range (350,400 and
500 Hz) the match shitts to stimuli with intermediate $F 1$ values highee
 F1 of the standard stimuli: Note, in fact, that for standard stimuilit wit $F 1=350 \mathrm{~Hz}$ the match is in general against comparison stimuli wi
$F 1=410 \mathrm{~Hz}$ and that or standard stimuli with $\mathrm{F} 1=400 \mathrm{~Hz}$ or $\mathrm{F}=5=0$ Hz , the match is in general against comparison stimulif $F 1=460 \sim 490 \mathrm{~Hz}$ and $F 1=600-590 \mathrm{~Hz}$, respectively. The case of
standard stimuli with $F 1=600 \mathrm{~Hz}$ is simiar to the case of $F 1=400 \mathrm{~Hz}$ and $\mathrm{FI}=500 \mathrm{~Hz}$, but note that for one subject (CH) the match parially aganst stimulan and standard stimuli leading to similiar(f)
Fo) values forcompaison
discussion
Results of the perceptual experiments have shown that the influen of $F O$ in the perceplion of vowet 1 In particular, vowel identification experiments using co cr syythetiu
stimuli, have shown that an increase in FO from 125 to 185 Hzz does not result in a clear effect on the identitication tunctions, while
variation trom 125 to 245 Hz does result in consistenty difteren judgements. A second experiment has been described, in whit one-formant stimuli with $F O=125 \mathrm{~Hz}$ and various values of $F 1(3)$
$350,400,500,600 \mathrm{~Hz}$ were matched against $350,400,500,600 \mathrm{~Hz}$) were matched against one-formant stimuin
which Fi was adjustable and FO equal to 185 or 245 Hz Results show that the value of $F 1$ for best match was usually between comparison and standard stimuli. The match was close. to Fi lor to F1 values and approached in general similar (F 1 -FO) values for hig Hz were considered, the match reached the same (F 1 1-FO) values $($ Hertz) for companison and standard stimuli. It has been noticed thal comparison stimuli than ior standard stimuli.
The results of the perceptual experiments presented are results of the acoustic analysis have shown that in the dimens results of the acoustic analysis have shown that in the vimetis ai reduced when the vowels are represented by the ($F 1-F 0$) ditieteren
rather than by $F 1$. For high vowels, the shift in the $F 1$ dimension account tor difterences in ($F 1-$-F0) increases the acoustic variability effect is observed. In these cases (high and mid vowels) , it has been osserved that a smaller shitt in the F 1 dimension woula be needed with three differerent values of $F 0(125,185$ and 245 Hz$)$ have been used. The average FO value of the female speaker considered in ition as previousily mentioned. The results of the perceppual experiments Io $\mathrm{FO}=125 \mathrm{~Hz}$ and $\mathrm{FO}=185 \mathrm{~Hz}$, have shown that tor low values OF Fl , Correspondingly, no should note that it has been obsenved that the vowel area of the high vowel (II) for the male and the temale speaxess is high, a change of FO from 125 to 185 Hz influences and $F 0$ but similar ($F 1$ hol and that stimuli with difiereni values smol

Fioure 5: Results of experiment ${ }^{\mathrm{F}(\mathrm{FO}=125 \mathrm{~Hz})}$
Figure
rowel height. Correspondingly the acoustic analysis has indicated that the location of the [æj-area corresponds to higher has indicated the case on the fermale spee.
The interpereation of the results obtained can be given as follows.
 low values (below $\sim 200 \mathrm{Hzz}$) 1 may ye considered, by the perceptual
mechanism which processes it relative to the extreme end of the
scale scale the end of the scale is used as ananchor point) and is then the
most relevant factor in vowel height perception. When $F 1$ is high (as most relevant factor in vowe heigigt perception. When $F 1$ is high (as
in ow vowels) and Fo s sufficientiy tar from F I, $F 1$ may be considered
 sed as an anchor point, and the distance between $F 1$ and $F 0$ (in Batk in determinant in the perception of vowel height. When $F 1$ is at
intermediate values, or the distance between $F 1$ and $F 0$ is not large
enough, $F 1$ and $F 0$ would enough, $F 1$ and $F 0$ would both intervene in the perceptual process
determining vowel height in a relation which would not atribute the
 Unitom vowel notmalization in agreement with Fant's study (1975). carired out by Delgutte and Kiang (1984), as pointed out by Stevens
(1985). These investigators have obsenved the location of the laggest (1985). Tes investigators have observed the location of the largest
components in the discret Fourier transforms of perio histograms omponed from auditory-nerve fibers wivh various values of the
characteristic trequency (CF). The stimuli were steady-state two characteristic irequency (CF). The stimuli were steady-state two
formant stimuli with $\mathrm{FO}=125 \mathrm{~Hz}$. Delgutte and Kiang note that for all
 where the harmonics close to $F 1$ dominate the response spectra. In
addition, they observe that this region is flanked on the low-CF by adaition, hey obsene that this region is llanked on the low-CF by
another region in which the harmonics close to CF are the largest componenis in the response spectra. These harmonics correspond
to the fundamental frequency or to intermediate values between F1 and Fo. For low vowels.s.this region extendsed sp to about 400 OH H while
on the contrany, tor high vowels, this region is not distinct. Delgutte on the contrary, for high vowels, this region is not distinct. Delgutte
and Kiang observe that correlates with both the position of the $F 1$ region along the CF dimension and with the extent of the low-CF region". This
osbervation could justify the results of the present study that for low
竍 obsenvation could justify the results of the present study that for low
Fovalues. F1 determest he perception of vowel height when 1 is
low (high vowels), whereas if $F 1$ is high (low vowels) Fo influences
 Vowe height perception. Untortunately. Delgutte and Kiang do not
present results in the case of higner values of to. Consequenty, the
resulth of the present study in the case of higher values of Foc canot results of the present study in the case of higher values of Fo cannot
be interpeted on the same basis. We want to point out that the be interpreted on the same basis. We want to point out that the
perception of vowels with $F 1$ and $F 2$ closer than 3.5 Bark could be
based on one equivalent tormant located in a position intermediate based on one voquivivalent tormant located in a position intermediate
between the two tormats eetween the two formants, according to the categorical perceptual
effect 1 SCG (Spectral Center of Gravity) found by Chistovich et al.
(1979). It (1979). It could be hypothesized then that this one formant is
relevant, in the cases of vowels with $F 2-F 1<3.5$ Bark, to vowel
height relevant, in the cases of vowels with F2-F1 < 3.5 Bark, to vowel
heiehnt perception.
This specco the problem is not addressed in the present study. We
want

Figure 6: Results of experiment 2 for comparison stimuli with $\mathrm{FO}=245$
Hz .
and FO in the perception of vowel height is appropriate in the case of relevant sucls, but that for back vowels additional factors could be
acording to the SCG theory, the relative amplitudes of $F 1$ and $F 2$.

references

Chistovich, L.A., Sheikin, R.L. \& Lublinskaya, V.V. (1979) "Centre
 Delgutte, B. \& Kiang, N.Y.S. (1984) "Speech coding in the auditor
nerve: I. vowel-like sounds", J. Acoust. Soc. Am. 75 no. 866-878. (1987) Ans, A. Acoss. Soc. Am. 75 no.3 Di Benedito, M.G. (198) "An acousical and perceptual study on Fant, C.G.M. (1975) "Non-uniform vowel normalization", STL-QPS Klatt, D.3.t. (1980) "Sottware for cascade/parallel formant kilatt, synthesizer", J. Acoust. Soc. Am. 67 no.3, 971 .995. Peterson, G.E.E. (1961) "Parameters of vowel quality", J. Speech and Hearing Res. $4,10-29$
Stevens, K.N. (1985)' Perso

$$
\begin{aligned}
& \text { Stevens, K.N. (1985) Personal communication. } \\
& \text { Syrdal, A.K. } 1895 \text {, AApects of a model of auditor }
\end{aligned}
$$ representation of American English vowels", Speech traunmülier, H. 1981) ${ }^{121-135 .}$. Zwicker, Els", J. Acoust. Soc. Am. 69 no.5, 1465-1475. and rate and critical bendwidth as a a function of frequency", Acoust. Soc. Am. 68, 1523-1525

