a speech discrimination test using bilingual competing messages
J. W. WEESTER, C.CAVE, AND M.ROSSI
anc inst fe fhatique, U. de Provence, Aix--en Frovence, FRANCE

$\frac{\text { Abstract }}{\text { Pairs }}$

tatements of overlapping arithmetic statements have been recorded by native the Engish and French languages. In are easily confusable. Message pairs are ounterbalanced by language, sex of talker, ear on playback, etc. such that their native (non-native) language, to he (fe)male talker, left (right), ear, true (false) statement, or to the talker
with(out) the foreign accent. Control tests,both messages in the same language measure the listeners. basic ability to isten selectively to one of two
messages. Results on six bilingual results of a Czech/English version of the test. Only the most bilingually
proficient obtain results showing both languages to be equally interferring in a selective attention task. For the
Easic Assumptions
This study starts with two basic assumptions, first, that people learn to think in a second language long and that the most difficult of communicating situations is when messages is what is when more people are talking at the same time. Combining these two assumptions nto a quantitative, selective
hould therefore measure a persons
ilingual capability
$\frac{\text { Thest Paradigm }}{\text { The basic }}$
athematical staradigm is; use pairs of untrue, that overlap each other, to wit:
English/English (E/E)

Fifty minus nin twenty
French/French (F/F)
Cent moins dix = quatre-vingt-di
Cing et six = cent six
and the bilingual versions of the san
Fifteen and five = twenty.

Cent moins dix $=$ quatre-vingt-dix Fifty minus nine $=$ si\%
Note that in all overlapping pairs, one statement is true while the o
untrue. Dther parametelcybxim
balanced in the recording and playback of the test are: one of each pair is
spoken by a male voice, the other by female voice; one is played back to the left ear, the other to the right; and half of the time the English (and the
French) message is the first message, When the messages are both in the same language one is spoken by a native speaker, the other by a non- native
speaker, that is with a foreign To make the statements equally difficult in the two languages numera pairs are specifically chosen to be examples; in English fifteen and fifty differ by a single phoneme, they are logically and actually very confurable,
as are five and nine. In French, both as are five and nine. In French, both
cinq and cent \& six and dix are also maximally confusable. The first step in writing the test seript is to confer with native phoneticians and map out
logical and known confusions. In thi manner tests have been layed out in English/Russian, English/Czech, English/ Serbo-Croatian and English/Eerman. The languages are so chosen that any pair
in the sets can be matched gainst each other. For example, czeci Russian, or Fussian/German, or Czech/ English/Russian and the English/Czech matrices were recorded, only the.
English/Czech tests were tried out English/Czech tents were tried out on
bilingual listeners, $[1]$.

The test can be used as a simple speech iscrimination test by playing back only one of the two channels and requiring a response for the "answer" to the arith
netic statement only. It was in fact ried out in this manner at schools fo Test Construction
The present version of the test con pares English with French. Co-authors, Fof. Mario Rossi and Dr Christian Cave urniched me the $1 i s t$ of confusabl
French numerals listed in Table 1. TARLE 1

confusable FAIRS	NUMEER OF TYFES	NUMEER OF TIEEENS
1-4*, $9 *$	2	12
1-20	1	1
2-10^, 12^	2	4
3-4*	1	
3-13*	1	2
$3-30$	1	1
5-7*	1	6
5-100	1	1
6-10*	1	2
11-12**	1	2
13-15^,16*	2	4
30-40\%	1	8
70-90*	1	8
Total	16	54

Kinds DF TOKENS
*(20,30....60.80)+(1-4,9)

$$
\begin{aligned}
& \{60,80)+(2-10,12) \\
& \cdots(2,3 \ldots .9)+(30-40
\end{aligned}
$$

To interpret the table note in the left confusable with "FOARES) that "un" is In columin two this is noted as two TYPEs of confusions. However "un", "quatre" and "neuf" are also confusable when
combined with "vingt, trente, quarant cinquante, soixante or quatre vingt", in English twenty, thirty, forty, fifty, sixty and eighty, as shown at the bot on
of the table under, KINDS OF TOR:ENS. Therefore these two TYFES of confusions are represented by twelve TOKENS, as noted in column 3. In line two, note
that "un" is also confusable with vingt one additional TYFE and TOKEN. $\frac{\text { Response Format }}{\text { The answer }}$
are in a multiple-cho for these tests choice among four alternatives is
required for equired for the actual word shows the portion of of the test. Table 2 that the portion of the answer sheet
tistener would see when answering statements about the
cinq" and "cent". Choices must also he made between the operator words; plus, $\frac{\text { and, minus } \& 1 e s s}{}$ in English and between plus, et \& moins in French. For the one-in-eight choice must be made. Scores between zero and ten points (bits) can be accumulated for correctl Six additional points can statement. for the correct identity of which of the two messages was the first (second) of the overlapping pair, which was in the the male (female), or with (without) the foreign accent and double credit for
specifying whether the statent sperifying whether the statment was arithmetically true or false.

FROE TYFE
$5: 109$
$1: 4$
35
18

		ET	1	1	9			
*	35	FLus	$4=$	4	99	\times	34	44
\times	45	moins	$9=$	6	01	*	36	6
*	100	MOINS	$20=$	9	104	\times	39	49

To the left in Table 2 under "Problen Type" note the column of numerals five,
thirty five, forty five and one hundred the operator words, "et", "plus" and "moins"; and the numerals one, four, column after the equal signs the sets five and one hundred and one and four. The eight numerals in the cell below possible combinations of the larger numerals ($5 \& 100$), the operator words and the smaller numerals (1 \& 4) from istening Tasks
Three native French and three English speaking listeners, all with considerable knowledge and experience of both for a series of F / E, $E / F, E / E$ and F / F tests. After extensive instructions on how to respond on the rather coimple following series of tasks: Task 1. On the F/E test, "respond to the message in your native language".
Task 2. On replay, "respond to the nessage in your non-rative tanguage" Task 3. On the third replay, "respona to The left (right) ear message".
Task 4. On the E/E version of the test, respond to the left (right) message", Task s. On the F/F version, "respond to Tasks 6,7 \& 8 . Fepeat 3,4 and 5 answering the first (second) message.
asks 9,10 \& 11 . Fepeat 3,4 and 5
answering the male (female) voice.
Tasks 12 \& 13 . Fepeat 4 and 5 answerin only the native (non-native) talker.
Tasks $14,15 \& 16$. Repeat 3,4 and 5 answering only that statement that is true. No attempt was made to have them answer only the untrue statement, this General. Results
The listener's test scores can be analized in many ways. Some questions numerals and operator words in the mathematical statements perceived, that is, how does the test function as a word crimination errors are made? Do the errors tend to be random or are they concentrated on the specially chosen
confusable number pairs? How accurately can the extra-acoustic and phonetic aspects of the messages be identified? Can the message content, the truth or alsity of the arithmetic statement, be
be correctly ascertained? How well can the messages be selected on the basis of
the acoustic, phonetic and cognitive nformation contained in them? Tables, questions.
Table 3 shows en bits of information in the arithetic statement are correctiy perceived Averaged over all listeners and listen ng conditions that figure is 76.18% perceived this well are the sex of the alker and the ear in which the message is heard. Whether the talker had a
oreign accent or not was perceived more than half the time. Not unexpectedly the most difficult thing for the isteners, in the time allowed, (1) judge whether the arithmetic statement was true or false. The most surprising hortfall was ascertaining which of the isteners, including the experind. oted that memory for the time
was not recorded imgediat the response was not recorded immediately it could talker sex or accent or message

Vs right ear. These fore the next message arrivedime 9\% overall. score is ideal for tests of his type, not too difficult and no rea

Table 3
Sest
Scores in Percent
for various message parameters of the Gilingual Listening Competing Messsag Numerical Statement Test French $\begin{gathered}\text { Listeners } \\ \text { English All }\end{gathered}$

Problem(10)
Acoustic(2)
Acoustic (2)
Ear
Time
Talker (2)
Sex
Accent
Accent
Cognitive(2)
Aver ag
76. 18
89.2
81.74
70. 18
$\begin{array}{ll}81.13 & 75.2 \\ 63.02 & 50.65\end{array}$
$\begin{array}{lll}69.01 & 83.64 & 76.32 \\ 1.43 & 69.20 & 60.32\end{array}$
45.86
75.40

Table 4 shows the average listener cores (in \%) according to the task ask number, the details of which ar listed above. Column 2 is a short hand eference to the tasks listed above. the three native English-1 anguage
isteners, and columns 5 and 61 list
hative-French-listeners scores (in \%)
Columns 2 and 4 are scores for
tatements spoken in English and column 3 and 5 for those spoken in French

$$
\begin{gathered}
\text { Table } 4 \\
\text { Test Scores in Percent } \\
\text { for the various listering tasks }
\end{gathered}
$$ Ual Listening Competing Messsage

Numerical Statement Test

English Listeners French
 $\begin{array}{llllll}N / n N * & 75.00 & 76.69 & 59.38 & 69.79\end{array}$
$\begin{array}{llllll}3 & \text { Lft/Rt* } & 76.95 & 74.61 & 63.02 & 77.34 \\ 4,5 & \text { Lft/Ft } & 70.90 & 72.46 & 58.08 & 77.61\end{array}$
$\begin{array}{llllll}6,8 & 1 / 2 * & 75.39 & 78.13 & 53.65 & 66.15 \\ 7,8 & 1 / 2 . & 73.05 & 69.85 & 62.11 & 77.87\end{array}$
$\begin{array}{llllll}10,11 \mathrm{Mn} / \mathrm{Wm} & 88.09 & 86.62 & 69.79 & 84.11 \\ 12.13 & \text { No/Act } & 79.45 & 88.28 & 60.94 & 71.62\end{array}$
$\begin{array}{llllll}14 & \text { Tr/Fls } & 69.14 & 69.79 & 39.84 & 34.63 \\ 15,16 & \text { Tr/F15 } & 67.58 & 40.62 & 34.90 & 44.79\end{array}$
$\begin{array}{llllll}\text { Average* } & 74.12 & 74.81 & 53.97 & 51.98 \\ \text { Average } & 75.68 & 72.42 & 57.16 & 71.20\end{array}$

olumnAv,	74.98	73.42	57.16	
rand Average		7.48		

67.83
for the (N) ative/no(nN) ative
ask and all other tasks marked with the asterisk, the F/E test was used.

In both Tables 3 and 4 it will be obtain higher scores than the French isteners. This reflects the fact that 5 a group they were considerably more
experienced in French .than the French isteners were experienced in English. on years to French spouses and had ten years to French spouses and had
residied in France the whole period The French listeners had at most spent wo years in America, and one was a an English speaking country. As a group the English listeners show negligible differences between scores on the English statements, and scores on the保 cores on French statements regardless of whfether they are overlapped by othe
French messages or by English messages.
Concerning the types of word/numer. confusions: the majority of errors were
ommission errors, but there were many ommission errors, but there were many
cases of obvious errors among confusabl pairs. These were often made to make a ogically untrue statement true. The those who have really mastered the econd language. Where the experieced nnswereing true statenta was on asnswereing true statementa as well in
French as in English. Only one person could do this and he admitted he had finally learned to "calculate" only
withibn the last two years, which withened to coincide with helping his young elementary school boy memorize hi

Compertine Mester, Applied Research on Messages"in J. Tobias and Theory, Academic Fress, 1983, New York

