G. PUECH, P. bancel 2

atigert puech et Pierre bancel

Centre de Recherches Linguistiques et Sémiologique
Université Lumière-Lyon
69500 Bron, France

ABSTRACT

The International Phonetic Alphabet (IPA) is the standard reference as a transcription system With only minor variants, it is commonly used by whether they are supported by an orthographic tradition or not. The scope of this paper is to transpose bases and expert systems.

intropuctio

A computer-oriented coding system for the representation of sounds should be viewed as an nterface between linguists faced with the repre-
sentation of a wide range of sounds and a Data Base Management System.
First the code corresponding to each sound ust be a key to its major characteristics and, sounds. The binary distinctive features the seems to be the natural interface between phone tic analysis and the binary logic of computers. agreement on how a number of complex or clare sound should be treated in this approach; furthermore built-in definition of some features is costly tance $[+$ Hight $]$ is exclusive of $[+L$ Low - for. inssatisfactory to account for some sounds - such as laps and trills. On the other hand an IPA based independant of any particular thantages: it iates phonetic interpretation and a graphic reresentation in the same table; it allows a more compact code. This code can be easily converted exploitation of the data can be independent of the
coding system.
Secondly, the coding system must fit one of the standard formats for computer words. It should ords in the data ASCII code is used to classify orthographically recorded words. If the data base is organized in -ary trees, the algorithm will find all the elevant information necessary for the equilibraeach word.

general organization

 For maximal efficiency, each segment is codedin a short integer (16 bits word) noted by 4 hexadecimal figures. Consonants and vowels are coded to know if one given code refers to a consonant or to a vowel before being interpreted. For languages - such as Bantu - in which words are built nay determine syl fields corresponding either to a consonant or to a vovel in languages where no such syllabic regularity pre vails, the first field of the record (a long inof segments included in the record and, in the three following bytes, select the V / C choice (bits up to 31 set to 1 when the segment should be interpreted as a vowel and left at if it is a and pitch - is normally associated with vowels; provision is made however for consonants bearing a tone. A set of diacritics is used to give maxidesigned both for narrow and broad transcriptions. oding of morpheme boundaries for morphophonenic epresentations was not examined but could be ccomodated

CONSONANTS

A-Basic consonants are coded in the least A- Basic consonants are coded in the least
significant byte of the short integer. Table 1 yields the phonetic interpretation of the codin and illustrates some of the realizations. The 4 most significant bits correspond to the lines
(manner of articulation) and the 4 remaining bits to the columns (place of articulation)

Phonetic symbol

b
m
kp Sorp (1, $\quad \begin{aligned} & 0001 \\ & 001 \mathrm{C}\end{aligned}$ implosives and ejectives are respectively voiced; irated, murmured clicks, which may be voiced, as needed. In order not to further qualification is of articulation, some choices had than 15 places of articulation, some choices had to be made; thus,
apico-labial sounds, which are to be found in Umotina [1], are not included in the be found in
consonants but Consonants but could be handled as a special case
(see section F). To facilitate the editing be (see section F). To facilitate the editing on the lineprinter, it is convenient to have each basi
symbol occupy
one space only even if it is commonly transcribed as a sequence of two conso

B - Double consonants, geminates as well as mplex segments, are coded in two morae and occupy two spaces:

bb	4141	geminate bilabial voiced stop
mb	C141	bilabial prenasalized voiced stop
nt	C414	alveolar prenasal. unvoiced stop
nts	C474	alveolar prenasalized unvoiced
affricate		

C - A release, transcribed by a right-adjacent C-A release, transcribed by a right-ad jacent
diacritic occupying half a space, is coded in the
least significant byte the most least significant byte: the most significant bits
refer to Table 2; the final hexadecimal zero is refer to Table 2 ; the final hexadecimal zero is a
flag indicating that the bassc consonant (coded in the first byte) is followed by a release (the interpretation of which is given in Table 2 :

Codes which ane left free
Codes which are left free may be defined as neces-
$D-$ A segment synchronic property, transcribe
a subscribed diacritic, is coded in the most significant byte. The initial hexadecimal most a flag indicating that the first byte is to be interpreted as shown in Table 3:
y 0CB9 nasalized palatal approximant
\tilde{z}_{1} ODA4 lateralized alveolar fricative
m $04 C 1$ unvoiced bilabial nasal stop
Provision was made to code the lenis quality on a
par with the fortis. However, the lenis quality is par with the fortis. However, the lenis quality is
assumed to be the unmarked case and it is not asso assumed to be the unmarked case a
ciated with a graphic diacritic:

$$
\begin{array}{ll}
0114 & \begin{array}{l}
\text { lenis } t \\
\text { fortis } t
\end{array} \\
0214
\end{array}
$$

E-Consonants may be syllabic and bear tones he syllabicity is coded by the least significant byte set to zero:

$$
\begin{array}{lll}
\text { C100 } & \text { syllabic bilabial nasal stop } \\
& 9400 & \begin{array}{l}
\text { syllabic alveolar unvoiced fric } \\
\text { tive }
\end{array} \\
\text { on consonants are coded as they are on }
\end{array}
$$ are coded as th (see vowels, B); tone bearing consonants are assuned to be syllabic.

m C104 syllabic nasal stop/high tone m C102 syllabic nasal stop/low tone F - The overwhelming majority of known conso-
nants may be coded according to the conventions. However it may be crucial in some languages to handle difficult cases as accurately as possible. We shall resort to the following pointer to a specific filter corresponding a primary consonant coded in the second byte. One has access, through this filter, to a complementto 3 bytes; the flag set to detect this situation is the zero corresponding to the least significan bits of the first byte:
renasalized stop/
${ }_{\text {filter }}^{10 C_{4}}$
extended code :
Murnuréd
10 CB
Mrmured prenas
ized click
be
Voiced
prenasal
1 : 0567
extended code : CB0567
20 CB
$\begin{array}{ll}\text { ized prenasal- } & \text { filter CB/2 } \\ \text { ized click }\end{array}$
owels
A - A short vowel - one mora - is coded on a short integer. A long vowel or a - is coded on coded as two morae. The most significant byte corresponds to segmental information. Vowels ar xes: height (5 degrees) and tongue position in the oral cavity (front, central, back)

	Front	Central	Back
	1	6	${ }^{\text {B }}$
	2	7	c
height	3	8	D
	4 5	${ }^{9}$	F

follows: significant bits are interpreted as

$$
\begin{aligned}
& \text { bit } 0 \text { - approximant-like vowe } \\
& \text { 1 - marked tongue root } \\
& 2 \text { nasal } \\
& 3 \text { - round }
\end{aligned}
$$

reconstructed proto-bantu superclosed vowels (like
the non syllabic part of a diphthong.
Ei 04008100 diphthong with gliding i
ia 01008800 diphthong with gliding a
The bit 1 is used to interpret marked tongue root position (emphatic vowels in the Berber-Arabic domain or the harmonic set of vowels charactersed by Advanced Tongue Root in a combine with this feature:
i 0100 (unrounded) i
u 1800 (round) u
i 2100 nasalized i
u $\quad 3 \mathrm{BOO}$ nasalized u
I $\quad 4200$ ATR I
Basic symbols corresponding to the set of unrounded vowels and of rounded vowels are show in Tables 4 and 5 respectively.
B - Suprasegmental infornation is coded in the second byte. Tonal languages use up to 5 levels
of pitch, represented henceforth as accents. The pitch, represented henceforth as accents. The

0101	Falling low	Ì
0102	Level low	ì
0103	Mid	ì
0104	High	Í
0105	Suprahigh	İ
0106	Downstepped	High
\dot{v}_{i}		

Contour tones are coded by reference to their source/target pitch:

0142 Falling high-low $\hat{\imath}$
0124 Rising low-high ì
The bit 4 is set to 1 if the corresponding tone
floang
014 A High + Floating low î
012 C Low + Floating high i'
Double contours require two morae; we propose the
convention that the first mora bear a level tone and the second a contour tone:
01040124 Falling-rising long i ii
01020142 Rising-falling long i $i \hat{i}$
al - In order to maximally compact suprasegment0180 stressed i i

If the stressed vowel bears a tone, the code is

0182 stressed $\mathrm{i} /$ low tone it
01 C 2 stressed $\mathrm{i} /$ falling tone \hat{i}
The code A0 is assigned to pitch accent as required $010 \quad i$ associated with pitch accent \vec{i}

D - Hexadecimal codes 7 and F are left free in our system. Corresponding combinations will be

unvoicing	0107	unvoiced i	i
	0147	unvoiced i	i
high tone retained	i		
creaky voice	$012 F$	creaky i / l low tone	\vdots
breathy voice	0172	breathy $i / l o w$ tone	\vdots

breathy voice 0172 breathy $\mathrm{i} /$ low tone..
Special cases may be treated with an extended code as proposed for consonants: a flag (hexadecimal as proposed for consonants: a flag hexadecimal
F) indicates that one has to go through a filter table, access to which is given by the code of
$01 F 2$: go to case 2 of the filter table cor-
responding to vowel i. responding to vowel i.
Rhotacized vowels, for instance, could be conveiently dealt with in this way.
conclusion
It is indeed possible to rely on the Interna tional Phonetic Alphabet to propose a comprehensive and versatile computer oriented coding systen, The fact that the code is phonetically motivated nakes it particularly attractive for expert sys-proto-languages.

Reference

1] P. Ladefoged, "Preliminaries to Linguistic

Table 1

Symbol Example Code Phonetic interpretatio

$$
\begin{aligned}
& \text { Symbol Example Code Phonetic interpretatio } \\
& \text { 1410. unreleased } \\
& 7420 \text { aspirated release } \\
& 7430 \text { glottal release } \\
& 1 \text { B90 palatal release } \\
& \text { BAO labiopalatal release } \\
& \text { 14B0 nasal release } \\
& 41 \mathrm{CO} \text { labiovelar release } \\
& \text { 14DO lateral release } \\
& 14 E 0 \text { pharyngeal release } \\
& 44 F 0 \text { trill release }
\end{aligned}
$$

			interpreta
	t	0114	lenis
-	t	0214	fortis
-	m	$03 C 1$	unvoicing
-	s	0494	voicing
..	b	0541	murmur
-	s	$0 \mathrm{OPM}_{4}$	rounding
,	t	0814	velarization
~	$\stackrel{\sim}{\sim}$	OCBC	nasalization
1	${ }_{1}^{2}$	ODA 4	lateralization
.	t	0 E	pharyngalization
..	b.	0 F 41	laryngalization

Table 3

Unrounded	vowels	
i	i	u
I	j	u
e	a	y
ε	e	Δ
z	a	a

Table 4

Round vowels
$y *$. y \quad. \checkmark $\infty \quad 2 \quad 0$ Table 5

