EFFECTS OF CONTEXT AND LEXICAL REDUNDANCY ON CONTINUOUS WORD RECOGNITION

PETER J. SCHARPFF

Dept. of Linguistics/Phonetics Laboratory, Leyden University, P.0. Box 9515, 2300 RA Leiden, The Netherlands

ABSTRACT

Word recognition research typically focusses on the recognition of isolated words. Yet in actual speech perception the correct or incorrect recognition of earlier words will be crucial to the recognition of later words in the sentence and vice versa. Using an ongoing gating technique, the effects of lexical redundancy (monosyllabic vs. polysyllabic words) and speech quality (synthetic speech, degraded natural speech, high quality natural speech) on word recognition were investigated.
The results reveal that sentences composed of short words are more difficult to understand than sentences with longer words, as can be predicted by e.g. the Cohort model of word recognition. Also, it appeared that when a word could not be recognized instantaneously (as often occurs in low quality speech), chances of a postponed recognition on the basis of following context abruptly decrease when more than 4 words (or 7 syllables) have elapsed. Such delayed recognition of earlier words typically occurs at constituent boundaries.

INTRODUCTION

When a listener hears a sequence of sounds like "Inabankmanagersoff..." he can't be sure yet whether this would be the beginning of the sentence
(1) In a bankmanager's office law and order must rule.
or
(2) In a bank, managers offer a lot of service to customers.

A decision as to how the incoming sounds should be divided into words can be made only when we have heard enough of the following context to solve the ambiguity. Such ambiguities pose problems to the listener, especially when the segmental quality of speech is poor, e.g. as a result of background noise or due to the fact that speech is produced by a machine.
The number of alternative interpretations that the listener must keep in mind during the process of recognition can be very large, and the listener will need relatively much of the following context to solve an ambiguity. These kinds of problems are caused by the fact that the listener does not know
where to place word boundaries. When giving away those boundaries we will help the listener to solve ambiguities and to integrate the sounds he has already heard. This can be done by means of prosodic word boundary markers like a pitch rise at the end of a phrase, a non-final pitch fall between two rises or a speech pause (all three accompanied by lengthening of the preceding syllable).
In previous research (see [1] and [2]) it was shown that it is possible to reduce the negative effects of poor segmental intelligibility by placing a clear speech pause after, for instance, every related group of words. In this research the recognition percentage increased with 10 points as a result of pauses edited into the speech.
When prosodic boundary markers are to be edited in continuous speech, these have to be inserted at those places that help the listener recognize the speech as much as possible.
Not only does reduced speech quality affect the intelligibility but also word length can play an important role in the delay of word recognition. Long (polysyllabic) words will be recognized early relative to their word length as opposed to short (monosyllabic) words. This effect can be explained as a result of the inherent lexical redundancy of longer words. Such redundancy is generally absent in short words. When a listener hears the sound sequence "eleph..." he will undoubtedly recognize (under perfect listening conditions) the word "elephant" even if he has not heard the final syllable yet, because there is no other (monomorphematic) word in his vocabulary that begins with this sound sequence. The moment that a listener has heard enough of the sound material to determine which word it will be, is called the recognition point of that word. It will be clear that shorter words contain far less or even no lexically redundant material. The lack of redundancy in words results in a shift of the recognition point towards, or even beyond the word end. This tendency will even be increased by the effect of degraded speech quality. In such cases a listener will need more of the following context to solve his recognition problems.
In an experiment systematically varying word length and speech quality we have examined the following questions:
a. To what extent does word length (or lexical redundancy) influence the recognition of words in connected speech?
b. What is the maximal stretch of following context that a listener may use to facilitate the recognition of a word?

метноD

When we want to establish the positions in a
sentence where most of the recognition problems sentence where most of the recognition problems
arise and how long such problems may persist for a listener, we must be able to trace responses from the listener from. moment to moment. This is possible when we use a gating technique in presenting stimuli to subjects. The technique used
in this experiment presents fragments of sentences in this experimat are lengthened on each following presentation, until eventually the listener has heard the whole sentence. The length of one
increment used in this particular experiment is a speech fragment that begins in the inddle of the
vowel of a lexically stressed syllable and ends in vowel of a lexically stressed syllable and ends in
the middle of the vowel of the next stressed the middle of the vowel of the next stressed
syllable (roughly comparable to a foot'). The first fragment is of course from the sentence onset
to the middle of the vowel from the first stressed syllable
with each sentence three versions were constructed with different speech qualities: hi-fi natural
speech, natural speech degraded by amplitudemodulated white noise, and diphone synthesis using a Philips MEA 8000 spech chip. The rationale behind including degraded natural speech was that we wished to check whether the same type of errors were obtained under poor speech qual.
irrespective of the precise type of degradation.

material

Pairs of sentences were constructed in which we arnta poly-and monosyllabic words in the same For example:
(3) Een knecht vond het kind op de stoep van zijn (A servant found the child on the doorstep of his house.)
and
(4) Een agrarier ontdekte de vondeling in een
weiland nabij zijn boerderij.
(An agrarian discovered the foundling in a An agrarian discover
field near his farm.)

Thirty subjects were asked to listen to the stimuli each time guessing what word the word fragment they heard last would be the beginning of. They had to
type their responses into a computer, that type their responses into a computer, that was
programmed to analyse the answers on what was correct and what was not. After having been informed what words had been correct, the subjects
listened again to the sentence now lengthened with istened again to the sentence now leng thened with
ne 'foot' of context, corrected their earlier response when necessary and added what they had ecognized of the newly heard sound sequence. All the experiment were stored in computer memory.

pesults and conclusions

ecause in the material only content words were systematically varied with respect to word length,
ve analysed only the responses to those words.

Turning to the first question of the experiment, whether word recognition is more difficult in the visions with short words than in the versions wit long words, we find that the longer words wer
indeed recognized better than the short words: 96 ndeed recognized better The difference is fair small. However when we look at tatle I, we see tha he difference in word recognition of long and
hort words is substantially larger for the synthetic speech quality:

	short vords	1ong vords
hifi	99.9%	$99.8 z$
notse	$95.5 x$	$97.7 x$
synthetic	82.0%	$90.4 x$
mean	$92.5 x$	96.02

There is no difference at all between the word recognition of long and short words under hif speech quality. The versions with noise were still
ecognized better than the synthesized versions, recognized better than the synthesized versions,
because, as we analysed, we found that listener get used to the noise; learning effects were much smaller for synthetic speech. In pilots the noise
level masking the human speech was adjusted so a level masking the human speech was adjusted so as
to make degraded human speech as (un) intelligible as the diphone synthesis. However, due to the much
shorter exposure times in the pilots, no shorter exposure times in the pilots, no
differences in learning effects were discovered before the main experiment.
The differences between the three speech qualities were all significant. This leads us to conclude speech quality gets worse. Moreover, it appears that recognition of short words suffers more from the negative effect
that of long words.

The next question to be answered concerns the naximal stretch of following context that a word. Consider the next figure:

In this figure we have plotted \% correctly
recognized targets, for synthetic speech only, as a rechegnion of the, length of the following speech
function of the the
context (expressed in number of arget in the audible fragment). Notice, first the all that words synthesized from diphones were ecognized less then 40% correct when only their
first part (up to and including half of the first part (up to and including half of the
lexically stressed syllable) is made audible. Even when one foot is added (comprising the integral target as well as at least one other word),
recognition is still at 50%. Recognition scores continue to rise as more of the following context is made audible, until 3 complete words hav elapsed. The curve then quickly asymptotes when
more than 3 words are added to the target. more than 3 words are added to the target.
Context further avay than 3 words apparently does he did not recognize. that has earlier words that listener reaches the fourth word? Considering the structure of our stimulus sentences we find tha most of the word groups (constituents) contain new constituent. We argue that later words do new constituent. We argue that later words do not
help the listener to recover an earlier unintelligible word across a constituent boundary presents borne out by the following table whic presents percentage content words recognized with
or without later context, broken down by wor position within the phrase (constituent)

	$\begin{gathered} \text { recognized } \\ \text { zt ist partial } \\ \text { presentation } \end{gathered}$	$\begin{gathered} \text { recornized } \\ \text { affer } \\ \text { one } \\ \text { onding } \end{gathered}$	
	${ }_{\substack{39 \% \\(500)}}$	${ }_{\substack{736 \\(936)}}^{(23)}$	(
non-phrasefinal vords $20 \%(320)$	${ }_{\text {(132 }}{ }^{\text {(11) }}$	(293)	${ }_{(142)}^{462}$

A phrase-penultimate word is recognized on the basis of later context significantly more of ten
than a phrase-final word, $X^{2}(1)=7.28(p<.01)$. can explain this effect by assuming that higher within constituents than across constituen boundaries.

dISCUSSION

Additional context within a constituent seems to words. We also found that non-recognized earlie were recovered on the basis of following context more often than phrasefinal words. We take this to be an indication that listeners tend to recognize
words in phrases. Therefore, if we are to help the listener recognize words in poor speech quality (synthesized speech), we shall have to mark phrase
boundaries with effective prosodic markers.

Acknowledgement:

This research was supported by the Foundation for Linguistic Research, which is funded by the Nether lands Organization for the advancement of pure re search, zwo.

References:
[1] B.A.G. Maassen, "Marking word boundaries t" improve the intelligibility of deaf speech in: Artificial corrections to deaf speech
studies in intelligibility, Enschede, Holland,
[2] S.G.
S.G. Nooteboom, "The temporal organisation of
speech and the proces of spoken word
recognition", IPO Annual Progress Report,

