Stinji maeda

Centre National dotudes des Telecommications 22301 Lannion, France

ABSTRACT

An articulatory model for consonant-vowel (Cv) syllables, where $C=[p, t$, or $k]$ and $V=[i, a$, or $u]$
was formulated in terms of vocal-tract (VT) area function. Listener identification functions indicated that C with a high score (100%) can be synthesized by manipulating two articulatory parameters, the "position" along the VT length and the
shape" of the occlusion. The acousic effects of these two parameters are manifested from the burs nset to the vowel transition. The consonant iden ity can be predicted reasonably well on the basis of the presence or absence of two spectral attri-
butes for the burst, in a context-independent nanner. Why the burst alone can predict the conso antal place? The reason is that the effects of articularily, the shape can be manifested concomitantly on the attribute of the burst and on formant F-) transitions of the vowel, both signaling a specific consonant. It is suggested then that the istner's processing indeed exploits cues distriuted on the sound stream from the burst to vowel ributes for burst may serve as an "anchor" in the dentification.
introduction
In a previous paper [1], we have described the echanism of the vT excitation during the unvoiced top release. The source soand, of cause, under interpreted as specific con Interpreted as a specific consonant by listeners.
the past decades, a great deal of research was accumulated in search of acoustic cues that specify lace of articulation for stops. Two types of nethods were employed; acoustic analysis of natur cokens to find out the acoutic correlates and eramination of listener's responses to synthetic tematically manipulated

This paper describes yet another approach which onsists of, first, the formulation of an articula-
 ormal identification tests followed to determine essential model parameters for producing
CV-syllables with a high quality. Finally, acoustic manifestations of such parameters are examined closely by means of spectral analysis or of alculation of the VT transfer functions. If a identification of consonants, it can be considered
as a good candidate for the cue actually operating the listener's processing
an articulatory model for the cv-syllables
We assume a heavily anticipated articulation of the vowel during the preceding consonant. The V rea function def ined by a piecewise-constant funcion is fixed to its configuration for the vowel except in the vicinity of the occlusion, where the
cross-sectional areas expand with time after re lease. We consider the following three different types of closure "shapes": i) Labial (L)-type the area expansion is limited to a single sectio
corresponding to the supraglottal closure as show

1g. 1 Time-varying area functions for the three different closure types, sampled at every 20 ms following the release.
in Fig. la. We assume that this shape represent the release gesture by the participation of the lips. ii) Dental (D)-type; the closure section such a way that a relatively smooth expand in
between the closure section and cavity behin (back-cavity) is maintained through release, a gesture by the tongue apex and blade. iii) Vela (V)-type; The directly connected sections in both back and front cavity expands with the closure section, as presented at Fig; lc. V-type is intended
for the velar (or palatal) gesture involving the dorsum.
is The way of the expansion of the closure section cross-areas of the sections in the fronction. The of the occlusion also expand exponentially, but its onset rise is smooth without discontinuity. The smooth rise was necessary to prevent multiple exci-
tation at vicinity of the occlusion. Resultant time-varying area function is fed to an acoustictart simulator [2] for synthesis or for VT transfer cal-
culations.

identification test

In preliminary experiments, the three stops $[p$, ty by appropriately varying the value of the two articulatory parameters (the
"position" along VT length and the "shape", L-, D-, or V-type), while
the other parameters, such and release dynamics, were kept to $\begin{aligned} & \text { fixed } \\ & \text { and } \\ & \text { values }\end{aligned}$ CV-tokens, therefore, were prepared by varying systematically the position, n, from 1 to 9 , wherying sys-
closure is locate lips ($n=1$), and by varying the shape, for the three different target vowels, [i, a, and u]. The stimuli were randomized with five repetitions of each Three expherienced shape.
ricipated in the test. Each listener was aners
inder to identify the consonant, Leither p, t, or k], and then type in the corresponding key on a computer tener 1 sec after the response. The 1 istene the lisprovided also a repeat request option upon which the same token is repeatedly presented. The total number of the repeats for each token was used in
the interpretation a quality of consonants.
a function of the score for $[p, t$, and $k]$, a function of the position, for the target vowel at Fig. 2b, and for V-type at Fig, for D-type number of repeat requests for each token
plotted in Fig. The plotted in Fig. 2 by the dashed lines. As expect-
ed, the position of the factor in the production of the an essential however, that [t] cannot be produced by L-type
Fig. 2a). The Fig. 2a). The score for this consonant is is only 37
$\%$ at best. For the at best. For the same position ($n=4$), with
D-type (at Fig. 2b) or with V. D-type (at Fig. 2b) or with V-type (at Fig. , with
the score reaches 100%. For the score with L-type (at Fig. For the velar 1 kj), the
about 80 about 80% The number of repeat requests,
however, is great, about however, is great, about 10 times, indicating an
uncertain quality of the sounds contrary, with V-type (at Fig. as [k]. On the the ide the cation function for [kpe (at Fig. 2c), the identifi-
sonants, exhibits for all thre consonants, exhibits an ideal "categorical" respondashed line, increases only at the shown by th

ARTICULATORY-ACOUSTIC RELATIONSHIPS IN BURST
The concomitant acoustic effects of the position and the shape of the occlusion are manifested the vowel transition. he acoustic characteristics that are to sort out ith the listener's repon
be the the aper the VT excitation sources an is relativly small and of the closure, the acoustic characteristics exit ed to only the front cavity appear on the burst [3]. The acoustics of the front-cavity is speci-
fied by the length (and thus by the position fied by the length (and thus by the position) and
by how the cross-sectional area varies along its by how the cross-sectional area varies along its
length. The listener's responses indicated that the dominant parameter for the velar, [k], is the
position. Then, the spectrat position. Then, the spectral attribute of burst
signaling the velar must be related signaling the velar must be related to the front cavity.
From the identification test, it is the shape hat is more critical for the labial-dental dissay, greater than $0.2 \mathrm{~cm}^{2}$, of the coupling effects is, pear on the transfer function and thus on the spectrum, regardless of the shape. When the aperture after release is still less than, say, $0.2 \mathrm{~cm}^{2}$,
the difference in the shape can manifest in gree of the acoustic coupling between the front and back cavity. For a CV-syllable with L-type, due to the strong area-function discontinuity at the inlet
of the occlusion (see Fig. la) minimal. For the same $C V$, but with D - (or $V-$) type (see Fig. 1b), a smooth with D- (or V-) type back-cavity to the occlusion is maintained from the onset through release. The coupling, therefore, is
considerably enhanced in comparison In our synthesis, the rate of the areape. sion at release was fixed to $20 \mathrm{~cm}^{2} / \mathrm{s}$. The presthe shape (L-type or D-type) on the spectrum of the burst within 10 ms follopar the release. In other words, if the burst spectrum ponding a series of peak and dip pairs (corresfunction) which is the indication of the transfer then the shape is D-type or V-type. The coupliag such spectral attribute implies the L-type.
The burst spectrum, therefore,
information burst spectrum, therefore, can contain rich information to determine the position and the dent. It is noted however that the effects of the wo parameters can appear on the vowel transition, tions we shall examined a a. In the following secdence between the consonant identity (isorrespon and spectral attributes of burst, and vowel prace)

Spectral attributes of burst and piac

$\frac{\text { Attribute Pole-Zero for dental [t] }}{\text { Burst }}$
shape is D-type, the synthetic CV's, where the shape is D-type, and the target [i], are shown in
Fig. 3. The position is yaried from act the shape of the occlusion is an essential shape is D-type, and the target [i], are who the in
actor for the consonants to be identified correct- Fig. 3. The position is varied from n=1 (closure
y. The acoustic manifestations of these two arti- at the lips) presented at the top in Fig. 3, to y. The acoustic manifestations of these two artithe listener's proce therefore, must be relevant to

(b) Dental-type

c) Uelar-type

Fig. 2 The listition of occlusion (n) The listener's responses as a function
of the positions for the three diffe-ent closure types. The full score, i.e. 100%, corresponds to 30 on the ordinates (six listeners times five
repetitions). The dashed lines indic the total number of rephed 1 ines indicate the six listeners for each token.
daries or at the extreme position (i.e., $n=9)$
For the other For the other two target vowels, [i and u], t just above, except labial-dental con contrast it
[i]-cont [i]-context. The consonant [plal contrast in (90\%) was produced only with [p] with a high score the score 100% was only with D-type, for both the position $n=1$.
It became cle

- ${ }^{\text {3 }}$ to

Fig. 3 Burst onset spectra for nine different positions, from the lips ($n=1$) to the
posterior extreme ($n=9$). The burst ignals were synthesized with burst signals were synthesized with the
vowel $[i]$ and the D-type closure.
$\mathrm{n}=9$ (at the posterior extreme) presented at the bottom. For the calculations, an as half Hamming For the position $n=1$ shown in Fig. front cavity is absen the Fig. 3, the spectrum, which might imply, therefore a "falling"
[pl. posed Indeed, Blumstein and Stevens [4] has proburst diffuse-falling" gross shape of the burst spectrum as an invariant property for labi-
als. The identifict als. The identification function indicated,
however, that this token scored 100% as dental [t]. Notice that the then scored 100% as dental series of peak-dip pairs, which is a typical signature of the presence of the coupling, and thus of D-type shape. Let us call this kind of spectral
characteristics attribute "PZ". The ident token, except L-type instead of D-type, scored 90 CD as [p. . In this case, the attribute-PZ was absent. than the position the shape is more critical east, in this particular case.
en the position is case
erior position in the VT, i.e at a slightly pos-
 ppears as the resultant effect of in Fig. 3) esonance. Thus BP might be considered as the attribute signaling dental, since the position is ap at a for the dental [t]. The presence of BP mid-frequency spectrum, which may correspond rising invariant property "diffuse-rising" for dentals [4]. In our data, however, attribute PZ predicted the dentals with a high scorer s identification of the dentals with a high score. An explanation for
this will be described latter.
$\frac{\text { Attribute Prominent-Peak for velar [k] }}{\text { At the position } \mathrm{n}=4 \text { or greater, the }}$
the front cavity becomes relatively long, and the resonance frequencies shift toward lower frequencies and can exhibit a prominent peak, PP, as seen in Fig. 3. The presence of PP was common to the burst spectrum identified as [k] with a high score. The invariant property "compact" for velars [4] may correspond to the attribute PP. The presence of PP means a long front-cavity, and then an appropriate position as velar.

It should be mentioned that the $C V$ tokens corresponding to $\mathrm{n}=7,8$, and 9 were considered as , at best, an ambiguous stop by the listeners and not velar, even though the skewed but prominent peak is present at low frequencies in each burst spectrum. The skewed peak is due to the rapid shift of the corresponding free-pole toward higher frequencies as the aperture of the constriction expands following release. When the shape, V-type, is employed for the otherwise identical token, the prominent peak is shifted toward a high frequency by more than $\mathrm{l} k \mathrm{kHz}$, and indicated a less skewed peak. This is, of cause, due to the effects of the narrowed front-cavity toward the occlusion. Except for the extreme position ($n=9$) the corresponding tokens scored 100% as [k]. An inspection of the spectrograms shows that the shape, V-type, places the burst prominence at a "right" frequency in relative to the F-pattern in the vowel transition. In the case of the tokens with a high score, or in particular, of natural tokens, an appropriate position for velar implies the appropriate shape, and then the prominence at the right frequency. Consequentry, the presence of the attribute PP alone would suffice to specify velar.

Rules for predicting place
The prediction of place for unvoiced stops from the burst spectrum became evident. First, the presence of the attribute PP signals velar [k]. If absent, it means the position is for dental or labial. Therefore, if the attribute PZ is present, the consonant is dental [t], since it must be produced with the shape, D-type. If absent, then it is the labial [p].

THE SHAPE AND FORMANT TRANSITIONS

We shall concentrate our attention to the question why the shape is critical in the contrast labial vs. dental. A pertinent example was found in tokens with the target vowel [i]. As mentioned before, for the same position, $n=1$, token with L-type is identified as [p], wheares that with D-type as [t]. The spectrograms of the two tokens are shown in Fig. 4. Observe that F3 (the third formant) for the l-type at Fig. $4 a$ is clearly rising, while F3 for the D-type at Fig. 4b is slightly but lowering. It has been demonstrated for voiced stops [5] that the $F 3$ transition plays an important role in their identification, that is consistent with the effect of the shape described here. A similar effect of the shape on F2 transition was observed for the target vowel [a], (i.e., [pa vs. tal).

It can be stated, then, that the influences of the shapes, L - or D-type, are manifested coherently on the burst and on the F-transitions, assuring a robust identification. This is the reason, prob-

Time (. 1 s/scale)
Fig. 4 Spectrograms of two CV syllables where C is identified as $[p]$ at (a), and as [t] at (b). For both cases, the closure position is at the lips ($n=1$), and the target vowel is [i].

CONCLUDING REMARKS

In informal listening, it was often found that the identification of the stops upon signals corresponding to the burst alone or to the vowel part alone was difficult or impossible. When they had been assembled forming normal CV-tokens, however, the consonant was easily identified. From such experience, it is tempted to speculate that a suppression and/or an enhancening mechanism over the distributed cues are operating in the listener's processing. Coherent attributes found in both burst and vowel transition enhance each other. On the contrary, inconsistent attributes are suppressed. Such mechanisms may explain the listener identification functions in more comprehensive way.

REFERENCES

[1] S. Maeda, "Une source d'excitation coherente dans les occlusives," 15e JEP GALF, Paris, 4346, 1985.
[2] S. Maeda, "A digital simulation method of the vocal-tract system," Speech Communication, 1 , 199-229, 1982.
[3] G. Kuhn, "Stop consonant place perception with single-formant stimuli: Evidence for the role of the front-cavity resonance," J.Acous. Soc. Am., 65(3), 774-788, 1979.
[4] S. Blumstein and K. Stevens, "Acoustic invariance in speech production: Evidence from measurements of the spectral characteristics of stop consonants," J.Acous.Soc.Am., 66(4), 1001-1017, 1979.
[5] R. Harris, H. Hoffman, A. Liberman, P. Delattri and F. Cooper, "Effect of third-formant transitions on the perception of the voiced stop consonants," J.Acous.Soc.Am., 30(2), 122-126, 1958.

MODELING THE ACOUSTIC CHARACTERISTICS OF CHILDREN'S SPEECH: FUNDAMENTAL FREQUENCY

Corine Bickley
Department of Electrical Engineering and Computer Science Research Laboratory of Electronics
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Abstract

This paper presents a model of the vibration of child-sized vocal folds. The model reflects the anatomical differences between children and adults in laryngeal structure. A scale factor, or ratio of child to adult fundamental frequency, reflects these differences. For a one-year-old child, a scale factor of 4 is derived from the model. Values of fundamental frequency are predicted and are shown to be in agreement with values measured for young children.

INTRODUCTION

Children begin to produce speech-like sounds at a very early age. Normal children communicate with speech and language skills which approximate those of adults by the age of two or three years. The changes in sound production which take place during the first few years of a child's life result from changes in the child's anatomy and in motor-control and cognitive abilities. Each of these factors constrains the sounds produced by a child. Some of the acoustic characteristics of children's sounds are a direct consequence of the size and configuration of the structures involved in speech production: the lungs, the larynx, the vocal tract. Other characteristics may be influenced most by the motor-control skills of a young child. The cognitive ability to form and manipulate mental representations of words also has a significant infuence on the sound sequences produced by a child.

One aspect of an examination of children's speech is modeling the acoustic characteristics of sounds. Models which predict the acoustic characteristics of adult speech abound in the literature, but only a few models of children's vocal systems have been proposed. An approach to predicting acoustic characteristics of children's speech is uniform scaling of all vocal-tract dimensions. This simple model fails to predict spectra which are in close agreement with measured spectra of children's utterances [13]. However, vocal-tract models which incorporate more detailed anatomical constraints, such as Goldstein's [4], generate formant frequencies appropriate for children.

Analyzing the source characteristics of children's speech remains problematic. A high fundamental frequency ($F 0$) is a hallmark of children's speech. The mechanisms by which children produce and control these high fundamental frequencies are not well understood. Various models, including the vibrating string and spring-mass models, have been proposed to account
for the fundamental frequencies used in speech. The vibrating string model predicts the general trend of higher fundamental frequencies of children's speech than adults', due to the differences in the lengths of children's and adult's vocal folds. The spring-mass models have been successful in predicting values for the fundamental frequencies of adult speech and for airflow through the glottis during vocal-fold vibration. Difficulties arise, though, in using these models to predict an appropriate ratio of a child's $F 0$ to an adult's or in predicting reasonable values for children's $F 0$ as a function of anatomical measurements.

BACKGROUND

The various theories of vocal-fold vibration indicate that the frequency of vibration and the shape of the airflow waveform depend on properties of the vocal folds, including the dimensions of length, thickness, and height (vertical thickness) and the Young's modulus and effective mass of the tissue.

Measurements

Measurements have been made of leugth and mass of the vocal folds, the thickness of the mucosa of the folds, and the stiffuess of vocal-fold tissue. The length of the vocal folds has been measured for newborns, children and adults. Hirano et al. [5] report measurements of vocal-fold length, including both the membranous and cartilaginous portions, for males of various ages. Lengths for children and adults reported by Gedgoud [3], Negus [12], and Kahane [7] are summarized by Goldstein [4]. Several values are available for newborns and adults; relatively few are reported for children between the ages of one and seven years. Hirano et al. report an average length of approximately 3 mm for one-year-old children, or approximately one-sixth as long as the vocal folds of adult males.

The thickness of the mucosa of the vocal folds has been measured by Hirano and his colleagues for newborns, children and adults. The vocal fold thickens somewhat with age, but the change in thickness is not at great as the change in length. No direct measurements of vocal-fold height are reported. We assume that the change in height is comparable to the change in thickness.

It appears reasonable to assume that the vibrating mass of the vocal folds is proportional to the combined mass of the thyroarytenoid and lateral cricoarytenoid muscles and the vocal ligament. Kahane and Kahn [8] report the mass of the vocal
fold muscles: 0.87 g for adults and 0.08 g for iufants. Kaneko fold muscles: 0.87 g for adults and 0.08 g for iufants. Kaneko
and his colleaguse (0) estimated an effective mass of 0.14 g for adult vocal folds. Based on these values for adults and infants, we calculated effective vocal-fold masses for one- and two-yearold children of 0.02 and 0.03 g , respectively.

Vocal-fold stifness has been measured for adult humans and for young and old dogs. Kaneko and his colleagues report an adult humans. Measurements of stress/strain relationships for vocal-fold tissue of young dogs and adult dogs were performed by Perlman and Titze (14]. They found that the vocal-fold tissue of youmg dogs is stiffer than the tissue of adult dogs. The vocal-fold stiffiess K can be determined from measurements of Young's modulus and dimensions. From Perlman and Titze's
graphs of stress vs. strain, we estimated a ratio of Young's uli of young to old tissue of 1.3. Using this ratio, the stiffness reported by Kaneko et al. and vocal-fold dimensions, we computed a value of 2.1×10^{4} dynes $/ \mathrm{cm}$ for the stiffness of young vocal folds. This value is consistent the range of transverse moduli reported by Kakita et al.[10].

Models

Vibrating string and spring mass models have been proposed to describe vocal-fold vibration. For each of these models, th fundamental frequency of vibration of the vocal folds can be determined. The vibrating string model is a one-dimensional model whose parameters are vocal-fold length and tension. Various spring-mass models have been proposed (for example, $[6]$)
which model the vocal folds in terms of lumped elements representing the mass, stifness and losses of the vocal-fold structure. In order to predict the fundamental frequency of the vocal folds. only the effective mass and stiffness of the model are needed.
A scale factor, or ratio of child to adult male fundamental frequency, reflects the differences in anatomical parameters be cale factor $S F_{\text {,tring }}$ depends ca vocal-fold length (L) sion (T):

$$
S F_{\text {tring }}=\frac{F 0_{c}}{F 0_{a}}=\frac{L_{a}}{L_{c}} \sqrt{\frac{T_{c}}{T_{a}}}
$$

The subscripts ${ }_{c}$ and c refer to adult and child values, spectively. Assuming that the tensions T_{c} and T_{a} of child and adult vocal folds are approximately the same, we find that $S F_{\text {alring }} \approx 6$ for a one-year-old child.
The scale factor for the fundamental frequency predicted by
a spring-mass model is

$$
\begin{equation*}
S F_{\text {ppring-mase }}=\sqrt{\frac{K_{c}}{K_{o}} \frac{M_{q}}{M_{c}}}, \tag{2}
\end{equation*}
$$

where K is the stifness of the vocal-fold tissue and M represents he effective mass of the vibrating vocal fold. Solving for K in torms of the Young's modulus E and the dimensions of the vocal
folds gives
$S F_{\text {tpring-maes }}=\frac{F O_{c}}{F 0_{a}}=\sqrt{\frac{E_{c}}{E_{a}} \frac{h_{c} L_{c}}{b_{c}} \frac{b_{a}}{h_{a} L_{a}} \frac{M_{a}}{M_{c}}}$
where h and b are the vocal-fold height and thickness, respec
ively. Assuming the same tively. Assuming the same ratio of child to adult value for both
ross dimensions
model reduces to

$$
S F_{\text {qpring-mas, }}=\sqrt{\frac{E_{c}}{E_{a}}} \frac{L_{c}}{L_{a}} \frac{M_{a}}{M_{c}}
$$

(4)

For the values listed above, $S F_{\text {upring-mase }} \approx 1.3$ for the funda mental frequency of a one-year-old child compared to an adult
Both the vibrating string and spring-mass models predict that the $F 0$ of a clild's speech is greater than the $F 0$ of an adult's speech. Neither prediction, however, gives a ratio which in good agreement with the values of $F 0$ of children reporte by various rescarchers. Typical values of $F 0$ for one- to two ear-old children are in the ranoc of $300-500 \mathrm{~Hz}$, or $3-4$ times the $F 0$'s reported for adult males.

THEORY

The vibratung string and spring-mass models capture important aspects of vocal-fold vibration, but fail to adequately model some aspects of the vocal-fold anatomy. For instance, the vicross dimensions of the vocal toke into account the effect of the ture. Another shortcoming of this on the stiffuess of the strucconditions. The vibrating string model allows discontinuities in slope at the juncture of the cartilages and the vocal-fold tissue. The spring-mass model allows for discontinuities in both position and slope at the endpoints of the vocal folds. The specification of boundary conditions is important in analyses of the vibration of children's vocal folds; children's vocal folds are relThe attachments of the ther than adults', as shown in Fig. la. roid cartilares and vibration of children's vocal fold tha a significant role in the

A model of vocal-fold vibration which reflects the anatomical structure of children's vocal folds is the bending beam model.
(a)

(b)

[^0]This model has been useful in predicting the vibratory motion of relatively stiff structures which are attached rigidy motion ends and vibrate a small amount in the transverse direction [15]. The traditional bending beam model can be augmented by the addition of a distributed stiffness along one side. Figure 1 shows a beuding beam which is fixed at both ends and which coupled to material on one side by means of a spring. The fixed and model the attachment of the vocal fold to the arytenoid and thyroid cartare he spring models the lateral stiffies the vocal-fold tissue.
The equation for transverse motion of the vocal-fold model shown in Fig. lb is

$$
\begin{equation*}
\left(\frac{E b^{2}}{12 \rho}\right) \frac{d^{4} \xi}{d x^{4}}-\left(\omega^{2}-\frac{K}{\rho L b h}\right) \xi=0 \tag{5}
\end{equation*}
$$

where E represents the Young's modulus of the vocal fold, K models the stifness of the vocal-fold tissue, b and h are the hickness and height of the vocal fold, ρ is the density of the lissue, and ξ is the transverse displacement of the fold. Four and of slope at both ends of the vocal fold a displacement a linear combination of trigonometric and h solution which is is assumed. Application of the boundary conditions results in

$$
\begin{equation*}
\cos \beta-\frac{1}{\cosh \beta}=0 \tag{6}
\end{equation*}
$$

The variable β takes on discrete values which are found by graphical solution; the lowest non-zero value of β is approximatcly 4.73.
The value iven by

$$
\begin{equation*}
\omega^{2}=\frac{\beta^{4}}{12} \frac{E b^{3} h}{L^{3} M}+\frac{K}{M} \tag{7}
\end{equation*}
$$

The first term is the square of the freal beam model of the vocal fold assuming no lateral stiffness, and is called ω_{b}^{2}. The second term, ω_{e}^{2}, is the square of the frequency of the spring-mass model of the vocal fold. The solution of the general equation of motion shows the combined contributions of the beam and the spring character of the vocal fold structure:

$$
\begin{equation*}
\omega=\sqrt{\omega_{b}^{2}+\omega_{i}^{2}} \tag{8}
\end{equation*}
$$

Numerical values for ω can be found by substitution of the di mensions and tissue properties of the vocal folds.

If boundary conditions of position continuity and no stres at the endpoints are assumed (instead of continuity of position of the equation of

RESULTS AND DISCUSSION

The frequency of vibration, ω, of the vocal fold is a comb nation of the terms ω_{b} and ω_{c}. The first term of equation (7 of the beam, where
$\omega_{b}=\sqrt{\frac{\beta^{4}}{12} \frac{E b^{3} h}{L^{3} M}}$

For small L, as in the case of a child's vocal folds, this term dominates the expression for ω, and $\omega \approx \omega_{b}$. The vibration of beam. For a child-sized vocal fold with length 0.35 cm , height and thickness 0.23 cm , and mass and stiffness as above, we find $\omega_{b}=2810$ and $\omega_{g}=1000$. The child's fundamental frequency is thus 470 Hz .
In the adult case, or for large L, the ω_{c} term dominates, or $\omega \approx \omega_{s}$, where

$$
\begin{equation*}
\omega_{r}=\sqrt{\frac{K}{M}} \tag{10}
\end{equation*}
$$

The vibration of adult-sized vocal folds is similar to the vibra tion of a mass coupled to a spring. For an adult whose vocal
folds are of length 1.7 cm , height and thicknese 0.27 cm mass and stiffness as above $\omega=160$ whiless 0.27 cm , an corresponding fundamental frequency is 120 Hz .

Returning to our discussion of scale factors, we calculate scale factor relating the $F 0$ of the bending beam model (appro (fiate for a child's vocal folds) to the $F 0$ of a spring-mass mode (for an adult).

$$
\begin{equation*}
S F=\sqrt{\frac{\beta^{4}}{12} \frac{E_{c} b_{c}^{2}}{L_{e}^{4}} \frac{b_{a}^{2}}{E_{a}}} \tag{11}
\end{equation*}
$$

For values listed above, $S F \approx 4$
Measurements of $F 0$ of comfort-state vocalizations of young uhr [11] re been reported by several researchers. Keating and to approximately 3 years. In a study of the acoustic characterstics of vowels produced by young children of ages one and one-half to two and one-half years, we found average values of $F 0$ ranging between 350 and $400 \mathrm{~Hz}[1]$. These values as well as those of Keating and Buhr are shown in Fig. 2. Overlaid on these values are predicted values at ages one, two and three years. It can be seen that the predictions of the bending beam
model closely approximate the data for youmg children.

Figure 2: Predicted and measured values of $F \mathbf{0}$. Predicted values are shown by filled circles. Averages of values repor
and Buhr are shown by + 's; those of Bickley, by \times 's.

CONCLUSION

A model of vocal-fold vibration has been presented for which the expression for the fundamental frequency consists of two terms. The bending beam term depends on tissue characteristics and the connections at the ends of the vocal folds; the springmass term depends of the bulk characteristics of the folds. For young children, the bending beam term dominates; for adults, the spring-mass term determines the fundamental frequency.

Acknowledgement

This work was supported in part by a Whitaker Health Sciences Fellowship and in part by a LeBel Fellowship.

REFERENCES

[1] Bickley, C.A. Acoustic Evidence for the Development of Speech. Camhridge, MA: unpublished Ph.D. dissertation, Massachusetts Institute of Technology, 1987.
[2] Bosma, J.F. Anatomy of the Infant Head. Baltimore: Johns Hopkins University Press, 1986.
[3] Gedgond, V.A. Anatomical peculiarities of the respiratory orgaus in children. Translated by S. Pelvoy, 1957. St. Petersburg: thesis. Referenced in U.G. Goldstein (1980) Articulatory Model for the Vocal Tracts of Growing Children. Cambridge, MA: unpublished Ph.D. dissertation, 1900.
[4] Goldstein. U.G. Articulatory Model for the Vocal Tracts of Growing Children. Cambridge, MA: umpublished Ph.D. dissertation, Massachusetts Institute of Technology, 1080.
[5] Hirano, M., Kurita, S. and Nakashima, T. The structure of the vocal folds. In M. Hirano and K.N. Stevens (Eds.), Vocal Fold Physiology. Tokyo: University of Tokyo Press, 1980.
[6]. Ishizaka, K. and Matsudaira, M. What makes the vocal cords vibrate. In Y. Kohasi (Ed.), Reports of the $\sigma^{\text {th }}$ International Congress on Acoustics. Tokyo: Maruzen, 1968.
[7] Kahane, J.C. The developmental anatomy of the prepubertal and pubertal larynx. Pittsburgh: unpublished Ph.D. dissertation. Referenced in U.G. Goldstein (1980) A rticulatory Model for the Vocal Tracts of Growing Children. Cambridge, MA: unpublished Ph.D. dissertation, 1975.
[8] Kahane, J.C. and Kahn, A.R. Weight measurements of infant and adult intrinsic laryngeal muscles. Folia phoniat. 36:129133, 1984.
|9] Kaneko, T., Masuda, T., Shimade, A., Suzuki, H., Hayasaki, K. and Komatsu, K. Resonance characteristics of the human vocal fold in vivo and in vitro by an impulse excitation. In T. Baer, C. Sasaki and K. Harris (Eds.), Laryngeal Function in Phonation and Respiration. Boston: College-Hill Press, 1987.
[10] Kakita, Y., Hirano, M. and Ohmaru, K. Physical properties of the vocal fold tissue: measurements on excised larynges. In M. Hirano and K.N. Stevens (Eds.), Vocal Fold Physiology. Tokyo: University of Tokyo Press, 1980.
[11] Keating, P. and Buhr, R. Fundamental frequency in the speech of infants and children. J. Acoust. Soc. Am. 63(2):567-71,
1978.
[12] Negus, V.E. The mechanics of the larynx. London: Heinemann Medical Books. Referenced in U.G. Goldstein (1980) Articu.
latory Model for the Vocal Tracts of Growing Children. Camlatory Model for the Vocal Tracts of Growing Children. Cambridge, MA: unpublished Ph.D. dissertation, 1929.
[13] Nordström, P.-E. Attempts to simulate female and infant vocal tracts from male area functions. Speech Transmission Laboratory Quarterly Progress and Status Report, Royal Institute of
Technology, Stockholm, Sweden. 2-3:20-33, 1975 .
[14] Perman, A.L. and Titze, I.R. Measurements of viscoelastic properties in live tissue. In I.R. Titze and R.C. Scherer (Eds.), Vocal Fold Physiology: Biomechanics, Acoustics and Phoniatory Control. Denver: Denver Center for Performing Arts, 1983.
[15] Woodson, H.H. and Melcher, J.R. Electromechanical Dynamics. New York: John Wiley and Sons, 1968.

ACOUSTIC-MECHANICAL FEEDBACK IN VOCAL SOURCE-TRACT INTERACTION

U. K. LAINE
Acoustics Lab.
Helsinki Univ. of Technology
Otakaari 5. A
02150 Espoo, Finland

E. VILKMAN
Phoniatric Dept.
Tampere Univ. Central Hospital
33520 Tampere, Finland

Abstract

A new method to investigate vocal source-tract interaction is introduced. The method is based on the usage of excised larynges connected to an artificial vocal tract. Measurements of one larynx with a somewhat special behavior are described and analysed in detail. The analysed case gives clear evidence that the resonances of the vocal tract may influence directly or indirectly the vocal fold vibrations.

INTRODUCTION

In recent linear models for vocal fold vibration the vibratory pattern of the folds, i.e. the glottal opening as a function of time, is assumed to be an independent phenomenon in the sense that the vocal tract resonator has no effect on the mechanical vibrations of the folds. Until now the source-tract interaction has mainly been studied on the level of acoustic impedances, where the glottal opening and the subglottal tubes form an acoustic load for the vocal tract. Thus some part of the energy is lost from the vocal tract during every open period of the glottis [1].

It is well known that the sound pressure level (SPL) in the vocal tract just above the glottis is about 120-130 dB during voiced sounds. This study was undertaken to determine if this pressure is able to produce changes in the vibratory pattern of the vocal folds by deforming the mucosa-cover of the folds or by means of some other mechanism. In other words: Is there any acoustic-mechanical feedback in the vocal source-tract interaction?

We used excised larynges in our study. This is a legitimate method, known for instance from the work of van den Berg and Tan (1959) [2]. The novel methodological aspect of this study is that we combined excised larynges with an artificial vocal tract. This method makes it possible to control the resonances of the tract in a known and repeatable way. Since an artificial vocal tract is used, the changes of its profile will affect the vocal folds only acoustically. Therefore, we are able to distinguish between the mechanical (i.e. movements of articulators transferred via tissues) and purely acoustical effects. In our method only the acoustic power can affect the vibratory pattern of the vocal folds.

However, the method of van den Berg and Tan has severe limitations. First of all, it is almost impossible to simulate the action of the thyroarytenoid muscle [2], [3], and second, the dead tissue does not permit accurate measurements of the vibratory pattern of the vocal folds over a longer period of time [4]. The first problem is not a serious one, as the body, i.e. the vocal muscle is not of great importance in pitch control of phonation [5]. The vulnerability of the cover (mucosa) of the vocal fold was pointed out already by van den Berg and Tan [2]. The second problem may be solved by limiting the duration of each phase of the experiment and performing an adequate
number of repetitions and by stabilizing the arrangement of each phase.

This study was carried out at the Phoniatric Department of the Tampere University Central Hospital in cooperation with the Acoustics Laboratory at the Helsinki University of Technology. In the Phoniatric Department this study is part of a larger long-range project investigating questions in voice physiology. In the Acoustics Laboratory this study is part of a chain of studies dealing with the modelling of speech acoustics.

The experiments we made produced a bulk of material that needs to be studied in more detail. In this preliminary report we concentrate on one of the most interesting phenomena observed.

MATERIAL AND METHOD

The effects of acoustic-mechanical feedback on the vibrations of the vocal folds were examined in three fresh excised larynges taken from autopsies of males. In the dissection the vocal folds were left intact. The epiglottis and the ventricular folds were removed in order to get a better view of the vocal folds [2], [4]. After dissection the specimens were stored in $0.67 \% \mathrm{NaCl}$ solution at a temperature of $+4^{\circ} \mathrm{C}$ for $1-2$ days.

One of these larynges showed an exceptional high sensitivity to the variations of the supraglottal resonances and therefore it was chosen for closer analysis. It was obvious that acousticmechanical feedback in the vocal source-tract interaction should be seen most clearly in this case.

The experimental arrangements are shown in Fig. 1. For the experiment the cricoid cartilage was fixed in an air tight manner on an acrylic plate just above the hole for air intake. The supraglottal acrylic tube (length 17.5 cm , inner-diameter 2.9 cm , volume $115.6 \mathrm{~cm}^{3}$) was attached to the thyroid cartilage and supported with a holder. An air-tight connection of the tube-thyroid cartilage junction was obtained by using plastic mass (Optosil ${ }^{\circledR}$) and rubber sealant.

The glottal closure was obtained with two threads attached to each arytenoid cartilage. A constant force was used to pull each thread throughout the experiment. Phonation was elicited by a constant humidified and warmed $\left(37^{\circ} \mathrm{C}\right)$ air flow which passed through the acrylic plate. The flow was measured using a flow meter (AGA). Under the acrylic plate was a sampler for condensation water. The sampler acted as the subglottal space [6]. On the side of the sampler there was an outlet for measurement of the subglottal pressure, which was recorded (Frökjaer-Jensen Manophone).

The acoustic load of the artificial vocal tract, i.e. the supraglottal tube, was varied by moving an acrylic cylindrical block in the tube. The position of the cylinder was visually monitored by using a centimeter scale drawn on the tube. The block was 8 cm in length and 2 cm in diameter. This choice
was made so as to reserve free space for the cable of the photosensor (see Fig. 1). With this block we were able to vary the frequency of the first formant from 400 to 600 Hz .
The subglottal pressure varied between $10-20 \mathrm{~cm} \mathrm{H}_{2} \mathrm{O}$. This is somewhat high for speech but still within physiological higher than in a normal male voice.

Fig. 1 The experimental arrangement.

Electrical signals describing the vocal fold vibrations were recorded by using a high-quality tape recorder (Tascam, (Racal) and a digital PCM coder and recorder (Sony Digital Audio Processor F-1 and Portable Video Casette Recorder SL-F1E). One acoustic microphone (AKG C5657E) was (B \& K 4133) was air-tightly mounted into a thole and the other wall of the tube just above the glottal level. electroglottographic signal (Frökjaer-Jensen EG 830) was obtained using small coin-shaped brass electrodes attached with a screw symmetrically to each side of the thyroid cartilage on the
vocal fold level [4]. The photo-electric was obtained by introducing a light beam into the subglottal space through a window (Frökjaer-Jensen Photo-electric detected by a photosensor placed in the through the glottis was

The vibraty p or
using a laryngostroboscope (B \& K Type 4914). The recorded signal samples were analysed at the Acoustics Laboratory of the Helsinki University of Technology using a PC-based (MacIntosh) ISA-system (Intelligent Speech Analysere ${ }^{\text {® }}$, Vocal
Systems, Ltd).

RESULTS

One of the larynges showed a special behavior. Its vibration were typically weak and sounded leaky (noisy) and aperiodic, somewhat creaky. Changing the flow or subglottal pressure did
not improve its performance. Only when the block was put in the resonator did the vocal folds start to vibrate strongly with stable amplitudes and periods. When the block was placed in deeper, simulating a back vowel, the vibrations once again when weak and inconsistent. The vibrations were strong only
wheck was about in the middle of the tube or in the front.
Fig. 2 illustrates how the subglottal pressure varies when the block is moved from a back vowel position out of the tube.
Initially the vocal folds are not vibrating properly, the glotis is leaky and the subglottal pressure low. When the block is moved upwards a stronger vibration suddenly starts and the pressure increases indicating a better glottal closure. When the pressure low. This was a systematic and repeatable phenomenon achieved with this larynx. During this experiment the photosensor was removed to make the movements of the block free and to ensure that the possible movements of the
sensor were not creating this phenomena.

Fig. 2 Change in the subglottal pressure due to the variation in the supraglottal impedance and in the vocal fold vibration.

Fig. 3 shows in more detail how the stronger vibration begins and ends. In this figure the DC component has been mod.
Two spectra of the subglottal pressure are seen in Fig. 4. trenger upper part of the figure shows the signals where the One can note that bege inc and the lower part where they ended. mainly due to the increase of its first amplitude of this signal is of the fundamental is not changed by much . The amplitud he second and third harmonics have also increased. When the pressure signal falls the tube and the intensity of the subglotal are about the same but in the changes in the harmonic structure of the first three harmonics are affected the most. The intensity increased levels of the first harmonics will also indicate a better losure of the glotis.
Fig. 5. The veriations in the outcoming acoustic signal are seen in The two first resonances of the same as in the earlier figure. and 1.3 kHz indicating that the block is in at about 600 me
position. When comparing the upper parts of Figs. 4 and 5 one can note that during strong vibration, i.e. better glottal closure sectrum), the harmonic peaks in the region of the second formant are not seen in the subglottal pressure signal, wherea when the glottal closure is bad these peaks are clearly see black spectrum).

manm

Fig. 3 Subglottal pressure wave at the beginning and end of the stronger vocal fold vibration.

Fig. 4 Change in the spectra of the subglottal pressure at the beginning and end of the stronger

Fig. 5 Change in the spectra of the outcomin acoustic signal (mic. 1).

Fig. 6 Change in the spectra of the EGG.

Fig. 6 shows the corresponding variations in the spectra of the EGG signal. In the upper part of the figure (increasing intensity) the strongest amplitude change is seen at the peak of the fundamental frequency while the levels of the harmonics are not affected as much. When the intensity is decreasing the change is about the same over the whole spectrum.

Fig. 7 compares two EGG pulseforms normalized in amplitude and frequency taken from the first low intensity region and from the beginning of the high amplitude region. During weak oscillations the decreasing contact (opening) forms only about 20% of the pulse duration (pulseform 1). When the oscillation is strong the corresponding region is about 64% (pulseform 2). In this respect the EGG pulseform is changed radically even if the power spectra (Fig. 6 upper part) remains about the same. This indicates that the phase relationships are changed. The weak pulse (1) indicates that there are some types of acoustical forces coming from the tube resonator which are able to make the opening of the glottis faster and the closing slower. This breaks the vibratory pattern of the vocal folds and gives the voice a bad quality. In the opposite case the forces are in phase with the natural glottal oscillations and the voice quality is good.

Fig. 7 Normalized EGG pulseforms: $\begin{array}{ll}1 \text { \& at low intensity region } & C \text { \& closing periods } \\ 2 & \text { at high intensity region }\end{array}$ 2 2 at high intensity region $\quad 0$ 2 opening periods

DISCUSSION

Our new method of combining an excised larynx with an artificial vocal tract has given a clear indication that the vocal tract resonator is able to produce such a high acoustic energy above the vocal folds that their vibratory pattern may be radically affected. The acousto-mechanical phenomena we are investigating seems to be too complicated to be explained with present-day linear models. According to Mozer [7] the phase relation between the fundamental and the first harmonic may affect the vocal fold vibration. The pitch was relatively high in this case and we have estimated that the formant movement in question can make a phase change of about 90 degrees between the fundamental and the first harmonic. Therefore, the strong vibrations may when in optimal phase with the vocal fold hinder the complete closure.

Titze [8] has also reported about this kind of interaction: "... it would appear that the vocal tract pressures reflected back to the glotis can assist in sustaining vocal fold vibrations."

Our results have confirmed this: the acoustic power in the vocal tract can assist or hinder the vibrations of the vocal folds. Does this feedback, which seems to be nonlinear, work directly on the mucosa cover of the folds or indirectly via the Bernoulli effect? This question still remains open.

ACKNOWLEDGEMENTS

The authors are grateful to Prof. A. Sonninen for the fruitful discussions during this work. This study is supported in part by the Academy of Finland.

REFERENCES

[1] Ananthapadmanabha T., Fant G., Calculation of the True Glottal Flow and its Components, STL-QPSR 1, Speech Transmission Laboratory, Royal Institute of Technology, Stockholm, Sweden, 1982, pp. 1-30.
[2] van den Berg J. W., Tan T. S., Results of Experiments with Human Larynges. Pract. Oto-rhino-laryng., 1959, vol. 21, pp. 425-450.
[3] Fukuda A., Saito S., Kitahara S., Isogai Y. et al., Vocal Fold Vibration in Excised Larynges Viewed with an X-ray Stroboscope and an Ultra-high Speed Camera. In: Bless D. M., Abbs J. H., eds.: Vocal Fold Physiology. San Diego, CA, College-Hill Press, 1983, pp. 238-252.
[4] Lecluse F. L. E., Elektroglottografie. Dissertation, Rotterdam, Erasmus University, 1978.
[5] Fujimura O., Physiological Function of the Larynx in Phonetic Control. In: Hollien H., Hollien P., eds.: Current Issues in the Phonetic Sciences, vol. 1., Amsterdam, John Banjamins B. V., 1979, pp. 129-164.
[6] van den Berg J. W., Sound Production in Isolated Human Larynges. In: Bouhuys A., ed., Sound Production in Man, Ann. N.Y. Acad. Sci., 1968, vol. 155, pp. 18-27.
[7] Mozer M., Artikulatorische Einflüsse auf die Stimmenreinheit, Sprache - Stimme - Gehör 9, Georg Thieme Verlag, Stuttgard, New York, 1985, pp. 117-120.
[8] Titze I. R., Influences of Subglottal Resonance on the Primary Register Transition. In: van L. Lawrence, ed., Transcripts of the 30th Symposium Care of the Professional Voice, Part I: Scientific Papers, The Voice Foundation, N.Y., 1984, pp. 130-134.

THE METHOD FOR SOLVING INVERSE PROBLEM OF SPEECH PRODUCTION AND ARTICULATORY PORTRAY OF A SPEAKER

Yevgeni Vlasov, Natali Isayeva

Institute of Control Sciences
Academy of Sciences USSR
Moscow, USSR 117342

ABSTRACT

The accuracy of modern methods for determination of area function is not sufficient for practice. We present a numerical method for area function calculation with sufficient accuracy. Regulation continuum of this functions in finite region is calledarticulatory portray.

INTRODUCTION

Many year modelling of speech production processes has attracted investigators/1/, however its complexity up to the present does not lead to a wide introduction of such models into practice, despite the great efforts /2/ and intensively growing feasibilities. It has become clear, that the speech production processes are hierarchical and closely interacting /3/. In this case speech production model is expedient to be realized from bottom to top, using a lower level as a tool /4/. One of them is the articulatory model /5/, which synthesizes speech on the basis of solving the direct problem of speech production (vocal tract \rightarrow acoustic) /6/.
The more accurate data of area functions have been obtained by G. Fant (1960) /7/ and up to now this work remains unique, because of its complexity. The LPC-method /8/ requires special measures (beforedistorting, etc.) for obtaining velid solutions. The tomography method /9/ enables us to determine the area in any section, however it requires multiple X-ray photographing of such sections along the axis for reconstructing only one area function. It was necessary to develop the method for an easier way of obtaining area functions without accuracy loss.
The paper presents the method for solving the inverse problem of apeech production (acoustic \rightarrow vocal tract), which allows the obtaining of "smooth" area functions and articulatory portras. The latter represents the region of permissible articulatory situations of a speaker. This method is based on the idea of "analysis from aynthesis" and includes the algorithm /6/ with two-tier adaptive program
complex (APC) 110/. The distinct features of the APC are automatical problem orientation to the class of the problems to be solved, supported by multidimensional optimization and associative information processing by a computer.

INPUT DATA AND ERRORS

Input data are easily-measured spectrumtime speech parameters: frequences, bandwidths and amplitudes of formants and also X-ray images of vocal tracts in segital flatness of three speakers: two men /7,11/ and one woman /12/.
The formant frequences have been determined by sonagraph, the errors were 3-7 per cent. In future calculations the frequences vector $F^{*}=\left(F_{i}^{*}, i=1, k\right)$ will be the standard and errors vector $\varepsilon^{*}=\left(\varepsilon^{\star}\right.$, $i=1, k$) will be final accuracy. From X-ray images we used the samples $H=$ $=\left(H_{i}, i=1, M\right)$ of a heigt function $h(x)$, $0 \leqslant x \leqslant e$, where ℓ is the vocal tract length. Samples and length errors are respectively equal to 7 and 3 per cent.

THE METHOD
Taking into account the difficulty of obtaining an X-ray images, the method is realized by two variants: with X-ray images and without them.

The first variant (with an X-ray image). The area function $S(x)$ is represented as a product of the known height function $h(x)$ on a desired width function The finite articulatory region determines

$$
\begin{equation*}
D_{q}:\left(q^{\min }(x) \leqslant q^{0}(x) \leqslant q^{\max }(x), \quad 0 \leqslant x \leqslant l\right) \tag{1}
\end{equation*}
$$ where quxt some initial approximation. Sampling of the all three function along the axis x in D_{q} gives respectively the vector of the lower boundary $W_{0}^{\min }=\left(W_{i}^{\text {min }} i=1, N\right)$, initial control vector $W=\left(W_{i}, i=1 ; j\right)$ and the upper boundary vector $W^{\max }=\left(W_{i}^{\max }, i=1, N\right)$ as shown in Fig. 1

$$
\begin{equation*}
D_{W^{*}}\left(W_{i}^{\min } \leqslant W_{i}^{0} \leqslant W_{i}^{\max }, \quad i=1, N\right) \tag{2}
\end{equation*}
$$

Fig. 1. Control vector ${ }^{10} W^{\circ}$ is the samples Control vector is the sanction $q(x)$ in known

Characteristics vector P, which characte rizing the class of solved problems, in-
cludes $F^{*},{ }_{\&}, H:$
$D_{p}:\left(P=P_{1}, \ldots, P_{k+m+1}\right)=\left(F_{1}, \ldots F_{k}, \ell, H_{1}, \ldots H_{m}\right)$ (3)
The mathematical statement of the speech production inverse problem has the follo-

$$
\begin{gathered}
L\left(F, F^{*}\right) \rightarrow \text { min, } \\
L\left(F, F^{*}\right)=\left(\sum_{i=k_{i}+x_{i}}\left(E_{i}-\varepsilon_{i}\right)^{21 / 2}, E_{i}=\frac{\left|F_{i}-F_{i}^{*}\right|}{F_{i}^{*}}, i=1, k,\right.
\end{gathered}
$$

$F=G(S(x)), S(x)=h(x) q(x), 0 \leqslant x \leqslant l, \quad$ (4)

$$
\begin{aligned}
& h(x)=R(H), \quad q(x)=R(W) \\
& W \in\left(W_{i}^{\min } \leqslant W_{i}^{0} \leqslant W_{i}^{\operatorname{\omega ox}}, i=1, N\right)
\end{aligned}
$$

Where L - functional, which depends on calculated frequencies F, G-an operator of the speech production direct problem,
R - an operator transforming a givon vector to a smooth function.
The method of solving problem is shown in Fig. 2 and consists of the following. Each of the vector P according to (3). Inition vector W° gives the random width function $q(x)$, Which determines the random area calculates P, which is ${ }^{\text {comparator } G}$ standard F^{*} for determining L. Mhe value I is anolysed in the APC with the aim of optimizing the components for finding the nimimum of L. When the final value Ifis nished and the decision vector (P, W^{*}, L^{*}) is stored, in a computer memory. For a new problem P^{\prime} we take from the memory auch an problems, whose vector P is closer to P^{\prime}.
The $\frac{\text { The }}{\text { gecond }}$. The region ist (without an X-ray
10ws:
$D_{3}:\left(S^{+(}(x) \leqslant S^{\prime}(x) \leqslant S^{(\alpha)}(x), 0 \leqslant x \leqslant l, l \in\left[l^{\min }, e^{\text {maq }}\right]\right),(11)$
sampling of which, gives the region $D_{w}(2)$. cies $P *$, bandidiths $\Delta P *$ and amplitudes
A^{*}. The two latter vectors may be not available.
$D_{p}:\left(p=P_{1}, \cdots, p_{3 k}\right)=\left(F_{i,}^{*}, F_{i}^{*}, A_{i}^{*}, i=1, k\right)$.
In (4) the area function is formed directly from the control vector:
$S(x)=R(W), 0 \leqslant x \leqslant \ell, \ell \in\left[e^{\min }, e^{\text {max }}\right] \quad$ (4') In other aspects this variant does not change and is illustrated in Fig. 3 (com

Fig. 2. Block-sheme shows the solution

Fig. 3. Block-sheme shows the alution method for the second variant

REGULATION ALGORITHM

In general the inverse problems are math
 dered problem is carrectness of the constraining permissible solution region (1) and by tbl
development of the special regulation algorithm. This algorithm works along contour II in tioning of the APC without it. At first

the rough stages value of accuracy ε° is assigned. For a given P and initial W° th ε°. In contour I the ε° is attained ($E \leqslant \varepsilon^{\circ}$), then contour II gives the next accuracy $\varepsilon^{2}=\varepsilon^{\circ}-\Delta \varepsilon$, etc. It should be noted that in contour I the boundaries
 up to initial boundaries (2). The algorithm is also adapted to the change of L: contour II is switched over if the reduct${ }^{10 n} L_{0}$, velocity ΔI lese than the threshol Thus, the reaching final accuracy ε^{*} is which gains a stage accuracy E^{n}

$$
\varepsilon^{0} \geqslant \varepsilon^{1} \geqslant \ldots \geqslant \varepsilon^{n} \geqslant \ldots \geqslant \varepsilon^{*}
$$

$$
\begin{equation*}
W^{\circ} \Rightarrow W^{1} \Rightarrow \ldots \Rightarrow W^{n} \Rightarrow \ldots \Rightarrow W^{*} \tag{5}
\end{equation*}
$$

In this case sequence $S^{n}(x)$ tends to opti-
mal $S^{*}(x)$. RESULTS

The proximity criterion of functions $S(x)$ $S^{*}(x)$ simular to $/ 8 /$, is the mean aquar
deviation, normalized by a maximum
$\sigma=\left(\frac{1}{M} \sum\left(S_{i}-S_{i}^{*}\right)^{2}\right)^{1 / 2} / \max ^{*} S^{*}$
Stability, The scatter of obtained so-
so
立) under the variations of the
und $W^{\text {inin }}, W^{\text {max }}$ in (2) have been estimated. For
similar phonems this scatter does not exceed 6.7 per cent with the deviation of control vectors from the initial values (Fig. 1) up to 120 per cent.

Convergence. The convergence to the accurate solution S (x) is guaranteed by the above regulation algorithm. Rejection tion of convergence, s shown interrupted line in Fig. 5. The continuous line shows the normal process of convergence: in points $L_{1}{ }_{1}, L_{2}$, L_{3} correction of stage

Fig. 5. Minimization of L shows the convergence of computer process
Fig. 6. The illustration shows the benefit of regularization algorithm application.
Accuracy. Accuracy of $S^{*}(x)$ is estimated by (6) for the first speaker, since he the phonems the mean accuracy equals 8.3 per cent and it varies in the range of 4.1 - 12.9 per cent. With respect to the or the same speaker, the accuracy has increased by 2.7 per cent.
Computer time. The application of the requaltion algorithm provides not only required accuracy, but acceleration of the computer processes as well, ${ }^{\text {H1g. }} 6$ shows ficially obtained making use of this algorithm since the solution time with the algorithm application (curve 2) is many ut algorithm application (curve 1). The quantity of benefit is increased with the increasing of the final accuracy, from 1.6 times at $\varepsilon^{*}=10$ per cent to 4.5 owing to optimal fitting of the algorithm parameters the computer time is reduced by 2.5-30 times. Among the phonems the average computer time is equal to 84 sec and
varies in the range of $4.5-148 \mathrm{sec}$.
Comparison of two variants. Different input data.application (with without of 9.4 per cent in solutions. The average omputer time in the aecond variant is greater by 18,4 per cent than the one in the first variant. Hence, decreasing of
at the cost of increasing the computer time.

ARTICULATORY PORTRAY

Representation of the relationship of the solution $S(x)$ and input $h(x)$ as a functional dependence

$$
\begin{equation*}
S=S(h(x), x), \quad 0 \leqslant x \leqslant \ell \tag{7}
\end{equation*}
$$

in three-dimensional space (S, h, x) leads to a complex surface as shown in Fig. 7.

Fig. 7. Articulatory portray of a speaker

Such surface clearly presents the region of admissible articulatory situations of the speaker, therefore it is called on articulatory portray. Such protray vividly shows pharinx and oral (two saliences) and contraction of a larinx tube, a contraction caused by valum (pass between saliencea) and lips. The practical application of such a portray particularly consists in easy transformation of the flat X-ray image of vocal tract to area function with a given accuracy.

Comparison of portrays. The degree of individual distinction between the speakers is equal to 5.1 per cent for a diameter of a vocal tract and to 3.1 per cent for a longitudinal dimension, that may be interpreted as a value of articulation "quanta" /13/.

CONCLUSION

Vocal tract is usually approximated by a few cylinder sections, but in practice, a a more smooth area function is required. In proposed method there are no restrictions on a quantity of sections and computer time does not depend on the quantity of sections. The required accuracy, corresponding to input data errors, is also quaranteed. The method provides the reduction the compute time up to 4.5 sec , which equals one computer remembrance time. For articulatory synthesyzer /5/
smooth area function provides the improve ment of the quality of a synthetic speech

Computer time depends on the degree of APC-knowledge and the correct sequence of the problems to be solved. The better the APC is trained the shorter is the computer time. Due to the rational choice of problem sequences the training time decreases by $1.5-2.0$ times with respect to random sequences.

In addition to it, this method may be used in speech analysis, medicine and in logophedia.

REFERENCES

/1/ J. Balazs, "In Memoriam Farkas Kempelen", Hungarian Papers in phonetics, ed. K. Bolla, No.13, 1984, p.11-21.
/2/ J. Allen, "A Perspective on ManMachine Communication by Speech", Proc. IEEE 73 (11), 1985, p. 1541$1550^{\circ}$
13/ В.Н.Сорокин, "Теория речеобразования", Москва, Радио и связь, I985.
/4/ P. Mermelstain, "Articulatory Model for the Study of Speech production". J. Acoust. Soc. Am. 50(4), 1973, p.1070-1082.
/5/ Е.В. Власов, "Акустический терминал для артикуляционного синтезатора речи", Тезисы І2-го Всесоюзного семинара по автоматическому распознаванию слуховых образов, Киев, Институт кибернетики Af УCCP, I982, с.389-393.
/6/ Е.В.Власов, "Модификация метода Галеркина для расчета частотных параметров речевых сигналов", Проблемы построения систем понимания речи, Москва, Hayka, I980 c I36-I42.
/7/ Gaykart, Acoustic theory of Speech Production", Gravenhage, Moution, 1960.
/8/ J.D. Markel, A.H. Gray, "Linear Prediction of Speech", N.Y., SpringerVerlag, 1976.
/9/ S.Kiritani, E. Takenaka, M. Sawashima, "Computer tomography of the vocal tract", Ann. Bull. Research Inst. Logopedics and Phoniatrics, Tokyo, No. 12, 1978, p.1-4.
/10/ В.С. Широколава, Н.А.Йсаева, "Двухъярусныи обучаюоийся программный комплекс", Модели управления сложной программой, Москва, Институт проблем управления, І986, с.3-10.
/11/ В. Н. Сорокин, "Механика движений языка", Описание и распознавание объектов в системах искуственного интел-
 Kussian", "A Phonetic Conspectus of Russian", Hungarian Papers in Phonetics, No.11, 1982.
$113 / \mathrm{K} . \mathrm{N}_{\text {. Stevens, "The quantal nature }}$ of speech. Evidence from articulato-

UN CUITL DE PBCRETISATION MUTMAMGE

$\begin{array}{lllll}1,2 & 1 & 1 & 1 & 3\end{array}$
V. AUBERGE, M. CCNTINI, D. MARET, B. SCHNABEL \& H. ZINGE E
1: Institut de la Coummication Parlée Unité associée au CNRS Institut de Phonétique Université de Grenoble III 38400 SAINT MARTIN D' HBPES FRANCE
2: Société CROS ZIRST 38240 METIAN FRANCE
3: Université des Langues et Informatique de Chambery 73000 CTAMBERY FRANCE

RESURE

Ce travail résulte d'une collaboration étroite entre informaticiens et linguistes. Il s'agit d'un outil de phonétisation défini dans le cadre de la synthése multilangue à partir du texte, et conçu pour des applications linguistiques.

Intoncriak.

Un certain nombre d'outils de transcription orthographique phonétique du Français ont eté développés dans deux principaux buts :

- 1'étude de la phonétisation ([9], [8], [3]),
- la synthese de la parole ([4], [5], [10]). Dans ume optique multilangue, nous avons envisagé la synthese d'une langue ecrite comme un enchainement séquentiel d'étapes ; à chacume d'elle correspond un module facilenent adaptable à la langue considére : phonétisation, calcul de la prosodie, utilisation d'un dictionnaire (de diphones par exemple).
Hous nous soumes tout d'abord poses le problème du choix de la méthodologie algorithmique qui autoriserait le développenent d'un module de transcription commm à toutes les langues orthographiques visées (Français, Allemand, Italien, Espagnol...).
Hous nous soumes particulièrement attachés au développement d'outils conviviaux, permettant un travail de mise au point et d'exploitation dans le cadre d'une exuipe pluridisciplinaire : phonéticiens et informaticiens. En effet, il nous a semblé important de pouvoir utiliser les competences du linguiste en lui proposant un outil qui lui permette de formaliser facilement sa connaissance. In adoptant une telle dénarche, nous avons pense que les regles ainsi obtenues seront a la fois utilisees pour la synthese, mais aussi pour des études linguistiques relatives a chaque langue.

L'OUTL DE TRMSCRIPTION

A : Choix méthologique.

Le passage d'une chaine orthographique vers la chaine des sans correspondants utilise plusieurs niveaus de connaissances définis chacum par leur unité linguistique minimale (lettre,constituant du mot, mot dans son contexte enonciatif).

Le logiciel élaboré jusqu'à présent s'intéresse aux dannées linguistiques dont l'unité est la lettre. Le linguiste formalise son raisonnement sous la forme d'une gramaire déterministe (à une quelcouque sous-chaine d'un mot correspond une seule transcription, de regles contextuelles. Il introduit naturellement un ordre local a chaque classe de regles : c'est l'ordre d'application défini par l'ordre d'écriture des règles (on peut représenter ce raisonnenent par "exceptions puis règles générales" ou bien "si alors sinon(si...)"). Nous avons donc défini une syntaxe pour concrétiser facilement ce raiscnnement : le langage TOPH (voir § B:), et réalisé un ensemble de logiciels d'exploitation de cet outil (figure 1).

Au niveau de la métbodologie algorithmique, nous avons dû choisir entre deux interprétations possibles du mécanisme de transcription :
1.) Un automate déterministe d'états finis: dans une étape prealable, il faut expliciter les informations contenves implicitement dans la grammaire. Une regle se développe ainsi en un ensemble équivalent de régles définies exactement sur le vocabulaire d'entree, indépendantes (le texte d'une règle développee contient les informations nécessaires et suffisantes pour la definir), et en exclusion mutuelle (la grammaire est déterministe). Apres avoir construit l'automate d'états finis equivalent au langage constitué de l'ensemble des règles (considérées donc coane des mots de ce langage), on réalise un "pattern matching" entre la chaine đ'entrée et l'ensenble des textes des régles développes.
on obtient donc un algorithme dont la complexité-temps est en $O(1)$, si ' 1 ' est la longueur du texte à transcrire. pour construire cet autonate, par exemple depuis ume grammaire décrite dans le syntaxe TOPR, on la développe :

- selon les ensebles; soit la règle en Français :
("Voyelle") $\mathrm{s}+$ ("Voyelle") $=$ [z$]$
(c'est-à-dire : 's' entre deux voyelles se transcrit [z])
qui est equivalente à l'ensemble des regles :
$(\mathrm{a})+\mathrm{s}+(\mathrm{a})=[\mathrm{z}]$; (e)+ s +(e) =[z];... (si "Voyelle"=(a,e, ...))
- selon les opérateurs; soit la regle
(a $\alpha \mathrm{e} e)+\mathrm{s}+=[z]$ (si ' α ' est 1 'opérateur logique)
qui est équivalente a l'ensemble des regles:
(a) $+\mathrm{s}+=[\mathrm{z}]$; (e) $+\mathrm{s}+=[\mathrm{z}]$
- selon l'ortre d'application sur les regles; soit la grammaire décrite par les deux régles:
1: $(\mathrm{a})+\mathrm{s}+(\mathrm{a})=[\mathrm{z}]$
$+s+=[s]$
(c'est-d-dire : si 's' est dans le contexte gauche et droit ' a ', il se refrit [z], sinon il se recrit [s]),
(a) $+\mathrm{s}+(\mathrm{a})=[\mathrm{z}]$
("na")+ s+("ทa") $=$ [s]
On voit facilenent sur ces exemples
l 'autonate devient trés vite "explosive".
2.) Un automate transchucteur : la reecriture contextuelle de la chaine d'entree est guidee pas à pas par la grammaire. droite de 1 'entree), est reproduit naturellenent par la partition des rètles sur le prenier caractère de sous-chaine a transcrire. on obtient alors un algorit.
Derrière ces deux dénarches, on voit apparaitre 1 'inportance predcoinante soit des lexiques, soit des regles (figure 2), car le gine choisi la solution transtucteur (figure 2), car le gain du facteur ' T ' ne nous semble pas rentable devant la
d'états finis 1.).

B: Le langage TopH, description symtaxique. Whest un langage LIL .

Decclaration d'un ensemble

On identificateur ou un element d'ensemble sont des chaines quelconques de caracteres.
Definition d'une regle :

$$
\rightarrow \text { Partie gauche }- \text { Partie drotte }
$$

Partie droite :

$$
\rightarrow-[0-\text { Chatine Transcrite }-\sqrt{-}
$$

Partie gauche :

Une chaine à transcrire (Ve), ou une chaîne transcrire (Vs) Une chaine a transcrire (Ve), ou une chain
sont des chaines de caracteres quelcongues.

Contexte Droit ou Gauche (mène syntaxe) :

Facteur :

Terme :

ETuE des gramaires
A: La transcription du Francais.
A partir d'une grammaire de transcription initiale du Francais [9] et des nombreux ouvrages parus [66], [3], [7], [13] ...), nous avons affiné les regles qui se limitent au mot orthographique.

Les listes d'exceptions ont été extraites du dictionnaire inverse JTILAND et du dictionnaire inverse du SCRABBLE Nous avons pu corrige la grammaire obtenue en 1 'utilisant pour transcrire le "Frequency dictionary of french words" de
JTIUNND, soit pres de 5000 formes parmi les plus courantes (une seule forne par base lexicale). Nous allons inclure maintenant I'utilisation de renseignement
 syntaxiques (liaisons), ou bien la categorie morphologique. Ainsi, en exemple, 1 'instanciation a "Verbe" ou "non verbe"
d'une forme finie par ent decide de sa prononciation en [a-] ou I. the analyse morphologique (ou lexicale) pent suffire : exemple analys morphologique eo lexicate) peat ; mais il faut parfois remonter a la syntase: par exenyl "non verpe" $=[$ [pesidan $]$.
B: La transcription de 1'Mlemand.
La conversion d'un texte allemand en chaine de simpes phonéiques

* Le pretraitenent morphologique et
* la transcription orthographique et - phonétique.

1.) Le prétraitement moxphologique

moprobenes (racinge des unites lexicales en monemes morphemens (racine, préfixe et suffixe) et la détermination
autconatique de l'accent. autconatique de 1 accent.
l'aide d'un lexique d'environ 150 prefiqueses et efsuffixieses, a un ensemble de 150 regles pour déterniner la soyelle de la racine qui porte l'accent (dans tous les cas ou le prefixise
sementation morrholocricue et la détermination de l'accent sur I'unité d 'un not à la fois, par exemple :

```
Bemmderung ("admiration")
be -
mader
(preficize ne portant pas d'accent (racine + poyelle portant accent)
(suffixe)
```

\Rightarrow) be whander-ung

$$
\text { (} *=\text { accent })
$$

La méthode choisie [14] se distingue donc aussi bien des systenes qui se fondent exclusivenent sur des lexiques
(p.ex. le crapriaw [8] a Vienne) que des systenes qui opdrent (p.ex. le craptrav [8] a Vienne) que des systeme
(p.ex. le SNMIEX [12] de Bochum). Cette approche présent rois avantages principaux: dues plutôt à la structure morphologique qu'aux exception phonétiques et phonologiques peuvent assez facilenent êtr détectees et définies ; ainsi la fiabilité du systeme est-elle augmentee.
Parallelement le transcripteur reste ouvert a de nourvelles expansions. A chaque instant des nouveau morphenes peuvent être introduits dans le lexique * Em méne temps la taille du lexique (qui ne couvre que
2.) La transcription

La chaine ainsi obtenue, toujours orthographique mais pretraitee, sera transcrite par la suite en signes phonétiques. A l'aide d'un ensemble de 400 regles pour
l'allemand la qualité phonétique de chaque lettre est recherchée.

Pour le mot 〈Bennnderung) 1 'ensemble suivant de regles est appliqué :

$+\mathrm{ng}+\left(\mathrm{mg} \mathrm{g}^{\prime \prime}\right)$
Pour les cas qui ne peuvent être transcrits correctenent, une liste d'exceptions se trouve dans la grammaire du Topf. Dans un prenier temps nous nous sames
contentes de remplir un lexique interne au fur et a
nesure contentes de remplir un lexique interne au fur et a mesure
que les exceptions se produisent. Par la suite, on isolera ce lexique pour definir un lexique externe.

C: La transcription de l'Italien.
La transcription de 1 Italien nécessite un nambre relativenent faible de regles en corparaison du Francais et distributions possibles de réalisations phonétiques pour lesquelles nous nous scames refferes a la prononciation
italienne normative(Toscan cultivé, ainsi, italienne normative (Toscan cultivé). Ainsi, un -s -
pas voisé corme dans tout le Nord de l'Italie. Les phénonenes de Phonétique syntactique n 'ont pas été negiiges. Ont eté pris en consideration, en particulier, le
one
phenonenes de sandhi, entrainant notament une molification phénomenes de sandhi, entrainant notarment une modification de la consonne initiale (allongement), lorsque celle-ci e bello \rightarrow [ε bb' $\varepsilon l l o]$
Il en est de mêne pour les groupenents de consonnes aux tté adoptees par rapport aux menes groupes à l'interieur d'un mot:

$$
\mathrm{sci} \rightarrow[\mathrm{sc}]
$$

la mis cile \rightarrow [la nis ts'ile]

cancustas

Nous avons pris soin d'ecrire um logiciel ouvert, afin de rendre possible toute nouvelle extension, et surtout afin de linguistiques néessaires à la description de la prosodie.

prozemas

[1] AHO \& CORASICX, "Efficient string machine", A.C.M, June ${ }^{\text {[2] }}$ V. AUBERCE, "Contribution à la phonétisation des [3] N.CaTRCH, "La phonétisation du Francais", Edition du C.N.R.S., 1984. [4] M. DIVAY \& M. GYYaMRD, "Contribution et realisation d'un programme de transcription", These de 3ene cycle [5] h.figvers, J.LRROUX \& L. MICLer, "Programe de transcription orthographique phonénique du Francais", Publications E.N.S.T. -D-76003, 1976 .
[6] P. Foucre, "Traité de prononciation francaise", Editions [7] V.G. GAK, "L'orthographe du Francais", Editions Selac, ${ }_{[8]}^{1976}$ G. JOSEF, G. KAFER \& M. KCOMIDNA, "Yorphologische Analyse im Sprachausgabesystem CRAPHON", NTG - Fachtagumg, Minchen, 1986.
systeme interpréteur 1980.
[10] B. PRATT \& G. SYLVA, "PGONRRS.Transcribing french text", Monash University, AUSTRRLY, 1967.
[11] B. PRours, "Contributions a 1 la syn [12] H.V. RUNBML, "A Microprocessor based System for Gutanatic Conversion of
Gexmant to Speech.", ICASSP $3 / 3$ (1608 - 1611),
[13] L. KARNANT, "Dictionnaire de la prononciation francaise", 1962.
[14] H. $Z \operatorname{DNGGEF}$, "Traitenent de la prosodie allemande dans un de Strasbourg II, 1982.

FROM SEGMENTAL SYNTHESIS TO ACOUSTIC RULES USING TEMPORAL DECOMPOSITION.

Frédéric BIMBOT, Gunnar AHLBOM, Gérard CHOLLET

ENST Dept. SYC, CNRS UA-879
46 rue Barrault, 75634 PARIS cédex 13, FRANCE.

Abstract

A methodology is proposed to infer automatically acoustic rules that could be used to predict natural spectral transitions for speech synthesis. It adapts ATAL's "temporal decomposition" technique $/ 1 /$ to compute interpolation functions from phonetically labelled acoustic targets. Coarticulation effects are controlled quite adequately using such a representation. With this methodology, rule-based synthesis will be developped more efficiently for new languages, dialects, speakers with better control of speaking rate, style of speech ...

INTRODUCTION

The automatic generation of "natural" speech from a phonetic transcription is a challenging task. Two main approaches have been proposed: segmental and rule-based. The segmental approach (using diphones, demi-syllables, polysons, ...) offers an easy way to intelligible speech. But the segment inventory is speaker dependent and control of timing is a non trivial task. The lack of naturalness could be attributed to uneasy analytic control of speech parameters. A rule-based approach is more flexible, gives more insight on the perceptually relevant features of speech, and could be more easily adapted to new speakers. Control of prosody, style of speech, is achieved quite naturally within a unified framework. Unfortunately, this approach requires, so far, a lengthy and art oriented procedure using visual and auditory hand-tuning of the rules.

Our goal is to provide a methodology to move gradually from segmental to rule-based approaches. We propose a number of interactive tools using powerful signal and data analysis techniques to model spectral evolution, infer spectral targets automatically, and generate adequate transitions toward these targets.

SYNTHESIS and COARTICULATION

An acoustic synthesizer is usually controlled by a set of parameters updated at regular time intervals. The parameters are either retrieved from memory (speech restitution and segmental synthesis) or computed from rules. We are concerned here with smooth spectral evolution corresponding to articulatory dynamics. As an working hypothesis, articulatory and therefore spectral targets are assumed. In this paper, coarticulation is referred to as a phenomenon of target undershoot due to contextual effects, speaking rate ...

TEMPORAL DECOMPOSITION

ATAL's technique / $1 /$ decomposes speech into phone-length temporal events which could be interpreted as overlapping and interacting articulatory gestures $/ 2,3,4 /$. Evolution of a sequence of m spectral vectors $\left[y_{i}(n)\right]$ is approximated as a linear combination of m events represented by known functions $\emptyset_{\mathrm{k}}(\mathrm{n})$ (interpolation functions) with appropriate weights y_{ik} (targets):

$$
\mathrm{y}_{\mathrm{i}}(\mathrm{n})=\sum_{\mathrm{k}=\mathrm{i}}^{m} \mathrm{y}_{\mathrm{ik}} \varnothing_{\mathrm{k}}(\mathrm{n})
$$

The functions $\emptyset_{\mathrm{k}}(\mathrm{n})$ are constrained to be compact in time: that is zero everywhere except on a segment. The first step of the algorithm consists in finding a good approximation for the localization and the extent of the \varnothing-functions. Once a set $\left\{\varnothing_{k}\right.$ \} has been found, the corresponding target vectors y_{k} are computed by:

$$
\left[y_{k}\right]=\left[y_{i k}\right]\left[\varnothing_{k}\right]^{t}\left(\left[\varnothing_{\mathrm{k}}\right]\left[\varnothing_{\mathrm{k}}\right]^{-1}\right)^{\mathrm{t}}
$$

which minimizes the reconstruction error according to a least square criterion.

Iterative refinement can then be performed until no significant improvement is obtained.

Temporal decomposition of the speech segment /ede/.
\emptyset-functions can be linearly approximated and normalized so that their sum be constant and equal to unity. With this approximation, temporal decomposition of a speech segment correspond to a piece-wise linear trajectory in the parameter space.

Fig. I Synthetic spectrums associated to a linear trajectory
between 2 targets, in different spectral spaces:
i: auto-regressive coeff, ci: cepstral coeff
Ai: area parameters, gi: log area ratios.

SPECTRAL REPRESENTATIONS

A description of transitions is attempted as a linear combination of spectral parameters. A number of spectral representations could be used for this
purpose $/ 5 /$:

Formant frequencies, amplitudes, and bandwidths $\left(\mathrm{F}_{\mathrm{i}}, \mathrm{A}_{\mathrm{i}}, \mathrm{BW}_{\mathrm{i}}\right)$ are often used for speech However, they necessitate a latell physical meaning Moreover, a complex treatment must be performed in order to interpolate spectra with different number of formants. Poles $\left(z_{i}\right)$ and line spectrum pairs
$\left(\mathrm{LSP}_{\mathrm{i}}\right)$ have the same drawbacks.

We therefore investigated the effect of interpolating spectral parameters for several unlabelled spectral representations: LPC ${ }_{(c)}$) area parameters (A) a_{i}), cepstral coefficients $\left(\mathrm{k}_{\mathrm{i}}\right)$, and \log area ratios $\left(\mathrm{g}_{\mathrm{i}}\right) / / 6 /$.

Auto-regressive coefficients are inadequate as the associated space is not linearly stable. Cepstral vectors (c_{i}). gives a spectrum which keeps the peaks of both original spectra. Area parameters seams more convenient, but the interpolated formant trajectories are not quite linear. Reflexion resonances. Log area ratios (g_{j}) are the best parameters we have found so far (see fig. I).

Spectrogram of speech segment/uil

Typical transition between phonemes $/ \mathrm{i} /$ and $/ \omega$

COARTICULATION
An analysis of temporal decomposition results reveals the acoustic-phonetic structure of speech. consonant, vowel nuclei) are described with a single function. Transitions are usually described with two overlapping \emptyset-functions
require an extra function \emptyset_{2} associated with Targ 2 .

Temporal patterns (a) and (a^{\prime}) give different descriptions of the same trajectory (b). (a) is a best description of the actual ariculatory gesture

\varnothing_{2} usually describe a highly coarticulated phone with undershoot of the corresponding target. he trajectory between targets 1 and 3 . This is the case for a rapid front-back movement of the tongue in such diphones as [ui], [wil], [iu], and [ju]), which correspond to a "crossing formant" configuration more accurately the spectral transition (see fig. II).

SEGMENTAL SYNTHESIS

Synthesis can be achieved successfully by concatenating stored segments. A set of such segments called "polysons" is chosen in such a way that coarticulation effects accross boundaries are
minimized $/ 9 /$. This is achieved by placing boundaries on spectrally stable sounds (vacing fricatives, nas al consonants, occlusion of plosives).
About 7000 "polysons" were selected for French About 7000 "polysons" were selected for French
synthesis. Significant improvement in perceptual synthesis. Significant improvement in perceptual
quality (intelligibility and naturalness) is achieved with "polysons s synthesis as compared to diphone
synthesis. Unfortunately the number of these units is synthesis. Unfortunately the number of these units is
an order of magnitude larger than the number of an order
diphones.

Temporal decomposition can be used to
encode "polysons" very efficiently $/ 10$.

RULE-BASED SYNTHESIS

"Polysons" are being classified according to the structure of their \emptyset-functions. $/ 10 /$. For instance, the temporal patterns of all combinations of a vowe and an unvoiced fricative (/as/ /if/ /uS) are similar.

The archetype of each group can be viewed as a rule to synthesize "polysons" of that group. A polyson" is therefore reduce

The edges of "polysons" are quasi-stationary segments, described with a single \emptyset normalized to unity. The concatenation of "polysons" is restricte matching targets on edges (much lik

The \varnothing-pattern can be distorted by rules to take care of variations in speaking rate, stress, emphasis... Overlapping and smoothing of \emptyset-functions at boundaries express the coarticulation effects accross "polysons".

CONCLUSIONS

Temporal decomposition using target spectra can break the complex encoding of these segments. In particular, coarticulation effects are analyticaly explained and modeled. It is demonstrated that these new tools provide an adequate environment in our search for better rules in acoustic speech synthesis.

ACKNOWLEDGMENTS

Some ideas developped in this work where discussed with colleagues from IPO, Eindhoven, during a sabbatical year G. CHOLLET spent there. Contributions of S.M..MARCUS were particularly important in the initial phase.

REFERENCES

/1/ ATAL B.S. Efficient coding of LPC parameters by temporal decomposition. Proc. ICASSP-83, 2.6. 81-84, 1983.
/2/ MARCUS S.M., Van LIESHOUT R.A.J.M. Temporal decomposition of speech. IPO annual progress report 19 p . 25-31, 1984.

13/ AHLBOM G., F. BIMBOT, G. CHOLLET. Modeling spectral speech transitions using temporal decomposition techniques. ICASSP, Dallas, 1987.
/4/ CHOLLET G., GRENIER Y., MARCUS S.M. Temporal decomposition and non-stationary modeling of speech. EUSIPCO, The Hague, 1986.
/5/ SCHAFER R.W., RABINER L.R. Parametric representations of speech. From: Speech Recognition, REDDY R. (ed.), 1975.
/6/ VISWANATHAN R., MAKHOUL J. Quantization properties of transmission parameters in linear predictive systems. IEEE Trans. ASSP 23, pp. 309-321, 1975.

7/ OHMAN S.E.G. Coarticulation in VCV utterances: Spectrographic measurements. JASA 39, pp. 151-168, 1966.
/8/ CHAFCOULOFF M., CHOLLET G., DURAND P., GUIZOL J., RODET X. Observation and modeling of the variability of formant transitions using ISASS. IEEE-ICASSP. Denver, 1980.
/9/ CHOLLET G., GALLIANO J. F., LEFEVRE J. P., VIARA E. On the generation and use of a segment dictionnary for speech coding, synthesis and recognition. IEEE-ICASSP Boston, 1983.
/10/ BIMBOT F., CHOLLET G., MARCUS S. M. Localisation et representation temporelle d'evenements phonetiques: applications en etiquetage, segmentation et synthese. JEP-86 Aix-en provence, 1986.

A New Program for Manipulation of Natural Speech : ---- Interpolation Between Two Natural Utterances -...-

Maximilian Hadersbeck

Institut für Phonetik und sprachliche Kommunikation der Universität München
Schellingstr. 3, 8000 München 40, F.R.G.

ABSTRACT

For phonetic experiments it is very important to be able to manipulate distinctive features in natural utterances by not loosing the natural sound of the utterance.
In this paper the description of a computer program is delivered which allows interpolation between two natural utterances by means of Spectral Envelope Interpolation. The program produces high quality synthetic utterances, where speech parameters like pitch, intensity and formant structure of one speech utterance can be adopted to the same parameters of another utterance. You can produce a natural sounding utterance continuum starting with the unmanipulated initial utterance towards a final utterance with the desired degree of manipulation. With this kind of manipulation you can for example change speaker identity, sentence intonation and stress of a natural utterance.

INTRODUCTION

This program is a new solution to interpolation between two natural utterances. The program produces higher quality speech utterances than a former program, developed by Simon [1], [2] at this institute.
Simon describes the program as following :
"Contours of speech parameters such as pitch, intensity or formant structure can partially or totally be imposed on utterances, thus changing speaker identity, sentence intonation, stress or other psychophysical parameters. All manipulation can be done in discrete steps from the unmanipulated initial utterance to the final utterance with the desired degree of manipulation." (Simon (1984))

The program which I developed allows speech utterances to be manipulated in the same way as simon described, but I
introduced a new interpolation method in this program. The interpolation method is a means of "Spectral Envelope Interpolation" :

The spectra of the two utterances are calculated pitch-synchronously and according to the mode of interpolation and number of discrete interpolation steps, out of the two spectra a new spectrum is geometrically developed. From this spectrum the time signal of the new speech utterance is produced by a means of Inverse Discrete Fourier Transformation.
A continuum between two utterances can be developed by interpolating between the following parameters :

Spectral and Intonation Interpolation The spectral shape and the intonation of speaker one's utterance is interpolated towards the spectral shape and intonation of speaker two's utterance.

Spectral Interpolation (the intonation of utterance one remains unchanged)

It is interpolated between the spectral shape of the two utterances. All the utterances of the continuum have the intonation of utterance one.

Intonation Interpolation (the spectrum of utterance one remains unchanged) It is interpolated between the intonation of the two utterances. The spectral shape of the utterances is not changed.

THE PROGRAM [1]:
Logarithmic Interpolation :
The user can choose between a linear and a logarithmic interpolation
method.
The logarithmic interpolation method has the advantage that the steps from the intonation of the first utterance towards the second are not simply analytically defined, but they are fitted to the properties of listener's speech perception

Spectral Envelope Interpolation The interpolation method between utterances is a "Spectral Envelope Interdisadvantages of the interpolation method, introduced by Simon [1].
one disadvantage was distortion in the synthetic speech signal if the two utter-
ances are very different in their tructure.
Input and Output
The inputs of the program are the two speech utterances, with a description of the unvoiced/ voiced/ pause structure. The next input is the number of discrete ances and the mode of interpolation. The ast input is the kind of interpolation : inear interpolation or logarithmic interpolation.

The outputs of the program are a continuum of natural sounding utterances with their accordance to the input. description in

Restrictions on the Phonetic Structure of Utterances :
same phonetic unvoiced tructure. An example : Given is the utterance "MAX"
Its unvoiced/ voiced/ is : unvoiced/ voiced/ pause structure

for voiced, U for The second utterance must have the same
unvoiced/ voiced/ pause
for ${ }^{\mathrm{P}} \mathrm{expample} \mathrm{V}$: $\stackrel{\mathrm{P}}{\mathrm{MIX}}{ }^{\mathrm{U}}$
The program interpolates now between the utterance one and in the example) of utterance two, the second fegments (voiced segment in the example), the third and so The program cannot interpolate between ture. The only parametent phonetic strucbetween the utterances is the can vary within the coinciding segments information The segments can have totally
length, FO Curve, energy distribution they can be spoken for example from
different
speakers. parameters the program can Between these
The Interpolation Between the Two utteran-
ces Within the Speech Segments
Pause- Segments :
ments To interpolate between Pause seg. ments, the speech datas are transformed the Pause segments are adopted to the interpolation step.
Unvoiced- Segments
step, the According to the interpolation step, the duration of the unvoiced segment utterance are calculated data for the nei signal of the two utterances, withe tine spectral transformation.
Voiced- Segments
Determination of The Actual Pitch Period In the first step the progran the voiced segment for both utterances. We call the number of pitch periods it
utterance one IANZ1, those in utterance two IANZ2. According to the interpolation step, the number of pitch periods for the new utterance (IANZX) is calculated. (se Now two in Appendix)
hrough the voiced segment developed to move nce one) and INCR2 (unt : INCR1 (utter. hat increment INCR2 (utterance 2). With voiced segment of utterance one and the ance two, meeting IANZX pithe and utte the segments of IANZX pitch periods in
utterance one and in
utterance two.

An example: (look at figure 1)
Utterance one has 6 pitch periods and The interpolation pitch periods eriods for the step demands 5 pitch Now you calculate an increment and two, to stent for speaker thances to step through the th that ine and utterance two oiced increment you stwo. irough the voiced segments, and the step through the
pointer determines the pitch incremen
utterance one and utterance two, between
which the "Spectral Envelope Interpola-
tion" tion " is performed.
in the example an interpolation is performed between pitch period number 3 of period number , to calculate the new pitch

The "Spectral Envelope Interpolation"
calculate out of tho pitch meriods, to their FO value, a new pitch periods, with has an $F 0$ value in accordance which Interpolation step.
I decided to take the Discrete Fourier Fransformation and Discrete Inversformation to reach this aim 2].

he Algorithm :

Step 1 :
Calculate the N spectral lines Ulp(n) in the time signal ulp(n), $n=1, \ldots, N \mathbf{N}$
Calculate the M spectral lines $U 2 q(n)$ of utterance two within pitch period (See Formula 1 in the Appendix).
Step 2 :
Calculate the number Q of neccesary spectral lines in the new period according to the interpolationstep.
(See Formula 2 in the Appendix)

Step 3 :

for utterance one out of lines Wip(n) for utterance one out of the N specEnvelope Interpolation"
Calculate the Q spectral lines $W 2 q(n)$ for utterance two out of the M specEnvelope Interpolation

Step 4
Calculate the new spectral 1 in
Xf(n), $n=1, \ldots, N$ via an interpolation between W1p(n) and W2q(n)
(see formula 3 in the Appendix) Step 5 :
Calculate the time signal for per
od $f \times f(n), n=1, \ldots, \ldots$ for th
spectral lines $\mathrm{Xf}(\mathrm{n})$
(see formula 4 in the Appendix)

IMPLEMENTATION :

High Level program is implemented in the Digital Language FORTRAN 77 on a he very emphasize in the program lies on subroutines good readable form. Its programmer can understand very easy tha ork of the routines.
Because of this, the computation rather long: On a PDP $11 / 73$ it takes for wo utterances of 5 seconds lace

SUMMARY :
I have descibed in this paper a omputer program, which is able to produce utterances. The of natural sounding starts with an unmanipulated utterance towards a manipulated utterance. The kind programiation can be chosen manually via

ACKNOWLEDGEMENTS :

EQUIPMENT The WORK was sponsored by DIGITAL with a complete PDPII/73 computer system including Software and Analog/Digital

References :
[1] Simon, Th. : Manipulation of natural speechsignals according to the speech Forschungsberichte des Instituts, Phonetik und Sprachliche Kommunikatio der Universitaet Muenchen (FIPKM) 17] Rabiner L. Gold B. :Theory and App-
lication of Digital Signal Processing,
Prentice Hall (1975) Prentice Hall (1975)
Eine MICRO $11 / 73$:Sprache und Klan singmachine, 9. DECUS Muenchen e. v.
4] Hadersbeck M. :Digitale Sprachverar-
Hadersbeck M. :Digitale Sprachverar Muenchen e. V. Symposi 10. DECU posium, Berlin

APPENDIX :

Formula 1 [2]:
(2) $\operatorname{Up}(n)=\sum_{l=0}^{N-1} \operatorname{up}(1) \cdot e^{-i(2 \pi / N) \ln }$
for $n=1, \ldots, N$

Discrete Fourier Transformation

Formula 2 :
$Q=N+F F *(M-N)$
where :
FF ... factor of interpolation (0.0<= FF < = 1.0)

Formula 3 :
$X f(n)=W 1 p(n)+F F *(W 2 q(n)-W 1 p(n))$
where :
FF ... factor of interpolation ($0.0<=F F<=1.0$)

Formula 4 [2]:
(3) $\quad x f(n)=1 / N \sum_{l=0}^{N-1} \quad X f(1) \cdot e^{i(2 \pi / N) \ln }$
for $n=1, \ldots, Q$

Discrete Inverse Fourier Transformation

Subroutine ENVINT
(SPECIN, ANZIN, SPECOU, ANZOO
C "SPECTRAL ENVELOPE INTERPOLATION METHOD
C Input :
C $\operatorname{SPECIN}(I), I=1, \ldots$ ANZIN
C - ••

C Output:
C $\operatorname{SPECOU}(I), I=1, \ldots$ ANZOU

DIMENSION SPECIN(1),SPECOU(1) INTEGER*2 ANZIN, ANZOU

XIN $=2 * 3.1459265 /$ ANZIN \quad angle input XOU $=2 * 3.1459265 /$ ANZOU 1 angle output QQ2=ANZOU/2 1 ANZOU/2 spectral lines DIN $=0.0 \quad 1$ Increment counter IN DOU=XOU $\quad 1$ Increment counter OUT IND=1 Ispectral line counter SPECOU(1)=SPECIN(1)

DO $1 \mathrm{I}=1, \mathrm{QQ} 2$
2 IF (DOU .GE. DIN
.AND. DOU .LT. DIN+XIN) GOTO 3
$I N D=I N D+1$
DIN=DIN+XIN
GOTO 2
3 GRAD=(DOU/DIN)/XIN
$\operatorname{SPECOU}(I+1)=$
$(S P E C I N(I N D+1)-S P E C I N(I N D)) * G R A D+$ SPECIN(IND)
$\mathrm{DOU}=\mathrm{DOU}+\mathrm{XOU}$
1 CONTINUE
RETURN
END

SYNTHESE DE LA PAROLE PAR POINTS-CLES : PREMIERS RESULTATS

AGNES MANTOY
Laboratore "Image et Parole" et Laboratoire de Phonėtique (D.R.L.)
Université Paris 7 - Paris

RESUME

Compte tenu de la redondance inherente au signal de parole et de la pertinence de certains évenements, il est possible de reconstituer un signal de qualité acceptable a partir d'un jeu de paramètres attaches à certains "points-cles" du signal d'origine. Ce principe est mis en ouvve ICl sur des phrases simples de français standard: les points-clés sont recherchés sur les représentations temporelle et spectrale du signal. Entre ces points, les coefficients de réflexion nécessaires à la synthese par prediction lineare sont ensuite calcules par interpolation.

INTRODUCTION

La parole est dotee d'une redondance importante a quelque niveau que se situe l'analyse et en particulier au niveau acoustico-phonetique : la présence d'un phone à un instant donné influe sur la realisation acoustique des phonemes environnants.

Ainsi le signal de parole est constitué de segments stables ou quasi-stables et d'autres, transitoires, reflétant un changement plus ou moins important et plus ou moins rapide de la source sonore et/ou des articulateurs. On peut y reperer, quelquefois non sans difficultes, des discontinuites majeures comme début et fin de voisement, début et fin vocalique, debut et fin de friction etc... (cf Abry \& al. [1]).

Les synthetiseurs existants exploitent la redondance du signal pour réduire le debit d'information très élevé du signal d'origine en maintenant son intelligibilite avec une bonne qualite, mais il est encore possible de reduire ce débit d'information en utilisant les propriétés acoustico-phonétiques du signal, c'est-à-dire en tenant compte de ces événements entre lesquels le signal évolue

Certains auteurs ont déjà travaillé dans ce sens, en particulier Olive \& Spickenagel [4], et !'on se propose de reprendre ce travall sur des courtes
phrases de français standard, de façon plus systematique et en partant de considerations plus phonetiques que techniques.

CORPUS

Il est constitue d'une quarantaine de mots de type CVCV inserés dans la phrase porteuse "C'est ---ça". La deuxième voyelle est toujours /a/, la première étant $/ \mathrm{i} /$, $/ a /$, /u/ ou /a/. Les consonnes employees sont les suivantes: $/ \mathrm{t} / \mathrm{l} / \mathrm{k} /, / \mathrm{b} /, / \mathrm{d} /$, /n/,/s/, / ///, /v/, /z/, /l/ ou le gilide /j/. Ce corpus a ete enregistre en chambre sourde et dans un ordre aleatoire par un locuteur masculin.

Les phrases ont éte ensuite numerisees a 16 kHz sur. 12 bits. L'analyse LPC, effectuee par tranches de 16 ms , fournit un jeu de 14 coeificients de reflexion auxquels il faut ajouter le gain et le pitch. Après lissage du pitch et du gain, on procede à une synthese LPC qui restitue un signal "de base" reconstruit directement à partir des coefficients de reflexion d'origine

METHODE

Le traitement consiste tout d'abord a rechercher sur les representations temporelle et spectrale du signal de base des "points-clés", c'est-à-dire des points indispensables à la reconstitution d'un signal de qualité. A ces points-cles sont associes les coefficients de réflexion de la tranche d'analyse correspondante. Entre ces tranches, les parametres sont calculés par interpolation linéaire de l'arc sinus des coefficients de réflexion. La synthèse LPC effectuee sur ces jeux de paramètres fournit alors de nouveaux signaux "interpolés".

La qualité de la synthèse dépend bien sür du nombre de points-clés retenus, de leur emplacement mais aussi du type d'interpolation effectuee tant sur les coefficients de réflexion que sur les paramètres prosodiques. Dans un premier temps cependant, nous avons choisi de limiter notre etude
a l'evolution des parametres relatifs au condurt a l'evolution des parametres relatis a la source socal independamment de ceux assockés a chaque sonore : hous avons donc conserve, pour chaque signal interpole, le gan et le pich Nordstrand \& ouse. [[] ont montré que l'interpolation lineaire en önman [3] ont montré que l'interpolation lineare en arc sinus des coefficients de reflexion donne de melleurs resultats que d'autres methodes (interpolation lineaire des fonctions dare coefficlents LAR (Log Area Ratio), par ex recherche va sans dire que lorsque le probleme de da l'evolution sparametres prosodiaus sera resolu, ceux-c devront âtre reintroduits et 1 on sera amené revoir le type d'interpolation a effectuer.

SEgMENTATION

Elle est effectuee non pas sur le signal original mais sur le signal de base reconstruit apres analyse-synthese LPC puisque, du fart de l'analyse sur des tranches de 16 ms , il peut y avoir un décalage entre la localisation d'un évenement acoustique donné sur l'original et sur le signal synthetise. Par ailleurs, on utilise le spectrogramme et l'edition du pitch et de l'intensit comme aide à la segmentation.
La segmentation consiste ici à marquer les frontières des zones stables, aucune décision n'etant prise pour les segments transitoires quant a leur appartenance à l'un ou l'autre des phones quil les entourent. Les phones discontinus tels que les occlusives sont subdivises en deux segments: le premier (silence ou voisement) correspondant à la tenue de la consonne, le second, bruité, à son relâchement.

RECHERCHE DES POINTS-CLE

Si l'on suppose que deux points-cles par phone en moyenne sont nécessaires à la reconstitution du signal (cf Heller (2]), alors plusieurs strategies sont possibles parmi lesquelles les deux suivantes:
(i) definir les points-clés comme les milieux des parties stables et des transitions: ce marquage indique bien les cibles a atteindre mais ne rend pas compte de la duree respective de ces parties stables et de ces parties transitoires. De plus, la décision concernant la localisation du point situe dans la transition n'est pas toujours facile prendre.
(ii) déf inir les points-clés comme les extremités des zones stables: les cibles a atteindre ainsi que la duree pendant laquelle elles sont tenues sont
prises en compte. En outre, ces points, entre lesquels les coefficients de reflexion sont interpoles, presentent l'avantage d'ètre relativement surs. Ceci suppose que les formants des zones de transition sont des courbes continues et monotones d'une cible à l'autre, hypothese qui devra être aff inee
C'est cette deuxieme methode qui a ete retenue Cependant, le resultat, a l'audition du signal et sur sa representation graphique, nest pas toujours satisfaisant. En effet, les courbes des formants dans les parties transitoires noont pas une pente constante. De plus, il semble que ces transitions doivent ètre interpretees plus comme des ajustements des articulateurs en jeu, avec les erreurs que cela comporte, que comme un déplacement monotone de ceux-ci d'une cible a l'autre ("overshoot"). Si tel est le cas, il faut donc determiner les variations pertinentes dans le mowement des articulateurs, c'est-à-dire pour mouv nous, les variations pertinentes des coefficients de flexion dans les zones de transition.
Pour tenter de resoudre ce probleme, nous avons egalement sélectionne un point-clé à l'intérieur de la transition. Le nombre moyen de points-clés par phone est alors de trois et non plus de deux, ce quil rend la synthese de bien meilleure qualite mars aussi plus couteuse en stockage de données. Cette méthode conduit à
(i) se limiter, sur les voyelles, uniquement au segment ou la structure formantique est quasiment constante,
(ii) marquer dans la transition le début (dans le cas $\mathrm{C}-\mathrm{V}$) ou la fin (dans le cas $\mathrm{V}-\mathrm{C}$) de la structure vocalque (etablissement ou relàchement de la voyelle).
Sont soumis au même traitement que les voyelles rous les sons vocaliques (presentant une structure ormantique) tels que les consonnes nasales ou latérales et les glides ainsi que la consomne approximante $/ \mathrm{v} /$.
En fait,le nombre reel de points-cles depend de la composition de la sequence sonore : une portion de signal ne comportant que des sons vocaliques par exemple, a toujours une structure formantique variant dans le temps, mais ininterrompue. Il n'y donc à retenir pour chaque phone que les del oints-clés situes aux extrémités de la part table. Certains de ces sons vocaliques ont un lj ou stable tres breve voire inexistante (le gilion /j/ ou la latérale $/ / /$ par exemple) et un seul poin suffit dans ce cas

COEFFICLENTS DE REFLEXIONEI POINIS-CLES
L'originalite de notre methode consiste a nous appuyer aussi sur levolution temporelle des deux premiers coefficients de reflexion. Le rapport entre representation temporelle et spectrale du signal et représentation temporelle des coefficients de reflexion nécessite une étude approfondie qui sera menee ultérieurement Cette relation n'est pas evidente, par exemple, dans les syllabes non accentuees et entierement voisees qui sont difficiles à segmenter et dont les coefficients de reflexion presentent des fluctuations assez deconcertantes. Toutefors, on constate que la visualisation des coefficients permet le plus souvent, en cas de doute sur deux tranches adjacentes, de selectionner l'une d'entre elles comme point-cle
Par allleurs, du fait du principe meme de l'analyse LPC, notre methode se heurte a un problème de resolution temporelle : deux evenements successifs choisis sur la representation temporelle du signal peuvent ventuellement se situer dans la meme tranche analyse ou dans deux tranches adjacentes. Cela se rodut a la frontiere dune consonne occlusive mene une voyele, ou nous sommes toujours tranch a rontin des point-cles dans plusieurs de locclusive l'autre de locclusive, lautre son relachement, le troisleme la in du relàchement de la consonne et le debut de letablissement de la voyelle. Il est possible aussi que deux évenements distincts solent situes dans la meme tranche d'analyse et contribuent alors, ensemble, aux valeurs que prennent les coefficients. On devra, dans une etape ultérieure (segmentation automatique par exemple), tenir compte de cette difficulté

APPLICATIONS

Les figures 1 et 2 representent l'oscillogramme et le spectrogramme des phrases "c'est douta ça" et "c'est vida ça" Elles permettent de comparer les signaux de base synthétisés à partir des coefficients de reffexion originaux (66 jeux de parametres) avec ceux reconstruits a partir des coefficients interpolés.
Ces signaux "interpolés" ont été resynthetises a partir respectivement de 23 et 19 points-cles Le nombre de points retenus reste donc relativement important, mals en contre-partie la qualite de ces signaux est tres bonne et il est dificile de les distinguer à l'oreille des signaux de base

CONCLUSION

Bien que le type de synthese etudie dans cette communication resulte en une compression du debit dinformation, elle apparait surtout comme un outil bien adapté à la mise en évidence de l'importance perceptuelle d'événements acoustiaues dans la comprehension de la parole. On peut penser que les evenements qui doivent être retenus sont le reflet de changements articulatores essentiels lors de la production. Leur determination necessite une etud systematique des cas ou apparaissent les phénomenes de coarticulation, etude qui devra ètr menee sur la production de plusieurs locuteurs. Un analyse plus fine du comportement des coefficient e reflexion sera alors possible et permettra san doute de distinguer les variations pertinentes de longements in pas et de les rapprocher des thangemporile que dans les representations tant temporelle que spectrale du signal.

REMERCIEMENTS

Tous les traitements numeriques ont ete effectues sur systeme GenRad en TSL (Time Series Language). Nous remercions la societe GenRad rance et en particulier Messieurs Leguer et Stoh pour le soutien qu'ils nous ont apporté.

REFERENCES
[1] Abry C. \& al. - propositions pour la segmentation et l'étiquetage d'une base de données des sons du français - 14 ème JEP GALF 1985, p 156-163.
[2] Heiler J. - Optimized frame selection for variable rate synthesis - IEEE ICASSP 1982, p 586-588.
[3] Nordstrand L. \& Öhman S.E.G. - Computer resynthesis of speech on phonetic principles - Lund UnIv. W.P. n° 19, 1980, p. 74-79.
[4] Olive J.P. \& Spickenagel N. - Speech resynthesis from phoneme-related parameters JASA vol. 59, $n^{*} 4$ 4, 1976, p. 993-996.

Elal Oscillorramme et spectroramme de /sooutesa/. En haut: sigral de basa, en bas: signal "interpolè".

Fig 2 oscillogramme et spectrogramme de /sevidasa/. En haut: signal de base, en bas: signal "interpole"

EFFECTS OF CONTEXT AND LEXICAL REDUNDANCY ON CONTINUOUS WORD RECOGNITION

PETER J. SCHARPFF

Dept. of Linguistics/Phonetics Laboratory, Leyden University, P.0. Box 9515, 2300 RA Leiden, The Netherlands

ABSTRACT

Word recognition research typically focusses on the recognition of isolated words. Yet in actual speech perception the correct or incorrect recognition of earlier words will be crucial to the recognition of later words in the sentence and vice versa. Using an ongoing gating technique, the effects of lexical redundancy (monosyllabic vs. polysyllabic words) and speech quality (synthetic speech, degraded natural speech, high quality natural speech) on word recognition were investigated.
The results reveal that sentences composed of short words are more difficult to understand than sentences with longer words, as can be predicted by e.g. the Cohort model of word recognition. Also, it appeared that when a word could not be recognized instantaneously (as often occurs in low quality speech), chances of a postponed recognition on the basis of following context abruptly decrease when more than 4 words (or 7 syllables) have elapsed. Such delayed recognition of earlier words typically occurs at constituent boundaries.

INTRODUCTION

When a listener hears a sequence of sounds like "Inabankmanagersoff..." he can't be sure yet whether this would be the beginning of the sentence
(1) In a bankmanager's office law and order must rule.
or
(2) In a bank, managers offer a lot of service to customers.

A decision as to how the incoming sounds should be divided into words can be made only when we have heard enough of the following context to solve the ambiguity. Such ambiguities pose problems to the listener, especially when the segmental quality of speech is poor, e.g. as a result of background noise or due to the fact that speech is produced by a machine.
The number of alternative interpretations that the listener must keep in mind during the process of recognition can be very large, and the listener will need relatively much of the following context to solve an ambiguity. These kinds of problems are caused by the fact that the listener does not know
where to place word boundaries. When giving away those boundaries we will help the listener to solve ambiguities and to integrate the sounds he has already heard. This can be done by means of prosodic word boundary markers like a pitch rise at the end of a phrase, a non-final pitch fall between two rises or a speech pause (all three accompanied by lengthening of the preceding syllable).
In previous research (see [1] and [2]) it was shown that it is possible to reduce the negative effects of poor segmental intelligibility by placing a clear speech pause after, for instance, every related group of words. In this research the recognition percentage increased with 10 points as a result of pauses edited into the speech.
When prosodic boundary markers are to be edited in continuous speech, these have to be inserted at those places that help the listener recognize the speech as much as possible.
Not only does reduced speech quality affect the intelligibility but also word length can play an important role in the delay of word recognition. Long (polysyllabic) words will be recognized early relative to their word length as opposed to short (monosyllabic) words. This effect can be explained as a result of the inherent lexical redundancy of longer words. Such redundancy is generally absent in short words. When a listener hears the sound sequence "eleph..." he will undoubtedly recognize (under perfect listening conditions) the word "elephant" even if he has not heard the final syllable yet, because there is no other (monomorphematic) word in his vocabulary that begins with this sound sequence. The moment that a listener has heard enough of the sound material to determine which word it will be, is called the recognition point of that word. It will be clear that shorter words contain far less or even no lexically redundant material. The lack of redundancy in words results in a shift of the recognition point towards, or even beyond the word end. This tendency will even be increased by the effect of degraded speech quality. In such cases a listener will need more of the following context to solve his recognition problems.
In an experiment systematically varying word length and speech quality we have examined the following questions:
a. To what extent does word length (or lexical redundancy) influence the recognition of words in connected speech?
b. What is the maximal stretch of following context that a listener may use to facilitate the recognition of a word?

метноD

When we want to establish the positions in a
sentence where most of the recognition problems sentence where most of the recognition problems
arise and how long such problems may persist for a listener, we must be able to trace responses from the listener from. moment to moment. This is possible when we use a gating technique in presenting stimuli to subjects. The technique used
in this experiment presents fragments of sentences in this experimat are lengthened on each following presentation, until eventually the listener has heard the whole sentence. The length of one
increment used in this particular experiment is a speech fragment that begins in the inddle of the
vowel of a lexically stressed syllable and ends in vowel of a lexically stressed syllable and ends in
the middle of the vowel of the next stressed the middle of the vowel of the next stressed
syllable (roughly comparable to a foot'). The first fragment is of course from the sentence onset
to the middle of the vowel from the first stressed syllable
with each sentence three versions were constructed with different speech qualities: hi-fi natural
speech, natural speech degraded by amplitudemodulated white noise, and diphone synthesis using a Philips MEA 8000 spech chip. The rationale behind including degraded natural speech was that we wished to check whether the same type of errors were obtained under poor speech qual.
irrespective of the precise type of degradation.

material

Pairs of sentences were constructed in which we arnta poly-and monosyllabic words in the same For example:
(3) Een knecht vond het kind op de stoep van zijn (A servant found the child on the doorstep of his house.)
and
(4) Een agrarier ontdekte de vondeling in een
weiland nabij zijn boerderij.
(An agrarian discovered the foundling in a An agrarian discover
field near his farm.)

Thirty subjects were asked to listen to the stimuli each time guessing what word the word fragment they heard last would be the beginning of. They had to
type their responses into a computer, that type their responses into a computer, that was
programmed to analyse the answers on what was correct and what was not. After having been informed what words had been correct, the subjects
listened again to the sentence now lengthened with istened again to the sentence now leng thened with
ne 'foot' of context, corrected their earlier response when necessary and added what they had ecognized of the newly heard sound sequence. All the experiment were stored in computer memory.

pesults and conclusions

ecause in the material only content words were systematically varied with respect to word length,
ve analysed only the responses to those words.

Turning to the first question of the experiment, whether word recognition is more difficult in the visions with short words than in the versions wit long words, we find that the longer words wer
indeed recognized better than the short words: 96 ndeed recognized better The difference is fair small. However when we look at tatle I, we see tha he difference in word recognition of long and
hort words is substantially larger for the synthetic speech quality:

	short vords	1ong vords
hifi	99.9%	$99.8 z$
notse	$95.5 x$	$97.7 x$
synthetic	82.0%	$90.4 x$
mean	$92.5 x$	96.02

There is no difference at all between the word recognition of long and short words under hif speech quality. The versions with noise were still
ecognized better than the synthesized versions, recognized better than the synthesized versions,
because, as we analysed, we found that listener get used to the noise; learning effects were much smaller for synthetic speech. In pilots the noise
level masking the human speech was adjusted so a level masking the human speech was adjusted so as
to make degraded human speech as (un) intelligible as the diphone synthesis. However, due to the much
shorter exposure times in the pilots, no shorter exposure times in the pilots, no
differences in learning effects were discovered before the main experiment.
The differences between the three speech qualities were all significant. This leads us to conclude speech quality gets worse. Moreover, it appears that recognition of short words suffers more from the negative effect
that of long words.

The next question to be answered concerns the naximal stretch of following context that a word. Consider the next figure:

In this figure we have plotted \% correctly
recognized targets, for synthetic speech only, as a rechegnion of the, length of the following speech
function of the the
context (expressed in number of arget in the audible fragment). Notice, first the all that words synthesized from diphones were ecognized less then 40% correct when only their
first part (up to and including half of the first part (up to and including half of the
lexically stressed syllable) is made audible. Even when one foot is added (comprising the integral target as well as at least one other word),
recognition is still at 50%. Recognition scores continue to rise as more of the following context is made audible, until 3 complete words hav elapsed. The curve then quickly asymptotes when
more than 3 words are added to the target. more than 3 words are added to the target.
Context further avay than 3 words apparently does he did not recognize. that has earlier words that listener reaches the fourth word? Considering the structure of our stimulus sentences we find tha most of the word groups (constituents) contain new constituent. We argue that later words do new constituent. We argue that later words do not
help the listener to recover an earlier unintelligible word across a constituent boundary presents borne out by the following table whic presents percentage content words recognized with
or without later context, broken down by wor position within the phrase (constituent)

	$\begin{gathered} \text { recognized } \\ \text { zt ist partial } \\ \text { presentation } \end{gathered}$	$\begin{gathered} \text { recornized } \\ \text { affer } \\ \text { one geding } \\ \text { onate } \end{gathered}$	
	${ }_{\substack{39 \% \\(500)}}$	${ }_{\substack{736 \\(936)}}^{(23)}$	(
non-phrasefinal vords $20 \%(320)$	${ }_{\text {(132 }}{ }^{\text {(11) }}$	(293)	${ }_{(142)}^{462}$

A phrase-penultimate word is recognized on the basis of later context significantly more of ten
than a phrase-final word, $X^{2}(1)=7.28(p<.01)$. can explain this effect by assuming that higher within constituents than across constituen boundaries.

dISCUSSION

Additional context within a constituent seems to words. We also found that non-recognized earlie were recovered on the basis of following context more often than phrasefinal words. We take this to be an indication that listeners tend to recognize
words in phrases. Therefore, if we are to help the listener recognize words in poor speech quality (synthesized speech), we shall have to mark phrase
boundaries with effective prosodic markers.

Acknowledgement:

This research was supported by the Foundation for Linguistic Research, which is funded by the Nether lands Organization for the advancement of pure re search, zwo.

References:
[1] B.A.G. Maassen, "Marking word boundaries t" improve the intelligibility of deaf speech in: Artificial corrections to deaf speech
studies in intelligibility, Enschede, Holland,
(21 1985 S. 6 .
S.G. Nooteboom, "The temporal organisation of
speech and
recognition", the proces of spoken word
IPO Anual Progress Report,
stimulus category, reaction time, and order effect - an experiment EACTION TIME, AND ORDER
ON PITCH DISCRIMINATION
anton batliner - lieselotte schiefer
Institut fur Phonetik und Sprachiche Rommunikation der Ludwig-
honetik und Sprachliche Rommikiation
Maximilians-Universitat Munchen, FRG

ABSTRACT
The order effect". that causes in a discr-
imination task the one presentation order imination task the one presentation order
to be better discriminated than the reverse order. Was tested in the domain of pitch perception with speech and non-speech ma-
terial as well as with rises and falls. The
resalts shill terial as well as with rises and ralis. The
results showed that (i) rises produce a
greater order effect than falls. (ii) nongreater order effect than falls, (ii) non-
speech material and rises are better disspeech material and rises are better dis-
criminated than speech material and falls, respectively.

introduction

 The phenomenon of "order effect" (hence-forthealled oE, has been well known in
psychoacoustics since the early thirties. psychoacoustics since the early thirties.
cof. Stott 171 I Zwicker-Feldtkeller 101 .
 ferent (AX) paradigm. this effect cuses
the one sequence AB to be discriminated the one sequence AB to be discriminated
significantly better than the. other sequence BA. In peychoacoustic research, this
effect has been considered to be an experiefntal artifact and its influence was
eliminated by the following procedure. both eliminated by the following procedure: both
orders AB and BA were presented and the orders AB and BA were presented and the
mean of the discrimination for both pairs
served served as criterion for e.g. just noticeable dirfe
etc. cf. 1101
M phonetic research this effect was not dealt with very often (but cr. Repp et al
(61. Chuang/Hang (23). That might be due to the experimental paradigm mostly used in phonetics: in an ABX-task. it cannot show
upas clearly as in an AX-task (Repp. 1981 up as clearly as in an ax-task (Repp. 1981
(51) In our investigations. we used only
the A paradim the Ax-paradigm, as it is known s. 51 that
this paradigm is more sensitive than the this paradigm is more sensitive than the
ABX-paradigm. In several investigations at the Institut rur phonetik in Munich
carried out during the last few years, the carried out during the last few years, the
OE showed up systematically in studies on

 creathy stops in Hindi ist Schiefer, unpub-
breat
lished). German intonation lished). German intonation (Batliiner.
unpublished). In a not yet published paper. we show that the oE is not simply due to the experimental design. and sime summarize
present paper, we want to address the ques. ion of oe from a somewhat dirferent point
of view: (i) Does the OE behave differently ith speech and non-speech material, is it a purelly psychoacoustic phenomenon,
or is therea qualitative difference bet. ween speech and non-speech material? (iil) is there anydirference between rises and hats as with regard to the oE? in in the contribution of reacion time to the explanation of the pheno
menon? (iv) Is ther menon? (ive Is there any dirference between
the threshold for speech and non-speech ma
terial?

material

Abstract

The speech stimulus chosen was 'ja', be cause the acoustic structure of this stimu ause the acoustic structure of this stimu interest can be controlled precisely. on of the authors (A. B.) produced several sti. muli monotonousily in the sound proofed rool of the Institute. The stimuli were taped oo a Telefunken M15 recorder with a speed of 19 inch per second, digitized on a PDP11/55 Ginch per second, digitized on a PDP11/55 with a sample rate of 20 kHz and filteref with a cut off frequency of 8 kHz. For the cheech resynthesis of the stimulic a proce sper speech resynthesis of the stimuli a proce dure was used where the intensity and the sample points could be defined exactly for each pitch period. The stimulus chosen for each pitch period. The stimulus chosen fol the manipulation was segmented into single the manipulation was segmented into singll pitch periods. A Aogarithmic scale was usef for the manipulation for the manipulation of Fo. The stimuli hal a constant overall duration of 480 ms $+/-5$ ms. The first a constant overall duration of $480{ }^{+/-5}$ ms rhe first part containing the fricative. the transition and the first pitch pariod pulated, whereas the remaining pitch perii puated, whereas the remaining pitch peri ods were subjected to manipulation. Tw target stimuli target stimuli were produced. one falling by one semitone. the other rising by om semitone in its second part. A total of 12teststimuli were derived from the targe by increasing the rising contour in steps of $1 / 8$ tone and decreasing falling contour tone and decreasing thi $1 / 8$ tone. Thagously in 6 steps 0 d $1 / 8$ tone. These 12 stimuli toqether with the two tarqet stimuli constituted the bod of the speech material. 14 further stimuli were generated. each or which was an exacl squarewave analog or the respective speech stimulus.

for each of the subroups cere prepared
non-speech-rises, speech-falls, non-sises,
noesh. falss). In the 'same condition non-speechmulus was paired with itself. resulting in
7 combinations. In the selfirfer tion, the target stimulus dirferent condieach of the other stimul, was paired with
or othe order of presentation being sb as wein as BA, resul-
ting in $2 * 6$ combinations. Five reptition of each of the 19 combinations were titans in randomized order, with an interstimulus pair. Each pair mas follon the members of a
3500 msec after 10 pairs a bause pause or conds followed. The experiments were run in the speech lab of the Institute withan Re vox-trainer and headphones, at a com-
fortable listening level. Subjects were
students that were paid students that were paid for their partici pation. They were instructed to compare the
two members of a pair, to decide as quickly as possible whether they were different or not, and to press the appropriate button on
a box forming part of a digital data colleting device. The a digital data
cosponses were
collected with a PDP11/03 and prepared for collected with a PDP11/03 and prepared for
statistic analysis.

RESULTS
Figures $1-4$ display the different responses
for the orders $A B$ and $B A$; the number subjectsis orders abivenin and parenthesis number of

 graphs the abscissa displays the difference
intone $11 / 8$ to $6 / 8$) percent different responses. Generally the
turned turned out that the order AB yields more difrerent responses (i.e. is more promi-
nent) than the reverse order BA. This shows
up most up most clearly for speech rises and now
speech falls, less clearly for non-spent speech falls, less clearly for non-speech-
rises. He are at a loss for any convincing for the sper the unsystematic results

1/8 $2 / 8$ 3/8 4/8 5/8 6/8 tone

1/8 $2 / 8$ 3/8 4/8 5/8 $6 / 8$ tone

multivariate analysis of variance was applied to the different condition of the
four groups together with four factors, two of them being repeated measures forder of resentation AB and BA, difference in
tone) the other two, material (speech vs. on-speech) and contour (rise vs. fall) was set to p c. O5. The necessary assumptions for the muitivariate approach were
tested with the cochran and Bartiett tests. tested with the Cochran and Bartlett tests.
Table, shows the F-values and level of ignificance for the effects tested.

Table 1: Statistical results.		
betheen-Subjects (df: 1,47)	F	
mat. by cont.	1.42	240
cont.	1.57	217
mat.	4. 22	046*
ORDER HITHIN SUBJ. (df: 1, 47)		
cont. by ord.	03	
mat. by ord.	43	514
ord.	9. 14	004*
Pair hithin subj. (dr: 5.43)		
cont. by pair	60	694
mat. by pair	1.96	103
pair	29. 09	001*
ORDER by Pair hithin subj. (df: 5, 43)		
mat. by cont. by ord. by pair	35	879
cont. by ord. by pair	2.17	074
mat. by ord. by pair	1. 52	203
d. by pair	1.75	143

Four of the effects tested turned out to be
significant: they are asterisked in Table 1: material, material by contour by order,
order. and pair. As there was an interacion between material, contour. and order, the singificant main effect or order cannot be
interpreted. Therefore. fig 5 displays the
simple main efrects for AB and ba; the in of the figure. Giventhe presentation part
of the order
BA (right part of the figure), nons. BA (right part of the figure), non-speech
stimuli yield more different responses that speech stimuli and rises more than falls. This pattern changes for AB (left part) where no difference between spe
speech rises can be observed.
Table 2 shows the intersection Table 2 shows the intersection of the
discrimination function of Figs. $1-4$ with the 50% line. He can see, that (i) rises,
(ii) non-speech material, and (iii) stiml (ii) non-speech material, and (iii) stimuli
in presentation order AB can be better dis. criminated, than falls, speech material, and BA, respectivly.

Table 2: Points of intersection between the
discrimination function and the 50% line.

	speech rises	speech falls	non-speech	non-speect
AB	2.5	4.08	2.07	73
BA	3.86	2. 91	2.75	3. 5

Fig. 6 displays the mean reaction time (RT) or all four groups taken together. The orsame/different' responses for the two or ders AB and BA. It is obvious that respon-
ses to the order AB require longer RTs than those to the order BA. and RTs, are shorter
for different. than for 'same responses. for 'different than for 'same' responses,
i, e., hits require less RT than false
alarms. (In the same' response condition, tharms. (In the same' response condition
the difference between the orders AB and $B 1$ turned out to be significant $F(1,13031$:
s. 89, p \& © 0 .) These results are com
parable to those from the identical pairs. parare 'same. responses (is e. hits) have
whorter RTs than different ones.

AB BA AB BA "same" "different" resp

As for material and contour, our results are in agreement with the findings of Rlatt
4] and t Hart 31 , who showed that rises
are better discrinated than till are better discriminated than falls and
nonspeech better than speech material. The Enspeech better than speech material. The
tout to be no purely psychoacousic phenomenon, as it could be found with
he speech and the non-spech material he speech and the non-speech material. The
present results confirm further our hypohesis, based on aarlier findings, that the reverse order bA, i.e., stimuli are better discriminated if the stimulus are better the
greater change in focomes last. It doesn't greater change in Fo comes last. It doesn't
seem to be the height of the offset that is esponsable, but the amount of Fo-movement,
ecause otherwise the OE for the falls ecause otherwise the OE for the falls
ould favor the order BA and not AB. In the above mentioned paper we will deal with the
origin of the og in detail.

references

(1) Allan. L. G. - Kristofferson, A. B. Piscrimination. Perception \& Psycho physics 16: 26-34 (1974)
(2) Chuang, Ch. -K. - Hang, H.S.-Y.: Time order-error in judgement of prosodic features: pitch, loudness, and dura-
tion. Acoust. Soc. Am. $62(\mathrm{~S}): \mathrm{S} 48$ tion.
(1978)
(3) 't Hart, J.: Differential sensitivity to partch distance, particularity inity
speech. J. Acoust. Soc. Am. 69: 811821 (198
4) Klatt, D. H. : Discrimination of funda mentaprech: Impications in synthe tic speeh: Implications for models
of pitch perception. J. Acoust. Soc.
Am. $5-16$. 1973 .
(5) Repp, B. H.: Categorical perception: issues, methods, findings. Haskins Laboratories Status Report on Speech
Research SR-70: g9-181 (1982)
(6)

Repp, B. H. - Healy, A. F. - Crowder
R. G.: Categories and context inthe perception of isolated steady-state vowels. Journal of Experimental psychology: Human Perception
formance 5: $129-145$ (1979)
(7) Stott. L. H.: Time-order-error in the tions. Journal of Experimenta
Psychology 18: $741-766$ (1935)
181
Tillmann, $H . G$ - Piroth, H. G.: An
order effect in the discriminability order effect in the discriminability
of pulse train sequences. J. Acoust.
Soc. Am. 79 : S73 (1986).
(9) Tillmann, H.g. - Schiefer, L. perception of speaker identity. roc. 10th Int. Congr. Phon. Sci., trecht, pp.443-448 (Cinnamison
(10)

Zwicker, E. - Feldtkeller, R.: Das Ohr als Nachr
Stuttgart
hans georg piroth
hans g tillmann

Institut fur Phonetik und sprachiche ko $\underset{\text { der Universität München }}{\text { O }}$

f. R. G.

F1: ITI $=5,10,15,20,25 \mathrm{~ms}$
F2: Step 1 (5 ms) Step 2 (10 ms)
 F4: ISI $=0,5,1,0,1,5 \mathrm{~s}$
ITI: Inter-tap interval
Step: ITI-ITI2
It
could also be reproduced in the auditory mode using sequences of nine short tones and it vanished when. instead of the num-
ber of tones. the overall duration of the sequences was kept constant in long tone sequences (2.5 s). Yet. it was not clear. whether the disappearance of the affect was caused by the constancy in overall
duration or because there are other paraduration or because there are other parem test using sequences with a duration of mor
The present investigation uses. the dependence of discriminability on the the dependence of discriminability on the
factors intertap interval (ITI) step (ITI(B)-ITI(A) A. order of presen-
tation (OC).
inter-stimulus
inter
 so that the nature of the order effect and the role of the threshold for coinci-
dence of successive stimuli can be evadence of successive stimuli can be eva-
luated based on an interpretation of significant
experiment.

stimuli

Three pairs of gilded brass electrodes ra
mm in diameter with a minimal distance of ${ }_{1}^{\mathrm{mm}} \mathrm{mm}$ between the electrodes of a pair mm betwen the electrodes of a pair
were fastened to the dorsal side or the
left left forearm. They were arranged linearl so that the distal pair was 3 cm from the
wrist. the medial and proximal ones 4 and wrist. the medial and proximal ones 4 and
cm away from the distal one. Sequences of nine taps consisting of three impul
es withan impulse width of 200 us and with an impulse width of $200 \mu \mathrm{~s}$ and
an inter-impulse onset interval of 2.5 ms ach were delivered to the skin. The
distal electrode pair received taps d.
3 . the medial ode one taps recived taps
proximal one taps and the
one sequences proximal one taps ${ }^{\text {fot }}$. The sequences
differed in the duration of the inter-tap interval. (ITI) between the successive

procedure

The $i x$ Ss participating in the experi he six ss participating in the experi dure to adjust subjective intensity to a
mid value between absolute threshold and unpleasentness. Since the 2IAX-test para digm was used. the tap sequences were ar-
ranged in pairs and Ss had to decide whe -

OC: Ordering condition
ISI: Inter-stimulusinterval
ther stimuli were same or different'
(The arrangement of the factorial para The arrangement of the factorial part
meters is shown in tab. 1). Each test or the experiment to a third contained pairs of
of AB-sequences being ding diferent with

 Ier Interval were sequence with the smal ms. Each test consisted of 60 . 20 . and 25 Eanchtest consisted of 60 completely
randomized pairs (5 ITIs x 3 ocs $\times 4$ re-

 successive pairs was fixed to 3 s . The tests were presented in different orders
to each S sothateech posible order of

 twice to yield 8 repe
combination of factors.

Results and discussion
 to yield an interval-scaled dependent
variable. Fig. 1 shows the datafor the three ordering conditions se datater for the
both steps. but pooled both steps, but pooled over ISIs. Data or from homogeneity of variance
 analysis of variance (ITI. Step. OC. ISI) (SPSS (41) showed significant, main
effects for all factors for isI on the effects for all factors for ISI on the
s-level. for all other factors on the St-level. Tor all other factors on the degree interaction. but step x or and or
ITI interactions were hiahly signd ITI interactions were highly signifinteraction is significant. too (Tab. ${ }^{2}$).
The significant inain effects of step. oo The significant main effects of step. oo
and ITíconfirmathe results of our pre-
vious investigations iTillmannepiroth vious investigations (Tiillmanipirot
1986) (101 In varying ISI between the 1986) 101 In varying ISI between the
stimuli to be compared we included a new
factor in the investidationthet factor in the investiogation that is important for the discussion of the order
ffect. In Tillmann/piroth 1986 (10) we Mpposed. that. the order effect might be explained in terms of the classical "time
order error" (TOE) in duration discrimi-

Fig. 1: Percent 'Different'-Pesponses
(a) 1-step, oC1 (b) 2-step, OC1
(c) 1-step, OC2 (d) 2-step, oc2
(e) 1-step, OC3 (e) 2-step, OC3

Table 2 Main Effects and Interactions

 $\begin{array}{lllll} & \mathrm{F}(2,450)=153.10276 & \mathrm{p}<0.01\end{array}$ (

Interactions:
F1
$\times 2$:

Caption as in Tab. 1
hation (Stott 1935) (191 Since the overnation (Stot
all duration of each sequence covaries
with ITI ($D=9 \times 5.2$ ms $+8 \times I I)$ we may hypothesize that the ss judgments in
the $2 I A X-t e s t ~ a r e ~ a t ~ l e a s t ~ p a r t i a l i y ~$ the 2IAX-test are at least partially
based on durational differences betteen
the sequences of a pair or ITI differenthe sequences of a pair or ITI differen-
ces. According to Allan/Rristofferson ces. According to Allan/Kristofferson
1974 tit there is another erfect that is special in duration discrimination be-
sides toe: discriminability of durations sides ToE: discriminability of durations
is not influenced by variation of ISI is not influenced by variation
between the pairs to be compared. Now. if duration discrimination is an im-
portant
factor in the Ss judgments in the present experiment. ${ }^{\text {the should expec }}$ we that discriminability is unafrected or
only slightyy infuenced by variations of
isl only slighty influenced by variations of
ISI and that the order erfect does not
int interact with ISI. This is the case.
since the main efrect of ISI is signifisince the main efrect of ISI is signifi-
cant only on the 5 s-1evel and since there are no interactions that include the face
tor ISI (Tab. 2). The main effect of ISI
is based on appecial contrast between tor ISI (Tab. 2). The main erfect of oren
is oased on a special contrast between
the smallest (0.5 s) and the largest the smallest (0.5 s) and the largest
value of ISI (1.5s) only (ISI1 and ISI 3 :
F(1.450:
 to be at least one factor constituting
the order effect. Further information is provided by the
analysis of the simple effects within the significant the simple erfects within th
 ITI $=100 \mathrm{~ms}(\mathrm{~F}(1,450)=23.13967$. p
$0.01 \quad$ and $\mathrm{F}(1,450)=4.02881 . \quad \mathrm{p}$ (0.05) In these cases ITI is. in the range of the threshold for coincidence or successive
stimuli: Since an ITI of 5 ms and anITI stimuli: Since an ITI or 5 ms and an ITT
of 10 ms are both below the threshold it is more liikely that sequences in 2 -step pairs belong to different categories
("continous movement "continous movement" and "discrete
taps") This interpretation is confirmed
by an analysis of the special contrasts. by an analysis of the special contrasts:
only the contrast ITI $=5 \mathrm{~ms}$ vs. ITI $=10$

 and
ITI4
0.05).

in discriminability: the sameness-criterion used by the ss' (1971 (81) seems to depend partially the overall inventory of sequences pre-
sented during the test run. oc is highly sented during the test run. oc is highly ignificant significant only in oC2 and

 of the discrimination curves: in OC2,
increasing TI, so that a significant effect arises. In oc1 discriminability is bad and re-
maines nearly constant along the ITI-conIn ines nearly constant along the ITI-con-
tinume. In ocs the effect is due to significant variation of different': answers along the continuum that
peak when ITI is 15 ms.
on
 within the order effect shows etween oci
is a significant difference between oc3

 discriminability of stimuli in a
discrimination test can arise if perceptual equality of the pairs departs from physical equality. Tillmann/ ieproth 1986
100 argue that in pairs of sequences of argue that in pairs of sequences of
the kind used in the present investigation the second sequence has to be longer same' From another point of view. this
means that the physically equal sequin means that the physically equal sequences
of the AA-pairs in oc tually equal. Additionally, not percep-
with sequence
ITI threshold for coincidence of sue of the timuli. According to the theory of cate gorical perception. discriminability in

 are established categories in natural
cases of tactile perception. we can suggest that there is a peak in we can sug-
biliscrimina bility, if two stimulimoak differentcoateto our assumption on perceptual equality sisting second sequence of an AA-pair con will be sensed to be faster tithan 15 ms first. Since ITI $=5$ be faster than the are clearly below the coincidence
threshold. the first sequence of the 15ms: 15 ms -pair is possibly sensed to be above and the second to be below this discriminability may explain the peak in for physically equal pairs of sequences with $\begin{aligned} & \text { physicall } \\ & \text { ITI }\end{aligned}=15$ The The discussion of order effects is not speech perception, too (e.g. ohde/Sharf 1977 [5). Uselding 1977 (111)
Even the order effect in duration discri-
mination (TOE) may be found in speec data. Thus. Lehiste be found in speech the notion of final lengthening to de
scribe the phenomenon that in syllable
sequences sequences syllable duration increases a tation of tap sequences in 2 ind-pairs
(which are at least minimal sequences of
two stimuli) caused the effect that the secoger member of the sequences had to be as the first. As mentioned, it was possible to reproduce with acoustic sti-
muli. So, one might suppose that a simi mul. So, one might suppose that a simi
lar effect concerning the perception of
syllable duration is
 synal lengthening': since the last
sylables are physically ionger in dura-
tion might be sensed as being as
long as the proceding

references

[1] $\quad \underset{\text { P. Gsychophysical }}{\text { Allan }} \underset{\text { A. }}{\text { B. }} \underset{\text { Theories of }}{\text { Kristofferson, }}$

 Syntactic Units in Production and
Perception", J. Acoust. Soc. Am.
54.1973 .
[3] A.M. Liberman, F.S. Cooper, D. P "Perception of the speechennedy Code"
Psychol. Rev. $74,1967,431-461$.
[4] N. Hitistical package for the Social
Stat
Sciences.

5] R.N. Ohde. D.J. Sharf. "Order Efrect of Acoustic Segments of VC
and cv Syllables on Stop and Vowel
Identification". 20, 1977, $543-554$

6] H. G. Piroth, "Electrocutaneous Sylable Recognition Using ouasi-
articulatory coding of Stimulus

[7] H. G. Piroth. H. G. Tillmann

[8] I. Pollack, D. Pisoni, "On the

[9] L.H. Stott."Time-order Errors in the Discrimination of Short Tonal
Duration" J. Exp. Psychol. 18.
[10]
 1986. S73. J. Acoust. Soc. Am. 79.
[11] D. K. Uselding. "A Temporal Order

acknohledgements

German investigation was supported by the Statistical advice was Alexander Yassouridis, Departement
Biostatistics, Max-Planck-Institute
Psychiatry, Munich F. R. G.
perception of rhythm and its role in the process of language acquisition

MORTO KOHNO

Kobe City University of Foreign Studies
Kobe, Japan 654

ABSTRACT
The mode of table tapping, for example, had a striking similarity with the mode of utterance
Japanese in terms of speed and of interstress (-beat) intervals, which eventually concentrated
in the are in the area of $400-1,000 \mathrm{msec}$. in both modes. And
more interestingly, the subjects who tapped quickmore interestingly, the subjects of young ages in
$1 y$ outstripped the slow tappers of the ability of learning a new forelgn language, even if they are very old, i.e., 80 years old. Other experiments revealed that, when inter-
stress intervals go out of the central rhythmic stress intervals go out, intellitgibility of the speech abrup.tly falls in the case of initial stage earners of a foreign language. These and some pread ideas of gradual perception of rhythm and f the critical period in language acquisition.

introduction

Rhythm has been acknowledged to be one of the mportant, probably universal, principles in spoke language, functioning both as an organizing factor In speech articulation [1], and a guiding principle
in the perception of speech
[2]. If there should be in the perception of speech [2]. If there should be
a possibility that rhythm might be innately acquired or a universal phenomenon as some phoneticians sug gest [3], it would possibly play a very important ole in the process of understanding sentences and iscourses, and even in the process of language ac and strategies and cognitive actions than the perception of sounds, or 1solated words.

EXPERIMENT I

An Eng1ish short story (106 words) was composed by the use of the words and sentences which had al ready learned by the subjects -- Japanese high school
students (9 th grade) who were learning English (n . $=120$). The content of the story was original, however. This story was read and recorded by an Englis speaker at three reading speeds: normal, fast and
slow. The normal speed material was then mechanically by Speech Compressor (HiTACHI TSC-8800) (Machine fast). These four modes of the material had the following acoustic characteristics as a result of measurement by Visicorder and Electro-os-

Reading speeds: normal=124.8 words/minute,有=74.9, fast=198.7, machine-fast=185, Frequency of juncture pauses: normal=1
slow $=35$, fast $=14$, machine-fast $=16$ Total amount of juncture pauses : normal $=14,098$ msec., slow
fast $=11,071$
Interstress intervals (means): normal=574
 (S.D. $=144.6$) The phonetic stoppages whose duration was
less than 220 msec. were not included in the data on pauses, because this kind of discer
tinuation often occurred when plosives were
made.)
Intelligibility of the four modes of the material was got by asking questions of the subjects follows:
normal>fast, $p<0.01$, $(t=3.40)$
normal $>$ machine-fast, $P<0.01, \quad(t=6.18)$ slow $>$ fast, $\mathrm{p}<0.01$, ($\mathrm{t}=5.92$) slow $>$ machine-fast, $\mathrm{P}<0.01, \quad(\mathrm{t}=8.70)$ fast $>$ machine-fast, $\mathrm{p}<0.05$, ($\mathrm{t}=2.78$) A $>$ B in the table means A mode gave more 1 li-
telligibility than B mode to the subjects wio were homogeneous in ability of Eng1ish.) Obviously no other factors than interstress inervals (rhythm) can interpret the above-mentioned ditions can never explain the phenomenon of fast> machine-fast, but the interstress intervals canthey are less than the central rhythmic area (400-
700 msec.) suggested by Allen (1975) [4], in the machine-fast.
The author's previous paper [5] shows that pauss elp 1isteners' cognitive processing if norrally placed, but too many pauses which were placed at
the ends of every word, for example, hinders 11 stening comprehension. The paper also shows that sloull drawled pronunclation which is too accurately ariculated has the same negative effect. The reask
for this phenomenon can be explained by the fact that, while the interstress intervals of the forter naterial were 574.2 msec ., the ones of the latter are off from the central rhythmic area. Several additional experiences were held in the similar way as Experiment I, changing the condition
that intelligibility falls when they go out of the
area of about $400-1,000$ msec. It may be said in rea of about $400-1,000 \mathrm{msec}$. It may be said in first cry of a newborn baby was around 756 msec . means).
EXPERIMENT II
Subjects are Japanese with age variety from 18 through 79 years old ($n .=30$). They were asked to then to read "The North Wind and most normal, and then to read The North wind and the Sun" by' Aesop
at normal speed in Japanese. The result is shown at nable 1:

Subjects	Tapping (f/m)	Reading speed (w/m)	Age
1	107	211	18
2	105	208	18
3	102	198	22
4	95	192	20
5	100	185	49
6	96	182	43
7	96	180	23
8	90	177	24
9	86	175	55
10	78	173	16
11	70	170	35
12	77	170	14
13	47	170	49
14	75	167	41
15	73	165	57
16	60	164	59
17	45	160	35
18	70	155	17
19	66	148	71
20	90	145	23
21	60	143	39
22	60	143	37
23	60	140	62
24	56	140	40
25	45	136	65
26	49	135	65
27	86	132	23
28	65	130	55
29	48	123	74
30	43	111	78

he rank correlation between the tap frequency and < 0.0001), and those between tapping and age, eading speed and age are $r=0.61, t=3.28, \mathrm{p}$
and $r=0.57, \mathrm{t}=3.06, \mathrm{p}<0.004$, respectively.
Slow, rapid and normal speed tappers, 7 in total were then chosen from the subjects, and they were
required to learn Spanish, which was never learned by any subjects in the past. The content of learning (testing) was. 1) to repeat some Spanish words
and sentences without models after having listened and sentences without models after having listened
to them by a tape recorder five times. 2) to find some grammatical rules heuristically after having
listened to some sets of words and sentences. 3) to listened to some sets of words and sentences. 3) to
repeat phonemically minimum pair words after having repeat phonemically minimum pair words after having
listened to them five times. All the responses were tape-recorded and scored by two teachers of Spanish.
(coefficient of objectivity $=0$.

Subjects	Spanish test score	$\begin{gathered} \text { Tapping } \\ \mathrm{f} / \mathrm{m} \end{gathered}$	$\frac{\text { Reading condition }}{\text { interstress }}$		Ag
			nterval msec.	S.D.	
1	108	110	412	15	18
5	102	104	453	15	49
8	98	96	525	21	24
19	77	66	755	21	71
28	59	65	870	30	55
29	51	48	931	31	74
30	57	43	905	30	78
EX	73	75	692	. 21	79

Acquisition
Table 2 shows the very high correlation between the frequency of tapping and test scores, but bethigh. In order to confirm the relation of neuro muscular ability for rhythmic action with competence for language acquisition, a male subject, EX, ho is still quick in action in spite of being 80 years old was asked to join the experiment, which
brought forth the result described in the bottom of Table 2 - his tapping is very smooth and his est score is also high.
We can conclude rhythm is unexpectedly crucial process of acquisition, closely connected human beings' motor actions.

References

[1] J. Martin, "Rhythmic (hierarchical) vs. serial structure in speech and other behavior" Psy W Chological Review 79: 487-509, 1976 Marslen-Wilson and L. Tyler, "The temporal
structure of spoken language understanding" 3] M. Cognition 8: 1-71, 1980
[3] M. Studdert-Kennedy, "Speech perception" Pro$\frac{\text { ceedings of the Ninth International Congress }}{\text { of Phonetic Sciences II: }}$ Copenhagen, Denmark, 1979.
(3) I. Lehiste, "Isochrony reconsidered" Journal

14] G. of Phonetics 5: 253-263, 1972. Journa D. Allen, "Speech rhythm: its relation to
performance universals and articulatory performance universals and articu1atory
timing" Journal of Phonetics 1: 1975.
[5] M. Kohno, "The effects of pausing on 1 istening comprehension: some psycholinguistic exper-
iments in the case of Japanese learners in the case of Japanese learners
inlish" in T. Konishi (ed.), Studies in Grammar and Language 392-405,', Kenkyu-sha

THE DESIGN OF A SPEECH ANALYSIS WORKSTATION
JOHN M. CRUMP

Kay Elemetrics Corp
12 Maple Ave.

ABSTRACT

The development of a speech analysis workstation is presented. The problems and challenges in acoustically analyzing speech signals are discussed. A system was developed to provide the digital acquisition and analysis of speech with phonetic research.

INTRODUCTION

Speech has been acoustically analyzed by a wide assortment of instruments including oscilloscopes systems Typically a computer system requires number of peripherals to analyze speech. These peripherals may include input modules with A/D and anti-aliasing filter, graphic boards and specia printers. High speed array processors or special digital signal processing boards may be added to tored signal is typically purchased commercially or developed by researchers.
digital signal rent availability of general purpose digital signal processing chips, inexpensive digital nemories and personal computers has provided powerful workstation designed for the analysis of speech. A system can now be developed with the advantages of a spectrograph (e.g. Sona-Graph and SSD), an oscillograph (e.g. Visicorder), a feature extractor (e.g. Visi-Pitch), and a general purpose

DEFINING A SPEECH WORKSTATION
Before the development of a speech analysis workstation is started, it is important that the analysis requirements of the users are clearly
understood. Speech is analyzed by many different professionals for many different reasons. A phonetician may have different needs than an speech language pathologist. Any workstation designed for speech analysis must take these common elements for most speech analysis are
reviewed as follows:
Input
The aliasing portion of a signal must b filtered before the signal is digitally stored Low-pass filtering is the process of eliminating th spurious spectra in the analysis. Providin adequate anti-aliasing filters is a difficult, and often overlooked, problem especially if the use changes sampling rates to perform differen analysis tasks. For example, the analysis of voca behavior (e.g. perturbation measurements) require very high sampling rates to achieve high timin may be required. Anti-aliasing filters at thes sampling rates are quite different from filters a slower sampling rates.
Sampling frequency must be variable and should exceed the 50 kHz sampling rate required some applications.

Psycholinguistic experiments and phonetic transcription require a system which can store and playback requires high sampling rates. If th workstation is to be used to acquire and define a phonetic library the speech signal requires a dee dynamic range and excellent frequency response rates above 50 kHz . be above 70 dB and samplin should be sufficient to store at least one paragrap
of speech sampled at high rates.

All of the above requirements are very important because there is a general requirement for instrumentation to simply acquire, filter
amplify/attenuate, A/D, D/A and buffer speech signals for input to computers for further analysis A speech workstation should be able to excel in this limited but important function.

From the requirements explained above th following criteria for input and signal storage wer developed

位ling rates: Variable with samples up to
Dynamic Range: 12 bits or $>72 \mathrm{~dB}$
selection pass filters: Automatic with samplin selection, 120 dB /octave, preferrably digital
filters
Signal storage: At least 40 seconds sampled at 20 kHz . This requires 2 Mbytes of memory.
Displays
Graphically, speech has tradionally been spectrum (frequency vs. power) or as tracings of speech parameters. A speech workstation should b able to present these four standard displays clearly and crisply. Speech analysis also typically Various feature extraction techniques such as LPC analysis has also proven itself a useful tool Integrating these various approaches in the analysis of speech would be especially useful. Fo example it would be useful to superimpose color LPC extracted formant values on a wide band grey it would also be desireable to be able to rapidly switch analysis formats to find the type of display most revealing of the characteristic under investigation.
A works

A workstation should allow a wide range of display options which can be quickly performed re-analyze the stored data to find the most revealing display of the aspect of interest. Time resolution of waveform displays must facilitate the measurement phenomenom of both very short and ong duration. Timing accuracy should be as fine as milliseconds. Spectrograms must include a election of analysis filters for the fine time and frequency resolution frequired for the effective formant display of low and high pitch voices.

Real Time Performance

Real time analysis is valuable for a number freasons, some obvious and others not so obvious. The faster the analysis is performed the less waiting for the user. If the user can quickly re-analyze data he or she is more likely to explore method. In any clinical setting real time analysis is usually a requirement.

The other advantage of real time analysis is hat the data can be monitored during input and require the user to first store data and then data, Speech is such a dynamic signal that unless the mput can be monitored during input it is very dificult to acquire the signal without overloading uring transient peaks or underutilizing the full ynamic range. One solution is to use input which require 16 bit A/D and extremely good low noise input circuits and anti-aliasing filters. These systems are very expensive.
For many applications it is important to monitor the analysis in order to select the correct investigating an acoustic phenomenon which is
clearly displayed spectrographically, but is ser to to hear, real time capability allows the appropriate segment. Some systems will analyze in real time, but can not simultaneously store the speech signal.
This is obviously undesireable because the user This is obviously undesireable because the user time system must be able to simultaneously low pass filter, acquire store to memory analyze and display in real time.

Graphic Resolution

I As mentioned above the graphic displays are an important component in any speech analysis technically difficult. Typical microcomputers video graphic standards fare not good enough to replicate the display resolution of even 1950 style hard copy spectrograph. The selection of grey spectrograms. The fine timing and frequency measurements require a more robust display standard with more than 32 shades of grey for each element and a display resolution of at least 640(H) 480 (V). Hard copy resolution must match the standard set by the commonly available hard copy to display speech parameters (such as LPC extracted formant frequencies) and grey scale spectrogram simultaneously. Color is also required when multiple traces are displayed.

Interface to Computers
A speech workstation should be able to operate inside a microcomputer, or be easily reasons discussed in more detail in another section of this article currently available microcomputer can not become practical speech workstations. Despite these limitations inexpensive microcomputers can serve valuable functions if availability of inexpensive file management, data storage and software complement the analysis and display power of a speech workstation. An fast to face to these microcomputers should be very fast to facilitate rapid exchange of data files and to data acquisition peripheral

$\frac{\text { Programmability }}{\text { The rapid }}$

The rapid advances in digital signal processing of speech necessitate that a speech workstation can be updated to apply new interested in a single speech analysis measurement and may require adjustments to currently available programs to best extract this information. It would be desirable for the user to be able to change programs and a requirement that the
vendor can upgrade without using software rather
than hardware replacement.
$\frac{\text { User Friendly }}{\text { A speech }}$
A speech analysis system will often be used by speech scientists, speech language pathologist and phoneticians who may not be instriso may only perform acoustic analysis infrequently in their work. In this working enviroment, it is important that a speech workstation is easy to use. The system should be menu driven and methods of analysis/display should be electronicaly stalysis methodology exactly.

In a teaching enviroment acoustic analysis tools are often used to teach students about acoustics. It would be useful for a workstation to be designed to facilitate this task experiments.
repeatable acoustic analysis exper

Dual channel Capability
Speech is often investigated in conjunction with other physiologic signals. A speech workstation should be able to operate in anaph, airflow, accelerometer and other signals of interest in conjunction with the speech signal.
Affordability
Price and performance have obvious tradeoffs in any development but a speech
workstation can not be beyond the reach of most workstation scientist no matter how wonderful the product is.
EXPLORING THE AVAILABLE TECHNOLOGY
Once the outline of the features and specifications were established the commercially available technology was investigated to determine criterion. Ope approach which was considered in detail was the packaging of the hardware/software for this workstation inside a standard microcomputer. In this configuration the Q- Bus, the $\operatorname{IBM}-\mathrm{PC}$ bus or directly connect to a high speed port of other computers. DEC. IBM-PC ATs Amigas, Apollo, Sun, Masscomp, MacIntosh and others were evaluated

Incorporating the workstation in these comon computers was rejected for technical and/or inexpensive computers (IBM-PC, Amiga, MacIntosh inexpensive computers (IBM-PC, Amiga, MacIntosh
etc.) were not powerful enough even with added hardware. The technical limitations of inexpensive microcomputers to perform as a speech
workstation are as follows: workstation are as follows:

1. The bus of microcomputers has a very
mited bandwidth and it can not, therefore, acquire signals at the sampling rates required for many speech analysis tasks.
2. The bus and DMA capabilities of
microcomputers do not allow the simultaneous transfer of data from input board to memory, input board to analysis module, analysis module to display memory. It can not, even with the addition of graphics, input and digital signal processing display.
3.
4. Most computers have insufficient memor available for signal storage. As noted previously least 2 Mbytes of signal stoage are required in addition to 512 K bytes of digital signal analysis work space and 384 kK bytes of display memory. 4. The digital signal processing speed is at
least 100 to 200 times too slow for real time least 100 to 200 times too slow for real time analysis. Acceleraforicnt for a robust system.
5. The highest standard graphic standards on microcomputers are not able to display spectrograms with enough resolution in time (horizontal), or sufficient grey scale. Many computers restrict the video controller can only turn on or off each RBG output guns. This restriction does not allow the subtle variation of hue or grey scale necessary in some applications. The more powerful systems are costly and not widely or consistently available for many potental
users. Even these more powerful systems (VAX ete) users. Evo slow for the real time digital 'signal processing required. Array processors would need processing to be added to achieve real time performance and, in some cases, the system architecture can not transfer data blocks at the required rates.
These technical and cost considerations aside, it have high speed interfacing between the standalone speech workstation and the widely available IBM-PC type microcomputer and VAX minicomputers. High speed interfacings eliminates the need for he works to avaliable DSP software and previously digitized data.
DEVELOPING THE WORKSTATION
The result of the exploration has led to a standalone system based on a common microprocessor, powerful digital signal processing integrated circuits, high resolution graphic
displays and high speed DMA capabilities. The displays and high speed DMA capabilities. The digital signal processing chip selected was the 32020 from TI (Texas Instruments). Two 32020 at at used to further increase the processing speed to at
million instructions per second. The 32020 at capable of many parallel operations and include a fast single-instruction multiply operation. Thes features are extremely useful because of the repetitive nature of the instructions and the many multiplications required in digital sifid digital signal processing speeds equivalent to over 50 million instruction per second in a genera purpose computer. These chips were also selectel
ecause of the upward migration path TI has produced with the 320 C 20 and 32030

Two separate buses for data acquisition and analysis were used. This "extra bus" and special speed data transfer between the different system modules (A/D to memory, memory to DSP circuits, DSP circuits to graphic circuits and DSP circuits to printer). These DMA chips allow a 4 Mbyte/sec
transfer rate. The system management is performed by a Motorola 68000 and the system architecture has been defined to include up to 8 Mbytes of RAM and 2 Mbytes of PROM.

The graphic resolution required for both the real time display monitor and hardcopy were the with a graphics controller, high speed video DRAMs and a special monitor to provide graphic resolutions of 640×480 with 256 values of color and/or grey scale for each pixel. The sytem allows simultaneous grey scale and color displays because analog and digital display. Because the extensive graphics routines required in a speech workstation can not processed quickly through the CPU the graphics hardware was designed to perform most of
the graphics displays without CPU intervention.
graphics displays without CPU intervention.
The hardcopy print capability is based on
new thermal printer and this print quality matches the quality of Kay sonagrams ${ }^{\mathrm{TM}}$ which have become the standard for spectrographic display. The printer produces true (not imitated with a collection of dots turned on or of) grey scale at
dpi. The system requires multiple processing modules to achieve the speed and performance
required. The relatively slow CPU is relieved of required. The relatively slow CPU is relieved of virtually all of the processing, except for controlling the other modules.

The system meets all of the criteria set above for a speech workstation. It can not be programmed programs available from Kay or programs developed by programmers familiar with the TI 320 code. There are over 320 design teams working
with this chip according to TI. How many are with this chip according to TI. How many are
working in the speech field is not known but the TI320 family represents over 65% of the digital signal processing chips sold in 1986. It has become a standard for digital signal processing development and there are numerous plug-in boards for computers designed for 320 code
development. Kay has developed a series of programs to implement all of the features discussed n the the section "DEFINING A SPEECH WORKSTATION". Along with the development of numerous speech analysis programs continuing at Kay other groups, including the University of Research). are working on LPC analysis / modification/ synthesis programs. Kay will commercialize the programs developed by CSTR.
The system has all of the programs stored on a
large PROM board to facilitate updates as the signal processing develops
When interfaced to computers the speech selection and buffering, display and grey scale printing. Users can then use the programming tools available on their computer for other digita signal processing or file management programs.

SUMMARY

The system succeeds in meeting the design criterion for a general purpose standalone workstation. State of the art technology and multiple processing modules were required to meet to common computers such as the IBM-PC and DEC VAX, software is being written to exchange data and allow these computers to easily use the powerful graphics, data acquistion and digital stgnal processing capabilities of the standalone speech workstation.

Jan Sedivy, Jan Uhlir
zech Technical University, Pragu
Department of circuit Theory

Introduction.
This contribution describes a simple programming environment called Speech Lab
(SL). The system is designed for personal omputers operating under CP/M-80 or MS-DOS.

The SL was designed at the Department of Circuit Theory of Czech Technical processing. The scope of task being solved is very large. It includes the basic signal processing algorithms, wave-shap Recently a simple knowledge base was adde to support works in speech spnthesis.
SL is used in all speech oriented students, by after graduate students and students, by of the department. It enabl star of data and program exchange.

The SL structure.
The SL is structured programing environment. It
building blocks:

> User interface Data Acquisition system Data Processing Package Graphics Package

The SL is controlled trough the Oser Interface. It is made up from powerful commands. Commands can be divided with following groups,

Database Commands
Data Acquisition Commands
Data Processing
External Procedure
Hel $_{P}$ Menu System
The first set of commands are database commands. They are used to display the database records, to retrieve, erase and update records. Other commands are devoted
to get and put the data on the disk. to get and put the data on the disk.
Special command serves to import and
export ASCII files The Data Acquisition Commands
The cooperate with a fast data acquisition and The immediate check of processed speech. A simple command "Speak
For simple data processing ar vailable many commands. Some of them are uild-in and some are exter hey are used for signal processing. ${ }^{\text {sin }}$ the simple ability to make up own procedures. The whole SL is written 1n
[2]. This implementation of Panco Pascal programing language is very popular Pascal programing language CP/M-80 world. The user created procedures written in
TURBO Pascal can be called from SL with TURBO Pascal can be called from sLe with single command. They it is an easy task to go back to SL after processing the data in a common block. This is accomplished using the
TURBO Pascal command chain. In this way the user can use all the SL commands and the user can own procedures. The burden of all data housekeeping and many processing is minimized.
User interface is equipped with large
help menu system. This help can be called any time.
The SL uses a 20 k or 32 k long buffer for the data storage depending on the used as above mentioned common block which is used by both SL and user-written procedures. To simplify the orientartion data, the buffer is divided in particular number of 128 bytes long sectors. Every byte in any sector is user accessible. Th same structure of the data pointer is used
in all commands. The data pointer is in all commands. The data pointer in numbered is. used for a sector and the second for a byte in the sector. We found this type of pointers useful for the sor

The data structure

> The data in the buffer are speech samples or any other type of data. For example the LPC coefficients, spectrum, histogram etc. This data can be processed
and then graphically displayed on the screen. There are available different graph shapes for the spectrum, histogram or the speech time series. User can chose
to display the data in any shape. The to display the data in any shape. The display of different records is possible.

The file structure.
The SL record consists from two files
data file and a dictionary file. The data file and a dictionary file. The about the data like the sampling frequency, the date of creating the record, remarks etc. The data file contains pure data. Both files are commands. The dictionary file is short and it is presented in the SL on line to speed up the directory operation. The data file place.

A/D D/A converters.
The SL system enables an easy
installation of A / D and D / A drivers. The Installation of A/D and D/A drivers. The language and must be patched in the SL. data acquisition. We usually use double sampling frequency then required, to Therease the analog filter requirements. The final data are the filtane filter. Simultaneously is the signal decimated in frequency. In this way the linear

Graphics
The SL uses Graphical Commands to display the contents of the BUFFER on the screen. The way how it is displayed graphical system is a separate part of the SL. It is written for different graphical systems. The CP/M versions are not so rich
in graphical abilitios compared to in graphical abilities compared to MS-DOS of the printer output. The The user can chose a proper shape of the graph different types. Shapes are the power spectra, the histogram, the the power spectra, the histogram, the graphical part of the SL are aiso included signals. plotter.

Data processing.
The SL has build-in the most important signal processing procedures. They can be are

Histogram
 Autocorrelatio
 Wind

External procedures are in the processing library, It contains a large analysis.
Different algorithms for speech Different algorithms for speech
wave-shape coding can be called. For example different types of q antion, adaptive versions of PCM and DPCM etc
We also developed a package of
clustering alger clustering algorithms for the purpose of
vector quantization of descriptors or wave-shape of speech.
For the
For the purpose of synthesis by rule we developed a special package with a
simple knowledge database. It is used for development of synthesizers with limited number of words and high quality of the construction of similar sounds.

User written-subroutines.
the A very important feature of the SL is the ability to include a user-written subroutine and to use the facilities of the system too. The whole system is
written in Turbo PASCAL. The data buffer can be equally accessed from the main SL system and from the user written routine. The user-written routine can be debugged
separately in Turbo Pascal environment and then translated as a CHN file and executed from SL. This simplifies the development and debugging very much. The user-written command line.
The system is designed to receive different data in the form of ASCII string. This way of transfer represents an
easy link to large set of other programs written in different languages. These commands are used to transfer data from other programs fibr example with she we use programs for digital filtering, FFT etc. [1].

Conclusion
The SL system was successfully used in our department to solve various tasks. SL is a very simple system but gives
user many capabilities and simplifies

overall development.

References.
[1] Digital Signal Processing Committee of IEEE Acoustics, Speech, and Signal Processing Society, "Programs for digital Signal Processing", IEEE Press, 1979.
[2] TURBO Pascal Reference Manual Version 3.0. Borland International Scotts Valley, California, 1985.

ИНТЕРАКТИВНАЯ ЛАБОРАТОРНАЯ СИСТЕМА ДЛЯ АНАЛИЗА И ОБРАБОТКИ РЕЧЕВЫХ СИГНАЛОВ

С.Л. Гончаров, В.Я. Чучупал

Вычислительныи центр
Академия наук СССР
Москва, СССР

PE3OME

Доклад содержит описание программного обеспечения интерактивной системы для анализа и цифровои обработки речевых сигналов на малой ЭВМ общего назначения, оснащеннои графическим дисплеем. Система представляет собой комплекс программ, в который входят как библиотека процедур, реализующих выполнение стандартных функции по обработке сиг налов, так и программш, позволяющие, в диалоговом режиме, с использованием графического изображения речевого сигнала и его параметров на экране дисплея выполнять анализ речевых сигналов, выделять значения их параметров и сохранять эти эначения в базе данных, а также вьполнять некоторые функции по обработке речевцх сигналов, например, производить анализ занумленных фонограмм с целью улучшения их качества.

ВВЕДЕНИЕ

Исследования в области автоматического распознавания, цифровой обработки сигналов и экспериментальнои фонетике эачастую носят трудоемкий и рутинныи характер, так как связаны с большим объемом ручной работы, требуюцейся, например, при подготовке экспериментального материала, а также оценке результатов работы. С начала 80-х годов в Вычислительном центре Академии наук СССР разрабатывается специализированное программное обеспечение для цифровои обработки речевых сигналов на малых ЭВМ. Целью разработки является максимальное облегчение усилии пользователей при программировании и отладке процедур анализаи обработки речевых сигналов, в частности, создание программного обеспечения рабочегоместа для анализа речевых сигналов. Полученные к настоящему времени в результате проделаннои работы программные средства оправдали ожидания разработчиков, как существенно повнсив производительность труда специалистов, так и выполнять исследования, ранее практически невозможные.

APXИTEКТУРА СИСТЕML

На рис. 1 изображена схематически архитектура системы, включая как программное оєеспечение, так и аппаратную часть. Технической базои дия рабочего места явился измерительно-вычислительнни комплекс, включаюций в себя мини ЭВМ, аппаратуру вводавывода речевых сигналов и графический дисплеи. Всё разработанное программное обеспечение функционирует в среде операционной системы реального времени. Программное обеспечение построено по иерархическому принципу. В этом смысле систему можно рассматривать как совокупность четшрех основных компонент - "уровней". Уровни организованы таким оєразом, что модули верхних уровнеп ссылаются при работе на модули нижних уровней и могут обмениваться информацией с ними; однако при этом передаваемые параметры стандартизированы так, что структура модулей нижнего уровня остается скрытой от модулей верхнего уровня. Модулям нихних уровнеп, в свою очередь, недоступна информация о существовании более высоких уровней. Внутри каждого уровня соблюдался модульный принцип построения программ, в соответствии с которым каждая программа выполняет свою, достаточно автономную Функцию обработки и только ее. Подобная архитектура обеспечила большую степень независимости программного обеспечения, позволив сравнительно легко приспосабливать его как к новым аппаратурным ресурсам, так и к новым областям применения.

БAЗOROE ПPOTPAMMHOE ODECПEYEHИE

Эта часть программного обеспечения представляет собои совокупность пяти библиотек (объектных модулей), на основе которых создано все программное обеспечение более высокого уровня. Библиотека стандартных подпрограмм цифровой обработки речевых сигналов содержит стандартных подпрограмм численных преобразовании (алгоритмы вычисления ЕПФ для комплексных, действительных и целочисленных данных, оценки спектральных характеристик сигнала, огибающей спектра, частоты основного тона, параметров линейного предсказания речевого сигнала, синтеза цифровых фильтров и фильтрации речевых

сигналов и т.п.). Библиотека подпрограмм матричной арифметики включает набор проце-
дур для выполнения матричных операций на дур для выполнения матричных $э ธ М$, не имеющей спецпроцессора. использование этих подпрограмм позволяет в 4 раз ускорить процесс вичислений по сравнению с обычными процедурами, написан-
ными, например, на языке фортран-4. Бибными, например, на языке фортрана речевых
 живания АцП и цАП. При этом ввод (вввод) данннх может производиться как в операни на ную память эвм, тако доступа. речевои сигнал в последнем случае хранится в формате обления файлами операционной системл.
Набор подпрограмм управления окнами вклю чает в себя процедурн, предоставляюшие наи обработки речевых сигналов (используюиих обычно пошаговую обработку данных) и сами ми данными, содержаиимися в файлах на но сителе прямого доступа. вценка значенй параметров сигнала и обработка сигнала обьч но выполняются в пошаговом режиме, когда
речевой сигнал рассматривается как послеречевой сигнал рассмаранихся между собо довательность перекрывающихся кажый такой сегмент обрабатывается алгоритмом отдельно и, в больиинстве случаев, обработка сегточки зрения подпрограмм угравления окнами файл, содержашии речевой сигнал (или файл состолщия из параметров речевого сигнала торой - вектор значений параметров речево го сигнала, соответствую:ин определенном моменту времени. В частном случае, когда в
файле содержится речевои сигнал, число элементов в каждои строке равно 1 , то есть это - одномерная матрица. прикладная программа должна содержать описание используемых еп данных и правила, по которым еудет выполдля обработки. С этой целью в прикладной программе специальннм запросом создаются буфера - "окна", в которых содержатся дан-
ные. Окна даныых могут бнть созданы для ные. Окна даныах входыых, выходных и промежуточных потоков данных алгоритма. Поскольку данные
описаны как фаелы, то последовательность писаны как фаилл, то последовательность
действий по описанию действий по описанию и управлению потоком
данных в алгоритме вкличчет в себя следуюцие этапи:

- описана

описание окон в прикладной программе; установление связи между окнами и браженныии в этом окне фанлами; ; между окном и связанными с ним файлами
в соответствин с требованиям алгоритма
Пограмма сообщает размер каждого окна Программа сообщает размер каждого окна
в секундах), шаг, с которым оно смещается (в секундах), шаг, с которым оно смещается каки длина окна в процессе обработки), тип окна (окно для чтения и эаписи данных или
только для чтения или записи), а также ха-

актеристики отображаемых в этом окне да ых: частоту дискретизации, количество па раметров и т.п. после того, как програм озданным ею окном и фаилом данных, она мо ет полностью контроловоиь все функци о обмену данными, с помомью "савросов ти "пози", "сдвигать окно вниз", "получит время позиционирования окна" и т.п. Когд программа выдает запрос позиционироват кно", она сообщает точку пои) и в обласл
 данных, которые соответствуют указанном
 иим образом, что начало буфера сменается файлу данных на промежуток времени, равны wary смещения окна в сторону возраста времех, но три этом окно смещается в стор ну уменьшения времени, то есть $к$ начал фаила данных. программа может получить вр мя, которое сооие данных выдать запоо жения окна в фаил.
пполучить время".

При таких условиях работы алгоритм, торыи реализует пошаговуюобработку сиги ла от начала цикла обработки сигнала выдазат запрос яа сдвиг окна вверх. Описанный вы подход позволил не только резко ускория процесс созд ия отламу), но и обуспо существенную гибкость этих программ за сче отсутствия необходимости в их модификадии в слччае изменения пара аналинонана с налов (например, длины анализируемоюг си нала (например, частоты дисхретизации) Файль данных, как уже было упомянуто, гут содержать не только дискре но также стоять из произвольных параметров речево сигтьла. Этими параметрами могут быть кан значения параметров модели речеобразования, измеренные на нигвистические характерист ки, такие как точки начала или конца опре деленных фонем, границы участков пауз, см чек, звонких или глухих звуков ианны, содержапие значения параметров речевых сигналов, полученных в результае кратковременного спектрального анализа, удобно обрабатывать с помощью предстаныя ог выке фя организации работы с даными, характеризуюшими лингвистические характеристики речевого сигнала, более удобнал является дополнительно к этому испольэовние специальных функции системы управледя
базой данных. Основных функций несколко это поиски-го вхождения строки параметров (меток или маркеров) в файл параметров, ва"
чиная с указанноп точки поиска. в этом слу чиная с указаннож точки поиска. вэтом вречае в прикладную программу передаются кои
мена, соответствуюиие точкам начала и кои

Рис. 1. Иерархическая схема организации диалоговой системы циџровой обра-
ботки речевих сигналов.

цаи-го вхождения в фаил параметров опреде леннои метки или последовательности меток, аким путем прикладная программа может, назсем сегментам речевого сигнила, соступ ко ним квазистационарныи участок ударной гласа или ко всем участкам, соответствутель может также специальным вызовом ваести значение определенного параметра в казнно место (по времени) файла параметпит Сервисные процедуры позволяют полуаиихся в указаночия параметров, содертаметить, что базовое программное обесует ение никак не интерпретирует и не испольует семантику параметров, содержаиихся в пользователь.
в "Функциональныи уровень" (см. рис, 1) попали прццедуры, реализующие законченнье алгоритмы обработки речевых сигналов. Сосентации системн. в данном случлее наиболее интенсивно использовалось программное обеспечение для коррекции зашумленных сигнания системь в это'я уровень целесообразно включать процедуры, обеспечивающие ввод эвывод) прочедуого сигнала в фаиллы на дисках циио речевого сигнала (типа "видимая речь") процедуры для генерации сигналов специального вида (тестовне сигналы, белый шум, ро оиенки первичных параметров речевоцедуры нала, аддитивного наложения сигналов и с.п одной из наиболее интенсияно используемых ннтерактивная графическая уровня является лиза речевых сигналов.

ИНТЕРАКТИВНАЯ ГРАФИЧЕСКАЯ СИСТЕМА
Интерактинная графическая система пред ия, в пол пользователю возможность в ния, в диалоговом режиме, информативных па-
раметров речевых сигналов, сохранение по лученных таким образом значений в базе данполнении процедур обработки речевлх сигналов. Текущая версия системь включает в себя прикладные программы обработки речеввх сигналов, которые позволяют ввполнять обрацию сигнала из смеси с аддитивным шумом), а также выполнять в диалоговом режи ме разметку речевого сигнала, сохраняя в сигнала (как-то: значение приэнака тон/иум тастоты и амплитуды формант, частоты ос овного тона и т. п.), что может быть по анным при создании тестециализированных ба ройтв и алгоритмов обработки и распознания уечи.
Система
ователь дает возможность выполнять поль
создавать на действия: плея изображение различных характеристик речевого сигнала: кратковременнооормы реченого спектра, временной амплитудного спектра, контура кратковременнои интенсивности;
графического дисплея указание положе ния или эначении информативннх параметров речевых сигналов и запоминать
наиденные значения в базе данных; правлять просмотром сигнала, пере щая смотровве окна в нужном направле-
нии или позиционируя их в интересуше нии или позиционируя их в интересующе

иэменять тип отображаемых в данныи момент характеристик сигнала; прослуиивать речевой сигнал в указануказывать границы участка обработки и указывать границы обрабатывать выденный участок с помощыо заданных пользователем процедур.
Перед началом работы в системе в диалоовом режиме пользователем устанавлив, коосновные параметры работы с системои, кокоторым относятся, наприме, длина ия смещение окна, тип весовой
вания, длиния (прммоуголнное окно или окно Хем функции (прямоугольное окно или окно Хем-
минга), наличие или отсутствие коррекции минга), наличие ити частот т.
Анализ сигналов в интерактивном рекиме проходит следующим оєразом. Изображение на экране дисплея можно рассманриватькак представлекупность нескольких различннх пре соответ-
ний сигнала, которне изображаются соот ттенно, в различни обтастх экрана дисплея:

отображение графика кратковременной
интенсивности речевого сигнала (окно 3), интенсивности речевого сигнала сигнала
отображение графна речевого

- (окно 2).
- отображение ал

при работе в системе пользователь должен информировать систему \circ том, с каким окном он работает в данное время, то есть "активизировать" окно. остальнне пассивны. время активности одного из окон, пасснвны.
Суцествет наор команд работы с оками.
с Выполнение командд происходит по нажатию
 виатуре графпчряжении следуииие команды работы с окном: позиционирование окна, сдвиг окна взерх
ну 1 (1 и 3).

После того, как окно активизировано, мож после того, как окно акия параметров сигнала во интерактивном режиме. Для задания данны в распоряжении пользователя имеетяя (в каждом окне свои) курсор. ноль указа интересуюую егочку следую єіими способами:

1. Подогнать курсор в нужное место $о$ помощьь команд перемещения курсора.
2. Указать элемент изображения световым
пером. Сначала "грубо" указать интересуюий
3.

" нас элемент изображиния, а
Хроме команд перемепения курсора (вверх,
вниз, влево, вправо) в распоряжении польннз, влево, вправо) в распоряжении поль зователя наподятся следдкшие нияием клавииы на ууккциональнои клавиатуре графического дисплея, так и указанием световым пером на коплея) : фиксация точки, привязка к точке удаление точки.
В описываемую систему встроены две сертребуются практически при всех видах работ.

Эти программы выполняют следуюциие функции эти прование - введенная точка интерпретируется как начало копируемого сигнала, а текущее положение копирования ; вывод - па пп с пельь прокопирования или записи на магнитофон вынодится сигнал на укаэываемом пользователе
 в себя ряд процедур оти процедуры реализованы в виде команд системы, задаваемех как $о$ клавиатуры графического пкране дисплея. Система имеет следуюиие команды:

- "шум" (участок от заданной точки до темущего положения курсора используется мля оценки ай
- "пауза" (аналогичныл участок сигнала интерпретируется как пауза. ста ственно интенсиность сигнала,
снжжаеся на заданнуь величину),
снижается на (нданалогичном участке происходит вычитание амплитудных спею-
ров),
"фильтр" (на аналогичном участке выполняется обработка сигналов квазиопгимальным фильтром пля стационарнод зауссовой помехи. еще одной точки - центра фильтрации).
при работе с речевым сигналом с помощвы интерактивнопи системы обычно используигся два типа файлов: это файл, содержащий собственно эначение речевого сигнала, когори анолиза речевого сигнала, и файл параметров, в который могут заноситься значения параметров сигнала, найденные в процессе его анализа. К таким значениям могут отно-
ситься метки акустических событий (начало ситься метки акустических событий пачал смэчек, признаки тон/цум и т.п.). Єайл па раметров используется при решении задач накопления в базе данных значении паруавто матической разметки (анализа) речевых сиг налов. В настопщее время решается заддй
автоматического сбоға статистических све автоматического сеоға стй образом иниорма ции, например, с помощью алгоритмов кла кого анализа.
к системе могут присоединяться
новые
кладные пограным пользователя. при этом они должны находитьы поль зователя. Ери эти грузочного мохддля. Основная програнма системв при этом запоминает свое текущее со оия поэтому возможен возврат из здключение

в докладе описано програминое обеспече ние интерактивной лабораторной системы дия
анализа и обработки речевых сигналов. су анализа и обработки речевых сигнало. ществукий вариант системы направлен на об работку зашумленных сигналов, однако пря

лее универсальнои. Разработчики видят сле уюшие возможности применения системы

полуавтоматическая разметка сигналов. вручную, остальные такие же сигналы (полученные от разных дикторов) размечаются с использованием алия
создание банков фонем, слогов, языка. Эти банки данных могут быть использованы в обучаюиих системах для
 Еозможны также и другие приложения. Та-
им образом, мы надеемся, что интерактивким образом, мы надеемся, что интерактивсигналов является универсальным инструмен-

лиТературА

1. в.л. Чучупал. Диалоговая система цифровой обработки зашумленных речевых сиг налов. Диссертация на соискание ученои
степени кандидата физико-математических наук. Москва, 1985
2. Ваук. Мескива, Р.С. Иванова, П.в. Миюсов в.я. Чучупал. Применение измерительно ввчислительннх комплексов для цифрово обработки речевых сигналов. Москва, вы-
числительный центр Аі СССр, Сообщения по вычислительной технике, 1985.
. с.л. Гончаров, в.я. Чучупал. интерак и обработки речевлх сигналов. Тезисы докладов и сообщении 14 -го всесоюзного се минара ($\mathrm{APCO}-14$) ${ }^{26-28 \text { августа } 1986}$
G. PUECH, P. bancel 2

atigert puech et Pierre bancel

Centre de Recherches Linguistiques et Sémiologique
Université Lumière-Lyon
69500 Bron, France

ABSTRACT

The International Phonetic Alphabet (IPA) is the standard reference as a transcription system With only minor variants, it is commonly used by whether they are supported by an orthographic tradition or not. The scope of this paper is to transpose bases and expert systems.

intropuctio

A computer-oriented coding system for the representation of sounds should be viewed as an nterface between linguists faced with the repre-
sentation of a wide range of sounds and a Data Base Management System.
First the code corresponding to each sound ust be a key to its major characteristics and, sounds. The binary distinctive features the seems to be the natural interface between phone tic analysis and the binary logic of computers. agreement on how a number of complex or clare sound should be treated in this approach; furthermore built-in definition of some features is costly tance $[+$ Hight $]$ is exclusive of $[+L$ Low - for. inssatisfactory to account for some sounds - such as laps and trills. On the other hand an IPA based independant of any particular thantages: it iates phonetic interpretation and a graphic reresentation in the same table; it allows a more compact code. This code can be easily converted exploitation of the data can be independent of the
coding system.
Secondly, the coding system must fit one of the standard formats for computer words. It should ords in the data ASCII code is used to classify orthographically recorded words. If the data base is organized in -ary trees, the algorithm will find all the elevant information necessary for the equilibraeach word.

general organization

 For maximal efficiency, each segment is codedin a short integer (16 bits word) noted by 4 hexadecimal figures. Consonants and vowels are coded to know if one given code refers to a consonant or to a vowel before being interpreted. For languages - such as Bantu - in which words are built nay determine syl fields corresponding either to a consonant or to a vovel in languages where no such syllabic regularity pre vails, the first field of the record (a long inof segments included in the record and, in the three following bytes, select the V / C choice (bits up to 31 set to 1 when the segment should be interpreted as a vowel and left at if it is a and pitch - is normally associated with vowels; provision is made however for consonants bearing a tone. A set of diacritics is used to give maxidesigned both for narrow and broad transcriptions. oding of morpheme boundaries for morphophonenic epresentations was not examined but could be ccomodated

CONSONANTS

A-Basic consonants are coded in the least A- Basic consonants are coded in the least
significant byte of the short integer. Table 1 yields the phonetic interpretation of the codin and illustrates some of the realizations. The 4 most significant bits correspond to the lines
(manner of articulation) and the 4 remaining bits to the columns (place of articulation)

Phonetic symbol

b
m
kp Sorp (1, $\quad \begin{aligned} & 0001 \\ & 0010\end{aligned}$ implosives and ejectives are respectively voiced; irated, murmured clicks, which may be voiced, as needed. In order not to further qualification is of articulation, some choices had than 15 places of articulation, some choices had to be made; thus,
apico-labial sounds, which are to be found in Umotina [1], are not included in the be found in
consonants but Consonants but could be handled as a special case
(see section F). To facilitate the editing be (see section F). To facilitate the editing on the lineprinter, it is convenient to have each basi
symbol occupy
one space only even if it is commonly transcribed as a sequence of two conso

B - Double consonants, geminates as well as mplex segments, are coded in two morae and occupy two spaces:

bb	4141	geminate bilabial voiced stop
mb	C141	bilabial prenasalized voiced stop
nt	C414	alveolar prenasal. unvoiced stop
nts	C474	alveolar prenasalized unvoiced
affricate		

C - A release, transcribed by a right-adjacent C-A release, transcribed by a right-ad jacent
diacritic occupying half a space, is coded in the
least significant byte the most least significant byte: the most significant bits
refer to Table 2; the final hexadecimal zero is refer to Table 2 ; the final hexadecimal zero is a
flag indicating that the bassc consonant (coded in the first byte) is followed by a release (the interpretation of which is given in Table 2 :

Codes which ane left free
Codes which are left free may be defined as neces-
$D-$ A segment synchronic property, transcribe
a subscribed diacritic, is coded in the most significant byte. The initial hexadecimal most a flag indicating that the first byte is to be interpreted as shown in Table 3:
y 0CB9 nasalized palatal approximant
\tilde{z}_{1} ODA4 lateralized alveolar fricative
m $04 C 1$ unvoiced bilabial nasal stop
Provision was made to code the lenis quality on a
par with the fortis. However, the lenis quality is par with the fortis. However, the lenis quality is
assumed to be the unmarked case and it is not asso assumed to be the unmarked case a
ciated with a graphic diacritic:

$$
\begin{array}{ll}
0114 & \begin{array}{l}
\text { lenis } t \\
\text { fortis } t
\end{array} \\
0214
\end{array}
$$

E-Consonants may be syllabic and bear tones he syllabicity is coded by the least significant byte set to zero:

$$
\begin{array}{lll}
\text { C100 } & \text { syllabic bilabial nasal stop } \\
& 9400 & \begin{array}{l}
\text { syllabic alveolar unvoiced fric } \\
\text { tive }
\end{array} \\
\text { on consonants are coded as they are on }
\end{array}
$$ are coded as th (see vowels, B); tone bearing consonants are assuned to be syllabic.

m C104 syllabic nasal stop/high tone m C102 syllabic nasal stop/low tone F - The overwhelming majority of known conso-
nants may be coded according to the conventions. However it may be crucial in some languages to handle difficult cases as accurately as possible. We shall resort to the following pointer to a specific filter corresponding a primary consonant coded in the second byte. One has access, through this filter, to a complementto 3 bytes; the flag set to detect this situation is the zero corresponding to the least significan bits of the first byte:
nd ${ }^{r}$
renasalized stop/
${ }_{\text {filter }}^{10 C_{4}}$
extended code :
ve. 100
urmured prenas
ized click
be
Voiced
prenasal
CB/1 : 0567
extended code : CB0567
20 CB
owecs
A - A short vowel - one mora - is coded on a short integer. A long vowel or a - is coded on coded as two morae. The most significant byte corresponds to segmental information. Vowels ar xes: height (5 degrees) and tongue position in the oral cavity (front, central, back)

	Front	Central	Back
	1	6	${ }^{\text {B }}$
	2	7	c
height	3	8	D
	4 5	${ }^{9}$	F

follows: significant bits are interpreted as

$$
\begin{aligned}
& \text { bit } 0 \text { - approximant-like vowe } \\
& \text { 1 - marked tongue root } \\
& 2 \text { nasal } \\
& 3 \text { - round }
\end{aligned}
$$

re bit 0 is used to mark superclosed vowels (like
the non syllabic part of a diphthong.
Ei 04008100 diphthong with gliding i
ia 01008800 diphthong with gliding a
The bit 1 is used to interpret marked tongue root position (emphatic vowels in the Berber-Arabic domain or the harmonic set of vowels charactersed by Advanced Tongue Root in a combine with this feature:
i 0100 (unrounded) i
u 1800 (round) u
i 2100 nasalized i
u $\quad 3 \mathrm{BOO}$ nasalized u
I $\quad 4200$ ATR I
Basic symbols corresponding to the set of unrounded vowels and of rounded vowels are show in Tables 4 and 5 respectively.
B - Suprasegmental infornation is coded in the second byte. Tonal languages use up to 5 levels
of pitch, represented henceforth as accents. The pitch, represented henceforth as accents. The

0101	Falling low	Ì
0102	Level low	ì
0103	Mid	ì
0104	High	Í
0105	Suprahigh	İ
0106	Downstepped	High
\dot{v}_{i}		

Contour tones are coded by reference to their source/target pitch:

0142 Falling high-low $\hat{\imath}$
0124 Rising low-high ì
The bit 4 is set to 1 if the corresponding tone
floang
014 A High + Floating low î
012 C Low + Floating high i'
Double contours require two morae; we propose the
convention that the first mora bear a level tone and the second a contour tone:
01040124 Falling-rising long i ii
01020142 Rising-falling long i $i \hat{i}$
al - In order to maximally compact suprasegment0180 stressed i i

If the stressed vowel bears a tone, the code is

0182 stressed $\mathrm{i} /$ low tone it
01 C 2 stressed $\mathrm{i} /$ falling tone \hat{i}
The code A0 is assigned to pitch accent as required $010 \quad i$ associated with pitch accent \vec{i}

D - Hexadecimal codes 7 and F are left free in our system. Corresponding combinations will be

unvoicing	0107	unvoiced i	i
	0147	unvoiced i	i
high tone retained	i		
creaky voice	$012 F$	creaky i / l low tone	\vdots
breathy voice	0172	breathy $i / l o w$ tone	\vdots

breathy voice 0172 breathy $\mathrm{i} /$ low tone..
Special cases may be treated with an extended code as proposed for consonants: a flag (hexadecimal as proposed for consonants: a flag hexadecimal
F) indicates that one has to go through a filter table, access to which is given by the code of
$01 F 2$: go to case 2 of the filter table cor-
responding to vowel i. responding to vowel i.
Rhotacized vowels, for instance, could be conveiently dealt with in this way.
conclusion
It is indeed possible to rely on the Interna tional Phonetic Alphabet to propose a comprehensive and versatile computer oriented coding systen, The fact that the code is phonetically motivated nakes it particularly attractive for expert sys-proto-languages.

Reference

1] P. Ladefoged, "Preliminaries to Linguistic

Table 1

Symbol Example Code Phonetic interpretatio

$$
\begin{aligned}
& \text { Symbol Example Code Phonetic interpretatio } \\
& \text { 1410. unreleased } \\
& 7420 \text { aspirated release } \\
& 7430 \text { glottal release } \\
& 1 \text { B90 palatal release } \\
& \text { BAO labiopalatal release } \\
& \text { 14B0 nasal release } \\
& 41 \mathrm{CO} \text { labiovelar release } \\
& \text { 14DO lateral release } \\
& 14 E 0 \text { pharyngeal release } \\
& 44 F 0 \text { trill release }
\end{aligned}
$$

			interpreta
	t	0114	lenis
-	t	0214	fortis
-	m	$03 C 1$	unvoicing
-	s	0494	voicing
..	b	0541	murmur
-	s	$0 \mathrm{OPM}_{4}$	rounding
,	t	0814	velarization
~	$\stackrel{\text { w }}{\sim}$	OCBC	nasalization
1	${ }_{1}^{2}$	ODA 4	lateralization
.	t	0 E	pharyngalization
..	b.	0 F 41	laryngalization

Table 3

Unrounded	vowels	
i	i	u
I	j	u
e	a	y
ε	e	Δ
z	a	a

Table 4

Round vowels
$y *$. y \quad. \checkmark $\infty \quad 2 \quad 0$ Table 5

ThE EFFECT ON Fo OF THE LINGUISTIC USE OF PHONATION TYPE

IAN MADDIESON
 Phonetics Laboratory
 Linguistics Department
 University of California
 Los Angeles, CA 90024. USA

ABSTRACT
Phoneticians generally expect that laxer adjustments of the vocal cords will produce lower F_{0}. Hence, languages with phonological contrasts between syllables with tense (somewhat creaky) and lax (somewhat breathy) phonation would be expected to show a difference in pitch between them. We measured F_{0} in several minority languages of China with contrasts that have been described as tense vs lax. Our results show that a pitch difference is only sometimes present. The patterns are, in part, explicable in terms of different phonetic realizations and different diachronic sources of the tense/lax contrast, and in terms of its phonological function.

A tendency for different phonatory settings to be associated with pitch differences has been noted by many observers. For example, Laver (1980), in his discussion of laryngeal tension settings, remarks that "there is a strong possibility that in tense voice the pitch range will be higher than in lax voice". Later he comments that "lax voice tends to be accompanied by a low pitch-range". But he goes on to note that there is nothing necessary about the association of laryngeal tension with pitch commenting that "it is certainly possible to compensate for these tendencies."

Laver is discussing tense and lax laryngeal settings as attributes of individal voice quality. However, a number of languages use tense and lax

SUSAN A. HESS
Phonetics Laboratory
Linguistics Departmen
University of California
Los Angeles, CA 90024 . USA
phonation for linguistic contrast between vowels. This phenomenon is quite common among languages spoken in Southwestern China and adjoining parts of Southeast Asia. We have been conducting studies of the phonation type contrast in several of these languages, and have reported some of our results elsewhere (Maddieson \& Ladefoged 1985, Maddieson \& Hess 1986). In the present paper we focus on the relation between F_{0} and phonatory tension in five of the languages in question. We hypothesized that pitch would correlate with tension, following the tendency noted by Laver, in languages which did not also have tonal contrasts. In languages with tonal contrasts with a high functional load and phonological systems in which phonatory tension is not an aspect of particular tones, we anticipated that the need to maintain the separation of tonal registers would inhibit this tendency. Instead, speakers would draw on the compensatory mechanisms available to counteract it

Our data consists of measurements of F_{0} from 5 languages - Wa, Jingpho, Yi, Lahu, and Lisu. Wa is a non-tonal language of the Mon-Khmer family (Diffloth 1980, Qiu, Li \& Nie 1980). The others are Sino-Tibetan languages with tonal systems with a high functional load. Yi (Liangshang dialect, Li \& Ma 1983) and Jingpho (of Yunnan, Lu 1984) have similar tone systems, distinguishing high, mid and low-falling tones. In these two languages the phonatory contrast is independent of the tone system, although it is limited to
particular syllabic nuclei in Yi. Lisu is usually analyzed as having a 6 -tone system in which tense phonation is characteristic of two of the tones (Mu \& Duan 1983). These two tones are mid-level and mid-falling, and can be matched with two of the "lax" tones, also mid-level and mid-falling. Mu and Duan transcribe the pitch height of the tense tones as 44 and 42 , and the paired lax tones as 33 and 31 , implying that the "tense" tones are indeed higher. Lahu has a system of seven tones, two of which are variously described as being checked by a glottal stop (Matisoff 1973), or having tense vowels (Ma 1984). These two tones, high-falling and low-falling, can be matched with two of the tones that occur non-checked or lax. Whereas Matisoff gives the same pitch values for tense and lax tones, Ma transcribes the tense tones as 54 and 21 but the lax tones as 53 and 31 indicating a smaller pitch range for the tense ones.

3 speakers of each language were recorded with the assistance of Ren Hongmo. The speakers read a wordlist containing $8-10$ pairs of monosyllabic words with a minimal tense/lax contrast. Each list was read twice, giving 48-60 examples of each contrast (except for Lahu where only one repetition was recorded, giving 30 cases). F_{0} was measured at the onset and offset of the vowel from narrow-band spectrograms. If a more extreme value of F_{0} occurred after the vowel onset that value was also measured.

The F_{0} measurements in each language were examined in a 3 -way analysis of variance specifying speaker, word pair and tension as main effects. In Table 1 the mean onset and offset F_{0} values are shown for the tense and lax vowels in each language. Significant differences (at the .0001 level) are printed bold. All other tense/lax differences are not significant (fall below the .05 level). Measurements of the peak F_{0} value did not show a different pattern from those
made at the onset, hence these measures are not reported

Table 1. F_{0} measures on tense and lax vowels.

"tense" "lax"	Wa		Jingpho	
	onset	offset	onset	offset
	146	112	157	128
	145	115	145	126
	Lisu		Lahu	
	onset	offset	onset	offset
"tense"	147	119	213	195
"lax"	148	122	214	126
Yi				
	onset	offset		
"tense"	157	153		
"lax"	152	154		

In Wa, words in citation form are spoken with a falling intonation. No pitch difference between tense and lax vowels was observed at either the onset or offset of the vowel. On the other hand, in Jingpho, a significant pitch difference at the vowel onset was observed. The Jingpho wordlist includes pairs of words with all three tones, but pairs with low-falling tone predominate (6 out of 10). Because of this, the mean offset value is low. The word pairs examined in Yi were all mid-level tone, hence onset and offset values are close. The onset F_{0} differs between tense and lax syllables by a small but highly significant amount in Yi. In Lisu there is no significant difference at either onset or offset, despite Mu \& Duan's indication to the contrary. Since phonatory tension is a property of particular tones in this language we had expected no effort to avoid a pitch distinction. Lahu shows a significant difference in F_{0} at the vowel offset. The mean offset value in the two lax falling tones is considerably lower than in the tense tones.

Our results are thus generally counter to our hypothesis, which predicted that an F_{0}
difference would occur in the nontonal language Wa, and in Lisu and Lahu where phonation type is an aspect of tone, but not in Jingpho or Yi where phonation type is independent of tone.

Are there historical or synchronic facts about these particular languages which enable us to understand this result? Jingpho and Wa share a similar historical origin for the tense/lax contrast, namely, the somewhat breathy lax syllables are those which used to have initial voiced consonants. However, synchronically, the phonation type contrast is more salient in lingeho than it is in Wa. We have used the Jingpho than \boldsymbol{H} is in Wa. We haven difference in amplitude between the second harmonic and the fundamental, $\mathrm{H}_{2}-\mathrm{F}_{0}$, as our measure of phonation type. This measure has a higher value for tenser phonation than for laxer phonation (Maddieson \& Ladefoged 1985). In Wa the mean difference in the $\mathrm{H}_{2}-\mathrm{F}_{0}$ measure between lax and tense vowels is just under 2 dB , whereas in jingeho it is just over 7 dB . In Whereas the tensellax contrast in Wa is addition, the accompanied by some vowel quality difference: tense vowels have a higher first formant than lax ones, i.e. they are lower in the perceptual vowel space. in Jingpho, vowels in tense and lax syllables do not differ. It may therefore be the case that in Wa the small pitch difference that might have been expected from the not-very-salient phonation type contrast is counteracted by the effect of vowel lowering in tense syllables. In Jingpho on the other hand, the phonation type contrast is made salient enough so that the conditioning environment for any allotonic variation can be readily recognized.

Lisu developed tense phonation in syllables which were originally checked (i.e. stop-final). In Lisu we found that the mean difference in the $\mathrm{H}_{2}-\mathrm{F}_{0}$ measure between tense and lax was about 3 dB , confirming the existence of a moderately salient phonation type difference. Since there is no pitch difference, this suggests that the system should be reinterpreted as one with four
tones in which a phonation type contrast operates within two of the tones, rather than as one with six tones, two of which have a marked phonation type.

Lahu shows no reliable evidence of a phonation type difference based on the measure we have used, nor is there usually any auditory impression of one. Instead, in the historically checked syllables, a final glottal stop usually cocurs and the vowel is considerably abbreviated ccur than in "lax" syllables). (about 275 ms shorter than much lower offset pitch in the two falling "lax" tones seems simply due to their much greater length; the pitch continues to fall and reaches much lower level. In Lahu, phonation type is only marginally involved in syllabic contrasts. Duration, extent of pitch change and glottal stoe are more central to the contrast which has been described as "tense" vs "lax". Matisoff's representation of the "tense" syllables as having a final glottal stop is more accurate than Mas account, though Ma correctly indicates the greater pitch range of the "lax" (unchecked) syllables (cf Hombert 1983)
Yi_{i} is again somewhat different. Although the difference between "tense" and "lax" vowel pairs is quite distinctive, with an auditorily "harsher quality for the tense members, the $\mathrm{H}_{2} \cdot \mathrm{~F}_{0}$ measure does not distinguish them. Perhaps this measurement is simply not appropriate for detecting phonatory differences in the rathe unusual range of "fricative vowel" segments found in Yi. We think that it is more likely tha the tense/lax contrast is produced in a differen way here. We speculate that the "tense" vowe employ a supralaryngeal mechanism like tha used in the "strident" vowels found in some the Khoisan languages, which involves narrowing between the base of the epiglotits and the upper part of the arytenoid cartilages. Th use of this mechanism in !Xoo has been describe in some detail by Traill (1985). Traill ha listened to our Yi recordings and agrees tha
there is an auditory similarity between the strident vowels of !X6ó and the tense vowels of Yi. However, in !Xóõ, strident vowels have somewhat lowered pitch, rather than the slightly higher pitch found in Yi "tense" vowels.

In the meantime, we find that, particularly in the data from Jingpho, we have provided a phonetic basis for a different hypothesis. This is the diachronic hypothesis that tonogenesis and splitting of tones in tone languages can arise from phonation type contrasts on vowels, as has been proposed by Pulleyblank (1978, 1984) for Chinese. Previous work has concentrated on consonantal sources for tones, and the effect of contrasts on vowels has largely been ignored. We now see that such effects can be significant However, as data from Wa and Lisu demonstrate phonation type may be contrastive in vowels without any accompanying pitch differences.

References

Diffloth, Gerard. 1980. The Wa Language (Linguistics of the Tibeto-Burman Area 5.2). California State University, Fresno.

Hombert, Jean-Marie. 1983. A brief encounter with Lahu tones. Linguistics of the Tibeto-Burman Area 7.2: 109-111.

Laver, John. 1980. The Phonetic Description o Voice Quality. Cambridge University Press Cambridge.
Li Min and Ma Ming. 1983. Liangshan Yiyu yuyin gailun [Description of the sounds of the Liangshang Yi language]. Sichuan Minzu Chubanshe, Chengdu.

Liu Lu. 1964. Jingpoyu gaikuang [Brief description of the Jingpho language]. Zhongguo Yuwen 132: 408-4177.

Ma Shice. 1984. Lahuyu gaikuang [Brief description of the Lahu language]. Minzu Yuwen 1984.3: 70-80.

Maddieson, lan and Peter Ladefoged. 1985 "Tense" and "lax" in four minority languages of China. Journal of Phonetics 13: 433-454.

Maddieson, lan and Susan Hess. 1986. "Tense" and "lax" revisited: more on phonation type and pitch in minority languages of China. UCLA Working Papers in Phonetics 63: 103-109.

Matisoff, James. A. 1973. A Grammar of Lahu University of California Press, Berkeley \& Los Angeles.

Mu Yuzang \& Duan Ling. 1983. Lisuyu gaikuang [Brief description of Lisu language]. Minzu Yuwen 1983.4: 72-80.

Pulleyblank, E. G. 1978. The nature of the Middle Chinese tones and their development in Early Mandarin. Journal of Chinese Linguistics 6 : 173-203.

Pulleyblank, E. G. 1984. Middle Chinese: a Study in Historical Phonology. University of British Columbia Press, Vancouver

Traill, Anthony. 1985. Phonetic and Phonological Studies of ! X_{60} Bushman (Quellen zur Khoisan-Forschung 1). Helmut Buske, Hamburg.

Qiu Efeng, Li Daoyong \& Nie Xizhen. 1980. Wayu gaikuang [Brief description of the Wa language]. Minzu Yuwen 1980.1: 58-69.
the correlation of the tense-Lax consonants in some russian dialects
the correlation of the tense-lax consonants and in other shavic languages

LEONID KASATKIN
The Lenin State Pedagogical Institute,
Moscow, USSR, 119435

SSTRACT

The speech material of the Northern Russian dialects was investigated. A complex of the phonetic phenomena was found lation of the the existence of the cor consonants in those dialects. Since analogous phonetic features are observed in the Western and
Southern Slavic languages, it may be suggested that the peculiarity discoy be sugn the Northern Russian dialects is praSlavic and pra-Indoeuropean heritage.

1. As we know, the consonants of Standard ussian are opposed on the basis of voice-lessness-voiceness. The voiced consonants differ from the voiceless ones also by the nants are more tense. This is manifested in the greater tension of the muscles of the articulatory organs.
nental phonetics is the direct of instrument of the level of tenseness. However, ne can judge of the degree of tenseness ect data. Specifically basis of some indenants compared to the lax ones are consodhe noise constituting them is longe Standard R
ess is closely voicelessness, and the to the feature of ness - to the feature of voice of nontensevoicenants are voiceless and lax that voiceness-voiceld be borne in mind feature in the opposition, while tens major nontenseness is an accompanying featuress /2/. In some languages these phonetic fer
rosalia kasatkina
The Russian Language Institut of the Academy of Sciences
the USSR, Moscow, 121019
ian. In such languages tenseness-nontenseness lies at the bottom of the oppositi on. As examples one can Cite English,
French, German, Finnish, Estonian and many rench, German, Finnish,
. So far no Russian dialects have been described where the principle of tenseness nontenseness of consonants manifested it uch dialects are to be found on the river of Mezen in the Leshukon district of the rkhangelsk region. Our primary auditory mpression was checked instrumentally when was measured.
2.1.1. According to the data recieved by latoustova for Standard Russian the length of voiceless fricative consonants
in the intervocalic position can vary wi hin the range of 167 mc to 213 mc . The voiced consonants show a variation from
93 mc to 127 mc . The ratio of the length 3 mc to 127 mc . The ratio of the length less ones is approximateiy $0.56-0.65 / 4$, p. $57 /$.
The prop
he proportion of voiceless and voiced position in the Mezen dialects differs rom that in the literary language. The ifference is a greater contrast in their length. Thus the length of intervocalic!
varies within the range of $95-100 \mathrm{mc}$; whi e [3) in the same position is characterised by the length of $45-59 \mathrm{mc}$; the tems] are from 110 to 180 of the intervocal $[z]$ - from 50 to 60 mc . The ratio of the length of voiced consonants to that of the iceless ones in the Mezen dialects is 1.2.An even greater diff
the literary language and the lects can be observed in the stops which are longer in the Mezen dialects.
The length of the voiceless stops differ from language to language. In some languages these consonants have a longer phase Estonian and Finnish are in geminates. phenomenon. In other languages English, German) the occlusive consonants have a
longer postexplosive phase leading to as pirated consonants.
toth types of prolonging of the voiceles lects. Thus sometimes these consonants ar pronounced with a long contact: la $\overline{\mathrm{p}}^{\prime}$ imof, etogo, poto'lok, ka koij. But more often k and [$p^{\prime}, t^{\prime}, k^{\prime}$, vappears in aspiration: 'phom'or, naphal, naphol; tham, thoza, , muzy'k'hij.
In Standard Russian the duration of postexplosive phase of the voiceless stops is quite insignificant: $[p, t]-20 \mathrm{mc}, \mathrm{and}$
ikj $35-40 \mathrm{mc} / 5 /$. If one takes into consideration the fact that the duration of $[p, t, k]$ in the intervocalic position aries from 153 to $200 \mathrm{mc} / 4, \mathrm{p}$. $571 /$, then the postexplosive phase of $[p, t]$ is consonant and that of $[\mathrm{k}]$ - to to $0.17-0.25$. ccording to our data the duration of the postexplosive phase of [P] in the Mezen 70 mc , and that of $[\mathrm{k}]-54-76 \mathrm{mc}$. The measurement of their relative length showed that the postexplosive phase of these of the entire length of the consonant. 2.2.1. One can also see the difference belects in the proportion of the Mezen dialeng th. in clusters.
In Standard Russian the first consonant
of the cluster is typically shorter than
ty is proved by our . 59/. This regulariconsonant length in such groups as [ks],
 law in Standard Russian according to which the first consonant cannot be longer then the second one even if the first consonant represents the combination of two identilength when it occurs beside another consonant; compare: классы [s:] - классныи The situation is
Mezen dialects, where different with the may be much longer than the one which fol lows. Compare: [uf 'la, uj kom, which is ta, los na, p'es'kom, fsu'botu]. The length as in the intervocalic position may come up in aspiration or in the longer contact phase: [okh 'no; nak 'laz' da]. The first even in the case when the former is a sonorant and the latter a voiceless consonant, while in the intervocalic position are much shorter than the voiceless ones. The average length of the second consonant compared to the first one varies from
0.4 to 0.7 . The voiceless stops are non-
aspirated in the postconsonant position. of the consonant in the clusters position to the tenseness-nontenseness. From this point of view the position of the first second one is weak. is is strong, and the 2.2.2. Another pecul
alects that is the progressive devocalization of the sonorants. This penomenon is and in bunth in the middle of the word

 pronounced in the of $\left[\begin{array}{l} \\ v, \\ v^{i}\end{array}\right]$, which are rue of the more ancient [w, wis is also Completely voiceless sonoran, sfo'jol. according to [v, v^{\prime}] soccur much rarer $\left[f, f^{\prime}\right]$ partially devocalized sonorants. The than rumental analysis of these sounds showed that such sonorants have voiceless beginevocalization of the sonorant and of the the position after the voiceless consonant in the Mezen dialects depends on the force of tension of the speech organs. When used tions the sonorants are devocalized for sound [f] is pront of their duration and the ther cases the devocalization of $[v]$, In over the initial phase of the second consonant only. There may be no progressive phrase positions. The strong voice ence not only the next sonorants but influthe vowels. In such cases vowels are pronhe rest of their typical charaserving
 syntagma. Sometimes several at the end of words may be pronounced as successive whispered, with the strong tension were tensive noise.
ln group of two consonants, as it has
been shown above, the first con tense and the second one is consonant is why if the first sonorant or $[v]$ is follow-
ing the voiceless consonant ve devocalization is observed the progressiently. It almost never happens if the sonorant or [v] is placed after two voiceless cannot assimilate the sound is lax, it v]; compare: [trojo next sonorant and 2.3. The prolongêd consonant. dialects frequently occur at in the Mezen ord before a pause: [1'es, at the end of a ong contact The stops are pronounced with with aspiration: explosion: [$i d^{\prime} o \bar{t}$, pesok toph] Quite frequently the voiceless explained by the fact that the general ab-
atement of the intensity at the end of a syntagraa weakens the end of the consonant as well that is why the strength of the
contact is greater than the strength of contact is greater than the strength of
the explosion and the explosion does not take place.
The voiced consonants in the Mezen dialects are lax. They are much shorter than tenseness manifests itself in the common flabbiness of their articulation. We have often noted the pronunciation of [j] and
 of $[\mathrm{b}, \mathrm{b}$ ' $]:$: inara'watu, w'un'tom $]$; $[\}]$ in .4. In some cases in the Mezen dialects place of the voiceless ones and vice versa can be observed and also the pronunciavoiceless and voiced ones: 'star' in ga ($\ll k$), po^{\prime} tumat ${ }^{\prime}(t<d)$, po'rato, za'ga(9) ${ }^{(9)}$, p 2. ${ }^{\text {I }}$ Implosive consonants, spirantization nge of voiced consonants and voiceless ones and the existence of semivoiced consonants have been noticed in different Nor logists. The auditioning of the tapes of the Northern Russian dialects accumulated n the Laboratory of experimental phonehe USSR Academy of Sciences Institute they share some other features with the hezen dialects which have been described
2. Ali this testifies to the fact that in the Northern Russian dialects there exists opposition on tenseness-nontenseness, but se in other Russian dialects as is the ca rary language.
When making phonological conclusions some phoneticians proceed from the principle of fact of neztralization as such cannot always clarify the nature of the phonetic op position. Thus $[t]$ and $[d]$ coincide in the sound $t]$ in the final position both in Ru-
ssian and in German. Yet in Standard Russian the opposition on voiceness-nonvoiceness is considered to be neutralized in the
final position, while in German the tion of tenseness-nontenseness is neutralized in a tense variant. The fact of neutralization is an evidence that the phonemes are paired and that they are opposed on
one distinctive feature. But it may mean nothing as to the nature of this feature. The Mezen dialects as well as the majority ffer from other Russian dialects do not dipoint of view of the nature of neutralization of the consonants discussed above. Here the noise consonants cannot be distin--
guished in the final and preconsonant
tion. At the end of the word and before the voiceless consonants and before the voiced sonants they turn into voiced ones.
The difference between the two types of di alects lies in how the contrast of the op posed ph is realized. In some dialects as p well as in Standard Russian the contrast the consonants on voiceness-nonvoiceness is more evider dialects the contrast consonants on tenseness-nontenseness is re evident than on voiceness-nonvoicenes, That is why the opposition of these conso nants is rooted in tenseness-nontenseness nant opposition in the absolutely strong position may give up it's place to some ac companying principle under other conditi ons. Thus in Standard Russian the differe $c e$ between $[p]$ and $[b],[t]$ and $[d],[s]$ and
$[z]$, etc. in whispering, when there is no voice, is evident only from tenseness or nontenseness of the corresponding sounds
$16 /$ In those Northern Russian dialects where the leading principle of phoneme position is usually tenseness-nontensenes, in the postconsonant position, where voiceless stops lose aspiration and fricati consonants lose their length, the major
contrast between the corresponding sounds is on voiceness-nonvoiceness.
3. What is the origin of the dialect pecu-
liarity described above? Speaking about the liarity described above? Speaking about
vocalization of the voiceless the intervocalic positions and the existen ce of the semivoiced consonants some inve tigators proposed that it is a feature of
the Finnish substratum $/ 8 /$. This proposal has some validity. It is possible that the other features of the described complex are also of Finnish origin.
However there is some counter evidence too.
The Komi Republic Academy of Sciences gave us an opportunity to listen to the tapes different Komi dialects including the dialects on the river of Mezen, neighbouring
on the Russian Mezen dialects. In none of these tapes could we find the. In none o feature of the Russian Mezen dialects-as piration of the voiceless stops. Yet some tensenessdo exist, for example the prolonging of the first consonants in clusters. scribed Northern Russ explanation of the de indoeuropean languages tures. Thus for example the tense voiceless consonants significantly exceed in their length the lax voiced ones; the aspiration hing of the word and in the intervocalic positions (while it is absent in the postconsonant position); cf. also the progre prolonging of the ending sonorants, the
pirantization of the voiced stops in Eng lish and German /9/.
Many of the described phenomena are known ata [p, t ic languages. According to our than in Russian. The voiceless stense aspirated in Polish. There is also are gressive devocalization of the sonorants in some Western and Southern Slavic lan guages $/ 10 \%$ For Czech the relevance of the opposition was discussed-fortes Consequently the discussed features o the Northern Russian dialects connected with the opposition of the consonants on ature linking the Northern Russian more lects with the Slavic West. This feature praindoeuropean

References

/1/ Р.якобсон, Г.Фант, М.халле. Введение в анализ речи. Различительные призна ки и их корреляты. Гл. П. опыт описания в лиигвистике. Выи. П. М., 1962

72/ л.Г.Зубкова. Фонетическая релиа ция консонантннх противоположений в рус-
ском языке. Мо, 1974, с. $10-11$. ., 196 тура слова в потоке речи. Казань, 1962 лтрук /5/ ग.в. Бондарко. Звуковой строй совреенного русского языка. М., 1977, с. 143 .
$/ 6 /$ М. В. Панов. Современыит Фонетика. М., 1979.
/7/П.С.Кузнецов, О дифференциальных изизнаках фонем. - В кн.: А.А.Реформатский 1970, с. 491
/8/В.В.колесов. Севернорусские чередозания согласных, парных по глухости-звонтории, - языка и литературы, вып. Серия исР.Ф.Пауфошима. некоторые вопросы, связынные категорией глухости-звонкости в говорах ронетическое изучение : Экспериментально1969, c. 214.
pronunciation A. . An introduction to the
p. 159, 161, 164 English. London, 1970, иалектология. М.-Л., 1956, с. $251-252,254$, 10/ B.Hála. UvedenI do fonetiky češt 962 , s. 362 ; J. Beličé. Nástin céeské dialektologie. Praha, 1972, s. 59; А.М.Селищев. кие язныки. М., 1941, с. $300,327,335$. /11/ Y.Vachek. K znělostnímu protikladu ie ze slovanské jazkov̌̌. Prahe stu
of the pharyngeatization in tungus-manchu languages
gailka radchevko

Novosibirsk, USSR 630090

Assmact
The paper presents some results of and experimental study of the Maray sined results comeern the nature and the function of the pharryseallany-
ngesi phereres and their influence on ngesl phoremes and their influence on
the rowsl and conscusit patterms. The proposed afprcach allows s simple so Iution of scme disputable phomemorph olosical phencmens in mingus-Manchu the rowel Fatterms of Nanay and Uch lansiages is siven. It is shemn that Fhsyases $1 / 1$ aryczeal pioneres are reryed by fuctional ambiguity serve
ss mas of distinctive and deliritative function on segnentsl, surerses rentsi and phoncrovholosical Ievels. We presence of morphonological cons tters of Tungus-Marchu languges is
a festure tritesi of the syliabomorp a festure typical of

Introducitey
Fharyrseslizsticn kas rice phoretic macocscastion rarging from aspiration of
to paryngeslized accent in Tinsis-Manchu jansuazs. The piaynzsea isiruagss found in some Tumzus-Mancin dislects of Cocin /1/. The cocurences of sspirstion of rciceless stops were mentioned in certain dislects of Erenki IIzed rewels with the glotal stop or oxpirsticn of bresti in itie misile of Shwel pherstion were described by E. F. nces to the plazyczesilizstion in Turgus lianchu langiazes are scanty.
M-9 present prepr concerm the phonetic on of the phangrealization and functicn tiche pisymgealizstion in rangy scutiern Four of ficis-Mamehu laneua ces. Whe investizsticr is baso an tise

not phonetically trained, all of them ur aware of the purpose of the experiment. means of oscillograph, intonograph, by $250 \mathrm{~mm} / \mathrm{sec}$ and were also treated by apectrogreph.
acoustic hanifestation
It is traditionally accepted that there are voiced and voiceless stops in Tungus
lanchu languages. On the acoustic spect ra of the Nanay and Udehe words the two sets / bdg / and / ptk / initially are produced with silent closure intervals and ought to be classified as voiceless roiced sind $/$ ptic $/$ are voiceless. The co nsonant spectra of / pts/are characterized by postaspiration which manifests itself as higher frequency noise/fig. $1 /$
According to L. Lisker and A.S.Abramson the difference between voiced and voice less consonants is in the timing of roice onset relative to release: / bdg / cy harmonics preceding the burst of the relesse and /ptk / are distinctevely ma rked by an interval of higher frequency For Tungus-lanchu languages this difference roriss only in part. In initial position/ptk/and/bdg/are voiceless sud $/ \mathrm{pty} /$ distinguishes from / bdg/ of mid-higher exploquency noise within the range corresponding to the frequency has iration the following vowel, i.e. asp me pharyngel $/$? Fharyngeal / h / and the glottal morphere before a following vowel or at the morpheme boundary serving as a word

 Cain / 'cock and' ken', $/$ inahji $/$ dog'
Cat tee spectra the giottal stop manifesta Ca the spectra the giottal stor manifests and second formant frequercies $/ 115.3 /$. In the weak position, ing in vioce onset.
and as a finale of a syllable the phary-
ngeal / $\mathrm{h} / \mathrm{and}$ laryngeal / $\mathrm{l} /$ are reangeal 1 ased sonants: ? Nanay:/wonemi ~ onemi~ ? EVenki:/ala~alay~alak~alah/'motley'),
These vocalized laryngeals are often omThese vocalized laryngeals are often omphthongs: Negidal: /adaxu~adaku/ 'twin' Oroch: /adawu~adau/, Udehe: /adPau/,
Ulch1: /adau~adü/, Orok:/adaw~adau Nanay: /adao/. In Udehe Ianguag adau/, Nve the process of transition of $/ \mathrm{h} /$ and / ? from phonemic to prosodic level: the first or the last syllables of a stem are marked by the pharyngealized/ characterized by the double peak fundamental tone (circumflex) which marks the ons onant and the vowel of a syllable hown that the pharyngealization/laryn gealization in Udehe language is the istinctive feature of a syllable but asis of the auditory analysis by E.R.

CCM

ig. 1. Spectrogram of the Nanay wor

Fig. 2. Spectrogram of the Nanay word

Fig. 3. Spectrogram of the Nanay word

Fig. 4. Fo-curve of the Udehe word

Fig. 5. Fo-curve of the Udehe word

Fig. 6. Fo-curve of the Udehe word
/ \ddagger obo/ ${ }^{\text {hard }}$,
Hz

Fig. 7. Fo-curve of the Udehe word /da/ 'cotton wool'

Hz

Fig. 8. Fo-curve of the Udehe word /adahu/ 'twin'

FUNCTION

The pharyngeal and laryngeal phonemes function as boundary markers between two morphemes, one ending with a vowel and the other starting with a vowel. These phonemes may be considered as morphonological constructive elements, serving to link a stem and a suffix. For example, the initial glide / w / of many verbal/ noun suffixes in Nanay may be omitted. Its presence depends on the syllable structure of a stem. If the syllable of a stem has a long vowel or a diphthong which are always marked by the double peak accent, the morpheme and syllable metanalysis is not possible. If the syllable of a stem is not stressed the morpheme metanalysis is possible, e.g. Nanay: /būwuri/'to give', /xola, ${ }^{\prime}$ '/; to read'. In Udehe the unstressed syllable of a stem form a fusion with the vowel of the following suffix. In this case the pharyngeal /h / and the laryngeal / ? / which are the markers of the Past Indefinite and the Past Perfect correspondingly, are manifested as pharyngealized/laryngealized accents linking the stem with the suffix: Udehe: /wätbl/'they had killed',
/ 3aw?a/ 'he had taken'. In conclusion it should be atated that $/ \mathrm{h} /$ and / ? / became isolated in the pattern of consonant phonemes. This iso lation was due to the functional ambigui. ty as these phonemes serve both as means of distinctive and delimitative function The presence of such morphophonemic eloments in the language is a feature typical of the syllabomorphemic language typa
REFERENCES
/1/ В.И. Цинциус, "Сравнительная фонетика тунгусо-маньчжурских лзыков", Јенинград, 1949.
/27'А.А. Горцевский, "Фонетические труд ности при обучении эвенков/тунгусов/ русскому языку", Ленинград, І939; К.А. Новикова, "Проект единой фонетической транскрипии для тунгусо-мань чжурских языков", Москва-Ленинград, I96I. /3/ Е.P. Шнейдер, "Краткий удэйско-русс кий словарь", Москвя-Ленинград, I9в6. /4/ L. Lisker, A.S. Abrams on, "Stop Cate. gorization and Voice Onset Time", The Fifth International Congress of Phonetic Sciences. Proceedings, Basel-New York, 1965, pp.389-391.

das Konsonantensystem der dolganischen sprache (NACH EXPERIMENTALEN ANGABEN)

NATALI BELTJUKOWA

Die Tomsker Staatliche
Kujbyschew-Universität
Tomsk, UdSSR 634010

Die vorliegende Arbeit ist der Erforschung des Konsonantensystems der Sprache der Dolganen gewidmet und sieht die Aussonderung des Konsonantenbestandes, die Bestimmung des Untersystems der Konsonantenphoneme des phonologischen Systems der dolganischen Sprache, sowie die Hauptmerkmale der artikulatorisch-akustischen Grundlage dieser Sprache auf dem Gebiete der Konsonanten vor.

Die Dolganen sind eine kleine (4877 Mann stark) türksprachige Völkerschaft im Hohen Norden, die im Taimyrer (DolganNenezker) autonomen Bezirk des Krasmojarssker Regions in den Bezirken Dudinka und Chatanga leben.

Die Sprache der Dolganen, die man am Anfang ihres Bestehens als ein Dialekt der jakutischen Sprache mit bedeutenden Archaismen betrachtete, löste sich seit langem unter den Bedingungen der langwierigen historischen Entwicklung vom ganzen System der jakutischen Sprache ab und verlor die Eigenschaften eines Dialekts. Der moderne Stand der dolganischen Sprache lät uns sie als eine selbständige Sprache betrachten /1/. In einigen Schriften aber wird Dolganisch bis jetzt noch als ein Dialekt der jakutischen Sprache erlautert /2/.

Das. Sprachmaterial, welches als Grundlage für die erste Analyse und Verallgemeinerung diente, wurde den Texten (Erzählungen, Märchen), einzelnen Sätzen und Wörterm entnommen, die die Sprachexpeditionsteilnehmer S.Demjanenko, T. Koschewerowa und der Autor dieses Artikels unter der Leitung des Professors A.Dulson 1970 und 1971 festgelegt haben.

Soit 1973 begann der Autor das Sprachmaterial nach einem speziellen Programm zu sammeln, welches im Laboratorium der experimental-phonetischen Forschungen des Instituts für Geschichte, Philologie und Philosophie der Sibirischen Abteilung der Akademie der Wissenschaften der UdSSR un-
ter der Leitung von W.M.Nadeljaew zusammengestellt wurde, sowie auf der Halbinsel Taimyr (während der sprachlichen Dienstreisen des Autors) als auch in Nowossibirsk im genannten Laboratorium im Laufe der Arbeit mit fünf vom Taimyr angekommenen Dolganen.

Die erste Forschung der dolganischen Sprache hat E.I. Ubrjatowa durchgeführt. Sie nennt 21 typische Konsonanten $/ 3 /$.

Im Lautsystem der nahverwandten jakutischen Sprache nennen verschiedene Autoren von 19 bis 23 typische Konsonanten/4/. L. N. Charitonow /5/ zahlte in der jakutischen Sprache 20 Konsonantenphoneme und teilte sie in Gereuschphoneme und sonore Phoneme ein; Geräuschphoneme werden weiter in stimmlose und stimmhafte eingeteilt. P. P. Baraschkow nennt im Jakutischen 27 Konsonantenphoneme /6/, E.I. Ubrjatowa - $21 / 7 /$, N. D. Djatschkowskij -- $20 / 8 /$.

Die Bestimmung des Bestandes der KonSonantenphoneme hat der Autor auf drei Etappen Verwirklicht (im Laufe der Arbeit haben sich diese Etappen gemischt).

Auf der ersten Etappe wurden alle Konsonanten schriftiich festgelegt, welche während des Aufschreibens der Texte, einzelner wörter und beim Lesen der Texte, die die anderen Expeditionsteilnehmer aufgeschrieben haben, fixiert wurden, was man eigentlich auch als Gehöraufnahme bezeichnen kann. Man stellte im Dolganischen folgende Konsonanten fest, die durch das Konsonantensystem der russi schen Sprache gufgenommen wurden: σ, σ,

 A.P. Duison). (nach der Transkription von

Die zweite Etappe - die Prüfung des Konsonantenbestandes mittels Analyse der aufgeschriebenen Texte (Vergleich der Wortformen eines Lexems und der der verwandten Lexeme mit verschiedener Semantik, das infolgedessen einen vollen Konsonantenbestand im Dolganischen gegeben hat. Unten ist der ProzeB der Arbeit auf
der zweiten Etappe dargestellt (in der so systematisch).
so systematisch). Beim Vergleich der Wortformen mit Generabedeutung masta: hack Holz pastat mastan "versorge dir Holz hackt", mastas "hack Holz mit jemand zusammen" stellt man 3 Konsonanten-n, t, s fest, die in der Reflexivitait, Kausalität und Kooperativitit zu beziehen sind.

Die Gegenüberstellung der Gleichstamm"hack Holz spater", masta:q "derjenige, der Holz hat" macht uns die Konsonanten "r" und "q" bekannt, der erste von ihnen Morphems - a:r mit der grammatischen Bedeutung des zukünftigen Imperativs, die zweite - die obligatorische Komponent des Morphems +ta: q des wortbildenden
Postixes der Adjektive des Bezitzens. den Wortformen masprn "mein Holz" (Akk), maskzn "dein Holz" (Akk) sieht man die Konsonanten p und k, der erste - im Mor-
phem des Akkusativs der Personalpossesiphem des Akkusativs der Personalpossesination der ersten Person Sg.,
ven Deklination in Morphem des Akkusativs
der der zweite - im Morphem des Akkusative der personalpossesiven Deklination der
zweiten Person Sg. Das Vorhandensein de Lautes k wird auch mit dem Stamm des Adjektivs ilimnx:k "derjenige, der ein Netz hat" bei der Gegenuberstellung mit der
verbalen Wortform ilimm: "fang Fische verbalen wortform ilimme
mit einem Netz" bestimmt.
Die Wortformen tabam "mein Hirsch" und tabay "dein Hirsch" mit grammatischen Bedeutungen der personlichen Angemiteinander und auf Grund des Ausgang stamms taba "Hirsch" die Komponenten m und n hervor, dementsprechend sondern die Lexems tababzn meinen Hirsch" (Akk), sonanten b und g aus.
Aus dem Vergieich der Lexeme $\hbar 6$ aj "Tee"- hcajda "Tree", tagaja "sein Tee" sondert man den Konsonanten d aus, als eine obligatorische Komponente des Post-
fixes da im Vergleich zu dem Postfix der Personenangehorigkeit der dritten Person
${ }^{+a}$ Aber nicht alle Konsonanten nehmen an den für ihre Vergleichabsonderung bequemen Poaitionen teil; In solchen Fallen benutzt man die Methode der Gegenüberstel-
lung von nahlautenden Wurzelstammen verschiedener lexischen Bedeutung (die Mit thode der Pseudohomonyme). Auf solche Weisie hebt man Konsonanten hervor, ohne die die Lauthulsce des gegebenen Lexems mit stützt wird. Der Vergleich von winterahca "Darr", ala "rrager", a of a "Vater"

"GroBmutter", ε he "GroBvater" läßt uns
 und das weiche λ beim Vergleich der ein
 "Jäger" hervorgehoben.

Die auf der zweiten Etappe der For nanten wurden fur die Bequemlichkeit ih. rer künftigen Analyse in 6 Gruppen nach dem aktiven Organ der Artikulation vereint: Lippen - p, b, m ; Vorderzungen
 en Etappe wurde der stand der Konsonantenphoneme der. dolganischen Sprache bestimmt, haupt sachlich nach den Regeln der Aussonderung der Pho nem morphologischen Struktur der Wortformen, wo es notwendig war. Auf solche Weise werden in jeder Artikulationsgrupp

 weiteren Analyse zeigen, daB die Hinterzungen - [k] 1. [k] 2, die Zappchenphoneme [q] 1 und $[\mathrm{q}]$ I im Verhel tnis der zusamtlis.
chen Distribution zueinander stehen. Das chen Distribution zueinander stehen. Das nerung machen, indem die beiden Phonempaare [k], [k] 2 und [q] 1 , [q] 2 zu einem Paar vereint werden, aup die bedingt die verallgemeinerterem Inhalt verbreitet werden. Im allgemeinen unterscheidet man im Dolganischen 17 Konsonantenphoneme. des Phonems, die von L. W. Tscherba /11/ formuliert und von L. R. Sinder /12/ in unserer Zeit entwickelt wurde.
tische Furchgefuhrte experimental-phoneserungen ziehen
Für das System der Konsonantenphoneme lung in zwei phonetische Gruppen EinteiSannungsgrad..des aktiven Hauptorgans eige schwache (Gerauschlaute) -10 Phoneme und Phoneme. Die schwachen Phoneme werden ihrer -
seits in lange (5 Phoneme) und kurze (5
Phoneme) eingeteilt. Die monumgert.
folgenden Pagren $[p] 1-[p] 2,[t] 1-[t] 2$, $[\hbar]_{1-[\hbar]_{2},[\mathrm{k}]_{1}-[\mathrm{k}]_{2} \text { werden vom Forscher, }}$ dessen Muttersprache Russisch ist, als Stimmarte, und die Tönungen der nächsten obwohl in einzelnen Tonungen der ersten Phoneme die stemmhafte Komponente nach experimentaien Angaben Komponente nach

- $100,0 \%$ der Tonunge gamten Lautlänge, und in stimmhafte Komponente zwischen $0,0-35,7 \%$ der gesamten Lautlange schwankt. Aber das und stimmlosen wịe «h» der kombinatorischen Positionstönungen beim Phonem [h]
stort die eben bemerkte Gesetzmabigkeit stort die eben bemerkte GesetzmäBigkeit dolganischen Konsonanten nach den Merkma Was der Stimmlosigkeit - Stimmhaftigkeit. Lange anbetripft, so ist sie in der der wie die experimentalen Angaben..zeigen, ausnahmlos, indem sie alle Gerauschkonso und lange: $[\mathrm{p}],[\mathrm{t}]$ einteil t - in kurze $[t:]$, $[h],[\mathrm{s}:],[\mathrm{k} ;] .[\mathrm{t}],[\mathrm{k}],[\mathrm{h}]$; $[\mathrm{p}:]$ Phonems [t] in der intervokalengen des honems [t] in der intervokalen Position meinerten Angaben von 3 Sprechern) etwa $38,0,108$, om der mittleren Lange des Laues, und die Tönungen des Phonems [t:] in derselben Position $=V C V$ eine relative
Lange von etwa $96,3-168,0 \%$ der mittieren ange des Leutes.
Die Teilübereinstimmung der Zonen in
konkreten... Schwankungen der relativen Längen von Tonungen kurzer und langer Geauschphoneme labt sich bei der exakten onenverteilung ihrer relativen Mittellän elches der Jakutischen Sprache nahver andt ist, sich als Sprache in einer veraltnismaBig kurzen historischen Frist, und dabei unter komplizierten enderten, shen Bedingungen bei Teilnahme verschieener Gruppen der türkischen, tunguBerund samojer Sprachur alle Gerauschkonso.
olganischen Sprache ist die Mundartir lation ist das oblisat; die Mundartikuhal dieser Gruppe von Konsonantenphoneme Die Analyse der übereinstimmenden Dentopalatogramme der Tönungen der Phoneme ingen Unterschied in der Form des Abrucks auf dem künstlichen Gaumen, daB der inneren..stimmiosen VerschluBkomponente in den Tönungen der Phoneme [t: $]$ [t] sich nicht wesentlich von der Muskelspan-
 scheidet. Die Vorderzungenkonsonantenphoneme [t] und [$t:]$ und die Mittelzungenphoneme [h] und [h:] werden also nach stellt. Der Vergleich von Ergebnissen der in-
 zeigt, daB auf der Mundlinie die Segment
dieser Konsonanten mehr oder weniger Engecomponenten haben twas mehr in den ${ }^{2}$ jegmenten der Phoneme
 te haben, die intervokalen Tonungen der Phoneme [[p], $\left[\begin{array}{l}\text { n }] \text {, } \hbar] \text {, [K] kônnen nur } \\ \text { schmale }\end{array}\right.$ schmale Engen haber, aber der Experimentasonanten mit dieser schmalen Engeartikulation von Konsonanten mit Verschlubartikulation, wobei er sie miteinander vermischt, darum werden in der vorliegenden Arbeit
zeichnet.
Diese
Diese fakultative Enge in den Geräuschismảig schwachen Muskelspannung der ak iven Organe bei ihrer Artikulation. Eine erhaltnismabig groBere Engeartikulation [$t]$, [\ddagger], $[k]$ im Vergleich zu den Se
 ung der letzten erklaren, porale Bedingungen, welche die Verwirklihung dieser ihrem Wesen nach VerschluBsichern. Die analysierten Angaben der exarimentalen Forschung..lassen behaupten, aB die mögliche Gegenüberstellung der hrad des aktiven Organs, die den anderen urkischen Sprachen eigen ist, für das dolganische Konsonantensystem irrelevant
Die Aspiration oder ihr Fehlen können auch nicht als Hauptmerkmale dienen, weil sich einerseits vom Gehö die Verschlublaute der dolganischen Sprache von den terscheiden und andererseits im experimentalen Stoff, welchen man mit Hilfe eines Oszillographen bekam, die für die aspiristischen Abschnitte nur in zwei Positionen entdeckt wurden: im Auslaut und, in einigen Fallen, auch im absoluten Anlaut den Laut entweder schwach aspiriert oder gar nicht aspiriert ausprechen.
zehn dolganische Gerauschkon haben eine verschiedene Positionsverten lung in der Lautstruktur des..Wortes. AuBer einem kommen alle langen Gerauschphoneme in einer beliebigen Position vor: im An-, wird im Auslaut nicht gebraucht. AuBer dem Auslaut werden alle kurzen Gerausch-
phoneme in den Positionen $C V=$ und
$=V C V$ phoneme in
 stimmlosen und zum manchmal aber auch in gen. Infolgedessen werden die genannten

Phoneme nicht als..sonore, sondern als sehr schwache geräuscharme Phoneme bestimmt. Gewönnlich sind die obengenannten Merkmale miteinander verbunden; dabei wird das..zweite Merkmal vom ersten bedingt. Für die dolganischen Laute m, n, $n, . \eta, 1, r, j$ ist wirklich, wie es vom Gehör bestimmt wird, ein kleinerer Geräusch ím Vergleich zu den Phonemen, die als Geräuschphoneme bezeichnet werden, charakteristisch, deshalb kann man diese Gṛuppe der Phoneme als sehr schwache gerauscharme Phoneme nennen.

Der Autor meint, daB es zweckmäBig wëre, die gerauscharmen Phoneme der dolpanischen Sprache in zwei Gruppen einzuteilen: Nasale-und Mundphoneme.

Fur die nasalen gerauscharmen Phoneme $[\mathrm{m},[\mathrm{n},[\mathrm{r}]$, [g$]$ ist in artikulatorischer Hinsicht folgendes typisch: a) ein sehr schwach gespannter VerschluB in der Mundhohle, der in gewissem MaBe durch einen EngeverschluB erganzt, sehr oft auch durch den letzten ersetzt wird, was nur bei schwacher Muskelspannung des aktiven Organs moglich ist; b) der Abgang des weichen Gaumens von der hinteren Wand des Pharyn's.

Die gerauscharmen Mundkonsonanten 1,5 , j vereint artikulatorisch folgendes: a) Enge in der Mundhöhle b) VerschluB des weichen Gaumens mit dem hinteren Teil des Pharynx's, wobeị die Luft durch die Nasenhöhle nicht strömen kann.

Diese drei Phoneme unterscheiden sich voneinander durch die Arten von Hindernissen mit entsprechenden akustischen Effekten - Artikulation der Seitenenge (Engen) beim Phonem[1], der Mittelzungen-und Vordergaumenenge bei [j], Mittelvorderzungealveolarenge bei [r].

Die Konsonantenphoneme der dolganischen Sprache werden nach dem Hauptorgan und den entsprechenden passiven Organen in fünf phonematische Gruppen eingeteilt: 3 Phoneme der ersten Artikulation (Lippenphoneme), 6 Phoneme der zweiten Artikulation (Vorderzungenphoneme), 4 Phoneme der dritten Artikulation (Mittelzungenphoneme) 3 Phoneme der vierten Artikulation (Hinterzungen-und Ovularphoneme), 1 Phonem der fünften Artikulation (Rachenphonem).

Die Hauptmerkmale der artikulatorischakustischen Basis der dolganischen Sprache auf dem Gebiet der Konsonanten sind folgende:

1) Bei der Aussprache der Konsonanten werden die Sprachorgane verhaltnismäig wenig oder kaum gespannt.
2) Fur den Sprechapparat ist das Vorhandensein von einfachen und kombinierten Artikulationen eigen. Ein besonders breiter Diapason ist nach dem aktiven Organ den Konsonanten der vierten Artikulation eigen. 3) Das Vorhandensein von 7 Artikulationsreihen der Konsonanten: a) Lippenkonsonanten, b) Vorderzungenalveolar-oder

Dentalalveolar-hauptsächlich Dorsallaute, c) Mittelzungen-, Alveolar-und Vordergaumenlaute, d) Hinterhartengaumenlaute, e) Vorderweichgaumenlaute, f) HinterzungenHintergaumenlaute, g) Rachenlaute. 4). Es gibt wenig Zisch-, besonders $G \theta$ rauschlaute.

Literatur

/I/ Е.И.Убрятова, 0 языне долган, "языки и фолвклор народов Сибирского Севера", M.-I.; I966.
/2/ "Народы Сибири", М.-Л. . I956.Nikolaus Poppe, Das Jakutische, "Philologiae Turciacae Fundamenta", t.1. Wiesbaden, 1959; Karl Menges, "The turcic languages and peoples", Wiesbaden, 1968.
$13 /$ Е.И.Убрятова "Язык норильских долган", Изд-во.. Наука СО, АН СССР, I985,
/4/Otto Böhtlingk. "Uber die'Sprache der Jakuten". St.Petersburg, I85I; C.B. Ястремский. "Грамматика якүтского язчка" Иркутск, I900; W. Radloff, inie jakutische Sprache in inrem Verhältnisse zu den Turksprachen". St. Petersburg, 1908; "saqalw: bicik", Якутск, 1917; Н.Н.Поппе. "Учебная граммәтика якутского язєка". М., I926.
/57 Л. Н.Харитонов "Современный якутский язык", Якутск, 1947.
/6/ П.П.Барамков. "Овуковой состав якутского языка", Якутск, 1953.
/7/ Е.И.Убрятова. Якутский язык. "лзыки народов СССР".

78\% Н. Д. Дьячковский. "Звуковой строй якутского языка". Якутск, 1977.
/9/ В.М.Наделяев, "Проект универсальной фонетической транскрипции", М.-Л., 1960
/Їо/ Н.С.Трубецкой, "Основы фонологии", M., I960.
/II/ 元.В.Щерба. "Языковая система и речевая деятельность", Л., 1974.
/І27 Л.Р.Зиндер, "Обіщая фонетика", Л., I960.

ФОНОЛОГИЧЕСКАЯ ИНТЕРІРЕТАІИЯ ЗВУКОВ "СЈАБОЙ" ПОЗИПИИ /НА МАТЕРИАЛЕ БЕЗУДАРНЫХ ГЛАСНЫХ ФРАНЦУЗСКОГО ЯЗЫКА/

АКЧЕКЕЕВА МАРИЯ СУЛТААОВВНА

Кафедра франдузского языка
Киргизскй государственный университет
Фрунзе, Киргизия, СССР 720024

работа посвлщена проблеме фонемной интерпретации безударных гласных среднего подъема форанцузского лзыка, а такще анализу соотношения фонологического восприятия п акустических характеристик звуков. Опираясь при определении фонологического статуса безударных тласных на речевоө поведение носителей язнка, предлагается их однозначная фонемная трактовка; выясняются фактори, действупшие на использование фонем в безударных слогах, а также роль в этом более внсоких уровней языкового строя.

0щной из наиболее сложных фонологических проблем для многих языков, в том числе и французского, является фонемная трактовка звуков, находящихся в так называемой "слабой" позиџии, т.е. в позиции, где отсутствуют некоторые противопоставления фонем. Применительно к французскому языку это относится, в основном, к определенио фонемной принадлежности гласных /e-E/, $\mid \varnothing-\infty /$, /о-ว/ в безударннх слогах. Фонологическая трактовка этих гласных у разных исследователей неодинакова, что связано с различным подходом к решению ряда общефонологических проблем /нейтрализация фонемных противопоставлений, чередование фонем, тппы произнесения и стили произнощения/. Существует мнение, согласно которому противопоставление гласных среднего подъема в безударной позиции нейтрализуется, причем использование той или иной фонемы подчиняется гармонии гласных по́ подъему, т.е. обусловлено качеством гласного последующего ударного слога /I\%. Іанная точка зрения восходит к М. Граммону /2/.

Другие полагают, чेто противопоставления фонем по признаку подъема в этой позиџии сохраняются, так как невозможно обънснить все случаи дублетного произношения слов гармонией гласннх $/ 3 /$.

Согласно третьей точке зрения, сущесвуют "средние" гласнне, промежуточнне по своему качеству между открытыми и закрытыми. Такие формулировки принадлежат

авторам-дофонологам или же авчорам, не решаюцим фонолических проблем /4/. Л.В. Церба допускает средние гласнне лишь в небрежном произношении; в отчетливом произнесении они пролсняются в открытые или закрытые /3/. Следовательно, по J. В. ІІербе, фонемная трактовка звуков должна опираться на отчетливое произношение.
М. Граммон, не принявший фонологических идей, резко возражал против средних гласных, очевидно, потому, что его непосредственное восприятие носителя язына требовало отнесения звука к той или иной четко определенной звуковой единице - ّонеме $/ 2 /$.

Авторы, исследовавшие объективные характеристики безударных гласных среднего подъема во французском языке, не ооращались к их восприятию носителями языка, что позволило бы решить вопрос об wx фонемной интерпретагии. Іринадлежность гласного к той или иной фонеме считалась ими заранее заданной.

Таким образом, для решения спорннх фонологических вопросов необходммо ооращение к широкому аудиторскому анализу наряду с исследованием акустических характеристик соответствуюцих звуков.

Расхождения между разными словарями, между словарями й рекомендациями орфооэпических пособий, несовпадение тех и других данных с фонологическими описаниями, в которых содержатся утверждения о нейтрализагции некоторых оппозиций в безударном слоге, требуют специального анализа употребления гласных.

В качестве материала для такого анализа были использованы данные Словаря А. Мартине и А. Вальтер, не предписывающего, а описывающего произносительную норmy / $5 /$ 。
На основе статистическо обработки этих данных были выявлены закономерности использования носителями языка тех или иных форм произношения. Подсчитывались все случаи разного внбора информантами гласных /е- $/$, / / о-ое/, /о- $/$ в безударных слогах. учитывались, кроме того, ра-

зличнне буквеннне обозначения этих гласных, а также другие факторы, спосо ные вичество гласного ударного слога, наличие или отсутствие соответствующего ударного корня, тип слога. подъема в безударних слогах не может быт описано простьми жесткими правилами ни для группы говорящих, ни даже длия одного но нейтрализации противопоставлений по подъему. В современном литературном язнкө
допустима достаточно широкая вариативность допустма достаточно широкал варианносоро состава слова. Анализ произнопения каждого из информантов позволил говорить о претимцествий
ном использовании открнтой или закрытой ном использовании открнтои или закрытон
фонемы: в паре негубных гласных перенего ряда преппочтительньм для большинства дикторо является в открнтом безударном слоге фонема /е/, перед сочетанием согласных - ддарной п пазичии гласних заднего ряда в оез-
 том слоге характерно нескольно оолее частое употреоление фонемь $/ \varnothing$ е перед сло-
гом с откритым гласным, гом с закрытвм гласным; перед сочетанием согласных 耳реимуцественно используется
форма с
б Сорма с соря позволяет говорить о некоторой тенденции к гармонии по подъему лииь для последней пари гласных.
позиции вноора пз двух фонем в безударной тельства: важнуночение игрругтие оостояческая аналогия, т.е. распространенным безударном слоге слова, который звучит в соответствующем ударном корне, Супественным является влияние орфографии на произношение.
то
фонетические словари не фиксируют средо них тласннх, произношенйе ноторых описаляет поставить вопрос: в накой мере отраженная в словарях картина соответствует реально произносимвм звукам? Как фоннемн
класификагия, проведенная на основанин восприятия слова в целом, соотносится акустическими характеристиками звуков й $с$
пх восприятием вне смыслового контекста? их восприятием вне смыслового нонтекста?
цля вннснения этих вопросов оыл препрри-
 объективнре спектральнне характеристики
гласннх
Воспринтие гласных анализи-
 Сннх, выделенных из изолированиятие слов сововосочетаний; $2 /$ восприятие гласных, выделенных из фраз, в состав которых во-
шлл те же самые пзолированные слова. Всего было подоорано 555 изолированных слов в состав фраз. Лласнне были пили введены во всех возможных позициях, прр эт этом учи-

ять на выоор фонемь безударного слога.
ять на выго, чтобы дикторы не сравиивали
прия того при чтении оуквеннне обозначения, ччо могло пм подсказать то или иное произногласние, были составлены в случайном по рядке. Іласнне, виделенные из этих слов, также в случайном порядке предъявлллй, на опознание аудиторам. кажыии гласнй, вддуховом и визуальном контроле, овл переписан на чистую ленту и повторялся тря
 мя ноторой аудитори записнвали свой орве
мй Мя качестве заданй онло предложено обо-

 предолагалось, что ими могут гланы восменте.
Гласние, виделенные из изолированни слов, словоформ й словосочетании, в про-
изношении каждого диктора составили I5 серий для прослушұвания по 35 стимулов
в каждой; две серии по $3 І$ стимулу по ппв в каядой; две серии по $3 І$ стимулу п опна
серия с 30 сттмулами содержали гласнне, ввделенные из фраз.
В опнтах по восприятию участвовало 20 человек, жителеі̆ различных тородов франвии, пз них половина прослушала гласн в произношении диктора 1 , остальные планне, произнесенные пиитором 2 . Все го по двум дикторам обработано 12920 огветов.
мн липестно, что про тем выделении гласного на то, что определеннне акустические своиства зависят от фонетического конвосприятие:так, гласные /е- $/$ / воспринимались как соответствуюцие губнне в положении между губными согласннми, а глапереднего ряда в положении между передпереднего рада в положении между передной задачей исследования был анализ восприятия признака подъема, назаннне претации результатов аудиторского анализа.
Анализ результатов восприятия бнл проведен с помощью критерия знаков. указывали на закрытость гласного, это считалось достаточным основанием, эля утверждения, что полученннй результат
не случаен, т.е. что гласннй в панном
 тый. Соответственно гласный считался открытым, если не менее семи человек около половины аудиторов /четнре, пять или шесть человек/ указывали на открн тость гласного, а остальне свидетель тие признака подьема такого тласного считалось случайным

лучайное восгриятие, связанное с неувезнвает на средние физ своем внооре, укаи гласного. Иными словами это то что иногда фонетисты называют "средний гласзуюшихся случайным опознанием, характериподъема, в дальнейпем используется те срепний", а также применяются знаки: Е для гласного из парн / ф-ое, 0 -для сред него гласного из пары /о-э/. На основе анализа восприятия гласнвх
(еиспользовании /е) в открытом безударном использовании $/ \varepsilon$ - перед открртом безударном Произношение $/ \Sigma /$ в открнтом безударном слоге можно объяснить влиянием морфологической аналогии: у первого диктора 77% нят аудиторами как отнрытнй, имеют $/ \varepsilon /$ в ответствуопих ударннх корнях: у диктора роизношение отюрытого гласного ряде сло Оъяснить морйологической аналогией но ножн тогпа очеворным явлется влинин орфогра-
фии на продзношение: $/ \varepsilon$ поизносится на иии на произношение: / \mathcal{E} / произносится на
 на возможное влияние морфологической аналогии и орфографии, гласный все же произноситсея как закрнтий: Euêpière, (ils) vi-
 случаи свидетельствуют о налииии чередования но возможность произнесения открытого гласного в безударном слоге по аналогии с ударным / $\varepsilon /$ или под влиянием орфограп̆ии с делает
это чередование необязательным, факультативннм.

Аудиторский анализ гласных / о-л/ пока| зал, что в произношении д. І чаще опозна- |
| :--- |
| ется $Ј$ в |
| Закударной позииии, у д. | правило, на месте орфограйнчеситих аи, еаи 8, а открытый - на месте оуквии $о$, что свяпреднествуюпитй пари причинами. Как й в внооре фонемы безударного сллга играют морфоло Гическия отношения, Гармония гласних здесь также не находит подтверждения, что относится п п третьей паре гласных

 зависимости выбора безударной фонемы от
позиции: $/ 0$ / опознается преимущественно перед сочетанием согланни, т.е. в позиции, в ноторой возможен закрытый слог, $/ \varnothing /$ позиции Тласные со сл

лучайно воспринятым признаком подқема зафиксированн во всех трех па
рах, хотя и в очень незначительном числе случаев. Іроцент средних гласннх несколь ко више во фразах, чем в изолированннх словах, что может свидетельствовать о мень-
пей четкости звуков, произнесенных во фра

/ряда и огуоленности/
взгляды, связнваюшироко распространеннне взглдды, связывающиө открытость или закры не подтверждаются в результатах дой фонемы вания: зависимости вноора фонемы безударного слога от качества гласного последуюное противопоставление судествует. Фонемся в безударной позиции, при этом супествует преммущественное использование фонем реднего ряда характерно : Ір для гласнних пеупотребление закрытнх $/ e, \phi /$ в открнтом слоге, открытнх , ое/ - перед сочетаниможно говорить длл гласных заднего ряда фонем от индивидуальных особенностей дии торов / лля д. п препочтительна форма с такли д. 2 - борма с $\%$ о
метричность этих трех пра на внешнюю спм обқединяет противопоставленность по признаку подъема/, с точки зрения функниоразличной дистрибудией гласных пвязано с ри заднего ряда. в паре гласных педнднего ряда ограничение, связанное с позицией в гласных дистрибутивно ограничена откныт слогом фонема /е/. Именно эти фонеми ока-
знваются пре дпочтительными в безударной зываются предпочтительными в безударной山ля вняснения вопроса, чему объективно соответствует среднии гласннй и что затрут дняет восприятие признака открытости-за-
 типа "Видимая речь". Исследовались спекральные характеристики станионарной части F_{1} и F_{2}, а также учитывалось движение F_{2} з тех случалх, когда формантние переходн ее авляли ето зн нее 4 ро длильтальности/ проведенного анализа бнл бонаружено, что восприятие той или иной вязано с объективными акустическими характеристиками звука. При отсутствии имает решение о фонемной пртнаплехноривука на оснований только звучания самого гласного. В табл. I приведенн средние значисле й Гласных со случайно воспринятом признаком подъема.

гласные	дикт	I		
	F_{I}	F_{2}	F_{I}	F_{2}
$/ \mathrm{e} / \underset{\mathrm{E}}{ } /$	445 530 475	2000 1850 1860	450 525 470	$\begin{aligned} & 2290 \\ & 1970 \\ & 1900 \end{aligned}$

161	450	I550	455	1490
\%oe/	520	1390	525	I580
OE	470	1500	475	1420
101	450	IOIO	450	980
19	540	I250	535	1100
0	485	II30	475	IO70

Случайное восприятие признака подқема связано, во-первих, со средним качеством самого гласного /ET такого гласного, названного нями "пстйно средним", равна 485-500 FII/, а во-вторых, с влиянием соседних согла́снкх, чему оо́қективно соответствует движение F_{2} гласного.

Однако в ряде случ̆аев такое восприятие оказалось необълснжмым с точкп зрения спектральных характеристик из-за совпаденй с формантными значениями закрытнх, реже открытьх, гласньх. Так, безударннй гласный в словах désarmer, (ils)revèrent, ferié /д. 2 бй воспринят аудиторами как закрытнй при $\mathrm{F}_{\mathrm{I}}=450$ Гц, $\mathrm{F}_{2}=1950$ Гц, а в словах testace, 'c'est ici, c'est assez, c'est-à-dire при тех же значениях формант бнл воспринят случаино.

Анализ количественннх характеристик средних гласних показал, что пх длительность в $\mathrm{I}, 5-2$ раза меные длительности гласных, воспринятьх как открытые или здкрытые /таолл.2/.

Таблица 2.
Зависимость восприятия признака
подъема от длительности гласных

BOC-приHATO	F_{I}	F_{2}	средняя длительность в мсек
/e/	440-460	I950	IOO
E	450-460	I950	65
/E/	485	I950	100
E	485	1950	80

Таким образом, одни лишь формантнне характеристики не обеспечивают уверенной фонемной идентификации, для которой необходима еще п достаточная длительность гласного. Акустические характеристики средних гласных объясняют, почему эти звуки чаще других характеризуются случайньм восприятием не только подъема, но и других признаков. Восприятие того и другого признака зависит от положения F_{2}. y средних E_{2} либо целиком сдвигаетсй вниз, либо ммеет длительный переходнй участок с оолее низким положением этой форманты. у средних 0, напротив, F_{2} целиком сдвинута кверху или же имеет более высоко расположенннй переход. В отсутствие информации о том, что такая особенность звучания вызвана фонетическим положением, і при дефипите времени аудитор принимает случайноие решение о соответствующем признаке гласHOTO.

В результате проведенного исследования было обнаружено, что фонемное противопоставление по признаку открнтости-закрытости гласных среднего подъема во франгузском языке сохраняется в безударной позиции. Преппочтительными являются те фонемы,

ноторне имент пистрибутивнне ограничения, хотя в спстеме язнка гласние пар /e- $/$ /, /ф-ое/. /о-у/ противопоставлены по одноны п тому же признаку, дистрибутивнне ограничения у них различны, П поэтому в однои іІ той же фонетической позиции препочтительнпии оназываются гласнне с различныи дифференциальннми признаками /закрытий в паре негубных пи открытнй. в паре гласных заднего ряда. Это обстоятельство следует иметь в виду при рассмотрении системных отнопений между фонемами и анализе их функпионирования. Иннми словами, определение дифференциальных признаков недостаточно для того, чтобн описывать функпиональнье отношения в спстеме.

Анализ употребления гласних среднего подъема в оезударнвх слогах внявил ряд занономерностей, ноторым подчиняется выоор орфоэпическтх вариантов у говоряцих. Эти закономерности определяются не только онетически, но и / в тех случаях, где это возможно/ смысловыми и морфологическими отношениями. Наличие той Кли иной фонемы в ударном корне способствует сохранению ее п при безударной позпии того же слога, Следовательно, при анализе соб́ственно фонетических закономерностей следует принимать во внимание и оолее высокие уровни языкового строя, т.е. Морфологические отношения.

Качество тласных опознается достаточно уверенно, причем именно подъем, т.е. тот признак, по которому, как часто утверждают, нейтрализуштся эти оппозиции, опознается лучше, чем другие признаки. Термин "неиттализация" не может оыть интерпретирован как ограниченность употребления фонем, потому что, как показывают и анализ фонетических источников, и исследование восприятия, В люоой позиции возможна любая из двух фонем.

Неуверенное восприятие признака подъема наблюдалось только в тех случаях, когда гласный обладал малой длительностью, и лишь в очень неболышом числе случаев такие средние гласные имели и среднее значения F_{I}, т.е. могли рассматриваться как начественно редудированнне что зависело от их удаленности по отношению к ударенй и также оыло связано с их кратностьюо. Таким ооразом, срепние тласнне практически отсутствуют в исследованном материале. Восприятие же средних гласннх связано с количественной, либо - реже - с качественной редукцией, т.е. с неполным тиоом произнесения.
/I/ А.Мартине, "Нейтрализашия и синкретизи" Вопросы языкознания, I969.
/2/ M. Grammont, "Traitée pratique de prononciation française", Paris, I95I.
/3/ Л. В. їерба, "Фоне тика французского языка", Москва, I955.
/4/ A.Lombard, "Remarque sur le e moyen du francais. Mélanges de linguistique offerts a Dauzat", Paris, I95I.
15/ A.Martinet, H.Wálter,"Dictionnaire de la prononciation francaise dans son usage reel", Paris, I973.

ВТОРИІНЫЕ ТИПЫ СЛОГОВНХ ИFТОНАЦИЙ В Л ЛИТОВЈКИХ LИАЈЕКТАХ

АЛЕКСАС ГИР ДЕНИС

Вильнюсский госуниверситет Кафедра литовсного языка Вильнос, ЛитССР, СССР 232055

ІЕНОВАЙТЕ КАЧОШКЕНЕ

凹яуляйский пединститут
Кафедра литовского языка
ШяуляЙ ЛитССР, СССР 235419
0. Ревюме. В докладе приводятся экспериментальные даннье, свидетельствующие о существовании в литовских диалектах двух вторичних типов слоговых интонәций, выполняющих различительную функцию как в акутированных, так и в циркумфлектированных слогах.
I.I. В северожемайтских диалектах литовского языка недавно отмечено существование двух вторичных типов слоговых интонаций (акута и циркумфлекса), щротивопоставляемих в одинаковых фонетичесних условиях /I). Можно выделить следуюшие основнне случай их фуннционирования:
a) "ठаритонические" (и 2 акцентная парадигма) и "окситонические" (т. е. подвижные; 3 и 4 а. п.) именные части речи,
 '(прич.) бит(нй)', svệ•ists (1)'(сущ.) (сливочное) масло' : sve.îsts (2) '(прич.) кинут(ый)', sã'usi(1) '(вин. П.) январь' : sã.u.si (2) '(вин. п.) тлю';
б) глаголы одноразового и многократного действия, ор.: trâ*uke (1) 'тянул(а)' (инळ. . trâ•uktẹ) : tra.ûkẹ (2) 'дергал(а)' (инф̆. tra.úkì'tẹ), brã•ukẹ (1) 'перечеркнул(a) ' (инळَ. brä'uktẹ) : brã.u.kẹ(2) 'перечеркивал(a) ' (инф. braukî'tẹ);
в) 3 лищо настоящето и будущего времени, напр.: наст.в. kâ•iš (1) 'чистит (-ят)' : буд. в. ка. ís (2) 'будет (-ут) чистить', наст. в. mệiš (1) 'смешивает (-ют)': mẽ.i.š (2) 'будет (-ут) смешивать'.

Приведеннье минимальнье пары хорошо

различаются аудиторами - представителями северожемайтских говоров. Циркумфиенсы второго типа ($\sim_{(2)}$) аудиторы в подавляющем большинстве случаев воспринимают как интонацию, оолее близкую к ииркумфдлексу (восходящей, плавной интонации) литовского литературного языка; аудиторы, владеющие латышским языком, считают вторичный жемайтскии акут (${ }^{(}(2)$) идентичным прерывистой (lauztā) интонации латышского литературного язнка (с.-жем. bи̂'s'будет(-ут)' $=$ лат. bûs 'T.ж.'), а вторичныи циркумфлекс - латышской длительной (stieptā) интонации.

В диахроническом плане особенно интересным представляется первый (а) случай, так нак он свидетельствует 0 возможной генетической связи вторичннх типов интонаций с подвижными ("окситоническими") акцентуационннми парадигмами прабалтийского языка (см. ниже, § 3).
I.2. Несколько позже сходное явление обнаружено ии в восточно-литовских "утянских" и "паневежских" говорах (см., напр., /27, (3/). Аудитивнне эксперименты, выполненнне с представителями северньх паневежских говоров, свидетельствуют о весьма четком противопоставлении: аудиторы правильно распознали до $84,5 \%$ предлатаеmix минимальньх пар типа plã̃.ke (1) 'плыл(а)' (инф. pıåũ.ktb) : plåũ*ke (2) 'пла-

 шо различагтся первичный и вторичный цир-

кумфленсн - для некоторых пар получено до $94,3 \%$ правильньх идентиффинаций

Первичннй ("барктонический") восточно аукштайтский акут аудиторы почти единодушно оценивают как оолее резко падаюцую интонацию, а вторичный ("окситоническлй") циркумфдекс - нак резко восходяиуо интонацио. По-видимому, это объясняется прехде всего различным соотношением длительности (и акустической әнергии) номдонентов дифтонга. По натим предварительннм обследованиям в паневежских говорах первы компонент оказался более длительным под первичным акутом (ср.: $\overline{\mathrm{x}}_{\mathrm{I}}=189$ мс п $\overline{\mathrm{x}}_{2}$ $=I 75 \mathrm{mc} ; \mathrm{t}=2,25>\mathrm{t}_{0,05}=\mathrm{I}, 97$), а вторич циркумдлекс несколько увеличивает длитель ность второго компонента (ср.: $\overline{\mathrm{x}}_{2}=166$ мо и $\bar{x}_{\mathrm{T}}=I 50 \mathrm{mc} ; \mathrm{t}=3,48>\mathrm{t}_{0,001}=3,34$) [3/.
2.0. Более подробный анализ акустических признаков вторичньх типов слоговнх интонаций проводился на ЭВім типа ЕС-IO60. 02 по программе "EGLE", составленной нами на языке программирования PL/1. В машину (как первичнье даннне) вводились резульааты ручного измерения осциллотрамм (измерялись амплитуда и длительность отрезов вокалическото сетмента в $2-3$ пода). Вся дальнейшая анелитписояие ота витолнена на на ния ормапии первичньх измерений в физические единицы (дешибеллы, герцы и т. д.) и кончал построением "точечных" усредненных раф̆иков движения основного тона и интенсивности (причем на листингах также печаались точнне средние значения избранньх очек графииа и их поверительние 05 - по центные интервалы). Автоматически определялось расстояние от начала вокалического сегмента до пика интенсивности и основного тона, точки глоттализации, диапазоны й крутизна "восхождения" и падения интенсивности и тона пт.Д. Кроме обнчннх статистических параметров (средних арифометических, стандартных отклонении, доверительных интервалов и др. (4]), мамина также определяла коэхфициенты коррелящии

таких явлений, как основной тон и интенсивность, основной тон и длительность, интенсивность и длительность.
Предварительная энспериментальная работа проводилась в Лаборатории экспердментальной фонетики, математическая оо́работка данных - в Вычислительном центре колле ктивното пользования ВГУ (консультант - доп. В. Ундзенас).
2.I.I. В северожемайтс ких говорах (исследовались глагольнне форми типа буд. в. ка. î̆ (2) 'будет (-ут) чистить', га̃.u.s 'будет (-ут) рыть', kuôs̆ (2) 'оудет (-ут) педить' и наст. в. ка̂'iš (1) 'чистит(-ят)', rãंus (1) 'poet (-10т)', kuоs (1) 'цедит(-ят)', др.), наиболее четко различаются первччный п вторичный акуты, реализуемве вав прерывистая интонация. В тех случаях, когда ологоносителем является аложный циб̆тонг (/au/, /ai/ и др.), вторичннй акуг отличается от первичного длительностьы слогоносителя ($\bar{x}_{2}=365^{ \pm} 35 \mathrm{mc}, \overline{\mathrm{X}}_{\mathrm{I}}=400 \pm 32 \mathrm{ma}$ $t=4, I 8>t_{0,05}=2,00$), разницей основного она и интенсивности первой и второй половины диф̆тонга (соответственно $\bar{x}_{2}=6,1$ пт
 личным относительным "расстоянием" точки глоттализация ($\bar{x}_{2}=52 \pm 14 \%, \bar{x}_{I}=58 \pm$ $\left.16 \%, t_{/ \overline{4}}=2,03>t_{0,05}=2,00\right), \quad$ крутизной падения интенсивности и тона (соответственно $\bar{x}_{2}=100 \pm 32 \mathrm{mb} / \mathrm{c} ; \bar{x}_{T}=82 \pm 33 \mathrm{mb} / \mathrm{c}, \mathrm{t}=$ $2,25>t_{0,05}=2,00 ; \bar{x}_{2}=93 \pm 35 \mathrm{nT} / \mathrm{c}, \bar{x}_{\mathrm{I}}=78+27$ пт $\left(c, t=2,95>t_{0,05}=2,04\right)$.

Практически во всех случаях более четними оказались признаки интенсивности (см рис. I) - основной тон выполняет как ои вспомогательную роль.

Резкий подъем интенсивностия кони диф्б̆тонга - носителя вторичного акута, повидимому, и производит впечатление сильной глоттализации ("прерыва"), отмечаекод многими аудиторами. На кривых осковного тона (см. рис. 2) это явление не наблодается: все тоновые отлкчия сноншентрирова нн в начальном отрезке слогоносителя.

Результаты анализа акутированннх слит-

Рис. I. 0бобщенные кривые движения интенивности сложных акутированнמх пйттонгов северожемаиттких говоров.

$$
\stackrel{10 \varnothing \quad 2 \phi \varnothing \quad 3 \varnothing 0 \quad 4 \varnothing 0}{+} M C
$$

Рис. 2. Обобщенные кривые движения основного тона сложных акутированныхй добтонгов
северожемайтских говоров.
ных дифотонгов (/ie), /ио/) свидетельствуют о тех же тенденциях. И в данном олучае вторичные типы акута различаются длительносью ($\bar{x}_{2}=271 \pm 38 \mathrm{mc}, \overline{\mathrm{x}}_{\mathrm{I}}=3 \mathrm{I} 2 \pm 4 \mathrm{I} \mathrm{mc}, \mathrm{t}$ $2,74>t_{0,05}=2,06$), соотношением интенсивности первой и второй половины слогоноси-

теля ($\bar{x}_{2}=6 \pm 3$ пБ, $\bar{x}_{\mathrm{T}}=8{ }^{+2}$ пБ, $t=2,70>t$ $=2,06$), относительным "расстоянием" до точки глоттализапии ($\bar{x}_{2}=53 \pm 14 \%, \bar{x}_{\mathrm{I}}=68 \pm \mathrm{I} 8 \%$, $\left.t=2,54>t_{0,05}=2,06\right)$, а также крутизной па дения интенсивности ($\bar{x}_{2}=I 14{ }^{+} 32$ дй $/ c, \bar{x}_{I}=$ 83 ± 22 ПБ $/ \mathrm{c}, \mathrm{t}=2,93>\mathrm{t}_{\mathrm{O}, 05}=2,06$). Основной тон голоса оказался совсем незначпмым исоледуемне просодемы, по всей вероятности, характеризуются лишь динамическими признаками.
2.I.2. Вторичнье типы северожемайтского циркумф̆ленса (если судить по результатам нашего энсперимента) различаются знаительно слабее. Обнаружены лишь следувиие статистически значимве различия: пли тельность слогоносителя ($\bar{x}_{2}=38 \mathrm{I} \pm 37 \mathrm{mc}$, $\overline{\mathrm{x}}_{\mathrm{I}}$ $\left.=43 I \pm 39 \mathrm{mc}, t=3,43>t_{0,05}=2,06\right)$, диапазон изменения ("восхождения") интенсивности
 " $=4 I \quad \pi B / 0, \bar{x}_{I}=2 I \quad \bar{W} / \mathrm{c}, \mathrm{t}=2,2 \mathrm{I}>\mathrm{t}_{0,05}=$ 2,06).
2.2.I. В восточно-аукштайтских (паневежских) говорах (исследовались глаголн одноразового и многократного деиствия bråũ.ke (1) 'перечеркнул(a)' (инф. brãũ.

 brauki•tь), tra.uke (2) 'Дергал(а)' (ин币. tra.úkẹtь) и др.), как и предполагалось по результатам предварительного аулирова ния, лучше различаются вторичные типы дир нумс̆ленса.

Особенно четко различаетоя среднее зна чение основного тона ($\bar{x}_{2}=-2, I \pm 0,9$ пт, $\bar{x}_{\mathrm{I}}=$ $\left.-2,5 \pm 0,8 п т, t=2,29>t_{0,05}=I, 98\right)$, средний гон второй половины дифтонга ($\bar{x}_{2}=-2,3 \pm 0,8$ пт, $\bar{X}_{\mathrm{I}}=-2,7 \pm \mathrm{I}, \mathrm{I}$ пт, $\left.t=2,44>\mathrm{t}_{0,05}=\mathrm{I}, 98\right)$, минимальное значение тона ($\bar{x}_{2}=-4, I \pm I, 9$), $\left.\bar{x}_{I}=-5,8 \pm 3,2 \mathrm{nT}, t=3,20>t_{0}, 05=I, 98\right)$, от, носительное "расстояние" до миноя от$\bar{x}_{2}=67,2 \pm 28,4 \%, \bar{X}_{\mathrm{T}}=80,8 \pm 23,8 \%, t=2,32>$ ${ }_{0}, 05=I, 98$), наконец - различный диапазон падения тона ($\bar{x}_{2}=3,9 \pm 2,5 \mathrm{пT}, \bar{x}_{I}=5,3 \pm \mathrm{I}, 3$ IT, $\left.t=2, I 4>t_{0,05}=I, 98\right)$.
Весьма значима и общая длительность

слогоносичеля, только в данном случае (в отличие от жемайтских товоров) более длительным оказался вторичныи циркумфленс (\bar{x}_{2} $=296 \pm 53 \mathrm{mc}, \bar{x}_{\mathrm{I}}=280 \pm 43 \mathrm{mc}, \mathrm{t}_{/ \overline{\mathrm{A}}} \mathrm{F}^{2,98>\mathrm{t}_{0,05}}$ $=2,0 I$).

Оообщенные кривье интенсивности получились почти изоморфннми, а кривые основного тона свидетельствупт о весьма существенном различии (см. рис. 3).

Рис. 3. Обобщеннье кривые пвижения основного тона сложньх цир кумфлектированньХ восточно-аукштайтских дифтонгов.
2.2.2. В акутированных слогах восточ-но-аукштайтских (паневежсних) говоров установлен лишь один статистически значимы признак - различное "расстояние" минимума интенсивности от начала дифттонга ($\bar{x}_{2}=88 \pm$ $\left.2 I \%, \bar{x}_{I}=95 \pm 10 \%, t=2, I 5>t_{0,05}=I, 99\right) ; \quad 0$ сходной тенденции свидетельствует и положение минимума основного тона ($\bar{x}_{2}=72 \pm 24 \%$, $\left.\bar{X}_{I}=82 \pm 22 \%, t=I, 96>t_{0,1}=I, 66\right)$.
3. Итак, в литовских говорах противопоставляютоя не только первичные типы слоговых интонаций (акут и циркумффлекс), но и вторичные सX типы (первичный и вторичный акут, первпчный п вторичный циркумфленс). Точннй ооологический статус вторичных иғ тонаций пока не представляется вполне ясн⿺М: возможно, что $\mathbb{I X}$ оППозиции сводятся к противопоставленио двух различных типов словесного ударения (существование которых в литовских диалентах уже доназано), хотя против такой трактовки можно выдвинуть и некоторые возражения.

В пиахроническом плане наиболее важен вопрос о связи вторичньх интонаций с пра балтийскими (и праиндоевропейскими) акцентуапионнымп парадигмами и, более коняретно, с перемешениями ударения в различних формах, относлшихся к одной и той ве акцентуационной парадигме. Возникает серьезная дилемма, что считать первичным:"окситоническое" ударение словоформ, относящееся к балтийской подвижной ("окситонической") парадигме, или же вторичнне слоговне интонации. Вторичные интонации модно объяснять нак результат ретракции ударения с конечних слогов (ср. возникновение среднелатвшсной прерывистой интонации п сходние явления в литовских "баритонических" говорах), но принципиально возможна и тротивоположная точка зрения: ударение мотло оказаться на конечном слоге известных словоформ в результате ето перемещения с основ, обладавпих прототипами современных "вторичных" интонаций (ор. сходное оолее позднее явление, описнваемое законом Фортунатова - де Соссюра).

Мы склоняемся к первой альтернативе, хотя доказать ее "единственность", по-виддмому, пока нет реальной возможности.

ЛИTEPATYPA

I. Гирденис А. Опвт морфонологической интерпретации северожемайтской аттракии ударения // Baltistica. I980. T.I8(2). C. I79-I88.
2. Качюшкене Г. И. Фонологическая система северопаневедского диалекта литовского языка: (Просодия й вокализм): Дис. ... канд. филол. наук. Вильнюс, I984.
3. Kačiuškiené G. Antriniai priegaidžiq tipai šiauriniu panevèžiškių tarmèje// Mokomojo ir auklejamojo proceso organizavimas: Pranešimų tezès. Šiauliai, 1983. P. 179-180.
4. Урбах B. 10. Статистический анализ в оп ологических и медицинских исследованиях. М.: Медицина, 1975.

И ГОРОДСКОЙ РЕЧИ /НА МАТЕРИАЛЕ ЛиТОВскоГО яЗЫКА/

да\#Ма ГРумадене

Институт литовского лзнка й литературы АН ЛСС
Вильндс, ЛитССР, СССР 232043

PE3IME

В докладе приводятся экспериментальные даннне, свидетельствуюиие об относительно малой значимости просодических характеристик (по-видимому, за исклочением признака длительности) слоговых интонацийй дифтонгов не только в литовскои городскои речи, но и - в меньшей степени - в восточном диалекте.

В настоящее время можно считать доказанным, что слоговые интонации северо-западных (жемаитских) диалектов литовского языка носят прешищественно динамически, а не музыкальныи характер /I/. Природа слоговых интонации восточннх (пи рхннх) диалектов является более проблематичнои. 0собенно важным (и, кроме того, весьма дисқуссионньм) до сих пор остается вопрос об относительноу нивеляции данной просодическо立 оппозщции на восточно-литовских монофтонгах /2/. Существеннне изменения акцентуационной системы, наблодаемне в городской речи $/ 3 /$, указывают на определенные существенные 'сдвиги в системе слоговых интонаций.
В данном исследовании сопоставляштся просодические характеристики слоговых интонации в речи представителен восточннх аукптайтов и уроженцев г.Вильнос. Для инструментального анализа были подобраны слова с дифтонгами $\underset{\sim}{\text { in }}$, дu, еi, слоговне интона -

БОНИФАLLAC СТУНДЖЯ

Вильнпсский госуниверситет
Кафедра литовского язнка
Вильнос, ЛитССР, СССР 232017

ции которых вполне четко различаются как во всех диалектах, так и в городскоу речи. Дифтонги аi, gu, si были реализованы между глухими согласными или после паузы :
 paĩำ, táuko taũ

 слова "вставлялись" в краткие предложения в которнх они занимали среднюю позицию, и были зачитаны с восходящей (4) и нисходящей (1) фразовыми интонациями без логического ударения на исследуемых словах, а также в связном тексте (H) под неэматическим Фразовнм ударением. Дикторами бнли два представителя восточно-аукштайтского утянского диалекта и два урожениа г.Вильнос, не владепиие ни одним традиционным литовским диалектом. Первичные даннне визуально измеренных 264 осциллограмм были подвергнутн математикостатистическому анализу в Вычислительном центре коллективного пользования ВГУ по программе "EGLE" (язык программирования PI/l; составил А.Гирденис), которая автоматически определяет и статистически обрабатывает все основные просодичесие характеристики интонаций ($с м . / 4 /$).
Результаты анализа свидетельствуют о том, что самым постоянным просодическим индика тором слоговых интонаций дифтонгов исследуемых восточно-литовских говоров и речп вильнюсцев является длительность (акутирванные дифтонги по общеи длительности яв-
 B

 [EJ).

TEstrice

	=	\bar{z}	+ ESJ_{6}	S
1 K 22				
$\text { It } 25 \text { 252.7 } 24=53.3+205.20 .53<2.01$				

wuze "краткость" (нiz, точнее, недалря -
 peqz /9/.
Релевантность другіх просоддичеседх прдзня Редевантноси - днтенсдвностд, основвого това боль \quad 设

что касается представттелед ддалекта, то

 севностI. Anf anytzposaresix ciorob b

 последаяя корретлигя.
 длительностд) следует угазать еа сдльяд

 она явннется очень скпыдои ($2=0.3682$)
 ‘разовой
 представителей дгатекта у горсда погазі-

тонгов в тексте (конкретные данные cp . по таблице)
Максимальное число релевантных различии между диалектной п городской речью наблодается у ақутированных дифтонгов, реали зуемых с нисходящей фразовоб интонаниеи. В этой позиции данные дифтонгд восточноаукнтаитского диалекта отличаштся многимп характеристиками интенсивности (нап ример, более низкон I частью кривой, менг шей разницей мевду I пу 2 частями слогоносителя, бо́льшим расттоянием до начала минимума и меньпим расстоянием между началом дифтонга и максцмумом, более узктм диапазоном восхождения и меньшел крутиз нои падения) и основного тона (например, бо́льшим расстоянием между началом дифтонга и максимумом, меньшеи крутизнои восхождения, более узкм диапазоном нисхох дения п др.). Корреляция интенсивности и основного тона как в диалектнои, так и в городской речи слабая. Многие разли чия, по-видимому, обвясняются возденитвея фактора длительности
Цхрқумллектированные дифтонги под нисхо дящей интонацией менее различны. Кроме то то, и в диалекте, и в городской речи наолддается сильная корреляция медду интен сивностьш и основннм тоном. Циркумфлексу восточно-аукштайтского диалекта характерно бо́льшее расстояние до начала минымума интенсивности и основного тона.
Примерно те же различия в просодических особенностях циркумрлектированных диф̆тонгов диалектной и городской речи наблюдауосяя и с восходящеи интонадиеи. Тольно в данном случае для диалекта характерен 60 лее широкий диапазон падения интенсивноя ти и основного тона, а также большая кру тизна падения основного тона.
что касается акутированних дифтонгов в нозщии с восходяцей интонациеи, то осно вные различия характеристик основного то на между диалектной и городской речью со храннштся, а различия характеристик ин-

тенсивности отсутствупт, за исключением расстолния до начала минимума.

Рис.I. Обобщенные кривые движения интенсивности сложных дифотонгов с нисходящей фразовой интонациеи.

Рис.2. Обобщеннве кривые движения ос новного тона аложных дифтонгов с нисходящей фразовои интонание
---- - акуркумллекс $\}$ вост. аукштаитты

- -- - цирқумллекс

~~~- - пиркумдлекс \(\}\)
вильншсцр
Математино-статистическин анализ осциллографических данных свидетельствует о том, что в диалектнон системе слоговых интонаций диффоонгов сохранилось большее число релевантных просодических характеристик . чем в городскои речи. Постоянннм обиим признаком обешх систем лвляется длительность по всеи вероятности, вытекапидя из различного качества первого номпонента аку тированних и циркумдлектированных диф-

тонгов. Следовательно, на востоке литовсного язнкового ареала просодическпе раяличительные признаки слоговых интонации постепенно теряют самостоятельнур звачемотть даже на дибтонгах, причем в городской речи этот процесс происходит 60 лее әнергично и последовательно. Это явление неизбежно должно привестд к ослаб ленио и даже исчезновениь опозиции слого вых интонаций на монофтонгах, где просодические признаки не компенсируптся качественными. По-видимому, этим можно 00sяснить результаты прелимхнарного аудхотестирования, указываюпие на то, что в восточном литовском (в частности утянском) говоре слоговые интонации монофтонгов ( и
 ногда слогоноситель, например, 0 , ио мо-


\section*{ЛИTEPATYPA}
/I/ Cirdenis A. Prozodinès priegaidžiu ypatybés šiauréa żemaičiú tarméje//Eksperirientiné ir praktiné fonetika. Vilnius, 1974. P.193-194. \(/ 2 / \mathrm{C}_{\mathrm{M}}\). Zinkevičius Z. Liətuviú dialektologifa. Vilnius, 1966. P. 33 (il литe patypy); Kosienè 0. Rytuz Eukštaičių uteniskiu moroftongy priegaides //Kalbotyra. 1982. T. 33 (1); Garǒva K. Svarbennès šiaurès vakaru panevèžiškiú fonologijos ypatybès//Baltistica.1982. T.18(1); Kačiuškienè G. Kuo gali skirtis šiauriniu panevèžiškiul piriegaidés//Kalbotyra.198j. P. 36 (1): Girdenis A., Pupkis A. Pietiniu Vシkaru aukštaičiu priegaidès (prozodinial požymiai)//Ehsperimentine ir praktiné fonetika. Vilnius, 1974. P.116-119. /3/ Crumadienè \(I\). Sociolingvistinis vilniečiú lieturiu kalbos tyrimas : konso \(=\) nantizmas ir akcentuacija//Liatuviu kal.botyros LEleusimai. 1987.T.27.
/4/ Гирденис А., Качвшкене Г. Вторичные типы слоговнх интонаций в литовских диа-

лектах/Материалн XI международного конгресса фонетистов. Таллин, 1987. /5/ Ekblom R. Ouantität und Intonation in Zentralen Hochlitauischen. Uppsela, 1925, s. \(38,64\).
/6/ Anusiené L. Kirčiuoty akūtiniu ir cinn kumfleksiniu dvijalsiu tirukme lietuviu bendrinés kalbos frazèse//Kalbotyra.1934. T. 35 (1). P. 14 .
/7/ Girdenis A. Op. cit.P.175.
/8/ Pakerys A. Lietuviu bendrinès kalbos prozodija. - Vilnius, 1982. F.156. /9/ Pakerys A. Lietuviuz bendrinés kalbos fonetika. - Vilnius, 1986. P. 317.

\section*{L.Anusiené 1}

\section*{DURATION OF LONG STRESSED VOWELS' IN PRESENT-DAY LITHUANTAN UTTERANCES}

\author{
IILIJA ANUSIENĖ \\ Dept. of Foreign Languages \\ Vilnius Civil Engineering Institute \\ Vilnius, Lithuania, USSR 232040
}

\section*{ABSTRACT}

This paper reports on the results of an investigation into the duration of acute and circumflex vowels and vocalic diphthongs in extended speech contexts. The results obtained lead us to the conclusion that duration is not the main factor in the differentiation of accent type.

In Lithuanian, long monophthongs, and vocalic or mixed diphthongs (vowel plus either liquid or nasal consonant) in stressed position may have falling or rising accent. The terms "falling" and "rising" retain musical connotations, and the actual nature of the intonation is in doubt, so for practical purposes it is better to use the neutral terms "acute" and "circumflex" /I/. These terms refer only to the names of the signs used to mark the accent /2/. Some investigators have proposed that the most notable prosodic feature of Lithuanian accent is vowel duration \(/ 3 /\), with the circumflex vowels being longer than acute ones /4/。

The duration of syllabic neuclei in the Iithuanian colloquial language has been experimentaly investigated by many lin guists. Previous studies used the following as test material: 1) isolated two-syllable words /5/, 2) minimal pairs in isolation and 3) minimal pairs placed at the beginning, in the middle, or at the end of short phrases /6/.

The purpose of this research was to study the duration of acute and circumflex vowels and vocalic diphthongs. The experimental data consisted of 128 utterances, typical of the Standard Lithuanian language, recorded on magnetic tape by 3 male and 2 female subjects. Measurements were obtained from intonograms.

In the experimental material the vowels and diphthongs under investigation are found in various phonetic environments and in various positions in the phrase. The vowels in question are found in all possible positions in the word and in the phrase. So as to compensate for the influence of the position of the word in the phrase the experimental phrases were constructed
so that the vowel is found an equal number of times in each position. In order to compensate for differences in absolute duration in different positions computations are based on relative differences in duration. The data for each subject were individually analyzed, but since the same corpus was used for each subject we can also contrast the data on vowel and diphthong duration for all the subjects as a group. Previous studies which examined the duration of long stressed vowels revealed that: 1) in isolated two syllable words the duration of circumflex vowels is always greater than that of acute vowels /7/, 2) in short phrases material results indicated that duration of circumflex vowels is greater in \(86.7 \%\) of the cases \(/ 8 /\). The results of the present research revealed that there is almost no difference in the duration of circumflex and acute vowels in extended speech contexts. Lehiste /9/ claims that in the range of the durations of speech sounds - usually from 30 to about 300 msec - the just-noticeable differences in duration are between 10 and 40 msec . In our experimental material the difference in duration of vowels with different accent types is less than 10 msec in \(53.3 \%\) of the cases, is less than 20 msec in \(40 \%\) of the cases, and slightly exceeds 20 msec in \(6.7 \%\) of the cases. In subject 3 there is a substantial difference in duration between acute and
circumflex /i/ (1:1.23) but there is as. most no difference for subjects 1 and ( \(1: 1.02 ; 1: 1.01\) ). The two /u/'s with dip ferent accent types do not differ for sub. jects 3 and 4 (1:1.05; 1:1.04), but do differ substantially for subject 1 ( \(1: 1,2 k\) There are no other cases of clear diffe. rences in duration between acute and cir. cumflex vowels.
The results obtained revealed that there is no significant difference in duration of the acute and circumflex vowels. This leads us to the conclusion that duration is not the main factor in the differentis. tion of accent type in the Lithuanian col. loquial language.
Some Lithuanian linguists /10/ claim that circumplex diphthongs are longer than acw. te ones. Pakerys, Plakunova and Urbelieni /11/ claim that the diphthongs /au/, /ai/, /ei/ are almost equal in duration, irres. pective of the type of accent. The results of the present research revealed that the acute diphthongs are longer than the circumflex ones. Substantial difference in duration between different accent types 18 characteristic of the pronunciation of all the subjects in the case of the diphthors /ai/, for three subjects in the case o? /au/ and for one subject in the case of /ei/. As only one case out of fifteer (i.e. \(6.67 \%\) of the cases) shows substar. tial difference in the duration of the diphthongs /ei/, /ie/, /uo/ in favour of
the acute accent type, we may claim that there is essentially no difference in the duration of the above mentioned circumflex and acute diphthongs. It should be noted that the range of duration of circumflex diphthongs in female subjects is very small, so that in their speech there is no significant difference in duration for all the circumplex diphthongs under investigation.
The given data allow us to arrange the diphthongs, irrespective of the accent type, in order of decreasing duration: \(\mathrm{au} \rightarrow \mathrm{ai} \rightarrow \mathrm{ei} \rightarrow\) uo \(\rightarrow\) ie.

From the above evidence we may conclude that:
1. There is no significant difference in duration between acute and circumflex vowels.
2. There is a substantial difference in the duration of the diphthongs /ai/ and /au/ pronounced with different accent type.
3. Where (2) is relevant, acute diphthongs are longer than circumflex ones.
4. There is no significant difference in duration for the diphthongs /ei/, /uo/, /ie/ pronounced with different accent type.
5. According to their duration, diphthongs may be classified into three groups, irrespective of accent type: /au/, /ai/ - the longest, /ei/ - medium, /uo/, /ie/ - the shortest
6. Circumflex diphthongs in the speech of female subjects show no difference in duration.

\section*{REFERENCES}
/1/ A.Girdenis, Fonologija, Vilnius, 1981. 188.
/2/ Z.Zinkevičius, Lietuviq kalbos istorinè gramatika I, Vilnius, 1980. 45.
/3/ A.Girdenis, A.Pupkis, "Pietiniy vakary aukštaičiu priegaidès (prozodiniai požymiai)", Eksperimentinè ir praktinè fonetika (Eksperimentinés fonetikos ir kalbos psichologijos kolokviumo medžiaga VI), Vilnius, 1974. 116.
/4/ A.Girdenis, A.Pupkis, Op. cit., 1974. 116; A.Pakerys, T.Plakunova, J.Urbeliené, "Otnositel'naja dlitel'nost, glasnyx litovskogo jazyka", Kalbos garsai ir intohacija (Eksperimentines fonetikos ir kalbos psichologijos kolokviumo medžiaga IV), (Lith. resume 54), Vilnius, 1970. 45.
/5/ A.Pakerys, T.Plakunova, J.Urbeliené, Op. cit., 1970. 30-54.
/6/ A.Girdenis, A.Pupkis, Op. cit., 1974. 107-125.
/7/ A.Pakerys, T.Plakunova, J.Urbeliené, Op. cit., 1970. 45.
/8/ A.Girdenis, A.Pupkis, Op. cit., 1974. 111.
/9/ I.Lehiste, Suprasegmentals, MIT Press, Cambridge, 1970. 13.
/10/ V.Vaitkevičiūte, nLietuviu kalbos
balsiy ir dvibalsiy ilgumas arba kiekybè", Lietuviu kalbotyros klausimai III, Vilnius, 1960. 217; G.Daugirdaitè, "Dabartinés lietuviu literatūrinès kalbos sutaptiniu dvibalsiu /ie/ ir /uo/ trukmé", Kalbos garsai ir intonacija (Eksperimentines fonetikos ir kalbos psichologijos kolokviumo medžiaga IV), Vilnius, 1970. 69.
/II/ A.Pakerys, Mietuviu literatürinés kalbos sudétiniu dvibalsiu au, ai, ei akustiniai poźymiai", Eksperimentinès fonetikos ir kalbos psichologijos kolokviumo medžiaga III. Vilnius, 1968. 106-7; A.Pakerys, T.Plakunova, J.Urbeliene, "Otnositel'naja diitel'nost' diftongov litovskogo jazyka", Garsai, priegaidé, intonacija (Eksperimentinès fonetikos ir kalbos psichologijos kolokviumo medžiaga V), (Lith. resume 36), Vilnius, 1972. 7.

\section*{PITCH ACCENTS IN STANDARD LITHUANIAN}

\section*{VALERIJA VAITKEVIČIŪTĖ}

\author{
State Conservatoire \\ Vilnius, Lithuania, USSR 232000
}

\section*{ABSTRACT}

In Standard Lithuanian there is no overall scheme for the realisation of pitch accents. A common feature in speakers of the Standard language and also in those of various dialects is the constant presence of opposition of acute and circum flex accents, while the choice of phonetic characteristics used in opposition and the way they were used varied from dialect to dialect. Prosodic distinctions are found in the difference in level of amplitude and fundamental frequency and not in their contours.

\section*{INTRODUCTION}

Contemporary researchers into Standard Lithuanian pitch accents \(/ 1,2,3 /\) have attempted to find an overalis scheme for their realisation in the parameters of difference in fundamental frequency, in intensity and in duration. They took averages of data received from apeakers of both sexes (with varying diaposon of voice) who also had different dialect origins. Their estimates of durational, fundamental frequency and amplitudinal difference in pitch accents of vowels were based only on the number of cases and did not take into account whether or not such differences were of any significanse for perception. Researchers have also failed to attach significance to the following remarks of the well-known dialectician 2.Zinkevičius 14/: "Speakers of dialects who subsequently learn Standard Lithuanian pronounce monophthongs and diphthongs with the pitch accents of that dialect. They do not acquire the pitch accents of Standard Lithuanian, that is of the language spoken in the oouthern part of Western Aukgtaičiai."
Pitch accents were studied from oscillographic recordings of normal and whispered speech and from listening tests using segmented quasi-homonyms as stimuli. The following parameters were investigated: duration, amplitude, fundamental frequency proportional energy of stressed vowels (the amount of total energy per msec), total energy of unstressed vowels as well as pitch fluctuation in adjacent syllables.

The work presents data from a recent oscillographic study of pitch accents in isolated disyllabic quasi-homonyms of speakers of Standard Lithuanian from diiferent regions that has shown all the dialects to have a continual opposition of accent, while choice of phonetic characteristics and the manner of their use varied from dialect to dialect. Two speakers spoke the Kapsai dialect: Sp.1, 4 ; the Veliuoniškiai dialect was represented by Sp.2; the Dzukai dialect by Sp.5. Amplitude, fundamental frequency and proportional energy were measured for vowels as a whole and for vowel parts (I, II, III): of the first and second components of diphthongs and monophthongs. This method was used to gather information concerning amplitudinal, fundamental frequency and proportional energy difference in different pitch accents of vowels in identical parts of the vowels. This identified the part which carries information about differences between the pitch accents in each of the various parameters. Analysis of the vowel part by part makes it possible to define the difference between pitch accents occuring, not in the contours of amplitude and fundamental frequency, but in the uneven level of these parameters as a whole. Only in this way is it possible to identify the particular part of the vowel where compensation of one parameter another takes place, to find out where correlation between them occurs and to find out which parameter is most important.
Differences of pitch accents in duration, amplitude and fundamental frequency were expressed in per cent and compared in pairs by the sign criterion (sign test) \(\mathrm{P}=0.05\). First and foremost, we estimated all the differences revealing this tendency, disregarding their contribution to perception. The significance of differences in duration and amplitude as postulated by Weber and Fechner, and the significance of differences in fundamental frequency (tone) as postulated by Flanagan and Saslaw. Only these perceptually significant differences were later taken into consideration. Data on duration differences also included a record of the differences in the type of vowels under atudy.

PITCH ACCENTS IN SPEAKERS OF KAPSAI
ORIGIN (Sp.1 AND 4) ORIGIN (Sp.1 AND 4) In kapsai dialect (Sp. 1 and 4), the most cially for \(S p .4\) ) and duration. In the pro nunciation of \(S p .1\), information on vowel differences in amplitude, depending of the type of pitch accent, was
an entire vowel (monophthong or diphthong) 2) an entire monophthong or the first component of a diphthong, 3) the first and third parts of a vowel. Sp.l showed difcases, significant differences in \(55 \%\) of the cases. For 2) we obtained \(91 \%\) and \(55 \%\) Ist part of a vowel and \(91 \%\) and \(73 \%\) for the part rd part of a vowel. In all the situations mentioned above, the stressed vowe than the vowel with circumflex accent. Data values expressing the tendency shown in points 1), 2), 3) by the sign criterion ( \(P=0.05\) ) were labelled " + ", ond
the significant difference in amplitude was called "-"
Therefore, the amplitude in phonetic realization of pitch accents in the pronunthe one hand, it is distinguished by a stable level within the vowels and expres small number of quasi-homonyms where differences in amplitude were significant, indicates a certain lack of independence of this parameter. The same may be said vowels with various pitch accents. Duration differences in vowels were expressed in \(100 \%\) of the cases; differences were ferences significantiy correlated with the character in only \(55 \%\) of the cases. The expressed duration differences by the gign and significant differences in all the previously mentioned cases were "-". Comparison of data on the ratio of ampli-
tude and duration leads to the following conclusion. In the pronunciation of Sp. 1 the uneven level of amplitude within vowels with different pitch accents is sup-
ported by their difference in duration: the proportional energy of the whole stre sed vowel with acute accent th greater circumflex accent in \(91 \%\) of the cases. The Ist, the ITIrd parts in \(82 \%\) of the cases. terion ( \(\mathrm{P}=0\) data values for the sign cricorrelation of these two + ", indicating the Difference in fundamental parameters. wels with different pitch accents for Sp .1 significant only in the Ist part af and vowels. In both cases data values for the sign criterion ( \(P=0.05\) ) were n-". Fac-
tors that witness its participation were
as follows. First, the shift of maximum an phispered speech. Secondif, the lack of significant differences in these vowel parts in amplitude and in duration. Third ception: pitch accents in quasi-homonym with deleted initial consonants and onglides of vowels in some pairs were rethey lost information concerning differ ences and were taken for identical acut accents (Fig.1).
in fumdamental freq Sp .1 , the difference lables acted as an auxiliary: the differ ences in fundamental frequency between the last part of the vowel with acute accent graater than the corresponding diffe greater than vowel with circumflex accent and a following unstressed vowel in 738 the cases.


Fig. 1. Speaker 1. Difference between voponding vowels with and the corres ponding vowels with circumflex accent. significant amplitude difference;---proportional energy difference; aignificant fundamental frequency differ ence; I, II, ITI corres ponding parts of vo wels;
In the pronunciation of Sp .4 duration dif of the cases, significantly so in \(92 \%\), an significantly corresponding to the charac 0.05 ) in oll the cases. Data values (P cating the independence of durational dif
erences in vowels. Information on ampli-
tude differences in pitch accents ampliried by 1) the whole vowel, 2) the whole mo nophthong or only by the first component the vowels. Differences in whole vowels were marked in \(75 \%\) of the cases, significantly so in \(50 \%\) of the cases; in monodiphthongs they were expressed in \(75 \%\) of the cases, significantly in \(58 \%\) of the cases, in the Ist parts in \(84 \%\) of the differences were expressed and significant in \(84 \%\) of the cases. Data values expressing the tendency shown in points 1), 2), 3) Data values of significant differences in amplitude in all the aforementioned pointo
by the sign criterion \((P=0.05)\) were by the sign criterion ( \(P=0.05\) ) were "-",
excepting the Mnd parts, where data values
were " + ". The fact that amplitude differences are of prime importance in the opposition of pitch accents was confirmed byof Sp.4, the listeners could not discriminate even dynamically marked differences Difference in fundamentai wels with different pitch accents in of voof the cases were expressed and significant in the Ind and Inrd parts of the


Fig.2. Speaker 4. Explanatory notes as at
PITCH ACCENTS
ORIGIV
IN
Sp.2)
The most important features were duration
and fundamental frequency. Duration differences of vowel sound were significantcharacter in \(100 \%\) of the with the general lues of significant difference. according to the sign criterion ( \(P=0.05\) ) were " + ""
Difference in fundamental occurred in all parts of the vowel, and greater amplitude and higher fundamental requency were characteristic of certain comparison with the vowel of circumflex accent. Differences in vowels with various pitch accents were marked and significantand monophthongs on the same grounds with the Ist components of diphthongs. In the Ist, Ind and IIIrd parts of vowels, difso in \(80 \%\) of the cases. Data values for the sign criterion ( \(P=0.05\) ) were \("+"\). Difference in amplitude of the whole vowel ences in monophthongs in the same differwith the Ist components of the diphthongs in \(80 \%\) of the cases; of the first parts in \(90 \%\) of the cases. Data values pressing were " \(t\) ", significant differences in all the points were "-". In addition, the difflex accents were supported by the differences expressing the tendency, of poststressed syllables in total energy (in \(80 \%\) of the cases), and also by the differences mental frequency between syllables ( \(70 \%\) ).


Fig.3. Speaker 2. Explanatory notes as at
fig.i.

PITCH ACCENTS IN SPEAKER OF DZUKKI ORIGIN (Sp.5)

In the speech of Sp .5 , a representative of the dzūkai dialect, the important role in phonetic realization of vowels with different pitch accents was played by differences in duration (These were expressed in \(90 \%\) of the cases and significantly corresponded to the character in \(80 \%\) of the cases), by differences in fundamental frequency modulation between syllables (Differences in fundamental frequency between vowels with acute accent and post-stressed vowels in \(80 \%\) of the cases were smaller than those between vowels with circumflex accent and post-stressed vowels), and by differences in total energy of post-stressed vowels (After acute accent the total energy was greater than after circumflex accent in \(80 \%\) of the cases). Data values of significant differences in all oforementioned cases by the sign criterion ( \(P=\) 0.05) were \({ }^{\mathrm{m}} \mathrm{t}^{\mathrm{n}}\) (Fig.4).


Fig.4. Speaker 5. Explanatory notes as at fig. 1.

\section*{CONCLUSION}

The data which we have obtained appears to show that the hitherto prevailing theory of the exixtence of an overall for the realiaation of pitch accents of speakers of Standard Lithuanian irrespective of their original dialect is groundiess. However, these investigations can at best, serve only as the starting point of a great deal of further work for those researchers investigating the prosody of Lithuanian, both in the standard language
and in its dialects.
REFERENCES
/I/ A.Girdenis, A.Pupkis, "Pietini4 Vako rq aukátaičiu priegaides (prozodiniai po. žymiai)n, Eksperimentine ir praktine fonetika \(\bar{Y}\), Vilnius, 1974.
/2/A. Pakerys, "ietuviu bendrinés kalbos prozodijan, Vilnius, 1982.
13/ A. Pakerys, "Lietuviy bendrines kalbos fonetika", Viínius, 1986.
14/ Z.Zinkevičius, "Lietuviu dialektologi. ja", Vilnius, 1966.

\title{
TYPES OF SYLLABLE TONEME IN THE ZIEMERI VARIANT OF high latvian dialect
}

\author{
DACE MARKUS \\ Dept. of Languages and Literature Latvian State University \\ Riga, Latvia, USSR 226000
}

ABSTRACT

The research permits to confirm the supposition concerning the functionating of two types of syllable toneme in the Eastern variants of the High Latvian dialect. The answer to the discutable question on the place of glottalization in the monophthongs and diphthongs with a broken (acute) syllable toneme is searched for.

\section*{INTRODUCTION}

At present the amount of experimental phonetic research in the field of Latvia dialects leaves much to be desired. We have attempted to investigate a variant (sub-dialect) of a very peculiar and only partly explored High Latvian dialect called Augšzemnieku. The sub-dialect under consideration is still widely used basically in everyday life. The Ziemeri subdialect may be heard in the north-eastern part of Latvia adjacent to the border of the Estonian SSR. However, the Estonian language has not affected the Ziemeri subdialect to any notable extent. The variant in question belongs to the eastern group of High Latvian dialect. A distinctive feature of these sub-dialects is the mo-
nophthongization of the common Latvian diphthong ie ( \(>\mathrm{I}\) ) and uo ( \(>\) u ), e.g. sìva <sieva 'wife'; ula<uola 'egg'.

Two types of syllable tonemes function in the Ziemeri sub-dialect, namely, the so-called falling ( \(\backslash\) ) and broken (glottalized; \(へ\) ), e.g. rèit 'to swallow' and reît 'tomorrow'. The level syllable toneme ( \(\sim\) ) occurring in the Latvian standard language is substituted by the falling syllable toneme in the Ziemeri sub-dialect, e.g. laĨme 'happiness', mãte 'mother', saũle 'sun', in the Ziemeri subdialect are pronounced as laima, muote or muota, saula. The two types of the syllable toneme were likewise distinguished by us in the sub-dialects used in the areas adjacent to that of the Ziemeri sub-dialect, namely, the sub-dialects of Alūkene, Jaunlaicene, Jaunroze, Karva and Veclaicene. To differentiate and identify a variety of syllable toneme, we investigated the fundamental pitch, intensity and the spectrum dynamics of vowels (vocalic centre of syllable).

So in the Ziemeri sub-dialect two types of syllable pitch are most strikingly correlated according to the dynamics(characteristic motion) and direction of the fundamental pitch in vowels. They are as follows:
I) the syllable pitch specified by a rather narrow range and \(l\) e \(\nabla e l\) changes in the fundamental pitch, and also a falling, rising, or rising-falling direc-

In the Latvian standard language, in which the falling, drawling and broken syllable toneme is contrasted, the falling toneme is more distinctly realized (with a falling direction of the fundamental pitch). Be it otherwise, it would coincide both, with a broken and drawling syllable toneme. In the system of two types of syllable toneme, functioning in the Ziemeri sub-dialect, it is essential that the falling syllable toneme should not coincide with the broken syllable toneme. Therefore, the falling syllable toneme is subject to greater variations obtaining the characteristics similar to the drawling syllable toneme of the standard language;
2) a very distinct syllable toneme specified by a wide range and a cute changes in the fundamental pitch, and, likewise, a snift falling tone

There are cases when the direction of the tone is sniftly falling in the first half of the vowel, but rising - in the second half of it without reaching the maximum frequency.

The second type of the syllable toneme is specified by a decrease in the regularity of vocal-chords vibrations, the so-called glottalization, pointed also out by A.Äbele, A.Laua, I.Lehiste, M.Neilande, M.Vecozola, and others. The design of the irregular vibrations of this kind bears resemblance to the broken toneme (the so-called stod) of the Danish.

Until all the variants of the High Latvian dialect are not examined experimentally, it is disputable in which part of the vowel with a broken syllable toneme, in Latvian sub-dialects, the loss of regular vibrations occurs, or where there is a complete discontinuation (break) of voice.

The analysis of spectrum dynamics of the vowels in the Ziemeri sub-dialect
proves the weakening, or even fading of formants, in the case of the broken syllable toneme, e.1. an acute change in the dynamic design can be observed. In tho sub-dialect under consideration, acute cha. nges of the spectrum design are observed in the transition part of a diphthong. Sometimes the fading of formants is somewhat delayed, e.i. it occurs at the beginning of the second element. After the break some spectrograms all the three constituent parts of the formant are distinctive enough. In the monophthongs with a broken syllable toneme, of the Ziemeri sub-dialect irregular vibrations or a complete disappearance (break) of voice occurs at about the end of a third part, or in the middle of the syllabic element.

When investigating syllable toneme by auditive methods, Latvian philologist A. Breidaks expressed a view that in many variants of the High Latvian dialect, the disappearance, or acute shanges in voice occur in the first (prolonged) element of a diphthong or a diphthongal combination having a broken syllable toneme /1/. A Breidaks refers also to the research made by A.Äbele and M.Lepika \(/ 2 /\), who had analysed by auditive method the texts of the Jaunlaicene, Jaunroze and Veclaicene subdialects, which are adjacent to that of Ziemeri. Yet in another contribution /3/ concerned with the Alüksne sub-dialect, which is also adjacent to its Ziemeri counterpart, on the basis of the experimental data obtained by kymographic analysis, A.Äbele states that acute changes occur in the final part of a diphthong. In the course of the experimental investigation of the other three variants of the High Latvian dialect, I,Martinsone observed acute changes in the middle or the second element of a diphthong uttered with a broken syllable toneme /4/. Summing up the statements mentioned above, we may conclude that the experimental research of the
vocalism used in different variants of the High Latvian dialect proves the occurence of acute changes, or disappearance of voice, in the case of the broken syllable toneme, in the transition part,or the beginning of the second element of a diphthong. The fact is contradicted by auditory perception and, therefore, must be subjected to a careful experimental test. Experimental research of uninvestigated variants of the High Latvian dialect is left for the future.

In the spectra of the vowels with falling syllable toneme, a distinct relevant feature - acute changes - are absent. The changes in the dynamic design of the spectra are \(I\) evel.

These occurences testify to the fact that, in the Ziemeri sub-dialect, the broken syllable toneme is a marked element of opposition with regard to the unmarked toneme of the first type. This kind of toneme corresponds to the conventional term used for the broken syllable toneme. The first type of toneme is conventionally called falling, it would be more precise, from a phonological view point, to call the first type - unbroken or level.

According to dynamics and intensity direction in the vowels of the ziemeri sub-dialect, two types of syllable pitch can be contrasted:
1) the syllable toneme specified by \(l \in v e l\) changes in intensity and also by a rising-falling direction of intensity;
2) the syllable toneme specified by a cute changes in intensity, and, also, by an acute falling or rising-falling direction of intensity. In some cases intensity may have a quick fall in the first half and a rise in the second half of a vowel. without ascending to a maximum intensity of the first half of a vowel.

We may conclude that in both types of syllable toneme a rising-falling intensi-
ty occurs, consequently, intensity direction (as well as the direction of the fundamental pitch) is of no significance in the differentiation of the types of syllable toneme in the Ziemeri sub-dialect. Both types are contrasted to each other by the presence or absence of a specific prosodic distinctive feature - an a c ue or level characteristics of intensity changes (as well as the fundamental pitch charges).

Depending on the syllable toneme in the Ziemeri sub-dialect, long monophthongs differ as to their duration: long monophthongs with a falling syllable toneme ( \(M_{f}\) ) exceed long monophthongs with a broken syllable toneme ( \(M_{b}\) ) in their duration. An avrage correlation is: \(M_{f}: M_{b}: M\)

1,7:1,2: 1 ( \(M\) - short monophthongs).
In the sub-dialect the duration of diphthongs is close to that of long monophthongs.

The differentiation of the syllable toneme types in the Ziemeri sub-dialect is based on the spectrum, fundamental pitch, intensity and duration of vowels. Each of these parameters plays a certain role in differentiating toneme. For example, the acute changes in the fundamental pitch and intensity, the decline in the tembre of monophthongs (reflected by the lowering of formants in a spectrum) and the reduced duration may signal the presence of a broken syllable toneme. Yet not a single parameter functions as the only, basic and reliable indicator. The spectrum, fundamental pitch, intensity and duration seem to compensate each other. It is credible that in certain phrases or intonation patterns the decisive role is played by one or the other of these distinctive features (for instance, it may be considered by preliminary observations that in interrogative phrases pitch to a certain extent is deprived of its ability to differentiate syllable tonemes).

The syllable tonemes of monophthongal or diphthongal syllables, in fact, do not bear distinction among them \(=\) their distinctive features fully coincide. Judging by auditory perception, the distinctive features of the same kind are present in diphthongal clusters, which were not investigated by us.

We may conclude that both types of syllable toneme are contrasted to each other by the presence or absence of the specific prosodial feature - a cute or \(l e v e l\) changes in the fundamental pitch, intensity and spectrum. See also some illustrations (Fig. 1, 2, 3, 4) of the fundamental pitch and intensity of vowels with the both types of syllable toneme.


Fig.l. Diphthong iêe in the word spiêra


Fig.2. Monophthong in the word pira


Fig.3. Diphthong uo in the word kuosu


Fig.4. Monophthong \(\hat{\underline{g}}\) in the word \(\hat{a} s t u\)

We consider that, from the phonological view point, it would be more apt to call the two types of syllable toneme acute (or broken) and 1 evel (e.i. unbroken).

\section*{REFERENCES}
1. A.Breidaks. Latgalisko izlokšģu prosom dijas jautājumi. // Grām.: Veltijums akadēmiķim Jānim Endzelinam 1873.-1973., Riga: Zinātne, 1972, 89.-108.1pp.
2. A.Ābele un M.Lepika. Par Apukalna izloksnēm. // Filologu biedribas raksti, 1928, VIII, 19.-49.1pp.
3. A.Ābele. Alūksnes izloksnes intonācijas. // Filologu biedribas raksti, 1930, X, 80-91.1pp.
4. J.Martinsone. Vārkavas, Pildas un Zvirgzdines pagasta intonācijas. // Filologu biedribas raksti, 1934, XIV, 143.-165.1pp.

\section*{MODELLING SWEDISH SEGMENT DURATION}

\section*{ROLF CARLSQN AND BJÖRN GRANSTRÖM}

> Department of Speech Communication and Music Acoustics, Royal Institute of Technology, Box 70014, S-100 44 Stockholm, Sweden.

\section*{ABSTRACT}

The durational properties of consonants have been studied for Swedish in the context of a speech data base of read sentences. We have developed a system to access a speech data base in an effective manner by means of rules. These rules can also be used to describe models that can be tested against the data. Some durational effects such as inherent duration and stress and quantity effects have been verified. Durational atributes of boundaries play an important role in a complete account of prosody. Syllable, morph, word and phrase boundaries have to be taken into account. The needs for larger speech data bases are obvious when finer details are going to be studied and described. Our main objective in this paper has been to illustrate the method and to show the power of the approach.

\section*{INTRODUCTION}

Durational data has been reported for several languages and also formulated into coherent rule systems. Only Swedish data and models will be discussed and referred to in this paper. An expanded version of this paper also includes data for American English /1/.

A speech data base of read Swedish sentences has been created and methods to search this data base by means of rules are also reported. The prosodic analysis of Swedish in this paper consists of both duration analysis of consonants and testing of duration models. The models are based on a general structure proposed by Klatt /2/.

\section*{THE SWEDISH SENTENCE DATA BASE}

The speech data base in our example consists of 150 Swedish sentences, containing about 5000 phonemes, read by one male speaker. The first step in creating the data base was to record and label speech. In our system, speech data is stored in sentence-sized files. Our text-to-speech system is used to phonetically transcribe the utterances \(/ 3 /\). This transcription is edited to match the pronunciation as well as possible ( Figure l). It is a matter of discussion how detailed this transcription should be. We are aiming at a relatively broad phonemic transcription. We believe that the broader transcription makes it easier to use the data base to discover and study phonetic variations of certain kinds. An example is devoicing of voiceless sounds in voiced contexts which appears to be a
graded phenomenon rather than an allophonic selection. Stress and word-tone is marked by special signs. Additional markers indicating e.g. syntactic boundaries and emphasis can be added to the transcription if needed.

The phonetic transcription is used by an automatic segmentation program, /4/, to distribute the phonetic labels along the wave form. The segmentation program gives an estimate of the time position of each phoneme. Segmentation of speech in phonesized parts in an unambiguous way is a classical problem, possibly without a solution. When a number of persons are contributing to the data base, it is important that the same criteria are used. throughout. An attractive alternative is to leave the segmentation to a self-consistent algorithm. The accuracy of the present program is, however, not sufficient.

When a detailed analysis should be done, the labels have to be checked and corrected. This is done by means of a wave form editor program, which is a general purpose program for labelling and editing sampled files. By means of the joystick,


Figure l. Block diagram of the rule controlled data base environment.
samples can be labeled or labels can be changed by all following programs. During the editing, the program can suggest good positions for labels. This is done by an automatic procedure that places the cursor at zero crossings or at the closing time o fast, interactive, and user-friendly.
Figure 2 shows a spectrogram of a sentence KTH data base. The label names and positions can be seen at the top.
Labelling
Labelling speech is often a difficult task. In found. This no obvious segment boundary can be segments sharing the same manner of articulation In many of these cases the labels have to be set to acoustic events. Even though the can be coupled can sometimes be regarded as ambiguous or even meaningless it is important to always supply it. By having a labeled data base we have the possibility
of identifying sounds in a specific context for further analysis which is not crucially dependent
on the exact label position.

\section*{RULE-DRIVEN SEARCH}

The data base is accessed by means of rules. the specified contextual conditions can be identing fied. The rule structure is similar to the notation used in generative phonology and is also used in
our text-to-speech project. The rules operate on the used to insert aperate on the transcription and are to be analyzed and to give it a set of parameter
tine position for each phoneme, the duration of can be derived from the phonetic transcription that the durational information in the label file. Table gives an example of a simple rule system to fin level and phonological length. If the von stres cedes an unvoiced stop it is given a higher clase incation number. The result of the analysis

Table I. Rule system to find and classify vowels.
insert * in front of vowel

 give class 2 to short vowels with primary stress
\(04.00: \star \wedge\) <IAASS \(=2\rangle / \&<\) vowEL STRESS give class 3 to long stressed vowels
\(05.00:{ }^{\wedge}\langle\) CIASS
/ add 3 to the class if vowels are before .

It is a well known fact that a vowel is shortened when followed by an unvoiced stop. Howeffect only in short stressed vowels shortening other two categories have a minor shift in dur much higher we find that the unvoiced stops have in our data. A specia
rule notation itself is a powerful tool the that the a model such as a text-to-speech system. The mode thediction can, thus, be immediately compared wi
the actual data during the data base search. examples will be given in this paper.


Figure 2. Spectrogram of the sentence "Santidigt hindras de av sina..."

* before unvoiced stop + others

* before Uuration (mS)


Figure 3. Influence of stop consonants on the pre-
ceding vowel. (a) unstressed vowels, (b) stressed ceding vowel. (a) unstressed vowels, (b) stressed
dURATION ANALYSIS OF THE KTH DATA EASE
Durational variation in consonants depend on
everal factors including consonant and immediate phonetic context. As a reference
point the mean point the mean and SD for all 2917 As a ronsonerence found to be 60 ms . and 34 ms . respectively. All
clause-initial and clause-final consonants are excluded from the analysis. Some of the variation can be taken care of by splitting the material in neasure of the predictive power of the used as a

At first the consonants are divided into thre long consonants. In the present analysis stressed sonant is defined to be stressed if it is followed by a primary stressed vowel. A consonant is re primary stressed short it immediately follows eed to be modified as will be seen in the follow ing analysis.
and SD for the subcategories of occurrences, mean into account each consonant's typical length take calculated the mean for each consonant in the three relation to these means. The result is interesting in the context of means. The result is interesting give each consonant three typical duration values percent of the original SD.
consonant classes.
\begin{tabular}{lrllll} 
& \multicolumn{5}{c}{N} \\
& mean (ms.) SD (ms.) & SD* (ms.) \\
Unstressed & 1717 & 54 & 29 & 25 \\
stressed short & 806 & 62 & 26 & 21 \\
stressed long & 394 & 83 & 33 & 30 \\
all consonants & 2917 & 60 & 34 & 25
\end{tabular}

The next step in our analysis is to break down our data into more specific subgroups. We hav nedial or-final consonants ( Tablitial and word

Table III. Mean and SD for Swedish consonants


\section*{ANALYSIS IN THE CONTEXT OF A MODEL}

We have so far discussed some broad analysis of the consonant duration in the present KTH data base. As mentioned earlier the data base is too small for very specific analyses. Even inherent. duration, according to the definition above, is hard to measure reliably. Swedish words often end with consonants and to make a natural data base with a statistically reasonable frequency of single word-initial stressed consonants preceded by vowels demands a considerably larger corpus.

We have chosen to approach the material from a different point of view. We have implemented the rule system presented by Klatt (1979) as part of the data base search. This makes it possible to test the predicted duration against the measured. The rules are based on the concepts of inherent duration, minimal duration and a correction factor. Only a few of the rules are applicable for our purpose. The rule numbers refer to the rule system in Klatt's work.

Find inherent duration INHDUR and minimal duration MINDUR in a phoneme-specific table. Set adjustment parameter :

Rule 6. Noninitial-oansonant shortening. Consonants in normord-initial position are shortened by :
\[
\text { PRONT }=\text { PRCNI *. } 85
\]

Rule 7. Unstressed shortening. Unstressed segments are half again more campressible than stressed segments. Then both unstressed and 2-stressed segments are shortened:

MINDUR=MINLUR/2 and PRONI=PRONI*. 7
Rule 10. Shortening in clusters. Segments are shortened in consonant-consonant sequenoes ( disregarding word boundaries, but not across phrase boundaries).
oonsonant preceded by consonant: PRONI = PRONT *. 70 consonant followed by cansonant: PRONT = PRONI * . 70

Rule \(x x\). Long consonants after primary stress were adjusted acoording to the rule:

PRCNT \(=\) PRCNT * 2
Calculate the resulting duration:
DUR \(=(\) INLDUR-MINDUR \() \star P R C N T+M I N D U R\)
As a starting point the rules were implemented and the inherent duration and the minimal duration were estimated from the predictions and actual data. In a sequence of test runs these values were optimized. The results are presented in Table IV.

Table IV. Inherent and minimal duration for Swedish
\begin{tabular}{|c|c|c|c|c|c|}
\hline & INHDUR & MINDUR & & INHDUR & MINDUR \\
\hline b cocl & 65 & 50 & f & 90 & 60 \\
\hline d 0001 & 55 & 40 & s & 100 & 50 \\
\hline rd oocl & 55 & 40 & rs & 100 & 50 \\
\hline goccl & 50 & 40 & sh & 95 & 60 \\
\hline p occl & 65 & 50 & h & 90 & 20 \\
\hline \(t \times \infty\) & 50 & 40 & v & 50 & 40 \\
\hline rt oocl & 50 & 40 & j & 65 & 35 \\
\hline \(\mathrm{k} \times \infty \times 1\) & 50 & 40 & \(r\) & 50 & 30 \\
\hline m & 65 & 50 & 1 & 65 & 40 \\
\hline n & 70 & 40 & rl & 65 & 40 \\
\hline m & 70 & 40 & & & \\
\hline ng & 80 & 50 & & & \\
\hline
\end{tabular}

The first test showed a SD of \(23 \mathrm{~ms} .\), which should be compared to the initial 34 ms . without consonant-specific adjustments and 25 ms . With the three category classification. The improvement is minor and not statistically significant. It is however unfair to claim that the rule system has little or no positive features. What is missing is to adjust the rules to the syllabic nature of the Swedish language and to include the important phrase rules. If a simple stripping of unstressed endings and prediction of secondary stress in compounds together with a few other rules were added the SD decreased to 20 ms . The comparison of the measured and predicted consonant durations can be visualized in graphical form. We still get gross errors at phrase boundaries. Excluding these we find the quite acceptable SD of 13 ms .

\section*{CONCLUSION}

We have developed a system to access a speech data base in an effective manner by means of rules. These rules can also be used to describe models that can be tested against the data. This method has been used to study the durational structure of Swedish. Some durational effects such as inherent duration and stress and quantity effects have been verified. Durational attributes of boundaries play an important role in a complete account of prosody. Syllable, morph, word and phrase boundaries have to be taken into account. The need for larger speech data bases is obvious when finer details are going to be studied and described. Our main objective in this paper has been to illustrate the method and to show the power of the approach. The current system enables us to test hypotheses and to transform the gained knowledge to our text-to-speech system or speech recognition system in a fast and effective manner.

\section*{ACKNOWLEDGEMENTS}

Part of the work was supported by The Swedish Board for Technical Development (STU) Contract No. 843667.

\section*{REFERENCES}
/1/ Carlson, R. and Granström, B.: A search for durational rules in a real-speech data base, Phonetica, Vol. 43:140-154 (1986).
/2/ Klatt, D. K.: Synthesis by rule of segmental durations in English sentences, in Frontiers in Speech Communication Research, ed. B. Lindblom and S Öhman ( Academic, New York 1979).
/3/ Carlson, R., Granström, B., and Hunnicutt, S.: A multi-language text-to-speech module, Conference Record, IEEE-ICASSP, Paris (1982).
/4/ Blomberg, M. and Elenius, K.: Automatic time alignment of speech with a phonetic transcription, STL-QPSR 1/1985:37-45 (1985).

\section*{STATISTISCHE ZEITPARAMETER DER GESPROCHENEN SPRACHE}

\section*{GOTTFRIED MEINHOLD}

> Sektion Sprachwissenschaft Friedrich-Schiller-Universität DDR 6900 Jena

\section*{ABSTRACT}

Eine empirische Untersuchung an etwa 100 Sprechern gibt Aufschluß über die Aussagekraft sog. makrozeitlicher Parameter. mit deren Hilfe wichtige phonostilistische Besonderheiten der gesprochenen Sprache beschrieben werden können. Die Untersuchung reicht von expressionsamen Nachrichten des Rundfunks bis zu sprechkünstlerisch gestalteten Texten (Lyrik, Ballade, Prosa, Sprechtheater). Einige korrelative Beziehungen zwischen den Parametern werden festgestellt.

Neben der mikrazeitlichen Struktur gesprochener Texte, wie sie sich aus Lautdauermessungen ergibt oder in Silbendauer oder. Redetaktdauer zum Ausdruck kommt, ist eine makrozeitliche Struktur aufschlußreich, deren wichtigste Parameter geeignet sind, die Verschiedenartigkeit der gesprochenen Form von Texten zu charakterisieren sowie die temporalen verlaufsformen sog. freier lautsprachlicher Außerungen zu kennzeichnen. Solche Parameter sind (1) die mittlere Sprechgeschwindigkeit \(V_{o}\) einer Sprachäußerung, ausgedrückt in Silben/s,
(2) die Streuung der Syntagmageschwindigkeiten, die aus der Verteilung der mittleren Geschwindigkeit jener Textabscinnitte zu ermitteln ist, welche nicht durch eine Pause getrennt werden (Pausensyntagmen),
(3) die mittlere absolute Geschwindigkeitsfluktuation (Gf), berechnet als mittlerer Betrag der Geschwindigkeitsdifferenzen zwischen zwei aufeinanderfolgenden Pausensyntagmen, (4) der Pausenzeitquotient, berechnet aus der Gesamtzeit des Textes \((t)\) und der reinen Sprechzeit ( \(t_{o}\) ), also \(P Z \underline{Q}=t / t_{0}\). (5) die mittlere Pausendauer \(\left(\bar{t}_{p}\right)\) des Textes, (6) die auf 100 Silben bezogene Pausenhäufigkeit ( \(P_{n}\) ). - Prosodische Parameter, die mit den angeführten Zeitparametern in engem Zusammenhang stehen, sind die mittlere Akzentdichte, ausgedrückt durch den mittleren Alizentabstand sowie die rhythmische Kontextentropie, die aus den Verbundhäufigkeiten der Redetaktkette des Textes berechnet wird. Eine größere Anzahl Textproduktionen und -reproduktionen wurden auf die genannten Parameter hin analysiert; unter den Sprechern befanden sich auch solche, die Deutsch als Fremdsprache studieren (Huttersprache Russisch, Ukrainisch). Die Sprechgeschwindigkeit \(V_{0}\) eines Textes weist in verschiedenen Sprachäußerungen die folgenden Hittelwerte auf (Silben/s):

\section*{Mittelwert Streuungsbe-}
reich

Nachrichten Belletristik Sprechtheater Lyrik/Ballade freie ăußerung
\begin{tabular}{ll}
5,7 & \(5,4-6,1\) \\
5,4 & \(4,6-6,1\) \\
4,97 & \(3,5-6,1\) \\
3,7 & \(3,1-4,4\) \\
5,9 & \(5,5-6,1\)
\end{tabular}

Die freie Redeäuberung betraf die Verbalisierung einer Bildgeschichte. - Stati-
stisch signifikant ist lediglich der Unterschied zwischen 'Lyrik/Ballade' und allen anderen Gruppen; es gibt also hinsichtlich \(V\) nur eine Differenzierung slohehen versgebundener Rede. Erinittlungen an Sprechern russischer und ukrainischer Muttersprache ergaben mit 5,8 Silb./s für die freie Außerung dem Deutschen an genäherte Werte.
PZO (s.o.) drückt den (relativen) Anteil der Pausenzeit ( \(t_{p}\) ) aus. PZQ hat die Tendenz, bei abnehmender Sprechgeschwindigkeit zu wachsen.
\begin{tabular}{lcc} 
& \begin{tabular}{c} 
Mittelwert \\
(PZO)
\end{tabular} & \begin{tabular}{c} 
Strouungs- \\
bereich
\end{tabular} \\
Nachrichten & 1,21 & \(1,13-1,26\) \\
Belletristik & 1,40 & \(1,22-1,81\) \\
Sprechtheater & 1,38 & \(1,23-1,59\) \\
Lyrik/Ballade & 1,42 & \(1,23-1,79\) \\
freie AuBerung & 1,62 & \(1,30-1,75\)
\end{tabular}

Bemerkenswert ist der kleine Streuungsbereich der Nachrichten; mit der Zunahme der Mittelwerte wächst der Streuungsbereich nach oben. Es hat sich gezeigt, dab bei den reproduzierten Texten PZQ wächst, wenn die Expressivität des Sprechausdrucks zunimmt. In der freien Außerung spiegelt sich dagegen im hohen PZO vor allem der Planungszeitaufwand der Sprechproduktion wider. Phonostilistisch deutet sich die prosodische Normierung und geringe Variabilität der Nachrichten an。
Die Streuung der Pausensyntagmageschwindigkeiten (H) und die Geschwindigkeits fluktuation wurde nur an einem Teil des Corpus ermittelt (Prosa, Sprechtheater und freie Kußerungen):

Prosa
Sprechtheater
freie そußerungen
\begin{tabular}{ll}
\(\stackrel{H}{H}\) \\
(in bit) & \begin{tabular}{c} 
Gf \\
(Silb
\end{tabular} \\
2,7074 & 0,93 \\
3,0131 & 1,32 \\
3,1 & 1,35
\end{tabular}
eim vergleich mit anderen Zeitparametern erweist sich, daß sich die Gruppen 'Prosa' und 'Sprechtheater' nur hinsichtlich \(H\) und Gf signifikant voneinander unter-
cheiden lassen. Bemerkenswert ist die ringe Differenz zwischen 'Sprechtheater' und 'freien Außerungen'.
Von den Pausenparametern ist die mittlere Pausenzeit ( \(\bar{t}_{p}\) ) lediglich geeignet, weit auseinanderliegende Textklassen (Lyrik/ Ballade einerseits mit \(t_{p}=0,8 \mathrm{~s}\), Lesungen von Prosa mit \(\mathrm{t}_{\mathrm{p}}=0,6 \mathrm{~s}\) ) zu differen. zieren. Die bezogene Pausenhäufigkeit \(P_{n}\) signalisiert demgegenüber rhythmische strukturverschiedenheiten, die idiolektisch oder situativ variabel sind. Neben \(P_{n}\) kann auch der mittlere Pausenabstand \(P_{a}\) in silben berechnet werden.
\begin{tabular}{lrr} 
& \(P_{n}\) & \(P_{a}\) \\
& 5,8 & 17,3 \\
Nachrichten & 5,3 \\
Belletristik & 11,5 & 1,5 \\
Sprechtheater & 9,4 & 10,6 \\
Lyrik/ Ballade & 15,0 & 6,7 \\
freie AuBerung & 11,2 & 8,2
\end{tabular}

Nachrichten und Lyrik/Ballade stellen die extremen Gruppen dar. Betrachtet man die Pause als syntagmatisches Gliederungsmo ment, das auch Recodierschritte beim Ver stehensprozeß markiert, so geben die Wer des Sprechtheaters einen Hinweis auf die optimale Recodierschrittlänge. Weitere Differenzierungsmöglichkeiten ze gen sich, wenn man Pausen zwischen den Sätzen (SZP) und Pausen innerhalb der Sät ze (SP) gesondert betrachtet. Sprechthe ater ( \(D R\) ) und Prosalesung (PR) unterscheiden sich in dieser Hinsicht signifi kant voneinander.
\begin{tabular}{ccccc} 
& \multicolumn{2}{c}{ Satzzwischenpausen } & \multicolumn{2}{c}{ Satzpausen } \\
& \(\bar{t}_{\text {szp }}\) & \(P_{n}\) & \(\bar{t}_{\text {sp }}\) & \(P_{n}\) \\
PR & 1,5 & 2,5 & 0,53 & 6,4 \\
\(0 R\) & 1,1 & 3,5 & 0,69 & 5,3
\end{tabular}

Ein Quotient aus den :/erten für die Pausendauer ( \(\mathrm{PO}=\overline{\mathrm{t}}_{\mathrm{szp}} / \overline{\mathrm{t}}_{\mathrm{sp}}\) ) spiegelt das zu* gunsten der SzP verschobene verhältnis in der Prosa wider (PR: 2,87; DR: 1,69). Die Abhängigkeit z:yischen \(P_{n}\) und \(V_{0}\) ist geeignet, die phonostilistisch unterscheidbaren Text!lassen 'Lyrik/Ballade'
'Nachrichten' und 'Belletristik' zu unterscheiden; die Abhängigkeit \(\bar{t}_{p}\) von \(V_{0}\) leistet dies nicht. - Die Erwartung, daß bei zunehmender Sprechgeschwindigkeit \(P_{n}\) und \(\overline{\tau_{p}}\) sich verringern, gilt allenfalls für einen bestimmten Bereich emotionaler Neutralität. In einer Leseprobe des Corpus wird als Ausdruck für resignative Haltung hohe Sprechgeschwindigkeit in verbindung mit großer mittlerer Pausendauer und Pausenhäufigkeit realisiert ( \(V_{0}=6,13 \mathrm{Silb} . / \mathrm{s}\); \(\bar{t}_{p}=1,18 \mathrm{~s}: P_{n}=11,0\) Paus \(/ 100\) Silb.) Es kommen also Tendenzen zu positiver wie negativer Korrelation vor. Deutlicher zeigt sich die Tendenz zu einer negativen Korrelation zwischen \(V_{0}\) und \(P_{n}\) in den freien Außerungen, dagegen scheint hier zwischen \(v_{0}\) und \(\bar{t}_{\text {p }}\) keinerlei korrelative Beziehung zu bestehen. Erwartungsgemäß liegt aber sine korrelative Beziehung zwischen PZQ und \(\bar{t}_{p}\) vor.
Nichttemporale prosodische Paramter, die mit den erwähnten Zeitparametern in engem Zusammenhang stehen, sind Akzentstruktur bzw. rhythmische Struktur eines Textes ausgedrückt durch den mittleren Akzentabstand als Maß für die 'Akzentdichte', sowie die rhythmische Kontextentropie, die aus den relativen verbundhäufigkeiten der Redetaktklassen berechnet wird. Mit wachsender Akzentdichte und zunehmend kürzeen Redetakten erhöht sich der rhythmische Ordnungsgrad (verringert sich die rhythmische Entropie) und nehmen die Sprechgeschwindigkeit sowie die Pausen häufigkeit ab. All dies sind Kennzeichen eines wachsenden expressiven Spannungsgrades.
Die temporale Makrostruktur gesprochener Texte ist geeignet, einen Beitrag für eine genauere Beschreibung phonostilistischer Gegebenheiten, jedoch auch individualtypischer Erscheinungen der Sprechweise zu leisten. Außerdem liefern thre Zeitparameterobjektive Angaben für die
'fluency of speech' und samit für die Be stimmung des qualitativen Niveaus der (nicht nur phonetischen) Sprachbeherrschung. Darüber hinaus sind sie für psycholinguistische bzw. sprachpsychologische und sogar für kriminologische Ermittlungen aufschlußreich.

\section*{literatur}

Gajdučik, S.: Zur phonostilistischen Differenzierung der gesprochenen Hochsprache. In: Zeitschr.f.Phonetik, Sprachwiss.u.Kommunikationsforschung, 25 (1972) 47-57

Meinhold, G.: Allgemeine phonetische Probleme der Sprechgeschwindigkeit. In: Zeitschr.f.Phonetik, Sprachwiss.u. Kommunikationsforschung 25 (1972) 491-505
Raabe, \(M_{0}\) : Zur Charakterisierung sprecherischer Verlaufseigenschaften durch phonostilistische Merkmalskomplexe. In: Wiss. Zeitschr. d. Friedrich-Schil-ler-Universität Jena, Gesellschaftswiss.R. 34 (1935) 97-106

\title{
SOME OBSERYATIONS ON THE TIMING OF FO-EVENTS
}

\section*{Bertil Lyberg}

Swedish Telecommunications Administration Technology Department, S-123 86 Farsta, Sweden.

ABSTRAC
The present study examines the effects which final consonants have upon the timing of the fundamental
frequency contour in words carrying the sentence accent in Swedour. Monosyllabic test words contain-
ing both phonologically long tary ing both phonologically long and short vowel seg-
ments are placed in initial and final utterance ments are praced in initial and final utterance
positions. Results show that the timing of the Fo-
events that signal the sentencel events that signal the sentence accent is dependent on whether the consonant following the vowel is
voiced or not, especially when the vowel is phonologically short. The fundamental frequency fall in the case of a short vowel followed by an unvoiced
consonant has to occur earlier than in the other consonant has to occur earlier than in the other
cases in order to get the frequency fall within the vowel segment, otherwise the prosodic information
will get lost.
introduction
The fundamental frequency contour of an utterance is heavily influenced by the segmental composition. In investigations about the fundamental
frequency contour utterances built sonorants are often used [1] and thereby the inly fluence of constrictions in the vocal tract in
avoided or at least diminished avoided or at least diminished. It is assumed that
the fundamental frequency contour obtained in such a way will reflect some basic pattern that is perturbed by the segmental composition that is per-
utterances. Most stinary utterances. Most studies of the fundamental frequency contour are dealing with overall patterns
i.e. in which syllables maxima and minima will
occur in occur in the segmental flow maxima and minima will
generating an accurate fundamental . In models for for generating an accurate fundamental frequency con-
tour it is also necessary to take into account how the location of the maxima and minima is affount how
the
by the sected by the segmental composition. The exploration of
such effects in greater detail is hopefully of such effects in greater detail is hopefully of
great importance for the generation of synthetic speech with a naturalness and intelligibibility that is acceptable in different types of communication
systems. A systematic mapping of the variations of he locations of the extremes owing to the segmental setup can also extremes owing to the seg-
insight into certed to provide some
certain aspects of processes underlying the temporal of the mental processes under
spoken language.

In the present investigation the fundamental fre quency contour associated with sentence accent studied in greater detail. The syllable structurn and word position are systematically varied and th
effects on the location of the extremes examined.

Some fundamentals of Swedish prosody
The fundamental frequency contour of a monosyllabic word carrying sentence accent will in phrase fina
position have a maximum point in the vowel followe by a minimum point in the vowel or the following consonants. For a more detailed description of thi fundamental frequency contour in different posi.
tions of Swedish utterances, see \(e\). Lyberg [3]. The fundamentes, see e.g. Bruce [1] amp
associated associated with the signalling of sentence accert
in Swedish seems to be very similar to the sponding frequency manifestation in American En. lish according to e.g. pierrehumbert [2]. There
are, however, discrepancies in the ing are, however, discrepancies in the interpretation of the underlying parameters, and in the ter.
minology used by the two authors Bruce and Pur
Two degrees of quantity are distinctive in she. a complementary distribution of phonological ength between vowels and of phonological
tressed syliables. A syllables followed by a short consonant and : short vowel by a long consonant [4].

\section*{experimental design}

\section*{Speech material}

A set of utterances containing one and three word was main the case of whas constructed. The test in both initial and final positions and the
sentences sentences were pronounced either with the test
word in focus or with a "neutral" stress pater wi.e. in focus or with a "neutral"" stress patterf
i.e. with a conscious effort of the speakerte avoid junctures and contrastive stresses.

The test word was build up of both phonologically
short and long vowel segments in order to elucishort and long vowel segments in order to eluci
date the interaction between the signalling of the quantity distinction and the fundamental frequency contour. In addition to that the surrounding conboth voiced and unvoiced consonants way so that postvocalic position. The test words wererealways monosyllables and may be considered as nonsense words. The seminonsense three-word utterances where tically non-anomalous words (always/sàg/ saw in
English).

The inventory and syntactic structure of the test sentences are presented in Table I. The sentences were read in ten randomly ordered sequences by
trained phonetician.

TABLEI
Sentences
\begin{tabular}{l}
\(\left\{\begin{array}{l}\text { Dad } \\
\text { Dadd } \\
\text { Dat } \\
\text { Datt }\end{array}\right\}\) \\
\(\left.\begin{array}{l}\text { Dad } \\
\text { Dadd } \\
\text { Dat } \\
\text { Datt }\end{array}\right\}\) säg \(\left\{\begin{array}{l}\text { dad } \\
\text { dadd } \\
\text { dat } \\
\text { dat }\end{array}\right\}\)
\end{tabular}\(|\)

\section*{Measurements}

The duration of the vowel segment in the test words was measured. The duration of the vowel segment is consonant preceding the vowel (always /d/; a the increase of intensity) and the occlusion of the following consonant (always \(/ \mathrm{d} /\) or \(/ \mathrm{t} /\); a rapid
decrease of intensity). decrease of intensity)

The fundamental frequency was measured in nine equally spaced prest the of segment in the seven points within the vowel segment.

OBSERVATIONS
The fundamental frequency contour is in figs. 1 and tterances. The the final position of the three-wor
mental frequency contour when the utterance is the diagram in fig 2 the frequation pattern and focus is assigned to the final position when utterance. Every point in the diagrams represents mean value of ten recordings ot the same minimum point of the fundamental frequency contour will occur within the vowel segment no matter and whether the vowel in consonant is voiced or not and whether the vowel in question is phonologically
ong or not. The fundamental frequency after the minimum point is, in the case of a phonoogically long vowel followed by an unvoiced conor a short vowel followed by a voiced confollowed curve in the case of a long vowe is followed a voiced consonant. When a short vowel is followed by an unvoiced consonant the fundasec. earlier in the vowel segment in comparison to


Fig. 1 The fundamental frequency contour of the vowel for different test words in final position of three-wor "neverances. The utterance is pr


Fig. 2 The fundamental frequency contour of the vowel for different test words in final position of three-wor


Fig. 3 The fundamental frequency contour of the vowel for different test words in one-word utterennces

When focus is assigned to the initial word position the acoustic manifestation of the sentence intona-
tion is in the studied utterances a maximum point of the fundamental frequency contour in the vowe segment of the test word followed by a minimum point, but in this case the minimum point seems
be located outside the vowel segment (fig.4). Mos of the frequency fall is, however, still within the vowel segment. Some limited data from anothe speaker show a somewhat another strategy For that
speaker the fundamental frequency fall is more o speaker the fundamental frequency fatiming miffe-
less outside the vowel segment. The the of the fundamental frequency fall for the
rence ond
different thest different test words in this position is nev
theless the same as in the other word positions.
The duration of the vowel segment in the different The duration of the vowe. segment in the differen
test words is in fig.5. Shown for different focus assignments of the three word utterances. The dia gram
extent
shows that final lengthening is to a great extent dependent on the location of the focias
position. When focus is assigned to the initia utterance position the duration of the vowel in the final test word is shortened. The speaker seems \(t\) initial word position when it is in focus position that is more or less of the same magnitude as \(t\)


Fig. 4 The fundamental frequency contour of the vowel for different test words in initial position of three-wor utterances. Focus is assogned to the initial position.
dad
\begin{tabular}{|c|c|c|}
\hline & -foc & +foc \\
\hline in & 156 & 198 \\
\hline +fin & 162 & 202 \\
\hline
\end{tabular}
datt
\(-\mathrm{foc}+\mathrm{foc}\)
\begin{tabular}{|c|c|}
\multicolumn{1}{c}{ foc } & \multicolumn{1}{c}{+foc} \\
\hline 132 & 174 \\
\hline 157 & 186 \\
\hline
\end{tabular}

Fig. 5 The duration of the vovel segment in msec. is shown for different combinations of focus and utterance positions.

DISCUSSION
The main observation on the timing of the frequency fall connected with the signalling of
sentence accent is that the frequency fall will occur earlier in a phonologically short vowel followed by an unvoiced consonant in relation to tion of the vowel is in this case extremely short and the unvoiced consonant cannot convey any information about the fundamental frequency fall When focus is assigned to the utterance final
position and the final word consists of a mono-
syllable, the frequency fall has to occur within the vowel or Within the vowel and the following nvoiced, it seems to be necessary to move the unvoquency fall to an earlier point in relation to he cV-boundary in order not to lose the prosodic

It is in non-final position possible to partly locate the fundamental frequency fall to foll lowing
syllables and words. The speaker in this study sycates most of the frequency fall in the vowel but locates mod study of another speaker seems to support the idea that it is a possible strategy for some
seakers to locate the minimum point of the frequency fall in a following syllable. This is some quencs the case when a monosyllabic word is built up of unvoiced consonants after the vowel. The prosoic information frequency level in the successive llables. Similar data can be observed in American ngli ish [5]

\section*{oncluding remarks} It seems possible to assume that an underlying in
tonation scheme is similar for sentences with the same prosodic pattern but built up of different
segments and words. The timing pertubations obser segments and words. The timing pertubations obser adjustment rules on a more peripheral level. complete intonation model of a language must a
- An underlying intonation scheme.

Timing perturbations owing to the syllable composition.
Frequency perturbations owing to physiologica
The importance of accounting for the different contour in the generation of synthetic frequency btain a higher degree of naturalness and intelli gibility must be determined by perceptual tests.

\section*{pefreances}
(1] Bruce, G. (1977): "Swdish Word Accent in Sen tence Perspective" \(\frac{\text { Travaux de } 1 \text { Institut de }}{\text { Linguistique de }}\) Lund XII. B Malmberg and K.

2] Pierrehumbert, J. (1980): "The Phonology and Hnetics of English Intonation". Ph.D. Thesis, MIT

3] Lyberg, B (1981): "Some observations on the

- 1 .

4] Elert, C.-C. (1964): "Phonological Studies of Uppsala, Sweden.
5] Lyberg, B. (1984): "Some fundamental frequenc perturbations in a sentence
of Phonetics 12, pp. 307-317.
durational pattern of russian syntagma: the standard schene
AND OF RUSSIAN SYNTAGMA
ATS MODIFICATIONS
01ga Krimnova

Department of Philology, Moscow State University

abstract
In the present paper it is suggested the
the idea of the existence of a pronunciational baok-
ground related to rhythmical speech organizaground related to rhythinical speech organiztion. In temporal aspect this baokground is rea-
1ized in particular through some standard scheme
of phonosyntagaa pattern. On the basis of coheof phonosyntagma pattern. On the basis of cohe-
rent Russian text the most important qualitative rent Russian text the most important qualitative
features of the standard scheme are revealed and features of the standard scheme are revealed and
a numerical model and statistical characteris-
tics of its realization are presented.
introduction
The prinoiple of speech rhythinical organization suggeste forming a certain pronunciational baokground in speech signal. Regular repro-
duction of the elements realizing this backgroduction of the elements realizing this backgro-
und leads to disintegration of speech into variund leads to disintegration of speech into vari-
ous phonetic constituents /phonowords, syntagous phonetic constituents thhonowords, syntag-
nas, phrases, periods, with their specific inner
structure periodically recurring in rhythinele struoture periodically recurring in rhythnical-
ly organized speech. Rhythm-foraing elements having various physical realization attach important functions to acoustic speech parameters functions of form construction and integrity of
speech units. The subject functions are intrinspeech to duration as well. In this paper a possi-
sio
bility bility of presentation of phonosyntagma durati-
onal patterns in Russian as a result of realizaonal patterns in Russian as a result of realiza-
tion of a standard scheme and its regular modiflications is considered. Besides, the standird scheme is riewed as teuporal stereotype which,
being a part of pronunclational background and being a part of pronunctational background and role in creating phonetic integrity of the syntagea.

Standard scieme of stivagiaa temporal
\(\frac{\text { Qualitative description }}{\text { great number op }}\)
\(\frac{1}{\text { A great number of phonetic experimental re- }}\) search as well as speech synthesis practice de-
monstrate that the general tendency of syntagma monstrate that the general tencency of syntagma
temporal arrangement in Russian is related to forming a positional contrast or, in other words, differenoes in duration of various com-
ponents of a phonetio word depending on its position in the syntagma. Various language material shows an almost universal character of the
positional factor when analysing its influence
on word durational characteristics within syntagea. The positional contrast in a Russian sym-
taga is clearly detected not only when isolated tagma is clearly detected not only when isolated
phrases are pronounced but in running speech as phrases are pronous wean speak about the oxistence of corresponding temporal stereotype or a standard
realization soheme of the positional contrast, realization soheme of the positional contrast.
t the same time up to now the positional trast has been studied on separate phrases vith trast has been
a limited set of rhythnical word patterns and
sound composition. But if we try to analyse rumsound composition. But if we try to analyse rumning speech, the data obtained from such a mate-
rial are not sufficient. In view of the abovementioned facts the first part of our research
was devoted to the qualitative analysis of in ras devoted to the qualitative analysis of in-
trasnagmatic duration relations in coherent trasyntagmatic duration relations in coherent
text. Our purpose was first of all to enrich and text. our purpose was first of all to enrich and ned earlier.
The study
The study was carried out on a corpus of
yntagmas singled out as a result of auditory syntagmas singled out as a result of auditory
analysis of coherent scientific Russian text rat ad by an announcer /standard Moscom speaker/ ith moderate individual speaking rate.
Syntagmas of various length with a misn stressed word in final position were seleoted for this analysis. Total volume of the sample
comprised 438 units. Sound durations were mead comprised 438 units. Sound durations were near
sured acoording to oscillograms /registered at sured acoording to oscillograms \(/\) registered at
finin speed of \(100 \mathrm{mma} / \mathrm{seo} /\). In order to make the segmentation proceedure easier speech signal and
intensity curve were recorded on the film simulAs a result of the analysis the folloring peculiarities of the positional contrast \(/ \mathbb{P C}\) were A nevalitiv:
I. of a normative /statistically predominant/ ruf
of realization is time shortening of a wort in the syntagan non-final position. The shorter.
ing is achieved by fast speaking rate of thest ing is achieved by fast speaking rate of thest words in the final position and single-word syrtagmas. The following symbols can be used to de
signate the way of the PC construction: \(F / n t /\). signate the way of the PC construction: \(F / \mathrm{n} /\) /.
\(\mathrm{N} / \mathrm{p} /\). Further we'll speak about it as of star dard temporal scheme /STS/ of the syntagan. Mos mative nature of the subject scheme is demonsh
rated by the results of the oomparison of the rated by the results of the oomparison of the
word speaking rate characteristics in variols syntagma positions with data on individual sper \(\underset{2}{\mathrm{king}}\) presente differences in Russian. Tables \(I\) arn
rious individual speaking rates and for words in Table I. Average sound duration /in reseo/ of in-
dividual speaking rate in Russian \(/ \mathrm{I} / \mathrm{in}\) -
\begin{tabular}{|c|c|c|c|}
\hline INDIVIDUAL Speaking rate & FAST & normal & SLOW \\
\hline geveral & 65 & 65-73 & 73 \\
\hline tariation & & & \\
\hline within normal genkral tempo & 60,4-I, 4 & 74, 2-3,0 & \\
\hline
\end{tabular}
rable 2. Average sound duration /in mseo/ for
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{NUMBER or HoRDS IN A stataga} & \multicolumn{2}{|c|}{POSITITON} & \\
\hline & initial & ledial & final \\
\hline 2 & 60,0-2,0 & --- & 77, 0-3, 0 \\
\hline 3 & 59, 0-1,4 & 58,0-I, 2 & 76,0-2,0 \\
\hline
\end{tabular}

Data on word stress perception in a Russian
syntagma \(/ 2 /\) make it possible to assume that the syntagma \(/ 2 /\) make it possible to assume that the scheme Pralization takes part in the formation of a syntagma accent pattern/component known as notice that in works In this conneotion one may notice that in works on Russian phonetios / \(3 /\),
\(/ 4 /\) the idea that an increase of the speaking rate can be considered as a source of numerical and qualitative reduction of vowels in a word ras put forward more than once. The notion that
the fast tempo of pronunolation of syntagma noninal words decreases their prominence level and creates the contrast needed for syntagmatio
stress 1s a natural widening of this 2. Apart from the positional factor, the Apart from the positional factor, the word
duration depends also on such shortening factors as the number of syllables per ortening factors distance from the syntagma beginning point. Un-
der the total influence of all shortening faco tors duration is decreasing in a nonlinear manner showing what is known as nan incompressibiyntagma non-final positions /eig. I/ . Minimal vowel durations characterizing the hooupressibility effect are close to certain emporal perception constants. For example, the
uinimal duration of an unstressed vowel \(/ \mathrm{T}\) min \(\approx\) \(0-40 \mathrm{mseo} /\) is close to the threshold value of 16s. Theteotion under any consonant enviromment \(\mathrm{T}_{\text {min }} \approx 70-90 \mathrm{msec} /\) duration of a stressed vowe needed for its phoneme running identification non-final follows that vowel duration in syntagme ons which, first of all, provide a possibilitiof correct identification of rhythwio type of the word and reoognition of its stressed vowel. ons of stressed and unstressed vowels relate as


Fig. I syntagma under the influence of the following
factors: position \(/ \mathrm{P} /\), number of syllables per word /S/, word distance from the syntagma beginning point measured in lexical stresses preceded distinotions.
4. Duration boundary values which separate stre ssed vowel realizations in non-final and final words /TAnd \(\approx 90-100 \mathrm{mseo} /\) are close to phoneme
boundary values obtained nemic contrast in vowel ler languages with pho makes it possible to speak about different dur tion oategories in Russian speech as well. The analysis shows that a vowel of a mid length is
realized when it is stressed, belongs to syin realized when it is stressed, belongs to syntag
ma final word but not followed by a pause. ma final word but not followed by a pause. In
that case its duration ts about 3 times longer than the oritioal value of vowel detection. I the latter is classified to be supershort, then vowel realizations of other oategories are cha-
raoterized by the foilowing relations of durations - I/supershort \(/: 2 /\) short \(/: 1 / 3 / \mathrm{man} /: 4 / 1 \mathrm{ong} /\). It is obvious that STS supposes the stre-
ssed vowels of non-final words in syntagme to ssed vowels of non-final words in syntagma to be
short and the stressed vowels of final words to be mid.
5. Positional shortening of no shortening is mostly noticeable in vowels in the word terminal part beginning with its stressed vorel /"swallowing of word terminals is an ex 1tarity/. to the loss of temporal contrast of prestresse and stressed vowels in the syntagma non-final Mord and this a
identification.
\[
\frac{\text { Numerical model }}{\text { The second part }}
\]
the development of a our study is devoted to standard temporal shumerical model of the PC great interest from the various points of view.
Generality of the positional factor in its influence on speech temporal characteristics causes us to think that speoffic linguistic features of the PC are imbodied in its numerical pa-

The
analysis give us an idea of the general fors of the STS mumerical model. While deteraining oive to the consideration of stressed vowels \(N /\). Da
to a of their duration were obtained by using the
and same corpus
The proposed STS model aocounts for all the shortening faotors: word position in the syntag
ma \(/ \mathrm{P} /\) the number of syllables per word \(/ \mathrm{S} /\), no \(/ \mathrm{P} /\), the number of syllables per word \(/\).
 sal position and position under seanantio acoen
are not taken into acount. Consonant environare not taken into account. Consonant environ neration as well. Thus, formulae /i, \(2 /\) giv mean duration to the non-prepausal in a syn-
taga ith final main stress when there is no pronounced semantio accent in it.
The general fors of the model was ohosen on
the basis of the notions that were used before the basis of the notions that were used before in soase generative
ganization \(/ 9 / 10 \%\). 10 .
These notions are as follows
I. For every stressed vowel of a given phonetic quality there oan be singled out two speoific
realizations: first in the context where both elongation and shortening factors are absent and have their maximum effect. In the first case it have natural to regard the vowel duration as its intrinsic duration \(/ T_{c} /\), and in the seoond case
asition duration \(/ \mathbb{T}\) min . The difference as its oritioal duration \(/ T_{0}-T_{\text {min }} /\) minich characterizes \({ }^{\text {a }}\) a stressed vowel / \(\left.\mathrm{T}_{0}-\mathrm{T}_{\text {min }} / \begin{array}{c}\text { which characterizes a } \\ \text { teaporal potential can be called its residual }\end{array}\right)\) duration.
2. The shor
 \({ }^{T}\) min and
respeotive of vowel quality.
3. The factors \(S\) and \(A\) shorten the stressed vorel recursively, i,e. their shortening effect is
realized cycliciy as a function of the correspon ding variables.
Ine \(\dot{\text { In accordance }} \mathbf{\pi}\) ith the accepted assumptions the \(\dot{X}\) duration in the absence of elongation fac-
tors can be presented as follows: \(T_{S, P, N}\left(v^{\prime}\right)=\left(T_{0}-T_{\text {min }}\right) \cdot \alpha^{s-1} \cdot \beta^{P} \cdot \gamma^{N}+T_{\text {min }}(1)\), where \(S\), \(X\) as defined above, \(P\) can acquire 2 ne-
anings: \(0-\) for a word in syntagma final position and I - for a word in non-final position \(\alpha, \beta, \gamma\) - shortening coefficients. red durations the \(\alpha, \beta, \gamma\), -coefficients were approxinated as 0,\(82 ; 6,20 ; 0,90\) accordingly. In
compliance \(w i t h\) the obtained estimates the subcompliance with the obtained estimates the sub-
jeot suprasegmental factors can be ordered according to their increasing shortening effect as
follows: \(N\), S and P . Such an order corresponds follows: N, S and P . Such an orter oorrespond
to the data presented in other publications. to the data presented in other publications.
With the received estimates, the STS mode for syntagma stressed vowels looks like this:
\(T_{S, P, N}\left(V^{\prime}\right)=\left(T_{c}-T_{\text {min }}\right) \cdot 0,8 s^{S-1} \cdot 0,20 \cdot 0^{p} \cdot 0,90^{N}+T_{\text {min }}\)

In formula 2 one can find the incompressililty effeot deteoted empirically - vowel reoffeot is increased.
Identity of formula 2 mas verified corpus of 505 syntagnas / /he same speaker performed the reading/. As a deviation value of moasured and caloulated durations the following
 value ras defined on different generalization levels of durations a level of average values of



 66 aseo, III- a level of \(V\) specific realizati-
ons: the values \(T_{e}\) and \(T\) min are the same as
 case in. Sample sean
tion and \({ }^{55 \%}\) conflidene interral for the sample
rean ( \(\pm 2\) ) were calculated for each generallza-
 \begin{tabular}{l} 
tion \\
sults. \\
\hline
\end{tabular}
Table 3. Statistical characteristics of \(\mid T_{\text {med }}-\) Tcalel for different \(\underset{\text { emplitical data }}{\text { generalization levels of }}\)
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{STATISTICAL Characteristics} & \multicolumn{3}{|l|}{generalization leyels} \\
\hline & I & II & III \\
\hline TiE SAMPLE MEAN & 5,6 & 7,4 & 15,8 \\
\hline mear-squabe deviation 5 /aseo/ & 7,2 & 7,2 & 13, I \\
\hline \[
\pm 2 \frac{5}{\sqrt{n}}
\] & 2,2 & 1,4 & 0,8 \\
\hline \[
\begin{aligned}
& \text { n - NUMBEA } \\
& \text { Of THE ITEMS }
\end{aligned}
\] & 4 I & 96 & I03I \\
\hline
\end{tabular} Aooounting that the accuracy of duration
measurevent didn't exceed 5 msec the agreement
between the oalculated and empirical data can be between the oalculated and empirical data can be considered as good. Cases of essential deviati-
ons demand a close analysis: they give evidence of additional factors the effects of which are not taken into consideration in the proposed no-
 nent of a pronunciational baokground stipulated
by speech rhythmical organization. It is obvious by speech rhythimical organization. It is obvions
that a concrete realization of the scheme tn
and coherent text depends on various contextual conditions. Formula 2 /when used to calculate vonel
temporai scales/ shows variation of absolute values of a stressed vowel duration in syntagas that conform to the STS but at the same tile
have different verbal filling it is also iaporhave different verbal filling. It is also iapor-
tant to detect cases of STS disagreement and to tant to detect cases of STS disagreement and to
reveal their sources. It is worth remembering
that violation of general rhythm-forwing tenden-
oles is the most relevant informative and desortptive mean in coherent text. Thus the task of deteoting the syntagmas corresponding to the STS
and those having deviations from it arises: those having deviations from it arises.
In this research the same material served as the basis for the STS numerical model
construction was used for the elaboration of the construction was used for the elaboration of the given task. Analysis-by-synthesis prooedure was tagua chosen arbitraly from the text corresponds to the STS. The latter was considered to be realized in the syntagma if its stressed vowels had
the durations compatible with the values calcuthe durations compatibe Thus empirical data were interpreted taking into acoount speoifico phonetio
conditions/vowel quality, word rhythaical type conditions /vowel quality, word rhythinioal type
syntagma length/ under which STS is realized. It there was incoupatibility of calculated and em pirical durations in the syntagma we conside
red that there was an STS violation in it.
The most difficult problem which arose in the process of implementation of above-mentioned procedure is the definition of oritical value
suffiotent to acknowledge essential divergenoe suffiolent to acknowledge esuential divergenoe ficulty of the problem 1 les in the fact that ve ry little is yet known about how a listener per ceives, estimates and interprets duration diffe-
rences. We decided to consideca divergence un-
 ceed 20\%. It is worth notiotickthat despite some diver the critical value of just-noticeable dir ference for the peroeived change in vowel dura ference is about \(15 \%-20 \% / 9 /\).
Before presenting the results of the expe-
rimental research conducted it is worth shoving rimental research conducted it is worth showing
theoretically possible types of deviations from the STS. Since the STS presupposes the realiza tion of the stressed vowel in the syntagman non-
final and final words in short and mid length final and final words in short and mid length
accordingly, it is easy to see that at the leve of stressed vowels the following deviations from the standard areq possible:
A - absence of \(V\) reduction in the syntagma non-
final word /i.e. realization of the ald or long
category/, reduction in the syntagma final word /i.e, realization of the short category/,
c-vin lengthening in the syntagma final word /i.e. realization of the long category/. Table 5 displays statistical data \(/ \% /\) on
STS realization obtained on the basis of our reSTS realization

Let's look at the seotion I first. We can Let s look at the seotion I first. He can
see that when the main stressed word is in final position the sTS 18 realized without any deviations in approximately half of the cases. Within
the set of syntagmas with STS violations those vith one deviation prevail, symtagmas with more than one deviation constitute only IIF of the overall set. It follows that in syntagmas of
this type the observed deviations are local modifications of the standard and are not the result of its modification as a whole. The same
n seotion II.
able 5. STS realization in coherent text syntagmas with main stressed word in final
position \(/ 438\) unite \(/\) II - syntagmas with main tressed word in non-final position \(/ 67\) units \(/\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline NUMBER
0 & & \[
\underset{\mathbf{I P E S}}{\text { IT }}
\] & of der & tation & \[
\underset{2}{\text { is }}
\] & \[
\mathrm{TOM} \mathrm{TH}
\] & E STS \\
\hline 0 & A & B & c & A,A & A, B & & A, C \\
\hline 45,9 & 9,6 & 19,4 & 14,8 & 0,9 & 6,6 & 2,3 & 0,5 \\
\hline
\end{tabular}
\begin{tabular}{lllllllll}
\(1 I\) & 28,4 & \(\mathbf{1 9 , 4}\) & \(\mathbf{1 9 , 4}\) & 3,0 & 3,0 & \(\mathbf{I 4 , 9}\) & 9,0 & 3,0
\end{tabular}

On the basis of literary data and the results of our research the following souroes and
positions of probable STS disagreements can be distinguished:
I. Absolute prepausal \(\mathbf{v}\) position/for final word ssed position/.
. Heakening, or strengthening of a word promience level/for word in any position/.
4. Syntagma position in regard to utteranoe ex-
ternal and internal boundaries /for word in fi-的 position and position of main stress/.
hefrrences
\begin{tabular}{|c|}
\hline /I/ Агафонова Л.С., Вондарко \\
\hline 0 некоторых характеристиках русской речи \\
\hline в зависимости от разных темпов произн \\
\hline ния. - В кн. С Слух и речь в норме и \\
\hline логии. Л., \\
\hline ского язнка. Ј. 1982. \\
\hline /3/ पистович Ј. А. и пр. Речь. Артию \\
\hline V \\
\hline 74/ Вондарко Л.В. Фонетическо \\
\hline  \\
\hline
\end{tabular}
1981.
/5/ Klatt D.H. Interaction between two factors
that influence vowel duration. JASA, 1983 , v. 54, that influence
p. IIO2-II04.
16/ Чистович Л. А. и др. Восприятие речи /7/ Fujisaki H ., Nakamura к., Imoto T. Auditory perception of duration of speech and non-speech
stimuli. Ann. Bull. of lies. Inst. of LPhUT, I973, /8/ Nooteboon S.G. Contextual variation and percoption of phonemic vowel length. - Preprints of the Sp. Com. Sem., Stokholm, 1974, 3, P. 149-3.
/9/ Klatt D .H. Linguistic uses of segmental duration in English:acoustic and perceptual evidenoe. JLSA, 1976, v. 59, p. I208-2I. onal patterns of Swedish phonology: do they reonal patierns of Swedish phonology: do they re-
fleet short-tern memory processes? Indiana Univ.
Ling. Club, I98I.
\[
\begin{aligned}
& \text { LAuveNT SAAvirepE } \\
& \text { Departenent de Linguistique } \\
& \text { Universite de Montral }
\end{aligned}
\]
C.P. 6128, Montreal, H3C 3J7. Canada

RESUME
Le français quebeecois comporte des voyelles phonologiquenent longus ou brives, de tele que des consonnes phonetiqueenent longues ou breves, dont certaines sont abregentes et d'autres allongentes. Les rines syllabiques qui en resulltent presentent des confiqurations systentiques de durees qui tiennent a la nature des noyaux et des codis. Cett systenatique peut etre exploitté pour la synthese et la reconnaissance autonatique de la parole naturelle.

\section*{introduction}

Le frangais quebecois a conserve I'ancien systéne phonologique de 17 voyelles, dont huit conportent netessairesent, en plus de la distinction du tisibre, le trait de durfe en syllabe entravée. Ces voyelles longues sont le \(/ 3 /\) de stete oppose au /E/ bret de faite, le /a/ de efte oppose au /a/ bref de gatte, le co/ de cote oppose au /o/ bref de cote, le /eu/de jedne oppose au /oe/bref de jeune, et les quatre nasales /en/ de teinte, /an/ de fente, /on/ de fonte et /un/ de defunte.
Dans le but de programer la synthese par regles du frangais du fubebec de nivesu international, on a entrepris d'etudier la prosodie tress al connue de ce dialecte, et en particulier la systéatitique des durées sequentales en fonction des positions accentuelles. Les resultats que nous presentons ici portent sur un corpus de 215 sots prononoces isoleeent puis repris en fin de syntagge sujet; ex. "eater'; 'le oot pate ne plaft'. Ce corpus a ette enregistre plus d'une fois, toujours dans les Aées conditions et a debit constant par la aée persome, la production \(J^{\prime}\) 'u ou deux autres locuteurs quebeccis ne servant que de controle. Les resultats prisentess ici font donc ressortir la systenatioue des durfes chez ce seul locuteur; car si une telle systenatique existe, elle doit
s'exercer et apparaftre plus nettenent que si on 1 'extrait des noyemes de plusieurs locuteurs. L'ordinateur \(n\) 'a pas a parler come une moyenne, et il n'aura jasis a reconnatre la parole d'une noyeme da Jocuterrs. La systenatique de chaque locuteur respecte celle de son dialecte asis reste personnelle. Dans ce preaier teaps, c'est cette systenati ique des dureses que nous avons voulu dégaqer.
Hous n'avons retenu pour I'instant que les ries syllabiques corportant les consonnes dites obstruantes, al'exclusion des sonantes; il \(\mathrm{s}^{\prime}\) apit donc des 7 voyelles breves et des 8 voyelies longues entraves par in consonnes, soit les 3 occlusives sourdes, les sonores correspondantes, les 3 constrictives sourdes et les sonores correspondantes. Nous n'avons pas encore tenu coapte de la legere influence de la consonne initiale de syllabe, ni des durées specifiques des voyelles qui sont bien connues (0i Christo 1980). Ces durees fines seront prises en conpte at pount de la forculation des regles de base de chaque phonéee.

Groupes de voyelles et de consonnes
'exaten des durees vocali ques nous perset d'etablir des groupes hoongegnes de voyelles selon leurs copportenents sous l'entrave abregeante ou allongente; ce sont les voyelles hautes \(i, y\), \(u\); les quatre treves \(\varepsilon, a, 0\), oe; les quatres longues correspondantes \(3, A, 0\), eu; les quatre nasales. Les deux voyelles restantes,/e/ et le schua, ne serencontrent pas en syllabe entravé.

Les consonnes se divisent nettenent en fortes ou longues, et en faibles ou breves, selon qu'elles sont sourdes ou sonores, Les consomes songues par nature sont \(\mathrm{P} T \mathrm{~K}\) et surtout f S C (couse dans chat); on vers par les tableaux qui suivent que seules les occlusions sourdes sont ab-
regeantes. Les consonnes breves par nature sont les occiusives sonores
et les constrictives sonores, ces dernieres seules ttant allongeantes. Les abregeenents et les allongenents sont tress pronoonces sur les sept voyelles breves par nature, et beaucoup noins sensibles, bien qui reeis, sur Ies huit voyelles longues par nature.

Oans les tableaux qui suivent, on trouve dans 1 'ordre la durée de 1 a voyelle, celle de la consonne, la durfe de la riase et l'ecart des pourcentages de duree occupee par les deux segnents. Cet ecart est uarquie positif si le noyau vocali que donine, et negatif si la coda I'enporte en durfe. Ex. i y u + PTK: la voyelle occupe 30.22 d'une rive de 26.6 cs, la consonne 69.84; 1 'etart negatif est de -39.6 .

Le tableau I presente les resultats sous I'accent en finale abso lue, le tableau 2, sous l'accent en fin de syntague interi ieur.

\section*{fablegu}
v. C. R. E.
1. iyu + PTK 8. \(\begin{array}{lllll}18.56 & 26.6 & -39.6\end{array}\)
\(\begin{array}{llllll}\text { Eadoe } & - & 10 . & 17 . & 27 . & -26 .\end{array}\)
2. iyu + odg \(11.1 \quad 11.95 \quad 23 . \quad-3.6\)
\(\begin{array}{lllllll}\text { Eaooe } & \text { - } & 13.88 & 11.84 & 25.72 & +8 .\end{array}\)
3. iyu +isc \(\begin{array}{llllll} & 11.64 & 23.12 & 34.76 & -33 .\end{array}\)

Eaoor -
\(\begin{array}{lllll}12.21 & 21.35 & 33.56 & -28 .\end{array}\)
hiyu + vzj
\[
\begin{array}{llll}
24.16 & 9.3 & 33.46 & +44.4
\end{array}
\]
Eaode
\(\begin{array}{llll}19.84 & 10.6 & 30.44 & +30 .\end{array}\)
\[
0.00 . \quad-\quad 77.04 \quad 10.83-36.17+\%
\]
\[
\begin{array}{llllll}
\text { an en on un - } & 20.61 & 13.12 & 33.73 & +22 .
\end{array}
\]
\[
\text { b. } 340 \mathrm{eutbdg} \quad 20.58 \quad 9.87 \quad 30.45 \quad+35 .
\]
\[
\begin{array}{llllll}
\text { an en on un } & - & 23.18 & 8.95 & 31.29 & +39.5
\end{array}
\]
\[
\text { 7. } 3 \mathrm{ABO}+\mathrm{f} 5 \mathrm{C} \quad 21.72 \quad 18.7 \quad 40.42+7.4
\]
\[
\begin{array}{lllll}
\text { an en on un } & - & 24.47 & 17.62 & 42 . \\
& +16 .
\end{array}
\]
\[
\text { 8. } 3 \mathrm{ADOev}+\mathrm{v} 2 \mathrm{~J} \quad 24.31 \quad 10.85 \quad 35.16 \quad+38 .
\]
\[
\begin{array}{lllll}
\text { an en on un } & - & 28.75 & 9.83 & 35.58 \\
\hline
\end{array}
\]
Moyenenes de durées sous l'accent en finale absolue

\section*{Tableau 2.}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{3}{*}{1.} & & \(v\). & c. & R. & E. \\
\hline & iyu + pik & 5.26 & 13.28 & 18.54 & -43.4 \\
\hline & Eado & 8.18 & 14. & 22.18 & -26.4 \\
\hline \multirow[t]{2}{*}{2.} & iyu + bdg & 7.25 & 6.25 & 13.75 & +5.4 \\
\hline & Eatoo & 10.53 & 7.58 & 18.11 & +16. \\
\hline \multirow[t]{2}{*}{3.} & iyu + fsc & 7.18 & 13.26 & 20.45 & -29.6 \\
\hline & EaOde & 9.0 & 12.32 & 21.32 & -15.4 \\
\hline \multirow[t]{2}{*}{4.} & iyu + vaj & 14.65 & 7.94 & 22.59 & +29.7 \\
\hline & Eacoe & 13.32 & 8.26 & 21.58 & +24. \\
\hline \multirow[t]{2}{*}{5.} & 3AOeutptik & 13.85 & 11.73 & 25.58 & +8. \\
\hline & an en on un - & 15.57 & \({ }^{11.38}\) & 26.26 & +15.5 \\
\hline \multirow[t]{2}{*}{6.} & 3AOeutbdg & 15.48 & 2.35 & 22.83 & +36. \\
\hline & an en on un - & 16.87 & 8.15 & 25.0 & +35 \\
\hline \multirow[t]{2}{*}{7.} &  & 15.37 & 11.3 & 26.67 & +15.3 \\
\hline & an en on un & 17.96 & 13.87 & 31.85 & +13. \\
\hline \multirow[t]{2}{*}{8.} & 3A0en + vzj & 17.19 & 7.9 & 25.09 & +37. \\
\hline & an en on un & 19.41 & 8.7 & 28.11 & +38. \\
\hline
\end{tabular}

\section*{Ouregs des groupes vocalioues sous 1'accent terainal,}

Les brives par nature (non allongeses par v 2 J (come dans dean) ont des durfes qui se situent entre 8 et 14 cs, avec une aoyenne a 11.64 et un signa de 2. Par conparaison dans le groupe on peut considerer que \(P\) T \(K\) les abregent un peu (8 et 10 c5) que b \(\delta \mathrm{g}\) g les alliongent un peu ( 11.1 et 13.88 c5), tandis que f sC les laissent inchangés ( 11.64 et 12.21 cs).

Les voyelles orales longues par nature affichent des durees aoyennes de 21.48 cs entre 19 et 25 cs et un sigqa de 2.1. Elles sont un peu abregees par PIK (19.34), tres peu par bo g (20.58); suivies de f f C , elles restent pres de la noyenne (21.72), et devant videlles s'allongent a 24.31 cs. Les voyelles breves par nature allonges par v \(2 J\) sont presque aussi longues que les longues par nature, elles-nenes alJonges: \(\mathbf{1 2 4 . 1 6}\) pour les voyelles hautes, et 19.34 pour les autres bre ves). On peut reararquer que ces dernieres se déarquent des longues par
 loge et 1'aces.
Enfin, Les nassales sont plus longues que toutes les autres voyelles dans les nepes conditions. Leur noyemene se situr a 24.25 cs entre 20 et 29, avec un signa de 3.4. Elles sont un pee abregges par b d g (23.18), haisses inchanges pres de la ooyene par is \(\mathrm{C}(24.47)\) et allonges far va J (29.75).
Durdes des qroupes vocaligues sous I'acent intersyntagatioue Sous I'effet de la desaccentuation qu'entrafne le deplacenent de la syllabe accentuee sur la fin du sujet, les durfes subissent des diainutions systenati ques. Les voyelles brives ont une moyeme de 7.9 es (contre 11.64 sous 1 'accent terainall) située entre 5 et 11 cs lavec un sigaa de 1.81. Les voyelles crales longues par nature voient leur rovemere reduite 1 is cs contre 22.48 ) entre des durfes extrenes de 13 et 17.5 cs avec un sigat de 1.37 . Les nasales se situent en ayemene a 17.5 cs (contre 24.25 en finale absolue) entre 15 et 19.5 cs avec un signa de 1.5. Le tableau 3 rappelle ces coaparaisons et montre les pourcentages de redaction due ala position accentuelle.

\section*{Tiblea 3}
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{Accent tersinal} & \multicolumn{2}{|l|}{Accent interieur} \\
\hline & " & \(s\) & " & s \\
\hline Breves & 11.3 & 2 & 7.9 & 1.8 \\
\hline Longues & 21.49 & 2.1 & 15. & 1.31 \\
\hline Nassiles & 24.25 & 3.4 & 17.5 & 1.5 \\
\hline
\end{tabular}

On peut vair que l'effet de la defaccentuation sur la durfe a ete sensibleenent le eete pour les trois groupes de voyelles.

\section*{Oures des croupes de consonnes sous l'acent terainal}

Ce qui est a sontrer ici, c 'est que certains groupes de consomes reglent lear durfe a l'interiseur de la rive sur ha dorse vocaligue; ainsi, en reprenant les donness du tableau 1 , on voit que les durées des \(\mathrm{P} T \mathrm{~K}\) diainuent d iesure que les voyelles entrives s'allongent:

\section*{Tableau}
\(\checkmark\) C R E
\(\begin{array}{llllll}\text { iyu }+ \text { PTK } & 8.03 & 18.56 & 26.6 & -40\end{array}\)
EaOD - 10. 17. \(27 . \quad-26\)
\(\begin{array}{lllllll}3 \mathrm{AO} \text { eu } & - & 19.34 & 16.83 & 36.17 & +7\end{array}\)
\(\begin{array}{llllll}\text { On on un. - } & 20.61 & 13.12 & 33.73 & +22\end{array}\)
Durfe des groupes consonantitiques

Ce phenoodene est plus prononce encore apres les nassiles ot les consennes ne font plus que 13.12 parce que les voyelies tres longues par niture isposent leur preponderance dans la ries. Tout se passe dans liorganisation des dures relatives cone si, tout en respectant les arieences de durte longue ou breve des voyelles at aussi celles des corsonnes longues (sourdes) ou breves (sonores) par nature, la durfe de la rine constituait un cadre quantitatif lieitatif. Avec les voyelles breves par exeple, la rive se situe autour de 27 cs et ce sont les ourtes des segenents qui composent entre eux pour respecter cet ordre de grardeur; c'est ce qui fait varier 1'fart des pourcentages de durfes relatives.
Aves les deux groupes de voyelles longues par nature, la riae est meteeent plus longue (33-3b cs), ais cet orde de grandeur est relative nent respecte. Voyons s'il en est de eete avec les autres consomes. Neec les bog, breves par nature, la dure de la rise a noyau yoar. Lique bref est de \(23-25.72\) cs lvoir tableau 11, tandis qu'elle est de 31 cs environ quand le noyau vocali que est une longue par nature, ha duree des consonnes diaininue quand celles des voyelles aggenentent. Avec les longues par nature : \(; C\), encore plus longues que les \(P T X_{1}\) Les riess sont de l'ordre de 34 cs quand le noyau est bref, et de toll2 © quand il est long. On observe le atie jeu de coupensation vopellitconsonne: la durée consonantique varie en sens inverse par rapport 1 Ih durfe vocalique. Enfin les consomenes allongeantes et breves par nturt \(\checkmark 2 J\) obeis sent au netee necanisse; nais cette fois le noyau wotiliowt ast toujours long, de sorte que la rine n'a qu'un orde de granderr " 30 138.5 cs. Mais on ne voit pas les consonnes breves descentre sos
le seuil des 9 cs, nete quand les voyelles s'allongent considerablement cone les nasales. Il en resulte des scarts positifs (en faveur du noyau vocalique) trés ararués dans ce groupe de rians (44 et 49).
on peut repartir les rimes syllabiques du point de wue des Ecarts en deut groupes, negatif et positif, qui presentent une interface. Les riess conprises dans cette interface pelvent Etre netteent separes par les constituants ou par la durfe de la rine elle-nete.
On peut entrevoir, stene par cet exeaple tiaité, qu'un prograse d'intelligence artificielle appliqué a la systenatique des durees a 1 'interieur de la rine syllabique sous cet accent peut grandetent contribuer a la reconnaissance autonatique des segents. L'espace anaque pour faire te nete exaaten sur les donnés pour I'accent interieur; on peut le farre au noyen du tableau 2. Nous nous contenterons de voir l'effet glabal de la dessacentuation sur la durfe des consonnes.

\section*{tableau 5}

Vovelles breves Vovelles lonques.
acc.final acc.inter \(\underline{\underline{1}}\) acc.final acc.inter \(\underline{\underline{z}}\)
\(\begin{array}{lllllll}\text { PTK } & 17.78 & 13.64 & 76.7 & 1.5 & 11.55 & 71 .\end{array}\)
\(\begin{array}{llllllll}\text { bog } & 11.89 & 7 . & 58.8 & 9.41 & 7.75 & 82.3\end{array}\)
\(\begin{array}{llllllll}\text { f: C. } & 22.23 & 12.79 & 57.5 & 18.16 & 12.58 & 69.3\end{array}\)
\(\begin{array}{llllllll}\mathrm{V} 2 \mathrm{~J} & 10 . & 8.1 & 81 . & 10.34 & 8.3 & 80\end{array}\)
Reduction des consonnes par desaccentuation
on peut voir que Jes abregeantes et les allongeantes se reduisent respectivenent a \(n\) et \(80 \%\) environ, et cela aussi bien apress les voyelles breves qu'apres les voyelles longues par nature. Pour les constrictives, cela peut se couprendre, puisque les breves sont presque aussi longues que les autres sous leur entrave. D'ailleurs elles sont defid asser brîves et de sauraient se reduire beaucoup plus. Les 3 ocCusives abregeantes doivent garder leur trait de longueur et leur effet abregeant avec toutes les categories de voyelles.
ess considedrations pourraient sans doute servir a êtablir des règles de auré tres rêalistes pour la synthese de la parole, asis paraissent Nus difficiles a exploiter pour ta reconnais sance que sous l'accent terainal

Enfin, on peut rearaquer que les differences de durée entre les deux groupes d'occlusives et entre les deux groupes de constrictives est un royen plus sar de distinguer les cognates que le trait dit de sonorite. Les occlusives different par 352 de duree sous l'accent tervinal et par 321 sous l'accent interieur; les constrictives sonores sont deux fois plus courtes que leurs cognates sous I'actent terainal, et plus courtes de 35\% sous 1'accent interieur.
Constusion
Cette etude sur les durees fait partie d'une recherche plus vaste sur la prosodie du frangais quebebcis, en vue de la synthése et de la reconnaissance autonatiques. Les durees relatives dans les rines syllabigues repondent \(\mathbf{d}\) une systeatique bien definie qui repose, dans ce didlecte, sur un systeme de voyelles breves et de voyelles longues par nature, et sur des consonnes qui les doregent toutes et \(d\) 'autres consonnes qui les allongent toutes, i.e. les occlusives sourdes et les constrictives sonores. Les sourdes sont elles-utetes longues par rapoort aux Sonores. Les occlusives sonores et les constrictives sourdes n'ont que Tres peu d'influence sur la duree des voyelles qu'elles entravent. Par contre, dans toutes les rises longues ou brèves, il s'exerce un jeu de predooninance systenatique de ta durce vocalique ou consonantigue, selon la nature des segqents en présence. Cette systéaatioue rend pos sible l'utilisation de l'intelligence artificielle dans la prograna tion de la synthese et de la reconnaissance de la parole naturelle.

\section*{Bibliggapale}

Di Christo,A. (1980); "La duree intrinseque des voyelles du frangais". Travaux de I'Institut de Phonetique, fix, vol. 7, p. 211-235. -Jacques, ह. (1973), 'Variations de duré des voyelles et des consonnes frivatives post-vocaliques finales en position accentuse et inaccentuee', Manuserit, Universite du Qubbec, Canda.
-0 'Shasghnessy, D. (1981), "A Study of French (Canadian) Yowell and consonnant Durstivity", Journal of Phonetics, p. \(389-406\).
-Santerre, L. (1974), DPeux E et deux A phonologiques en fransais quebecois". Le frangais de la region de Montreal', les Cahiers de linguistique, no. 4, Presses de 1 'Universite du Qubber, Canada, p.117-4 45.

ABSTRACT
The interaction of prosodic systems in a bilingual's speech reveals itsel in minimal prosodic units (tonemes,
accentemes, chronemes, rhythmemes) and accentemes, chronemes, rhythwes
in thetr structural complexes, or "pho-
nological syntagms
(tonal contours, nological syntagmsin (tonal contours, accentual, temporal and rhythmic struc-
tures). As the actual relations between the units of the languages in contact are set by a bilingual speaker accor-
ding to the laws of interlanguage idending to the laws of interlanguage iden-
tipication, the character of these retification, the character of these reon the paradigmatic plane (underdifferentiation, overdifferentiation, substi ( (intercatenation, plus-segmentation, (1atercatenation, plus-segmenta

\section*{mitroduction}

Prosodic interference is defined as changes in the realization of the prosodic system of the non-native, second language (L2) that emerge under the influence of the native language ( LI ), and manifest
themselves in a bilingual speech as deviations from the norm of \(\mathrm{L}_{2}\). Topicelity of problems of prosodic interference for language the ory and applifed
inguistics has widened the range of axperimental phonetic investigations in spite of the lack of knowledge on prosody as linguistic phenomenon and despite the
difficulties of contrastive prosodic analysis aimed at revealing areas of poteninl interference in a iningual's speech Investigations are carried out predomi-
nantly on the level of the utterance (intonation group) in terms of perceptual and acoustic features, pertaining to the
prosodic structure of an utterance as prosodic structure of an utterance as a
whole and to its separate elements - prehead, head, nucleus and tail. The fetures of prosodic interference
(deviations, errors) are analysed os to
heir frequency, stability, communicativ elevance as well as to their occurrence a different type
The typology of prosodic interference
The typology of prosod of actual rela tions between the elements of the two lan guages as they are set by a bilingual anguage identification has not as yet een touched upon. The solution of this significent linguistic problem requires prosodic units of the languages in contact. But what units does the prosodic ystem comprise? The question, as we knon,
a point of discord between linguists is a point of discord between inguists and an attempt is made here to give our
interpretation of the units of a prosodic ystem.
TYPES OF PROSODIC UNITS
In view of the polycomponental and polyunctional nature of prosody it seems losical to sdmit objective existence of
ssentially heterogenious prosodic unita, orming relatively autonomous but inter-onnected and interpenetrating subsystems temporal, accentual, rhythmical and
onal. Each of the subsystems contains units of two types -microprosodemes (minimal prosodic units) and macroprosoemes (structural complexes of microprosodemes, "phonological syntagms"). The irst type includes syllablechronemes, nal types of syllable duration, accents, rhythmic units, tones). The second type is represented by temporal, accentual, rhythmic and tonal structures which funcsyntagmatic (phonotactic) organization of microprosodemes.
ach structural complex is at the same time a paradigmatic unit when opposed to
other structural complexes of the subsystem.
The units of both types are phonological The units of both types are phonologica
units, if phonology is viewed in the units, if phonology is viewed in the
broad senge including (i) segmental and
suprosegmental
units and "phonological syntagms",(ili) units those that have no such function in the language but fulfil the constitutive (in tegrative and identificatory functions. In the functioning of prosody as one toneme, accenteme and chroneme as systemic elements provides their close interpolycomponental units - micro- and macro prosodemes of an utterance.
Ontologically, prosodemes as invariants prosodemes) as the general in the (allo cular. And since the prosodeme, unlike the phoneme, is a sign, the invariability aspects - form and content. The invarits of the prosodemic form is its material essence its constant phonetic features generalized denotational meaning is a the rising toneme has a rising direction of pitch movement as its invariable formal feature and its denotational (logi-
cal-modal, or intellective) meaning of indefiniteness, non-finality,incompleteness is its semantic invariant, which in
its turn is conveyed, irrespective of the its turn is conveyed, irrespective of the
context, by all the functional and structural variants of the toneme and is realized as categorial meaning of the communicative type of an utterance.
marked by configurational and its form are varieties of its allotonemes ( tone types); whereas its variants os to the
content are distinguished by subjective model (emotive, attitudinal) connotations realized as different situational (or stylistic)
utterance.
The number of prosodemic variants is conditioned by the system which regulates their (i) positional, combinatory and ponental macroprosodeme (phonological syntagm), the variants being closely in terconnected with the phonemic structure unctional distribution, determined by the polysemantic nature of prosodemes the one hand, and by their interaction subsystems of the language, on the other. The system specifies the areas of realiation of prosodemes and limits their variation. On the whole the prosodic sysnorms of iny other system, functioning.
In spite of the fact that prosody is to great extent universal in its categoin the number and character of their prosodemes, in the frequency and sphere of number, distribution and acoustic-percep-
thal peculiarities of their variants. Al that provides the basis for interference, i.e. variations in the form and character conform to the norms of the second language In the study of Byelorussian-English, Russia contrastive experimental analyses of pro sodic norms of the languages in contact that preceded error analysis made it units of the tonal, accentual, temporal and rhythmic subsystems of the languages and as a result to approsch the descripsystemic units. An attempt was made to determine types of prosodic interference on the basis of peculiarities of the inparadigmatic and syntagmatic realtions paradigmatic and syntagmatic
between prosodic units \(/ 1 /\).
TYPES OF PROSODIC INTERFERENCE
The interaction of prosodic systems in a bilingual's speech takes place on the the level of phonological syntagms. In the latter cases the interference of the hative language system in the syntagmatic in the structures is more expressed with in the structures is more expressed than ture os a whole \(/ 1,2 /\).
Types of paradigmatic interference, as is nces in the number and character of pro sodic units, by their semantic-and-funconsideration the laguages under Che unequal nu wo languages ifferentiation or overdifferentiation ome the them by a bilingual speaker Thus the English speech of Russians there occurs underdifferentiation of English rising and falling-rising tonemes, the Russian language. But in the Russian the peech of Enclishmen there often appears verdifferentiation of the Russian riof its levei-rising / allotoneme is dentified by Englishmen as the falling sing toneme. It should be noted, howor the majority of prosodic units the above-mentioned types of paradigmatic inerference are not frequent. nterference is substitution paradigmatic sult of language distinctions. It is a reacter of prosodemes and the sphere of ions in the frequency of occurrence of the alloprosodemes that represent them.
speech of Byelorussians and Russians illustrate substitution in all the subsys-
tems of prosody: 1) the use of the rising tems of prosody: 1) the use of the rising stead of the falling toneme and vice-verof the rising one in requests, apologies, contradictions; 2) the substitution of the English rising toneme for the corresponding Russian toneme in particular, the which is more Prequent in Russian instead of the more frequent English level-rising allotioneme russian rising toneme (its level-rising allotoneme in particular) instead of the English questions; 4) the use of strong accen greater number of strong (full) accents In Russian and Byelorussian utterances as there is a greater number of notion worso-
in them and some classes of worde (perso in them and possessive pronouns, modal verbs etc.) attract accent more often than in
Engish and the role of the semantic and English and the role of the semantic an grammaticar, whereas in English the rhythmic factor is the main regulator of accents; 5) substitution of accentual and tempocontour substitution; 6) substitutions of
the accentemes (nuclear and non-nuclear) the accentemes (nuclear and non-nuclear)
of \(\mathrm{l}_{2}\) for the corresponding accentemes of \(L_{1}\), substitution of syllable chronemes, the use of configurational and pitch-l vel allotonemes of \(L_{1}\) instead of the
functionally similar allotonemes of \(L_{2}\) Underdifferentiation and overdipferen-tiation, es well as substitution of func-
tionally different prosodic units (point tionally different prosodic units (point
\(1-5\) ) belong to communicatively relevant semantic interference, i.e. display both ormal and semantic-functiona non-stand ard variation of prosodemes and allopro-
sodemes. Within communicatively relevant rosodic interference two subtypes are istingui
Substitution of units, which are functionally identicel but qualitatively different (point 6) belongs to communicatiely irrelevant interference; such subtandard variation only.
The above-mentioned types of interference re deviations from the norms of prosodic nat choice which occur when the communivarious speech situations.
various speech situations
Syntagmatic interference is represented Syntagmatic interference is represented icroprosodemes within structural complex es (macroprosodemes), on the one hand, an
by the inadequate realization of microby the nadequate realization of microInatory variants, on the other.
One type of syntagmatic interferen

Intercatenation of microprosodemes of \(I_{2}\) according to the structursl pattern of \(\mathrm{L}_{1}\) resulting not exist in \(\mathrm{I}_{2}\), e.g. inadequate combination of the silding (or hete. quate cous) head with the high rising to eme in the contour of English general speakers of English.
Another type is minus-segmentation, or elision of elements ha the structure, e.g. ish utterances of Byelorussian-English ilinguals due to an increased number of ccents or stion, or increase of elements in the structure as, for instance, in cases when the prehead and tail appear in he structure of an utterance is due to ypes are deviations from the structural yorms of the functioning system and belong o eviations from the norms of realization of I2 units. The latter are conditioned reas of the units
Thus realization of syllablechronemes of 2 which are functionally identical to \(L_{1}\) chronemes differ in utterances of Byelo-russian-Russian (B-R) and Byelorussiancented syllables and the 1 st fully accenod syllable in B-E and R-E are longer SE), the tempo of pronunciation being SE, tical. The 2nd accented syllable and he unaccented syllables of the head are -E, whereas the nuclear and post-nuclear yllables are drawled in comparison with the temporal standard of Russian (SR) and quate realizations of temporal structures of \(\mathrm{L}_{2}\).
Distortions in the norms of realization are well marked in R-E and B-E utterances
of identical tonal contour. \(F_{0}\) intervals otween the elements of the contour are not as erident as in SE. Prehead and head
its 1st accented syilable) have lower \(P_{0}\) its 1 st accented ayllable) have lower
evel in \(R-E\) and \(B-E\) than in SE. \(F_{0}\) inevel 10 R-E and B-E than in SE. Fo in
erval of the gradually descending head is wider in R-E and B-E due to the lowerInterference in the realization of English ralling toneme is marked in B-E by the ower initisi Fo level and higher final Polevel than In SE. Realizations of leerised by their higher initial and lower inal \(F_{0}\) levela and, consequently, by arrower \(\mathrm{F}_{\mathrm{o}}\) interval than in SE . temes In \(B-E\) and \(R-E / 2,3 /\) syllable prominence is achieved by different combing-
ic contrasts of unaccented and accented and especially In B-E realizations as
compared to ES. The distortions of the compared to es. The distortions of the tion of phonetic features of prosodic units are termed permutational interf rious types of natural and "ence in ilingualism /5/ reveals typologically common features of interference, which turally similar languages and specific features, characteristic of the speakers of only one language.
are as follows: (i) a higher fin features vel of the faliling toneme in the Engilish and German speech of Russians and ByeloFussians and, consequently, a lower pina spoken by Englishmen and Germans; (1i) a lower Fo level of the tonal contour of Engish and German utterances in R-E, B-E R1zations; (111) drawled initial syilables (accented and unaccented) in B-E and B-G realizations.
pecific features of interference in pargreater types of bilingualism are (1) unaccented syllables in R-E as compared to B-E; (ii) the absence of reduction in unaccented syllables in B-E; (ili) rhyth In the cases of reverse language domination in the same types of bilingualism tiln.
there
There should also be mentioned universal deviations such as slowing down of the tempo of utterance, increase in the numwhich can be observed at the early

CONGLUSION
Description of prosodic interference as a linguistic phenomenon in terms of systemic units of prosody extends our gener16/ knowledge of phonological interference so-cand makes it possible to model th stages of bilingualism which is important for the theory of language contacts and for practical app
sanguage.

References
/I/ Метлюк А.А. Взадмодействие просоди-
ческих систем в речи оилигва.-Мйнск
/2/ Меглюк А.А., Карневская Е.Е. Некоторые В кн. : Экспериментальная форе рениии.
 пределение степени просодической днтер-
 воскиицаний в условиях инте аферийснии.耳ис . . канд. Филол.наук, - Минек, І978. ческой интерференции при искусственном оелорусско-анлийском двуязнчии. - В кн.: экпериментально-фонетических рисультатов речевого текста. Тездсн донладов республи5) Меплюк А.А., Евчик Н.С., Карневская Е.Б др. просодическая интерференция в иноавенкова л. ., Пе труиенко Е.T. O немецюоровде -- в кн.: Лингвистическая интерпре ческих исследований речевого текста. Тезисы докладов респуоликанского симпозиума. иннск, 1977 . Блохина Л. П. Интонашионний 0 и русского лзиков). - В кнал : Актуальные 6/ Weinreich \(U\). Langueges in Contact. Findings and Problems. - Hegue and Paris

PHONETIC INTERFERENCE IN BILINGUALS' LEARNING OF A
THIRD LANGUAGE

\section*{JOAQUIM LLISTERRI \\ DOLORS POCA-OLIVE}

Laboratori de Fonètica, Facultat de Lletres, Universitat Autònoma de Barcelona, Bellaterra, Barcelona,

Spain

ABSTRACT

This paper presents three experiments concerning the acquisition of French and English as L2 or L3 by bilingual and monolingual speakers. The results are interpreted in terms of the influence of \(L 1\) and L 2 in suggest that interference phenomena in L3 can be explained in terms of the acoustic nature of the soumds of L 1 .
1.INTRODUCTION

Accent in second or third language oral productions can be explained in terms of interference betveen the mother tongue and the accquired languagels. It is sometimes posside to make some predicuons based on phonological descriptions but this can lead oo problems encoumtered during L2 or L3 acquisition It then becomes necessary to characterize phonetic interference phenomena at subphonemic level, using experimental techniques. Some research along this line has been carried out by J.E. Flege and his associates but they deal with second language acquisition by monolingual speakers.

The phonetic performance of bilingual speakers tas also been studied from an experimental point of viev, but little is knov about the pattern of interference describes three experiments which aim at assessing the influence of LI and L2 in L3 productions of bilingual speakers

The subjects studied are either bilingual speakers having Catalan as a first language and Castilian as second language or monolingual speakers having that for the first troup of subjects "bilingul" is
somevhat confusing designation since the subjects studied don't have the same level of proficiency in both languages, Catalan being dominant oper Castilian

\section*{2.EXPERIMENT 1}

In this first experiment the production of French oral povels by bilingual learmers of French as a third rovels by balingual
language vas studied.
2.1. METHOD

Ten bilingual university sturdents of French ( 6 female and 4 male ) read a series of Catalan, Spanish and French isolated vovels inserted in carrier sentences vith a vord containing the same wovel that vas pronoumced in isolation (e.g. "Il a dit " \(i\) " comme dans
 [0], [ 0 ] [ [u] for Catalan, [i]] [e] [a], [o], [ \(u\) ] for Spanish
 using a Revox A77 tape recorder and a Sennheiser MD 44N1 cardioid microphone placed at constant distance from the mouth
An acoustic analysis of a total of 240 utterances vas made using a Bruel \& Kizar 2033 narrov band analyzer. The frequency of he first two formants vas determined from ristal examination of narrov band spectra obtained using a FFT algorithm

\subsection*{2.2. RESULTS}

F1/F2 plottings for the male speakers are shown in figs. 1 and 2. The analysis of their French productions figs. 1 and 2. The analysis of their French productions rounded vovels and the mid-open/mid-close pairs.


Fig 1: Catalan and French povel productions bilingual speakers (Catalan continuos line; French: dotted line)


Fig. 2: Castilian and French povel productions by bilingual speakers (Castilian dashed line; French dotted line)

Since central roumded vovels do not exist either in Calalan or in Spanish they tend to be clustered in central area of the FilF2 povel space vith n differentiation betveen the members of the class. In nadive speaker production there is some overlapping but alvays to a lesser extent than in non-native vovel. As for the [ e\(][\mathrm{E}]\) and \([0][0]\) pairs, their situation in th Catalan Hovever the Catilan productionch and
bilingual speakers differ from the esults oblained for natipe Castilian: for the bilingual speakers [ e ] and [0] appear in the same area as Catalan and French [ e ] and [ 0 ] whereas in Castilian they tend to show the sam \([\mathrm{e} H \varepsilon]\) and \([0\rangle[0 \mathrm{I}][2]\) or Frenc eHE] and [0H \(\mathrm{O}[1][2]\)

\section*{3.EXPERIMENT 2}

In this second experiment ve tried analyze the production of English povels comparing the performance of bilingual and monolingual learners of English as second or third language.

\subsection*{3.1. METHODS}

Four monolingual and five Gilingual umpersity students of series of quasi-homed io read a containing the vowels of Catalan Costilian and Endish and embedded in carrier sentences. Recordings vere made in the same conditions as in Experiment 1 and vere analyzed vith the sam techniques. A total number of 386 utterances vere measured.
3.2. RESULTS

Measurements of povel durations on oscillograms shoved that both bilingual and monolingual speakers do not make significant ifferences betveen long and hort English vovels; the only the mean durations vere found to be significant vere [i] [i:] and [ \(\partial\) [ \([3]\)

The results for vovel quality are summarized in Figs 3 and 4. It can ummarized in Figs 3 and 4. It can degree of overlapping betveen

English central povels, both for bilingual and monolingual speakers; Catalan speakers tend to produce the English schva

Bilingual subjects shov a better distribution of the English opentclose povels [ He ] and \([\mathrm{H}\) apear vith strongly overlapped areas in the production of monolingual speakers, due to the lack of this pair in the first language.


Fig. 3: English rovels by bilingual speakers


Fig. 4: English povels by monolingual speakers

\section*{4.EXPERIMENT}

In Experiment 3, the comparison betveen the performance of monolingual and bilingual speaker vas extended to the fricatire consonants of French rench [f] [s] [z] [C [z]- ohile Costilian differ Catalan - \([f],[s],[z],[]\),

\subsection*{4.1. METHOD}

Four bilingual and four monolingual speakers students of French at umiversity level vere asked to read a series of carrier sentences conaining vort vith fricative consonants in Catalan, Castilian an French Recordings vere made under the sam conditions as the previous experiments. For each fricative the folloving acoustic parameters ver considered: frequency and intensity of upper and lover limits of acoustic energy, frequency and intensity of the tro fricative formants, intial and fina The, This gives an estimate of the spectral distribution of acoustic energy for each sound

\subsection*{4.2. RESULTS}

Sigrificative differences betveen the three languages have only been foumd for the poiceless alveolar [s] [3] This soumd vas found to have very simila characteristics in Catalan and Castilian natip productions and in Castilian productions by bilinguals. Hovever, both groups shoved significan differences vith respect to native French French [s has higher frequency than the Catalan or Castilian [ \(s\) ] and it vas produced by our subjects vith frequenc parameter values even higher than those foumd fo oberved by Muill [4] and is illurtrate in Fige 4 and 5.

g. 4: Distribution of acoustic energy in Catalan Castilian and French [s] by bilingual speakers.


Fig. 5: Distribution of acoustic energy in Castilian an French [s] by monolingual speakers.
5.DISCUSSION

The acoustic study of foreign language wovel productions for French and Fnolish shous bilingual speakers appear to behave in the same vay vhen learning a third language vith a complex povel system. They lend bo follov he distributional patuer of their LI in the acoustic vovel space; the position of this same space for the 12 povels does not seem to interfere with their L3 productions. The amalysis of the 12 productions in bilingualsshovs that their distribution of the rovels in the F1/F2 plane is [0] in Catilian cover larger areas than in Catalan due to the lack of a phomogically distinctive closelopen pair.

Acoustic data for the alveolar voiceless fricative [s]
shovs that both bilingual and monolingual speakers tend to overestimate the acoustic characteristics of the concentration of producing sound vith han those found in native speakers of French

\section*{6.CONCLUSION}

It has been experimentally shown that in the case of ailinguals learning a third language, there is no afluence of their L2 in the production of L3 Interference seems to be entirely explained by the coustic features of the sounds of their L1
The results of acoustic analysis of L2 and L3 productions seem to suggest that, at the phonetic level,
interlanguage phenomena do not appear, since no intermediate palues of the parameters mericed vere found.

\section*{REFERENCES}
[1] Balari, S.- LListerri, J.- Poch, D. (1985) 'La structuración fonética de la materia sonora en hablantes bilinguies", paper given at the XY Limposium of the Socjedsd Espazfols de Lingiuistica Cordota, Spain.
[2] Listerri, J.- Poch, D. (1986) "Influence de la L1 (catalan) et de la L2 (castillan) sur l'apprentissage du systeme phonologique d'ume troisième langue (francais)", Littersture, civilisutionget objectits francais), Littersture, civilisution et objectits
de J'enseignement des fongues. Barcelona: Institut de Ciències de 1'Educació de la Universitat Autionoma pp. 153-161.
[3] Balari, S.- Llisterri, J.- Poch, D. (1987) "Structuration de la langue 3 chez les locuteurs bilingues", Actes des Xémes Journées Fedaguequas rurcena Insum do Francas 'Educacio da la
[4] Murillo, J. (1981) EI umbrst de fonologización de los somidos agudos Unpublished PhD. Universitat Autonoma de Barcelona
a speech discrimination test using bilingual competing messages
J.c. WEESTER, c.CAVE, AND M.ROSSI
anc inst fe fhatique, \(U\). de Provence, Aix--en Frovence, FRANCE

\section*{\(\frac{\text { Abstract }}{\text { Pairs }}\)}
tatements of overlapping arithmetic statements have been recorded by native the Engish and French languages. In are easily confusable. Message pairs are ounterbalanced by language, sex of talker, ear on playback, etc. such that their native (non-native) language, to he (fe)male talker, left (right), ear, true (false) statement, or to the talker
with (out) the foreign accent. Control tests,both messages in the same language measure the listeners. basic ability to isten selectively to one of two
messages. Results on six bilingual results of a Czech/English version of the test. Only the most bilingually
proficient obtain results showing both languages to be equally interferring in a selective attention task. For the
Easic Assumptions
This study starts with two basic assumptions, first, that people learn to think in a second language long and that the most difficult of communicating situations is when messages is what is when more people are talking at the same time. Combining these two assumptions nto a quantitative, selective
hould therefore measure a persons
ilingual capability
\(\frac{\text { Thest Paradigm }}{\text { The basic }}\)
athematical staradigm is; use pairs of untrue, that overlap each other, to wit:
English/English (E/E)

Fifty minus nin twenty
French/French (F/F)
Cent moins dix = quatre-vingt-di
Cing et six = cent six
and the bilingual versions of the san
Fifteen and five = twenty.

Cent moins dix \(=\) quatre-vingt-dix Fifty minus nine \(=\) si\%
Note that in all overlapping pairs, one statement is true while the o
untrue. Dther parametelcybxim
balanced in the recording and playback of the test are: one of each pair is
spoken by a male voice, the other by female voice; one is played back to the left ear, the other to the right; and half of the time the English (and the
French) message is the first message, When the messages are both in the same language one is spoken by a native speaker, the other by a non- native
speaker, that is with a foreign To make the statements equally difficult in the two languages numera pairs are specifically chosen to be examples; in English fifteen and fifty differ by a single phoneme, they are logically and actually very confurable,
as are five and nine. In French, both as are five and nine. In French, both
cinq and cent \& six and dix are also maximally confusable. The first step in writing the test seript is to confer with native phoneticians and map out
logical and known confusions. In thi manner tests have been layed out in English/Russian, English/Czech, English/ Serbo-Croatian and English/Eerman. The languages are so chosen that any pair
in the sets can be matched gainst each other. For example, czeci Russian, or Fussian/German, or Czech/ English/Russian and the English/Czech matrices were recorded, only the.
English/Czech tests were tried out Englishiczech tests were tried out on
bilingual listeners,

The test can be used as a simple speech one of the two channels and reguirk only esponse for the "answer" to the arith netic statement only. It was in fact ried out in this manner at schools fo Test Construction
The present version of the test con pares English with French. Co-authors, Fof. Mario Rossi and Dr Christian Cave urniched me the list of confusabl
French numerals listed in Table 1. TARLE 1
\begin{tabular}{|c|c|c|}
\hline confusable FAIRS & NUMEER OF TYFES & NUMEER OF TIEEENS \\
\hline 1-4*, \(9 *\) & 2 & 12 \\
\hline 1-20 & 1 & 1 \\
\hline 2-10^, 12^ & 2 & 4 \\
\hline 3-4* & 1 & \\
\hline 3-13* & 1 & 2 \\
\hline \(3-30\) & 1 & 1 \\
\hline 5-7* & 1 & 6 \\
\hline 5-100 & 1 & 1 \\
\hline 6-10* & 1 & 2 \\
\hline 11-12** & 1 & 2 \\
\hline 13-15^,16* & 2 & 4 \\
\hline 30-40\% & 1 & 8 \\
\hline 70-90* & 1 & 8 \\
\hline Total & 16 & 54 \\
\hline
\end{tabular}
kinds of tokens
*(20,30....60.80)+(1-4,9)
\[
\begin{aligned}
& \{60,80)+(2-10,12) \\
& \cdots(2,3 \ldots .9)+(30-40
\end{aligned}
\]

To interpret the table note in the left confusable with "FOARES) that "un" is In columin two this is noted as two TYPEs of confusions. However "un", "quatre" and "neuf" are also confusable when
combined with "vingt, trente, quarant cinquante, soixante or quatre vingt", in English twenty, thirty, forty, fifty, sixty and eighty, as shown at the bot on
of the table under, KINDS OF TOR:ENS. Therefore these two TYFES of confusions are represented by twelve TOKENS, as noted in column 3. In line two, note
that "un" is also confusable with vingt one additional TYFE and TOKEN. \(\frac{\text { Response Format }}{\text { The answer }}\)
are in a multiple-cho for these tests choice among four alternatives is
required for equired for the actual word shows the portion of of the test. Table 2 that the portion of the answer sheet
tistener would see when answering statements about the
"cinq" and "cent". Choices must also he made between the operator words; plus, plus. minus \& less in English and between plus, et \& moins in French. For the one-in-eight choice must be made. Scores between zero and ten points (bits) can be accumulated for correctly Six additional points can statement. for the correct identity of which of the two messages was the first (second) of the overlapping pair, which was in the the male (female), or with (without) the foreign accent and dowble credit for
specifying whether the stater sperifying whether the statment was arithmetically true or false.

FROE TYFE
\(5: 109\)
\(1: 4\)
35
18
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & ET & 1 & 1 & 9 & & & \\
\hline * & 35 & FLus & \(4=\) & 4 & 99 & \(\times\) & 34 & 44 \\
\hline \(\times\) & 45 & moins & \(9=\) & 6 & 01 & * & 36 & 6 \\
\hline * & 100 & MOINS & \(20=\) & 9 & 104 & \(\times\) & 39 & 49 \\
\hline
\end{tabular}

To the left in Table 2 under "Problen Type" note the column of numerals five,
thirty five, forty five and one hundred the operator words, "et", "plus" and "moins"; and the numerals one, four, column after the equal signs the sets five and one hundred and one and four. The eight numerals in the cell below possible combinations of the larger numerals ( \(5 \& 100\) ), the operator words and the smaller numerals ( 1 \& 4 ) from istening Tasks
Three native French and three English speaking listeners, all with considerable knowledge and experience of both for a series of \(F / E\), \(E / F, E / E\) and \(F / F\) tests. After extensive instructions on how to respond on the rather coimple following series of tasks: Task 1. On the FFE test, "respond to the message in your native language".
Task 2. On replay, "respond to the nessage in your non-rative tanguage" Task 3. On the third replay, "respona to the
Task 4. On the E/E version of "the test,
"rear respond to the left (right) message", Task s. On the F/F version, "respond to Tasks 6,7 \& 8 . Fepeat 3,4 and 5 answering the first (second) message.
asks 9,10 \& 11 . Fepeat 3,4 and 5
answering the male (female) voice.
Tasks 12 \& 13 . Fepeat 4 and 5 answerin only the native (non-native) talker.
Tasks \(14,15 \& 16\). Repeat 3,4 and 5 answering only that statement that is true. No attempt was made to have them answer only the untrue statement, this General. Results
The listener's test scores can be analized in many ways. Some questions numerals and operator words in the mathematical statements perceived, that is, how does the test function as a word crimination errors are made? Do the errors tend to be random or are they concentrated on the specially chosen
confusable number pairs? How accurately can the extra-acoustic and phonetic aspects of the messages be identified? Can the message content, the truth or alsity of the arithmetic statement, be
be correctly ascertained? How well can the messages be selected on the basis of
the acoustic, phonetic and cognitive nformation contained in them? Tables, questions.
Table 3 shows en bits of information in the arithetic statement are correctiy perceived Averaged over all listeners and listen ng conditions that figure is \(76.18 \%\) perceived this well are the sex of the alker and the ear in which the message is heard. Whether the talker had a
oreign accent or not was perceived more than half the time. Not unexpectedly the most difficult thing for the isteners, in the time allowed, (1) judge whether the arithmetic statement was true or false. The most surprising hortfall was ascertaining which of the isteners, including the experind. oted that memory for the time
was not recordighting, if the response was not recorded immediately it could talker sex or accent or message

Vs right ear. These fore the next message arrivedime 9\% overall. score is ideal for tests of his type, not too difficult and no rea

Table 3
Sest
Scores in Percent
for various message parameters of the Gilingual Listening Competing Messsag Numerical Statement Test French \(\begin{gathered}\text { Listeners } \\ \text { English All }\end{gathered}\)

Problem(10)
Acoustic(2)
Acoustic (2)
Ear
Time
Talker (2)
Sex
Accent
Accent
Cognitive(2)
Aver ag
76. 18
89.2
81.74
70. 18
\(\begin{array}{ll}81.13 & 75.2 \\ 63.02 & 50.65\end{array}\)
\(\begin{array}{lll}69.01 & 83.64 & 76.32 \\ 1.43 & 69.20 & 60.32\end{array}\)
45.86
75.40

Table 4 shows the average listener cores (in \%) according to the task ask number, the details of which ar listed above. Column 2 is a short hand eference to the tasks listed above. the three native English-1 anguage
isteners, and columns 5 and 61 list
hative-French-listeners scores (in \%)
Columns 2 and 4 are scores for
tatements spoken in English and column 3 and 5 for those spoken in French
\[
\begin{gathered}
\text { Table } 4 \\
\text { Test Scores in Percent } \\
\text { for the various listering tasks }
\end{gathered}
\] Ual Listening Competing Messsage
Numerical Statement Test

English Listeners French
 \(\begin{array}{llllll}N / n N * & 75.00 & 76.69 & 59.38 & 69.79\end{array}\)
\(\begin{array}{llllll}3 & \text { Lft/Rt* } & 76.95 & 74.61 & 63.02 & 77.34 \\ 4,5 & \text { Lft/Ft } & 70.90 & 72.46 & 58.08 & 77.61\end{array}\)
\(\begin{array}{llllll}6,8 & 1 / 2 * & 75.39 & 78.13 & 53.65 & 66.15 \\ 7,8 & 1 / 2 . & 73.05 & 69.85 & 62.11 & 77.87\end{array}\)
\(\begin{array}{llllll}10,11 \mathrm{Mn} / \mathrm{Wm} & 88.09 & 86.62 & 69.79 & 84.11 \\ 12.13 & \text { No/Act } & 79.45 & 88.28 & 60.94 & 71.62\end{array}\)
\(\begin{array}{llllll}14 & \text { Tr/Fls } & 69.14 & 69.79 & 39.84 & 34.63 \\ 15,16 & \text { Tr/F15 } & 67.58 & 40.62 & 34.90 & 44.79\end{array}\)
\(\begin{array}{llllll}\text { Average* } & 74.12 & 74.81 & 53.97 & 51.98 \\ \text { Average } & 75.68 & 72.42 & 57.16 & 71.20\end{array}\)
\begin{tabular}{lllll} 
olumnAv, & 74.98 & 73.42 & 57.16 & \\
rand Average & & 7.48 \\
\hline
\end{tabular}
67.83
for the (N) ative/no(nN) ative
ask and all other tasks marked with the asterisk, the F/E test was used.

In both Tables 3 and 4 it will be obtain higher scores than the French isteners. This reflects the fact that 5 a group they were considerably more
experienced in French .than the French isteners were experienced in English. on years to French spouses and had ten years to French spouses and had
residied in France the whole period The French listeners had at most spent wo years in America, and one was a an English speaking country. As a group the English listeners show negligible differences between scores on the English statements, and scores on the保 cores on French statements regardless of whfether they are overlapped by othe
French messages or by English messages.
Concerning the types of word/numer. confusions: the majority of errors were
ommission errors, but there were many ommission errors, but there were many
cases of obvious errors among confusabl pairs. These were often made to make a ogically untrue statement true. The those who have really mastered the econd language. Where the experieced nnswereing true statenta was on asnswereing true statementa as well in
French as in English. Only one person could do this and he admitted he had finally learned to "calculate" only
withibn the last two years, which withened to coincide with helping his young elementary school boy memorize hi

Compertine Mester, Applied Research on Messages"in J. Tobias and Theory, Academic Fress, 1983, New York
(6) I'm sorry but I seem to have mislaid your scarf.
Six Russion learners of Inglish (all
ale) and four native users (two male) of male) and four native users (two male) of
the same age group naive to the purposes the same dige group naive to the purposes the test material.
The Russian learners were half-way in
their five-year course of studies at the their five-year course of studies at the Leningrad. They spoke 至位lish fluently with nearly all anglish sounds.

The material was recorded in a soundacoustic analysis. Electronically obtained fundamental frequency trajectories were manually smoothed by continuous curves tivided into a number of regular time intervals equal for all speakers. Depending on the length of an utterance the
time lac could vary anywhere from 50 to time las
200 ms.
Fre

Frequency measurements were taken at these points to obtain a reduced contour point comparison between uifferent speakers. The oscillograms of the test utter-
ances were secmented into voc:lic and consonental segments. To facilitate this task the sentences were purposefully made up of words carrying mostly voiceless
plosives ance fricatives. The durations vowels were read to en accuracy of 5 ms . Spcech rate was celculated as tho ratio of overall articulation time (ms) to the transcription of the utterance.
The experiment was rejroduced two years
later with the sume learners readin the sane test material under the same experimental conditions.
It is customary to assume that human perception deals with relative propertie
of fundamental frequency and timing by rating acoustic events within a linguistic unit. This concept conforms to rank cor-
relation statistics to the best advantage relation statistics to the best advantage
and, in particular, Spearman rank correlaand, in particular, Spearman renk
tion coefficient.
The coefficients were computed to analyse the degree of agreement between different productions of the same sentence by different speakers and by the same verect two Fears later. The obtained data each utterance, pitch and durations being considered separately. Two resultant (mean) matrices for
In order to visualize the degree of
similarity of pitch contours time patterns, corcelation matrices were transformed into correlation graphs through the use of an alforithm of maximum corre-
II.RESULIS AND DISCUSSION

Table 1 summarizes the data derived from the analysis of cor
for two parameters.
Table 1. Percentage of significant corfor pitch and timing pattern similarity between native and non-native speakers of
anclish at two levels of confidence
\begin{tabular}{lcccc}
\hline & Pitch patterns & Timing patterns \\
\hline Speakers & Russian & English & Russian & English \\
\hline Russian & 48 & 42 & 83 & 74 \\
\(p=.05\) & 12 & 15 & 61 & 40 \\
\(p=101\) & & 61 & & 72 \\
Enclish & & 61 & 56 \\
\(p=.05\) & & 25 & & 51 \\
\hline\(=.01\) & & & \\
\hline
\end{tabular}

The results presented in Table 1 clearapproximate the timing organisation of th target language sufficiently well. The variability of rhythmic structures than Russian speakers.
As far as pitch the best agreement is intours are concerned, ances produced by native speakers, though the group consisted of two male and two female subjects.
significanterence in the percentage of significant correlations between the Group of Russian learners and native
speakers was found to be statistically ir speakers was found to be statistically in The data obtained from the same Russian
subjects after two jears of studies denonsubjects arter two fears of studies de:non
strated that significant intraspeaker correlations accounted for 75-100 per cent of all coefficients. At the same time cross-correlation with one of the native ment compared to earlier performance.

(top) and timing pattern similarity contour sentence 6 as sooken by similarity: sentence 6 as spoken
Russi
Examination of m . Bxamination of correlation graphs made
\(t\) possible to specify some utterances as most indicative for verification of the speaker's language background.
These are graphs for sentences 4,6 andth
A. Feodorov 3
IV. RESULIS AND DISCUSSION
resultant graph, based on the mean matix for pitch contour correlation, and
raphs for sentences 3 and 6 pertaining to the temporal structure of the utterances. It is easy to see that in the which suggest that cross-correlation between native-spoken utterances is greater than correlation with the oth
accented utterances (Fig.1).

\section*{III. AUDITORY TEST}

Material, Subjects, Procedure The same test utterances as in the
previous experiment were segmented from previous experiment were segmented from \({ }^{\text {a }}\)
broader context read by the same Russian speakers and two native speakers E2 and E4
(both male). The utterances were paired with each other and ordered at random, all samples occurring in the first and secon position equelly. Between the first and
the second member of each pair, \(1-2\) sec the second member of each pair, \(1-2\) sec
silence was inserted; each pair was repeated once, and four seconds intervened etween pairs or stimu \(15^{\circ}\) Russian teachers of Thelish phonetics and 10 British students. They were instructed to choose from each pair the sample they thought
preferable as regards intonation ignoring preferable as regards intonation ignoring In another series of listening session the task of listeners was to rate the degree of similarity between two successive teners grades were expressed in per cent
for each utterance and pooled in matrices for each utterance and pooled in matrice
which were transformed into correlation graphs. The latter were compared with the correlation graphs of acoustic similarit.
obtained earlier.

As can be seen from Table 2 , there is good agreement between the judgments made by both groups of experts. however, the to 0.90 that suggests the same divergences from the standard intonation pattern listeners.
It should be noted that non-native utterances were sometimes prefered to data testify to the fact that native speakers may depart sufficiently from the commonly accepted norms of their native language. pitch contour correlation and timing simi larity, on the one hand, and graphs of perceptual certain isomorphism in their structure i.e. certain clusters in one graph corres ponded to analocous subgraphs in the othe were able to obtain subgraphs composed mostly of native speakers.
The subjects made no overt analysis of their reasons for prefering a stimulus bur
they appear to weigh up temporal and melo dic factors involved in the judgment and combine them into a single response. Native listeners were found to be more pattern of the utterance.
Using the available graphs as the base, we selected most representative utterance with faulty rhythm and melody for compar
tive analysis of sentence prosody. The comparative study of pitch models and timing patterms has enabled us to
establish the following acoustic cues which contribute to the detection of Russian accent in mglish prosody: (1) Russian speakers tend to level out long and short vowels that affects the sim rable 2. Mean opinion scores (in per cent) assigned by inflish (E) and iussian (R) iisteners in auditory tests by force-choice
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & Sent & nce & & & & & & & & & \[
\begin{aligned}
& \text { Aver } \\
& \text { rcent }
\end{aligned}
\] & \[
\begin{aligned}
& \text { rage } \\
& \text { ntage }
\end{aligned}
\] \\
\hline Speaker & & 1 & & ? & & 3 & & 4 & & 5 & & 6 & & & \\
\hline Listeners & E & R & E & R & E & R & E & R & E & R & E & R & E & & R \\
\hline R1 & 42 & 33 & 45 & 38 & 31 & 28 & 10 & 18 & 48 & 31 & & & & & \\
\hline R2 & & 56 & 50 & 21 & 50 & 35 & 49 & 32 & 55 & 57 & 47 & 25 & 51:2 & 56.0 & \\
\hline R3 & 69 & 41 & 71 & 59 & & 4 & 60 & 63 & 31 & 27 & 69 & 46 & 58.8 & 58.8 & \\
\hline R 21 & 48 & 33 & 15 & 17 & & 15 & 8 & 27 & 70 & 50 & 58 & 31 & 39.6 & 38.5 & \\
\hline R6 & 72 & 44 & 85 & 72 & 62 & 62 & 78 & 64 & 39 & 41 & 37
54 & & 46.4 & 44. & \\
\hline E4 & 82 & 71 & 75 & 76 & & 79 & & 83 & 75 & 86 & & & 65.2 & 78. & \\
\hline E2 & 91 & 98 & 85 & & & & 94 & & 75 & 71 & & & 88.5 & 85. & \\
\hline Rank correlation coefficients, ro & & & & & & & & . 79 & & & & & & & \\
\hline
\end{tabular}
rhythmic structure of word-like phonetic units;
(2) slower overall speech rate of Rus\(812.3+7.45 \mathrm{~ms}\) speakers 87.91 .95 ms as against (3) greater relative duration of auxicratical words in an (4) less distinct lengthening of vowels ( the end of an utterance;
(5) Pussian speakers are; apt to lengthen stressed ones;
(6) timing pattern distortions result
from inability of Russian learners to observe stress shifts under the influence (7) pitch rise on the first pre-stressed syllable occurs much more often and is (8) there is a strong tendency among Russian learners to use less contrastive
ance;
(9) preferable use by non-native speakers of the first pitch rise occurs earlier in utterances spoken by native peakers he segments preceding the major stress.

> V. CONCLUSION

As a result of the considerations prefluently speaking Russian learners are fluently speaking Russian learners are to a rather high accuracy in terms of relative durations of vowels. By contrast, sentence pitch movement proved to be much
more informative for the detection of residual effects ofa second language.
Intraspeaker correlations between utterances replicated by the same speaker after two years of studies were found to be
greater than interspeaker correlations especially, with native speakers. This outcome strongly suggests that in the adjust earlier acquired melodic prototypes to the target language by working out a
prosodic idiolect. Non-native speak into vernacular pitch and prone to lapse unless special attention is paid to remeProsodic interference seems to be caused by language-specific phonetic factors rather than phonological aspects of melody and rhythm. These phonetic pecula forieign language speech production to a The present
aspect of present study explores only one aspect of speech performance - prepared problem of spontaneous not tackle the

Feodoror 4
Indications are that interlanguage prosodic interferenc

\section*{REFERENCES}

\section*{/1/ Adams, C. (1979): English Speech
Rhythm and the Foreign Learner (Mouton, Thythm and the Foreign Learner (Mouton,} Th/ Colliter, R. (1974): Intonation from a structural linguistic viewoint: a criti
sism. Linguistics, 129, 5-28
 tion in second language acquisition. Language Learning 30, Johansson \(117-134\) Gravity: Native Reactions to Studies of Error Produced by Swedish Learners of English 4, Acta Universitatis Gothoburgensis \(15 /\) Johansson, S. ( 1980 ): Another look at
foreign accent and speech destortion. Revue de phonétique appliquée, Mions, 53 16/ Nash, R. (1972): "Phonemic and Prosoroc. of the 7th ICPhs, ed. A. Rigaut, in (Houton, The Hague), pp. 570-573 7/ Phillipson, R. (1981): "Prosody Errors Prosody II, (Gleerup, Lund), in Nordic /8/ Rothauser, E.et al. (1971):A comparison of preference, measurement methods. JASA, 9\% Tahta, S., Wood, M. (1981): Foreign
ccents: factors relating to transfer of accent from the first languace to a secon 110\% Vaissiere, J. (1983): "Lenguage-Independent Prosodic Features", in Prosody: al. (Springer-Verlage, Berlin etc.), pp. 53-66 111 Classe A. (1939) : The Phythm
difficulties in comprehension of \(L_{2}\) intonation:
diagnosis and prediction in english
madalena cruz-ferreira
viken, Sweden
abstract
The paper presents a general test which may be used by learners of any which may be used by learners of any
language. It consists of sentences of English spoken with particular inton ation patterns of tonality, tonicity
and tone. Three alternative interpreta tions are provided for each sentence, the learner having to match each sen-
tence with only one of the interpretations. It is proposed that the test may be eniarged and/or modified so as to be applicable in diagnosing and predicting diffi
\(L_{2}\).
introduction
This paper presents a general test of intonational comprehension of English which, it is assumed, can be used by learners of English of any native tongue. it is an enlarged and more comprehens
version of an English and Portuguese test presented earlier to Portuguese and English speakers, respectively, in \(/ 3 /\).
This is eminently a practical test, and theoretical discussion is reduced to a minimum. For discussion on the testing
of non-native intonation see \(/ 1 /, 15 /\), of non-native in
\(17 /, 18 /\) and \(/ 9 /\)
The reasons for the presentation of the te
- intonation is still the last
stronghold of a foreign accent in speaking any \(L_{2}\);
intonation has
to be seriousily and recently begun taken into account both in the literature devoted to foreign lan-
guage learning and in teaching itself;
the test will not only help in de-
tecting these difficulties but
elting these difficulties but
also, through the setting up of also, through the setting up of a
typology of errors, help to correct
them.

It is assumed that the first difficulty faced by non-natives with the intonation of not in production: in the first stages of learning, a faulty comprehension of intonation will determine difficulties in production, and not vice-versa. "There is
no point in trying to elicit a "correct" intonational form from a non-native, by imitation or otherwise, if he does not perceive it as sui-generis
to the foreign language. This paper presents therefore a comprehension test. The test is proposed both as diag-
nostic and as predictive. Diagnostic in \(\frac{\text { nostic }}{\text { the sense that }}\) it enables the teacher to ascertain in a straightforward. way the
difficulties of the learners. difficulties of the learners - what these are and where they are. For a more accu-
rate evaluation of the results, the format of the test is such that statistical treatment of the replies of the learners is quite easy. The test is also meant to
be predictive, in the sense that each sentence presented is typical of a range of otherce intonation pattern-meaning applies. One point needs explicit clarification: I do not believe that intonof the lexico-qrammatical sentences it occurs or, rather, interacts with. I do not therefore believe that intonation can be profitably learned or taught indepen-
dently of lexico-grammatical structures. This is the real sense in which I mean the word "predictive": difficulties in interpreting a sentence such as she won't drink
any coffee as meaning "she drinks only any coffee as meaning "she drinks onl
some types of coffee" predicts difficulties in interpreting the meaning of any and a falling-rising intonation pattern on the quantifier "any".

\section*{background}

The intonational devices by which the different meanings are conveyed are taken to correspond to three types of inton-
ational choice (see /6/): tonality, the division of an utterance into intonation
grups; tonicity, the placement of the ation group; and tone, the melodic shape f the nucleus, for example rising of
Examples of meaning differences brought about by intonational devices in of the
choices are:
she dressed/and fed the
baby
she dressed and fed the
'baby She gave her dog
biscuits she gave her dog
biscuits she won't drink any coffee
she won't drink any
coffee
layout of the test
A more complete version of the test
pesented in \(/ 4 /\). The test is composed is presented in of several sentences, each with a par-
ticular intonation of English. The sentences are colloquial in style and the vocabulary used is chosen to be as simple
as possible, to avoid the possibility of as possibee, to avoid the possibility o
lexico-semantic factors affecting the interpretation of the intonation patterns. tern presented is the the intonation patsentence the least probable interpretation, if only the strict lexico-grammatical meaning of the sentence is taken into she won't drink any coffee
will begiven the interpretation associated with ahigh-falling tone rather than
with the falling-rising (see tails on this).
The interpretation of the sentences as presented \(1 n\) the test is thus pre-
dicted to present the highest dicted to present the highest degree of
difficulty for the learners. But it is also clear that this will depend to a large extent on the interactions of intonoccuring in the native tongue of the learner. Knowle dge of these interactions in Ly will therefore enable the teacher
to modify the test accordingly. For each test sentence, three possible interpretations are given:
a. the correct
b. a wrong one, but the most probable wrong answer, that is, the one corre-
sponding most closely to the "written sponding most closely to the "written" replies will in principle mean that the intonation pattern of the sentence is misunderstood;
c. also a wrong interpretation but, bemostly to ascertain the degre, given domness in the replies of the of ranners. In most cases \(\frac{c}{}\). is not in fact a possand a majority of c. replies will in principle show that the intonation patterns of the sentence is not under
stood.

Example:
sentence she won't drink `any coffee she drinks coffee, but nly special types she prefers tea to coffee
\(\stackrel{-}{\text { E. }}\)
The test sentences should be presented to the earners through listening only, deally through headphones in a language sheets where only the sentence numbers and the interpretations \(\frac{a}{}\) randomized and re-letered, and \(\frac{c}{\text { c., duly }}\) written. The learners should give one answer only for each sentence and should leave re forced to make a decision and one de cisionconly as regards the meaning \(\frac{1}{\text { of }}\) deeach sentence. The forced choice layout is analysis of the results, of a typoler learners ' errors and difficulties. APPLICATIONS AND USES OF THE TEST
cally be test has been designed to typiinstrument, together with other tiagnosis (grammatical, lexical, phonetic) tests be part of regular teaching instruments of evaluation. It can furthermore be used in
any situation where assessment of fluency and proficiency in any language is fluency quired, and it can be supplemented by intonational production tests.
will helpredictive component of the test typology of errors and/or difficulties adequareby help in the setting up of, adequate correction procedures. of the learners will hopefully give a
what are the difficulties - that
is, what typology of errors has
emerged from the results;
- where the difficulties lie - that is, where do the systematic mismatches in the interaction inton-ation/lexico-grammatical form appear;
- why are they difficulties - that is, are the mismatches due to interference of differently meaningful pairings of intonation/ lexico-grammar in \(L_{1}\);
- how to counteract the difficulties - that is, what is the best way of introducing and stabilising the specific pairings of intonation/ lexico-grammat in \(L_{2}\), having in mind the particular \(L_{1}\) of the learners.

\section*{FURTHER DEVELOPMENTS}

The design of the test is such as to be easily understood and used by both learners and teachers, and its design easily lends itself to statistical treatment of the results. Its format can also be easily modified, adapted or enlarged according to the proficiency level of the learners and to the purposes of the teaching.

In the version presented in this paper, the test is meant to be used by learners of English from any mother tongue. But it is also assumed that its underlying design is suitable for use in the assessment of learners of any other language. It is hoped that the results provided by the test can be profitably used in the setting up of a typology of intonational errors and difficulties according to the \(L_{1}\) of the learners, and thereby provide insights into adequate and systematic correction procedures.

\section*{REFERENCES}
/1/ Anderson, K.0., Some aspects of
        English language interference in
        Tearning German intonation,
        unpublished Ph.D thesis, University
        of Colorado, 1970
/2/ Berkovits, R., "Are spoken surface structure ambiguities perceptually unambiguous?", Journal of Psycholinguistic Research 10: 41-56, 1981
/3/ Cruz-Ferreira, M., Non-native comprehension of intonation patterns in Portuguese and in English, unpublished Ph.D thesis, University of Manchester, 1983
/4/ Cruz-Ferreira, M., "A test for nonnative comprehension of intonation in English", IRAL, to appear
fundamentals in the teaching of intonation", IRAL 20 (3):228-32, 1982 The Hague: Mouton, 1967

17/ McNaught, J., The prosodic competence tation, University of Manchester, 1978

18/ Pritchard, R.M.O., "The teaching of French intonation to native speakers of English", IRAL 23 (2): 117-47, 1985
/9/ Scuffil, M., Experiments in comparative intonation. A case study of English and German, Tübingen: Niemeyer, 1982 1978 , University of Manchester (17-47, 1985

KAREN L. CHOBOR JASON W. BROWN

Department of Neurology
New York University Medical Center
The Institute for Research in Behavioral Neuroscience
New York, N. Y. (USA) 10016

Dichotic listening studies in normal subjects have indicated a right ear (left hemisphere) preference for many linguistic stimuli, including stop consonant, initial nonsense syllables (Shankweiler \& Studdert-Kennedy, 1967; Studdert-Kennedy \& Shankweiler, 1975), digits, and other lexical items (Kimura, 1961); as well as a left ear (right hemisphere) preference for certain nonlinguistic stimuli, including melody (Kimura, 1964), chords (Gordon, 1970), environmental sounds (Curry, 1967), and nonverbal vocalizations such as laughing and sighing (King \& Kimura, 1972).

In contrast to the concept of a left hemisphere specialization for verbal material, and a right hemisphere specialization for nonverbal material, many investigators believe the left hemisphere is specialized for analytic processing and the right for holistic processing. On this view, when musical tasks share properties with speech such as temporal order, duration, simultaneity, and rhythm (Krashen, 1973), the left hemisphere is responsible for stimulus processing. Conversely, when the musical task is free of temporal constraints (i.e., not time bound), the right hemisphere is presumably processing the information in a gestalt manner. In other words, time-dependent (sequential or temporal) processing is best performed by the left hemisphere while time-independent processing is best performed by the right hemisphere (Carmon \& Nachson, 1971; Albert, 1972; Gordon, 1979). This approach is consistent with an interpretation of lateral asymmetries on the basis of degree of processing (Brown 1983) rather than parallel systems or separate processing components.
There are relatively few studies on timbre and cerebral specialization, though a left ear superiority has been demonstrated with dichotic listening techniques (Gordon, 1970). Others have found a left ear superiority for limited duration only, suggesting that the ability to detect target timbres may disappear after repeated trials (Kallman \& Corballis, 1975). In one study showing no significant difference between the ears for the detection of timbre (Spellacy, 1970), the intervals between dichotic presentation and recognition stimuli were 5 and 12 sec , suggesting that a different pattern of ear advantage emerges with shorter intervals, as in the case of pitch (Wyke, 1977). With shorter intervals, the procedure approaches a discrimination task, suggesting that it is the dimension of stimulus discrimination rather than the material discriminated which gives the right hemisphere
effect. Thus, Mazziota, Phelps, Carson, \& Kuhl, (1982) found diffuse right hemisphere PETT metabolic activation with a timbre discrimination task.

There fis some evidence for selective left hemisphere involvement in phonological processing. For example, rCBF methods have demonstrated that rhyme or suffix monitoring engages left temporal regions preferentially (Maxmillian, 1982; Knopman, Rubens, Klassen, \& Meyer, 1982). Conversely, Zaidel (1977) demonstrated poor phonological feature discrimination in the right but not left hemispheres of commissurotomy subjects. To date, there are no studies of phoneme monitoring in aphasics, though it has been determined that aphasics \(a=3\) impaired in the discrimination of phonological contrasts (Blumstein, Baker \& Goodglass, 1977) and in the labeling or identifying of consonants presented in. a consonant-vowel context (Basso, Casati \& Vignolo, 1977). This would be of particular interest in light of evidence that phoneme monitoring involves operations that are not essential for normal language: children who have difficul:y learning to read fail on such tasks, though their ability to speak and to understand spoken language is approximately normal (Liberman, 1974; Calfee, Chapman, \& Vanesky, 1972). Level of reading skill, however, does not predict performance on a phonological task (Morais, 1975) though it has been suggested that performance on such tasks might identify dyslexic individuals.

\section*{METHODS}

\section*{Subjects}

Twenty right-handed subjects with reportedly normal hearing (as confirmed by audiological data), English as a native language, and ranging in age from 40 to 70 years were participants in this study. All subjects sustained a single, CT scan documented unilateral ( 10 left, 10 right) cerebral vascular accident and had no history of other neurological disorders. Left hemisphere damaged subjects included 4 nonfluent aphasics, 3 fluent aphasics and 3 total aphasics, with lesion location as follows: 4 anterior, 3 posterior and 3 anterior/posterior. Lesion location in the right hemisphere damaged subjects included 4 anterior, 5 posterior and 1 anterior/posterior. Three left hemisphere damaged and 2 right hemisphere damaged patients were deemed musically sophisticated; each had actively played a musical instrument for at least 8 years prior to CVA.
\(\frac{\text { Materia1s and Procedure }}{\text { Each subject wore a }}\) stereo headphones and listened to recordings on an ARAI GX4000D tape recorder. Each subject was re-
quired to indicate recognition of targets by raisquired to indicate recognition of targets All
ing the hand \(\mathrm{ipsin}^{2}\) ataral to the lesion. All stimuli were prepared at the Haskins Laborator New Haven, Connecticut
Language stimuli. Stimuli consisted of monoemale. Words (VCC, CCVC) words spoken by a of 52 stimuli each, at the rate of one every 3 . sec, with an 8 -sec interval between blocks. sec, with an 8 sec
Stimuli ranged from 850 to 1180 msee in length.
Targets consisted of words heginning with the Targets consisted of words heginning with the
 No target or foil ended with the sound \(/ \mathrm{b} /\). Targets constituted \(15 \%\) of the stimu the targets or foils were repeated. Electronically generat
 values for these stimuli are shown in Table 1 . Seven different timbres were used. Each timbre vas generated at four pitch levels corresponding o middle \(C\) through \(F\) above middle \(C\). In perforin
ing the task, subjects were trained to identify one timbre as a target. Seven other timbres judged in pillot studies to be maximally different.
from the target served as foils. Stimulus prefrom the target served as foils. Stimulus \(p\)
sentations were identical to those used for phoneme monitoring. Sounds were presented in two 5 -min blocks at the rate of one per 3.7 sec. Individual stimulus durations ranged from 973 to
1183 msec. Targets represented \(15 \%\) of the stimul same 1 ist locations and were presented
In order to motivate subjects and to ensure attention to the task, each subject was paid 15 cents for each target detected.

RESULTS
A three-factor analysis of variance with repeatd measures on one factor (number of errors) was erformed, with number of errors (false positives and omissions) as the dependent variable. The two vs. right hemisphere damage, and anterior lesion ite vs. posterior lesion site. One repeated within-group factor was task stimuli (phoneme vs. \({ }_{\mathrm{t}}^{\mathrm{t} \text { mbre. }}\)
The results (Table 2) show a main effect for task VImuli ( \(\mathrm{F}=13.57, \mathrm{p}=.0025\) ). Left hemisphere only, and right hemisphere CVA patients exhibited niy, and right hemisphere cua patients exhibite
the opposite effect. False positive responses for both groups of patients for both listening
tasks were categorized in comparison to target stimuli. For phonemes, high acoustic frequency ( \(\mathrm{f} / \mathrm{l}, \mathrm{s} /\) ) and low acoustic frequency ( \(/ \mathrm{m} / \mathrm{l} / \mathrm{j} /\) ) noctave responses were sorted. Chi square and analysis revealed no pattern of false position phoneme responses for either group of patients but a strong pattern of false positive timbre respons
patients only, indicating that this group of patients made
to the target.

\section*{DISCuSsion}

The principle finding in the study is that left brain-damaged aphasics have more diff ficulty with phoneme monitoring than with timbre monitoring, while the right brain-damaged nonaphasic patients
show the reverse pattern. This finding appears to he material specific, since the two tasks were be miterial to be (1) as analogous as possible, (2) similar in such features as volume, stimulus duration and spacing, percentage of hits, and relative
distance of foils from targets; and (3) comparable response mechanisms (ipsilateral hand) The observation of a reciprocal performance on
these analogous tasks in left and right damaged these analogous tasks in left and right damaged processing with the left hemisphere and its dis uption in aphasia, and provides support for the ew hat phonerely acoustic or attentional mech nisms. The pattern of impairment according t emisphere damaged is also inconsistent with an interpretation of the aphasics performance base
on task complexity or degree of effort. In fact, in pilot studies with normals monitoring for wo phonemes or two timbre
judged the more difficult.
No clear relationship was found between lesion ocalization (anterior vs posterior) or aphasia ype and performance on the phoneme monitoring
ask, though the number of patients was small. Severity of aphasia, as determined by Boston Diagnostic Aphasia Examination scores, was also not correlated with task performance. Further-
more, a separate analysis of patients deemed musically sophisticated prior to their strokes failed to disclose patterns deviating from the roup mean. Specifically, musically sophisticated
subjects did not make errors consistent with a left hemisphere shift for timbre processing. Of note is the fact that these tasks were f glucose metabolism in normal subjects (Bartlett, Brown, Wolf, \& Brodie, 1985). In this study, phoneme and timbre stimulation resulted similar patterns of metabolic rates - namely,
slightly greater left than right values- thoug regional data showed greater intersubject variability on language activation. Specif ically, we
did not find task-dependent metabolic asymmetries on the phoneme and timbre stimulii such as reported by Mazziota et al. (1982) for language and
timbre activation. In the later study, ho imbre activation. In the latter study, howeve stimuli were different in material (story vs.
timbre pairs), operations (listening vs. same/ different judgments); and response measures (subsequent retrieval vs. motor response). When
these operations are controled as in the present these operations are controlled, as in the pres
study, phoneme and timbre stimuli give similar metabolic patterns. Thus, the data indicate that lesion effects and behavioral dissociations are perhaps more sensitive
metabolic correlations.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{\[
\begin{gathered}
\text { TABLE } 1 \\
\text { Parameter Values for Timbre Stimuli }
\end{gathered}
\]} \\
\hline Timbre parameter & A(target) & B & c & D & E & F & G \\
\hline Percussion rate & 51 & 225 & 97 & 11 & 150 & 250 & 120 \\
\hline Percussion volume & 224 & 222 & 226 & 222 & 250 & 250 & 250 \\
\hline Fall rate & 40 & 40 & 57 & 45 & 100 & 80 & 140 \\
\hline Fall volume & 224 & 0 & 218 & 0 & 220 & 80 & 80 \\
\hline Attack rate & 40 & 225 & 97 & 189 & 180 & 250 & 120 \\
\hline Attack volume & 224 & 225 & 226 & 227 & 250 & 250 & 250 \\
\hline Decay rate & 25 & 17 & 28 & 19 & 180 & 40 & 120 \\
\hline Release rate & 40 & 40 & 57 & 68 & 80 & 80 & 140 \\
\hline Release volume & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}
table 2
Individual Responses for Both Groups of Patients on Phoneme and Timbre Both Groups of Pat
Monitoring Tasks
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{2}{|c|}{Correct} & \multicolumn{2}{|l|}{False positives} & \multicolumn{2}{|r|}{Omissions} \\
\hline & Ph & Ti & Phoneme & Timbre & Ph & Ti \\
\hline \({ }_{\text {a }}\) & & & & & & \\
\hline A & 3 & 14 & 22 & 3 & 12 & 1 \\
\hline A/p* & 9 & 14 & 11 & 5 & 6 & 1 \\
\hline A & 14 & 14 & 0 & 1 & 1 & 1 \\
\hline \({ }^{\text {A/P }}\) & 7 & 10 & 12 & 1 & 8 & 5 \\
\hline P & 15 & 15 & 0 & 2 & 0 & 0 \\
\hline P* & 15 & 15 & 0 & 4 & 0 & 0 \\
\hline P & 13 & 12 & 24 & 3 & 2 & 3 \\
\hline A/P & 8 & 10 & 7 & 2 & 7 & 5 \\
\hline \({ }^{\text {A }}\) & 9 & 14 & 1 & 3 & 6 & 1 \\
\hline Mean & 10.8 & 13.3 & 7.9 & 2.4 & 4.2 & 1.7 \\
\hline Total stimuli 104 & & & Total ta & & & \\
\hline A & 13 & 13 & 0 & 6 & 2 & 2 \\
\hline A/P & 13 & 5 & 0 & 10 & 2 & 10 \\
\hline & 13 & 15 & 0 & 2 & 2 & \\
\hline \({ }^{\text {P* }}\) & 15 & 15 & 0 & & 0 & 0 \\
\hline P & 14 & 0 & 0 & 7 & 1 & 15 \\
\hline P & 15 & 7 & 0 & 29 & 0 & 8 \\
\hline A & 15 & 15 & 0 & 14 & 0 & 0 \\
\hline A & 14 & 1 & 1 & 21 & 1 & 14 \\
\hline A & 14 & 3 & 0 & 8 & 1 & 12 \\
\hline P* & 15 & 15 & 0 & 0 & 0 & 0 \\
\hline Mean & 14.1 & 8.9 & 0.1 & 9.9 & 0.9 & 6.1 \\
\hline Total stimuli 104 & & & Total ta & s 15 & & \\
\hline
\end{tabular}

Note. \(*=\) Musically sophisticated; A.P., and \(A / P\) refer to anterior, posterior, or combined lesion localization

\section*{REFERENCES}
1. Albert, M.L. 1972. Auditory sequencing and left cerebral dominance for language. Neurepsychologia. 10, 245-248.
2. Bartlett, E.J. Brown, J.W., Kolf, A.P., \& Brodie, 'J.D. 1985 Metabolic correlates of language processing in healthy right-handed male adults. Annals of Neurolosy (abstract), 18 (1), 119.
3. Basso, A., Casati, C., \& Vignolo, L.A. 1977. Phonemic identification defects in aphasia. Cortex, 13, 84-95.
4. Blumstein, S.E., Baker, E., \& Goodglass, H. 1977. Phonological factors in auditory comprehension in aphasia. Neuropsycholonia, 15, 19-30.
5. Erown, J.W. 1983. Rethinking the right hemisphere. In E. Perecman (Ed.), Cconitive processing in the right hemisphere New York: Academic Press.
6. Calfee, R., Chapman, R., \& Vanesky, R. 1972. How a child needs to think to learn to read. In L. Gregs (Ed.), Cognition in learning and memory. New York: hiley.
7. Carmon, A., \& Nachson, 1. 1971. Effect of unilateral brain damage on perception of texporal order. Corter, 2. 410-418.
8. Curry, F.K.h. 1967. A comparison of left-handed and right-handed subjects on verbal and nonverbal dichotic listening tasks. Cortex, 3, 343-352.
9. Gordon, H.K. 1970. Hemispheric asymmetries in the perception of musical chords. Cortex, t. 337-398.
10. Gordon, H.k. 19;8. Left hemisphere dominance for rhythric elements in dichotically presented meledies. Ciritex, 14, 58-70.
11. Kallman, H.J. \& Corballis, N.C. 1975. Ear asymmetry in reactien time to musical sounds. Ferception \$ Esychephysics, 12, 365-370.
12. Kimura, D. 1961. Cerebral dominance and the ferception of verbal stimuli. Canadian Jeurnal of Psrekolesr. 15, 166-1’1.
13. Kimura, D. 1964. Left-right differences in the perception of melodies. ExErteriy Journal of Experimental Esrez=105r. 16, 355-358.
14. King, F.M., K Kimura, D. 19;2. Left-ear superiarity in dichotic perception of vocal nonverbel sounds. Canetis: Soursal of Psrcholesr, 26, 111-116.
 Yeyer, N.ï. 10:2. Tegional cerebral blood flaw correlates of aucitory processing. Archires of Seuralesr, io, 457-493.
16. Krashen, S.D. 1973. Mental abilities underlying linguistic and non-linguistic functions. Linguistics, 115, 39-55.
17. Liberman, D.Y. 1974. Experiments in syllable and phonemic segmentation in young children. Journal of Experimental Child Psychology, 18, 201-212.
18. Maimillian, X.A. 1982. Cortical blood flow asymmetries during monaural verbal stimula tion. Brain and Language, 15, 1-11.
19. Mazziota, J.C. Phelps, M.E., Carson, R.E., \& Kuhl, D.E. 1982. Tomographic mapping of human cerebral metabolism: Auditory stimulation. Neurology, 32, 921-937.
20. Morais, J., Cary, L., Alegria, J., \& Berlelson, P. 1979. Does awareness of speech as a sequence of phones arise spontaneously? Cognition, 7. 323-331.
21. Shankweiler, D., \& Studdert-Kennedy, M. 1967. Identification of consonants and vowels presented to left and right ears. Quarterly Journal of Experimental Psychology, 19, 59-63.
22. Spellacy, F. 1970. Laternal preference in the identification of patterned stimuli. Journal of the Acoustical Society of America, 67, 574-578.
23. Studdert-Kennedy, M., \& Shankweiler, D. 1970 Hemispheric specialization for speech perception. Journal of the Acoustical Society of America, 48,579-594.
24. Wyke, M.A. 1977. Musical ability: A neuropsychological interpretation. In M. Critchley \& R.A. Henson (Eds.), Music and the brain. Springfield, IL: Thomas.
25. Zaidel, E. 1977. Lexical organization in the right hemisphere. In P. Buser \& A. Rouguel-Buser (Eds.), Cerebral correlates of conscious experience. Amsterdam: Elsevier.

\section*{ACKNOLLEIGEMFATS}

Elsa Bartlett, Ed. D. assisted with aspocts of th: study, and Jeffrey Miller, Ph.D. Frovided statistical advice. Reprinted through the courtesy of Academic Press from Erain and Language, 1987.

\author{
Parth M. Bhatt
}

Experimental Phonetics Laboratory, Department of French, University of Toronto, Toronto, Canada.

\section*{ABSTRACT}

The results of an instrumental analysis of acoustic attributes of sentence intonation in the speech of six Francophone patients show that subjects with left anterior lesion have relatively intact range and frequency of use of \(F\) o movements whereas subjects with right anterior lesions show reduced \(F_{0}\) range and frequency of movement.

\section*{INTRODUCTION}

\section*{A. Prosodic modification following left} anterior lesion

The question of the status of prosodic systems following unilateral brain damage has received considerably less attention than deficits of phonetic, phonemic and morphosyntactic systems. One can perhaps attribute this to the fact that the status and function of prosodic systems has remained a topic of controversy within the framework of linguistics as a whole. Prosody is often seen as a musical or emotional supplement to speech which has a minimal linguistic role. There has been a recent renewal of clinical interest in the subject of prosody following unilateral brain lesion, but the phonetic and clinical data do not as yield a clear interpretation.

There are a number of clinical observations of prosodic modification following unilateral left anterior lesion. A number of case reports describe patients whose speech output began with a period of quasi-mutism and then evolved to the utterance of a few monosyllables with modulations of intonation [1][2][3][4]. These observations suggest that in the initial stages of Broca's aphasia, prosody seem to be relatively well preserved.

However, in further stages of evolution of language disorders following left anterior lesion, specific prosodic modifications called dysprosody, appear. Dysprosody can be divided into two major categories: a) "foreign language dysprosody" (accent change) and b) "flat, discontinous speech melody".

Case reports of foreign language dysprosody are numerous. The first such case was
reported by A. Pick [5]. Pick observed a young male Czech patient with a left anterior lesion, who took on a "Polish" accent because he systematically misplaced word level accentuation which, in Czech falls on the first syllable of the word, to the penultimate syllable. G. Monrad-Krohn later reported the case of a young female Norwegian patient, with a large anterior left hemisphere lesion who had recovered fluent articulation, but was unable to produce the tonal distinction which, in Norwegian differentiate "Bönder" (farmers) from "Bönner" (prayers or green beans) [6][7]. In these two cases, it is legitimate to say that the "foreign prononciation" is directly linked to a prosodic modification.

On the other hand, a number of researchers have used the term dysprosody to designate any and all cases of strange prononciations which seemed to show traces of a foreign accent, as for example, the cases reported by Alajouanine and Lhermitte [8], Cole [9], Critchley [10], Engl and Von Stockert [11][12], Nielson and McKeown [13], Pilch [14], and Whitty [15]. In most of these cases it does not seem that the accent change can be attributed to a primary and isolated modification of prosodic systems but rather to general difficulties in phonetic realization.

The second major type of prosodic disorder that has also been termed dysprosody, is associated with subjects suffering from severe non-fluent aphasia accompanied by agrammatism. H. Goodglass [16] was probably the first to use the term dysprosody to describe the flat and discontinuous quality of the melodic line in the speech of patients with severe non-fluent aphasia. For Goodglass, this type of aphasic patients are unable to use intonation to demarcate constituent boundaries.

There are relatively few instrumental studies of prosodic modification following left anterior lesion. In a corpus of spontaneous speech produced by aphasic subjects, Danly, De Villiers and Cooper [17] observed that \(F_{0}\) sentence declination was present and that major falls in Fo occured at the end of sentences. However, sentence final syllable lengthening was absent.

In a second study based on a corpus
read of read sentences, Danly and Shapiro [18]
were able to confirm the existence of major were able to confirm the existence of major
frequency falls in sentence final position,
and the absence of sentence final syllable and the absence of sentence final syllable
lengthening. Furthermore, Fo sentence declinalengthening. Furthermore, Fo sentence declina-
tion was found to apply to smaller domains as compared to normal speech and aphasic subjects with left frontal lesions were found to make more frequency rises than normal
subjects and they did not encode sentence length by choosing a high initial Fo peak.
Ryalls Ryalls [19] found that eight subjects
with
Broca's aphasia showed a restricted with Broca's aphasia showed a restricted
frequency range. In a second study, this frequency range. in a second study, enior left hemisphere lesions had a
According to Cooper et al. [21], Broca's According to cooper et al flat frequency sentence final word lengthening. In
aphasics
gheral, the portrait of Broca's
shows aphasics shows considerable disorders in
the phonetic production of fundamental frethe phonetic production of fundamental fre-
quency. Fo \(_{0}\) is flat and discontinuous with restricted overal
syllable lengthening
range. Sentence final
is usually absent, but yllable lengthening is usually absent, but sentence
be intact.
B. Prosodic modification following right \(\frac{\text { anterior lesion }}{\text { There have }}\)
There have been relatively few clinical eports of prosodic deficits following anterior
ight hemisphere lesion \(\{22]\). Recently however ight hemisphere lesion [22]. Recently however
he syndrome of "aprosodia", which according the syndrome of aprosodia", which according
to Ross [23] designates a selective inability to use prosody to express emotional states,
and "auditory affective agnosia" and "auditory affective agnosia" [24] which
designates the inability to recognize emotional designates the inability to recognize emotiona
information carried by voice, have lead to renewal of research on this topic As far as phonetic studies are concerned,
Dordain, Degos and Dordain [25] reported nonotonous voice in nine of seventeen subjects with
right
right hemisphere
hemiplegia. Rent lesions suffering from also report monotonous voice in two subjects with right hemisphere lesions. In an earlier
study of nine subjects with right hemisher study of nine subjects with right hemisphere
lesion (three frontal, three parietal and three temporal) we were ourselves able to observe that the three subjects with right
frontal lesion showed restricted intonational novements in phrase and sentence final position [27]. However, these subjects produced considerable lengthening in vowel duration
for phrase and sentence final syllables.

\section*{instrumental analysis}
A. Subject population and speech sample

The sub jects for this study were six
francophone, adult right-handed patients. Thre patients (A, B and C) suffered from unilaterel left lesions affecting the anterior portion
of the left hemisphere. Three other patients
\((D, E\) and \(F)\) suffered from unilateral right lesions affecting the anterior portion of
the right hemisphere. There were four female subjects, A, C, D and E, and two male subjects \(B\) and \(F\). As for lesion etiology, subjects A, B, C and F suffered from cerebro-vasculay accidents: Subject A, a thrombosis of
the internal carotid artery; Subject B, an occlusion of the middle cerebral artery; Subject c, occlusion of the internal artery; artery and Subject \(F\) from an rupture of an jects \(D\) and \(E\) both suffered from cerebral tumors, an astrocytoma and a glioma, respectively. At the time of interview Subject A was 23 years of age, Subject \(\mathrm{B}, 63\) years
of age, Subject C , 36 years of age, Subject
 age and Subject \(F\), 35 years of age.
All subjects suffered from severe hemi-
plegia contralateral to the side of the lesio For subject A the clinical the lesion
interview was carried out 473 days after onset of the
accident, for Subject B the interview took place 637 days after onset, for Subject C , 180 days after onset, for Subject \(\mathrm{D}, 17\) days after onset for Subject \(E, 21\) days after
onset
and for Subject \(F, 14\) days after onset. onset and for Subject F, 14 days after onset.
All subjects were in stable neurological condition at the time of interview. The speech sample submitted to instruspeech section of the clinical aphasia examination battery currently in use at the Salpetrière and St. Anne Hospitals in Paris,
France. The patients were replying to question about their illness, their profession, etc. For each subject approximately 300 sylla-
bles of spontaneous speech were analyzed.

The speech sample for each subject was
submitted to two parallel instrumental was subit analyses of paraleel instrumental
phonetic
frequency, intensity and duration. The first analysis was carried out by a digital real-time fundamental fre-
quency analyzer and the second by a digital eal-time colour spectrograph
B. Results of instrumental analysis left anterior \(A, B_{1}\), and \(C\), with unilateral a) intact range of \(F_{0}\) were found to have:
a) relatively of frequent movements (Fig. 1 );
bo movements to indicate sentence boundaries (Fig.2); c) relatively infrequent use of sentence d) very frequent use of pauses (Fig.4)
e) frequent use of monosyllabic or bisylSubjects \(D\), unilateral right anterior lesionfering from red to subjects A, B and C, showed:
a) reduced range of \(\mathrm{Fo}_{\mathrm{F}}\) (Fig.1); , reduced use of
reduced use of Fo movements to ind
sentence boundaries (Fig.2); ) relatively frequent use of syllable lengthening(Fig. 3 );
d)
reduced use of pauses (Fig.4);
e) considerably less frequent use of mono-


Bonosyllabic groups \(\mathrm{t}=14.360, \mathrm{p}(4)<0.00\)
Bisyllabic groups \(t=3.033, p(4)<0.05\)
Figure 5
Percentage of ocur Percentage of occurence of mono-
and bi-syllabic accentual groups.
discussion
While subjects with anterior left hemis here lesions produced a high number of pauses accentual groups, they continued to use rudimentary system of intonational marking based primarily on \(F_{0}\) movement to indicate phrase and sentence boundaries.
The results also suggest with unilateral rel left suggest that patients not show a restricted hem range when compared to subjects with unilateral right hemisphere
lesions. This observation is slightly different, but is observation is slightly diffe-
not incompatible with previous honetic studies which compared brain-damaged subjects to control subjects. It is however
mportant to note that none of the patients mportant to note that none of the patients
isplaced intonational movements or produced anomalous intonational patterns. The stratedy
used was simple and consisted in attributing used was simple and consisted in attributing
intonational rises to syllables in non-sentence inal position and major falls to syllables sentence final position
these two groups of subjects have important
 deficits following focal brain lesions and In terms of the clinical analysis of
roca's aphasia with acconpanying agramatism, Broca's aphasia with accompanying agrammatism,
hese results suggest that the use of the these results suggest that the use of the
term dysprosodic, wiich suggests a selective rosodic deficit, to qualify the speech output these sub jects is inappropriate. Moreover, patients do not have simply \(a\) musical or motional role, they serve to delimit the jor constituent boundaries of the utterances anterior lesions relied more heavily on durational attributes, as opposed to \(\mathrm{Fo}_{\mathrm{o}}\) movement, to indicate the principal syntactic units
of their utterances. This finding is in agreement with previous results. It is however important to note that the overall Fo contour
of these patients is not absolutely flat principal tatients is not absolutely flat. The
difference between these patients and patients \(A, B\), and \(C\) is the lack patients
movement \(F_{o}\) movement in group and sentence final position
where the greatest variations in Fo usually

with a greater degree of syllable lengthening in group and sentence final position give the auditory impression of a flat voice.

As for the clinical interpretation of "aprosodia", these results suggest that the relatively flat \(F_{0}\) line which is a major component of these patients verbal output may be related to a functional deficit in cerebral processing of \(\mathrm{F}_{0}\) and not to a selective disorder of emotional behaviour.

In terms of cerebral phonetic processing, the use of a rudimentary intonational strategy by subjects with left anterior lesions in the face of massive articulatory deficits, suggests that the cerebral circuits implied in the control, planning and execution of Fo movements are functionally separate from those responsible for the planning and execution of consonant and vowel segments. Furthermore the difference in intonational behaviour of subjects according to hemispheric lateralization of lesion suggests that there is a degree of functional specialization of cerebral circuits involved in the planning and execution of Fo movements [31]. Unilateral right anterior lesions appear to be associated with a reduction in range and frequency of occurence of \(\mathrm{Fo}_{0}\) movements at major constituent boundaries. Unilateral left anterior lesions appear to be associated with a severe reduction in phrase length, causing non-fluent speech output, but with intact placement and range of \(\mathrm{F}_{0}\).

\section*{REFERENCES}
[1] T. alajouanine, F. lhermitte (1964). Non-verbal communication in aphasia, In Disorders of language, A.V.S. De Reuck and M. O'Connor (eds.), London: Churchill, 168-177.
[2] M. BOTEZ, N. CARP, L. MIHAILESCU (1968) Prosody as a means of communication in aphasia, Revue Roumaine de Neurologie, 5, 197-202.
[3] E. BRISSAUD (1901) Aphasie d'articulation sans aphasie d'intonation, Revue Neurologique, 47, 666-669.
[4] R.DE BLESER, K. POECK (1984) Aphasia with exclusively consonant-vowel recurring utterances, Advances in Neurology, 42,51-7.
[5] A. PICK (1913) Die Agrammatischen Sprachstörungen, Berlin: Springer.
[6] G. MONRAD-KROHN (1947) The prosodic quality of speech and its disorders, Acta Psychiatrica et Neurologica Scandinavia, 22, 255-69.
[7] G. MONRAD-KROHN (1947) Dysprosody or altered "melody of language", Brain, 70, 405-15.
〔8] T. ALAJOUANINE, F. LHERMITTE (1960) Les troubles des activités expressives du langage dans l'aphasie et leurs rela-tions avec les apraxies, Revue Neurologique, 106, 604-633.
[9] M. COLE (1971) Dysprosody due to posterior fossa lesions, Trans. of the American Neurological Association, 96, 151-154.
[10] M. CRITCHLEY (1970) Aphasiology and other aspects of language, London: Arnold.
[11] E. ENGL, T. VON STOCKERT (1976) Ausländischer Akzent bei Aphasie, In Interdisziplinare Aspekte der Aphasieforschung, G. Peuser (ed.), Cologne: Rhineland.
[12] E. ENGL, T. VON STOCKERT (1978) Akzentverschiebungen bei Aphasie, In Brennpunkte der Patholinguistik, G. Peuser (ed.), Munich: Wilhelm Fink, 61-76.
[13] J. NIELSEN, M. McKEOWN (1961) Dysprosody: report of two cases, Bull. of the Los Angeles Neurological Society, 26, 157-8.
[14] H. PILCH (1976) Aphasische Intonationsstörungen, Saggi Neuropsicologia Infantile Psicopedagogia Riabilitazione, 2, 33-42.
[15] C. WHITTY (1964) Cortical dysarthria and dysprosody of speech, Journal of Neurology . Neurosurgery and Psychiatry, 27, 507-10.
[16] H. GOODGLASS (1968) Studies in the grammar of aphasics, In Psycholinguistics and aphasia, H. Goodglass and S. Blumstein (eds.), Baltimore: Johns Hopkins, 183-218.
[17] M. DANLY, J. DE VILLIERS, W. COOPER (1979) The control of speech prosody in Broca's aphasia, In Speech communication papers presented at the 97 th annual meeting of the Acoustical Society of Anerica, J. Wolf and D. Klatt (eds.), New York: A. S. A., 259-263.
[18] M. DANLY, B. SHAPIRO (1982) Speech prosody in Broca's aphasia, Brain and Language, 16, 171-190.
[19] J. RYALLS (1982) Intonation in Broca's aphasia, Neuropsychologia, 20, 355-360.
[20] J. RYALLS (1984) Some acoustic aspects of fundamental frequency of CVC utterances in aphasia, Phonetica, 41, 103-111.
[21] W. COOPER, C. SOARES, J. NICOL, D. MICHELOW, S. COLOSKIE (1984) Clausal intonation after unilateral brain damage, Language and Speech, 27, 17-24.
[22] M. BOTET, N. WERTHEIM (1959) Expressive aphasia and amusia following right frontal lesion in a right-handed man, Brain, 82, 186-202.
[23] E. ROSS (1981) The aprosodias, Archives of Neurology, 38, 561-569.
[24] D. TUCKER, R. WATSON, K. HEILMAN (1977) Discrimination and evocation of affectively intoned speech in patients with right parietal disease, Neurology, 27, 947-950.
[25] M. DORDAIN, J. DEGOS, G. DORDAIN (1971) Troubles de la voix dans les hémiplégies gauches, Revue de Laryngologie et de Rhinologie, 92, 178-188.
[26] R. KENT, J. ROSENBEK (1982) Prosodic disturbance and neurologic lesion, Brain and Language, 15, 259-291.
[27] P. BHATT (1983) Le fonctionnement du système intonatif et lésions de l'hémisphère droit, In Neuropsychologie de l'expression orale, P. Messerli, P. Lavorel and J.L. Nespoulous (eds.), Paris: Editions du C.N.R.S., 194-214.
burst Intensity as a means of assessing SPEECH MOTOR PERFORMANCE IN UNINTELLIGIBLE CHILDREN

\author{
Hedwig Amorosa, Ursula von Benda, Gerd Scheimann
}

Max Planck Institut für Psychiatrie, Klinik
München, BRD

\begin{abstract}
As part of a larger study of children with a diagnosis of specific developmental speech and/or language disorder, the burst intensity in repetitive productions of the syllable /ta/ was examined in 24 children between 4;6 and 8;0 years of age with unintelligible speech. Twenty-four children without speech/language deficits matched for age served as controls. The intraindividual variability was significantly greater in the children with unintelligible speech than in the controls. This is interpreted as an indication of a deficit in speech motor coordination. The patterns of variability in the unintelligible children differed, however, indicating an inhomogeneous group with different types of underlying
\end{abstract} motor deficits.

\section*{INTRODUCTION}

Normal children can be understood by strangers at the age of 4 years. There is a group of children, however, with normal intelligence, normal hearing and otherwise normal development who are unintelligible much longer, sometimes till age 7 or 8 . Recently, the phonological aspect of this disorder has been emphasized, following a trend in studies on speech and language disorders to stress cognitive and linguistic aspects and deemphasize or disregard motor functioning. In our previous studies we found that motor coordination problems contribute as much to unintelligibility in children with specific speech and language disorders as do dysgrammatism, paraphasia, and other linguistic abnormalities \([1,2]\).

Since speech requires constant permutations and combinations of gestures in tightly defined temporal sequences, speech motor coordination can
be assessed only during the act of speaking and with methods that do not interfere with this activity. We used acoustic analysis of repetitions of a simple syllable [4] to compare speech motor coordination in unintelligible children and normally developing children of the same age.

Speech can be considered as a skilled act, practiced increasingly during childhood. Two important aspects of skilled acts are speed and low variability in repetitions of the same movement. Besides other parameters, we measured the mean intensity of the release burst of the /t/ in slow and fast repetitions of the syllable/ta/. The intensity of the release burst is dependent on the intraoral pressure build-up during the stop closure and the speed of the release of the stop. Therefore, the subglottal pressure, the opening of the glottis, the closure of the velum and the seal of the stop closure all have to be controlled and related to each other to result in an overall invariant burst intensity [5,6,8]. Measurements of intraoral pressure [3] or peak airflow [7] have shown that adults have very little variation in syllable repetitions.

\section*{METHOD}

Subjects
The subjects were 24 children between \(4 ; 6\) and 8:0 years of age from several special schools for speech and language handicapped children. They had been selected for our study because of their unintelligible spontaneous speech. None of the children had a subnormal IQ or any hearing deficit. A detailed language assessment revealed that the children had speech and language deficits of varying types and severity, including language comprehension problems, dysgrammatism and word finding problems. The control subjects were 24 children without speech or language problems matched for age.
\(\frac{\text { Procedure }}{\text { The }}\) children were tested individuThe children were tested in school.
ally in a quiet room at their seat
 ta/ first slowly and then as fast as
possible about 20 times each. The speech possible about 20 times each. The speech icrophone MKE 803 and a Nagra 4.2 tape ecorder. The microphone was placed in
ront of the child about 50 cm from the mouth. For each child the recording evel was adjusted at the beginning of the recording. The tape- recorded speech
was digitized at 20 kHz . The intensity level was again adjusted at the beginning of the digitization. The syllables stop under visual and auditory control using a segmentation program developed by M. Dames on an LSI II/73. from the beginning of the the 12.5 ms was calculated in dB in relation to the overall amplitude of the analog-digital converter. This procedure allows comsity in individual children but not of difference intensity between children. The difference between the burst intensity cof two consecutive syllables was cal-
culated in of the intensity of the preceding syllable.
\(\frac{\text { Statistical analysis }}{\text { Since not all children produced } 20}\) syllables, difference scores for upito
15 syllables per child were used. These children with unintelligible speect \(\square\) children with normal speech


Figure 1 ification of children into 5 clussification of children the mean intensity of th
cores were then grouped into 5 cluster using Ward's [9] cluster analysis. Group included variability, Group II 10-13\%, Group \(10 \%\) varliab, Group IV 20-29\% and Group \(V\) V
III \(14-19 \%\).
\(30-45 \%\) variability. The Wilcoxon matched \(30-45 \%\) variability. The Wilcoxon matched
pairs test was used to test for the groups

RESULTS
Figure 1 shows the distribution of the children with unintelligible speech and the matched controls over the 5 clusters. In cluster I (indicating the
least variability) there are 10 children least variability) there are
from the control group and 3 children from the control group and chidren
with unintelligible speech, whereas in
cluster IV there are only children wit with unter IV there are only children with speech disorders. The difference between
the
distributions is significant (p<0.01). There is no significant correlation with the variability of the mean intensity of the total syllables or
the speed of fast syllable repetitions.

\section*{discussion} Zue \([10]\)
has measured the average
RMS-amplitude \(10-15 \mathrm{~ms}\) following stop release in adults. He does not give data on the variability, however. No studies
on the variability of the burst intenon the variability of the burst inten-
sity in children were found in the sity in chare. If conclusions can be drawn from the low variability of intraoral
air pressure [3] or peak airflow [7] for air pressure syllable repetitions, one would expect sy find littie variation in burst intensity in normal adults. The higher varia-
bility of the mean intensity of the bility of the mean intensity of the
first 12.5 msec of burst release in slow and fast repetition of the syllable ta/ in children with unintelligible
speech as compared to age-matched conspeech as compared to age-matched con-
trol children can be interpreted in terms of the problems these children have with motor coordination. It is most with the necessary and normally highly automatized constant adjustment coordination of subglottal pressure and
glottal opening, and with the nasal and oral closure. In a few of the children the high variability in the speed of th
stop release might also play a role. The group of children with unintelligible speech was not homogeneous. Some of the children were in fact able to
establish control as well as the children with normal speech and language development. The high variability of the burst intensity had different explana-
tions in different children. Some subtions in different children. Some sub-
jects were able to control the intensity for the first few syllables but seemed to lose this control later on. A few
similar burst intensity and than ther was a sudden change. These were children who showe
movements.

These results are compatible with findings on phonatory abnormalitie in children with be the continuou adjustment and fine coordination of th anteracting systems that
different
is the problem. Both cerebellar deficits is the problem. Both cerebellar andities may be responsible for the variability in the motor output ,

\section*{REFERENCES}
[1] Amorosa, H.; von Benda, U.; Dames Meficits in fine motor coordination in children with unintelligible speech. European Archives Psychiatry and Neuro
Sciences, \(236,26-30\)
[2] Amorosa, H.; Wagner, E. (1987) The relationship between a movement
disorder of the tongue and a phonolog
[3] Brown, W.S.; M.Glone, R.E. (1969) Constancy of intraoral air pressure
\(332-339\)
[4] Hirose, H. (1986) Pathophysiology of motor speech disorders (dysarthria). Folia Phoniatrica \(38,61-88\)
Isshiki, N. (1965) Vocal intensit Isshiki, N. (1965) Vocal
and air flow rate. Folia
Phoniatrica,
17, \(92-104\)
[6] Murry, T.; Schmitke, L.K. (1975 Air flow onset and variability
[7] Trullinger, R.W.; Emanue1, F.W. (1983) Airflow characteristics of stop-plosive consonant production of normal-speaking children.
Journal of speech and Hearing Research, \(26,202-208\)
[8] von Euler, (1982) Some aspects of speech breathing physiology. in
s. Grillner et.al. (eds.), Speech Motor Control. Pergamon Press,
[9] Ward, \(95-103\) grouping to optimize an objective function. Journal of the American Statistical
Association, \(58 \quad 236-244\)
 terístics of stop consonants University Lingusitics Club, 1-82

\section*{INTONATION AS A potential diagnostic tool in developmental}

Ursula von Benda
Hedwig Amorosa

Max-Planck-Institut für Psychiatrie, R1inik
Munich, Federal Republic of Germany

\section*{astract}

Speech samples obtained in 4 speech
from 11 autistic children ( 7 situations from 11 autistic children ( 7
to 17 years of age) were compared with those from speech/language disordered children and controls matched for age
and IQ. The recrdings were analyzed by digital speech processing programs, the parameters assessed being \(\mathbf{f 0}\), intensity and duration of speech segments. Analyses of variance yielded significant
group differences on all three parameters, with the autistic group showing the highest intra- and interindividual
variability.
Discriminant
analyses variability. \(\begin{gathered}\text { Discriminant analyses } \\ \text { resulted in a clear separation of the }\end{gathered}\) resulted in a clater separation ort the
groups. These findings support hrpothesis that intonation can be of key importance in differential diagnosis of speech communication.

\section*{introduction}
\(\begin{gathered}\text { Comparisons } \\ \text { have }\end{gathered}\) of not morphosyntactic \(\begin{gathered}\text { resulted }\end{gathered}\)
tatistically have significant resulted in
between verbal autistic children and
speech/language disordered children [1].
children has consistently been described
in rather impressionistic and negative
\(\begin{aligned} & \text { terms, for example as odd, mechanical } \\ & \text { hollow, devious or monotonous }[2,3]\end{aligned}\)
hollow, devious or monotonous \([2,3]\)
\(\begin{aligned} & \text { whereas, when mentioned at and languag } \\ & \text { intonation of }\end{aligned}\)
disordered children has been judged a
\(\begin{aligned} & \text { normal, adequate or even "compensatory" } \\ & \text { Monotonous or idiosyncratic patterns }\end{aligned}\)
Monotonous or are easily attributed to
\(\begin{aligned} & \text { emotional disturbances because emotiona } \\ & \text { aspects of verbal communication ar }\end{aligned}\)
frequently expressed, solely by
\(\begin{aligned} & \text { intonation. But intonation in its wider } \\ & \text { sense }[4,5,6] \text {, acoustically a composite }\end{aligned}\)
\(\begin{aligned} & \text { sense }[4,5,6] \text { acoustically a composite } \\ & \text { of the parameters fo, intensity and }\end{aligned}\)
duration and their co-variation, serves
word, of the whole utterance and of the speech situation. To cite Fay and
Schuler
[2]: Schuler
segmentals [2]: "Correct use of \(\begin{gathered}\text { non- } \\ \text { requires } \\ \text { not }\end{gathered}\) segmentals thus ratical ability but also the ability grammatical to and interpret social cues." Normally the understanding and
imitation of
intonational contours precedes the acquisition of speech. precedes the acquisition of speech.
Ricks [7] found some evidence that in
young autistic children lpatterns young autistic children "patterns of
babble are also impaired or abnormal". babble are also impaired or abnormal". intelligent older autistic children lack intuitive understanding of
intonational cues. Their literalness and lack of symbolic language might be due to this basic defect [2].
We therefore decided to compare
intonational aspects of speech in intonational aspects of speech in
autistic children, children with specific \(\left.\begin{array}{c}\text { developmental } \\ \text { speech and } \\ \text { language } \\ \text { disorders [8] normally }\end{array}\right]\) language disorders
developing children.
the
We hypothesized
fo, of intensity that measurements of fo, of intensity
and of duration of speech segments would
result in 1. statistically significant
\(\underset{\text { statistically significant }}{\text { diferences }}\) between the autistic children on the one hand and the speech/language disordered
control children on the other:
2. Individual differences that would allow identification of each au
child by discriminant analysis.

METHOD
\(\frac{\text { subjects }}{T h e}\)
The subjects were 11 autistic chilaren, 11 children with speech/language
disorders and 11 normally developing hildren between 7 and 17 years of age, fotched for age and IQ (Raven CPM or
PM). All of the children were of normal nteiligence the children were of normal schools for
for
the
ianguage disabled or schools for the language disable.
normal primary or secondary schools. The autistic children had been
diagnosed by two different psychiatrists
and met Rutter's criteria for infantile autism \({ }_{\text {The }}\) [9] speech/1 anguage disordered children (sLD) met Ingram's criteria for
specific
speech and language disability speci
181.
\(\frac{\text { Materials }}{\text { Speech }}\) data were obtained in fou Speech data were obtained in
different speech situations: different speech situations:
1. Repeating sentences (total of 14
. Replables)
. Reading sentences (total of 22
3. Telling a story to pictures
. Tnswering questions about cars. In the latter two situations only the
first 30 syllables were included in the subsequent analysis.
procedure
Recordings were made under low nois icrophone
(Sennheiser Electret Conden er Module Microphone MRE 803) placed ne meter from the child's mouth. Speech
ignals were recorded by a NAGRA fter appropriate low py a NAGRA 4.2. they were digitized at a sampling rate 20 kHz . Syllables were then segmented by visual (computer screen) and auditory feedback. FO was determined by using
refined version of the autocorren pitch-detector suggested by RABINER nd visually reexamined with the help of a signal editor to correct any errors". darter tone steps for better comparison. Intensity was measured (in dB) in relation to the individual maximum
amplitude within a given speech situa\({ }_{\text {amp }}^{\text {amp }}\)
to analyses of variance were performed to assess (a) the homogeneity of group
variances (four speech situations) and (b) the homogeneity of variance of individual variances within groups (four peech situations)
Discriminant
lassify the subjects.
Variables for statistical analysis:
. MEAN DUR/S (mean duration of
2. MAX DUR/s (maximum duration of
3. MIN DINables in msec) (minimum duration of
syllables in msec)
4. MEAN FO/S (mean fo, data in
4. MEAN FO/S (mean fO, data in
5. Max \(\mathrm{MO} / \mathrm{S}\) (maximum fo 50 Hz )
quarter tones above 50 Hz )
6. MIN FO/S (minimum fo, data in
quarter tones above 50 Hz
MEAN INT/S (relative mean
2mplitude in dB)
8. MAX INT/S (relative maximum
9. MIN INT/S (relative minimum amplitude in dB)
\(\frac{\text { Homogeneity of group variance }}{\text { For each of the } 9 \text { variables studied, }}\) the Bartlett test was used to assess the homogeneity of the estimated variance of

Table 1: Bartlett test for homogeneity
Variable CHI-SQ. DF Significance
\begin{tabular}{|c|c|c|c|c|}
\hline 1. MEAN & DUR/S & 19.8 & 2 & pr. 001 \\
\hline max & DUR/s & 31.3 & 2 & p<. 001 \\
\hline 3. MIN & DUR/S & 4.7 & 2 & n.s \\
\hline 4. Mean & F0/s & 5.9 & 2 & p<. 05 \\
\hline max & F0/S & 3.3 & 2 & n.s. \\
\hline MIN & F0/s & 2.6 & 2 & \\
\hline MEAN & Int/s & 8.2 & 2 & p<. 05 \\
\hline Max & INT/S & 3.4 & 2 & n.s. \\
\hline MIN & INT/S & 0.2 & 2 & n. \\
\hline
\end{tabular}

For variables 1 (MEAN DUR/S) and 2 roups were significantly heterogeneou 10.1* level) due to the variability in the autistic group. This was the cas
 There was a significantly greater variabithy in the autistic group than in the difference between the control group and the SLD group was not significant
for either of these variables (F-test) these two groups could be separated indirectly by comparison with the autised a statistically significant differ ence between the autistic children and the control subjects but not between the
autistic children and the sLD group.

Homogeneity of variance of individual \(\frac{\text { variances }}{\text { We then }}\) used the Bartlett test to We then used the Bartlett test to
assess the homogeneity of variance of assess the homogeneity of variance of three groups. We did this because we
thought that even in those cases where thought that even in those cases where
homogeneous mean group variances could be assumed, homogeneity or heterogeneit of variance of individual variances
might enable a clear separation of the groups


\begin{tabular}{|c|c|c|c|}
\hline  & ミェージ， & ： & ミ！ごささここニご \\
\hline \(\therefore\)－mat 50 c & こミ， & ： & ミ．．．： \\
\hline 2－max 3 ex & 洮： & ： & ミ－． \\
\hline －sir & － & ： & F＇．． \\
\hline S－mix & ミ & 三 & ミ．．． \\
\hline － six － & ミ： & ： & 二口： \\
\hline \(\cdots\)－Max & こご & 三 & ミ．．． \\
\hline s six ery & ミ， & ＋ &  \\
\hline
\end{tabular}








 －＝


\(\qquad\)

a＝i i＝teasity but also the standar


\begin{tabular}{|c|c|c|c|c|}
\hline ミこ： & にミミニミニ & \[
\frac{23 \leq 5}{2-2}
\] & \[
\begin{aligned}
\leq i=\equiv \\
z=15
\end{aligned}
\] & \[
\begin{gathered}
=1(x) \\
s i=1
\end{gathered}
\] \\
\hline  & 三！ & ：： & ミ & 91 \\
\hline i¥i立立 & \(\equiv 1\) & \(::\) & ミ： & \(s 2\) \\
\hline  & ミ & ミニ & ：\(:\) & § \\
\hline  & ミ1 & ！ & \(::\) & 3： \\
\hline
\end{tabular}




Thus speech situations 1 and 2 allowed correct classification of all
autistic subjects，and situations 3 and 4 of all control chidren．No child was classified incorrectly more than once，
so that if the predominant categ so that if the predominant category for
a given child was used this always led to a correct assignment．
iy produce such good results must still ly produce such good results must still other children meeting the same cri－ teria

\section*{SUMMARY}

Measurements of fundamental frequen cy，intensity and duration of syllable resulted in statistically significant
differences between and differences between autistic，speech／－
language disordered and normal control language disordered and normal control over，discriminant analyses allowed the assignment of each child to the correct diagnostic group． It is noteworthy that this clea classification was possible without considering age，IQ or verbal profic－
iency，\(i . e . ~ e v e n ~ w i t h ~ v e r y ~ i n t e l l i g e n t ~\)
 appears that not only autistic children but also SLD children fail to achieve
the level of proficiency that normal children do．．proficiency that normal If analyses of other subjects meet－ ing the same criteria yild similar resurts，we anticipate that in the
future such evaluations of intonation with the help of digital speech process ing programs may become a useful tool in
differential diagnosis，even in the preverbal stage．

\section*{references}
［1］L．Swisher，M．J．Demetras，＂The finessive Language Characteristic of Autistic Children Compared wit Mentally Retarded or Specific
Language－Impaired Children＂， Schopler，G．B．Mesibov（eds．）． Communication Problems in Autism，
Plenum Press，New York， 1985
2］D．Fay，A．L．Schuler，＂Emerging anguage in Autistic Children＂， in：R．R．Schiefelbusch（ed．）， Vol． \(5, \mathrm{E}\) ．Arnold，London，
3］C．A．M．Baitaxe，J．Q．Simmons， C．A．M．Baltaxe，J．Q．Simmons，
＂Prosodic Development in Normal
and Autistic Children＂in： E ．

Schopler，G．B．Mesibov（eds．）， of Enystal，＂＂The Intonation System （ed．），Intonation，Penguin
［5］Books，Baltimore， 1972 Prosody＂，Phonetica， \(35 / 6,301\)
339,1978
339,1978
E ．Stock，
E．Stock，＂Untersuchungen zu Form，
Bedeutung und Funktion bonation im deutschen＂，Schrifte zur Phonetik，Sprachwissenschaft
und Kommunikationsforschung，No． und Kommunikationsforschung，No．
18，Akademie Verlag，Berlin， 1980
［7］D．M．Ricks，＂Vocal Communication in Pre－verbal，Normal and Autistic
Children＂，in：N．O＇Connor（ed．） Children＂，in：N．O＇Connor（ed．），
Language，Cognitive deficits and Retardation，Butterworths，London，
［8］T．т
T．T．Ingram，＂The Classification of Young Children＂，in：M．Rutter，
J．A．M．Martin JiA．M．Martin（eds．），The Child Developmental Medicine，No． 43 ， Heinemann，Liondon， 1972
9］M．Rutter，E．Schopler，＂Autism：A ment＂，Plenum Press，New York， 1978
101 ．R．Rabiner，＂On the Use of
Autocorrelation Analy Autocorrelation Analysis for Pitch Acoustics，speech and Signal Processing，Vol．ASSP－25，No． 1
［11］\(\underset{\text { PSPSS }}{ }\) Beutel，H．Küffner，w．Schubö， ＂SPSS8＂（Statistik－Programm－Syste für die Sozialwissenschaften），
Fischer Verlag，Stuttgart， 1980

ABSTRACT
We observed 110 infants suffering rom cerebral paralysis. The aim of the present investigation is to study infant speech formation under cerebral patholo gy. Clinical and psychopedagogical me-
thods were used in the investigation.

The early period of the infant development is of great importance for the
normal speech formation. It is conditionnormal speech formation. It the infant ed by the pelooment, optimal periods of the maturing of the speech and to compensate visturbed functions. There is a considerable number of works devoted to the problem of speech formation in normal devevepmepment of this system under pathology has not been studied enough so far. This trend is presented in the works of \(/\).M. Mastyucho
Cass \(/ 3 /\).

We observed 110 infents suffering from cerebral palsy. The aim of the pre sent investigation is to study infant gy.
Gy. In the investigation we used clinical and psychopedagogical methods. Infant cerebral palsy is a poiyaetiological illness of the central nervous system which eppears in the pre- and netal period of the infant's development and is characterized by the affection of
motor and psychic spheres. According to motor and psychic spat of different authors speech afections are found in \(70-80 \%\) of cases of infants suffering from this infant's. life is conventionally called a pre-speech peiod the initial stage of which is the
cry. Infants with cerebral pathology ma cry. Infants with cere wal ponstrained have no cry or have a is connected with the pathology of the intrauterine period or apphyxia first weeks of \(11 f e\) sounds appear with a
considerable delay under cerebral patholo. considerable dis case they are rare and mono tonous. The early stage of baby-talk which under normal condevelops spontaneously age of 2.5 month of \(4-5\) months and sometimes of one year of the infant's life under pathology. Bestes this stage of baby-talk development inof this stage onds melodiousness, rudimenary character of sounds realization and unmodularity take place. The main composition of the early stage ound of indistinct locality - approximate vowels "a",
"H". Infants for a long time stay at the period of articulatory movements realization which takes its course independently of the infant's hearing. They pass over to the next stage (autoecholalia and
echolalia) with great difficulty and delay.
Baby-talk is usually delayed and starts at \(9-11\) months and sometimes even
later - at the age of 1.5 year. The babylater - at the age in the sound composition. Most frequent are bylabial ("I",
"ס") and backlingual ("k", "I") sounds less frequent are alveolar (" T ", "II") sounds. Even during favourable development the baby-talk stage is characterize ompfragmentariness, poorness 1 lexes and little activity. The stage may last more than one year.
year of the infant's life is marked by year of the infant sormation. Children wit cerebral paralysis have it at the age
from 1 year and \(2-3\) months to \(2-3\) years which depends not only upon the level of the psychic development of the child but also on the severity of the speech-motor
pathology. The retraced dependence of the pathology. The retraced dependence of the moment of she baby-talk points out to its great pr gnosis value.
rebral paralysis sech formation under cemain principles of speech formation in main principles of speech formation in
arities. They are-longer periods of acquiring separate groups of sounds and dependence of speech formation on severity and affected ap. Infant speech-motor ima ry of the articulatory apparatus under cerebral pathology do not serve as a ne-
cessary basis for the auditory perception cessary sound, as it is observed in the norm. Hearing under these conditions hinders, instead of stimulating, speech formation. logical character - in the norm they help in the transmission from one sound to another, whereas in this case they also of constant character, they often change. ech is often characterized by infent speech is often characterized by the presen-
ce of one or two groups of sounds (accordingto the manrer and place of articulation) which depends on the locality and character of affection of the articulatotongue muscies prevails labial sounds are meinly present, fection gives an opportunity for the for-
mation of lingual sounds. As a rule, we come across a mixed type of pathology which affects all the muscles of the ar are characterized by more explicit pathologicel changes as compared to the others The affections described above at
the early age are characterized as a de lay in prespeech or speech development which moy eventually transform into 2 speech breach and make the speech commu 11/-E. Mastyuchova "Clinical pictur and rehabilitation therapy of cerebra palsy in infancy", Medicine, 1972 . peculierities in infant ceretrai paisy"罧ST, 1979 .
13/, M. Cass "Speech habituation in cerebral palsy", "perver Publishing Company,
geoffrey a lindsey

\section*{abstrac}
Laryngographic techniques evolved in
speech analysis are extended in the
present work to the analysis of the
singing voice. Attention is focused on
laryngographically derived measures of
vocal fold open-phase times.
Specifically, the measure of open
quotient (open phase time over whole
period time provides a quantitative
parameter for the characterisation of
vice production differences between
vpeakers, trained singersand untrained
singers.

\section*{introduction}

The laryngograph [1] has been used for many years as a tool for the analysis of
normal and pathological speech as well as nofmal and pathological spech as went as
of the singing voice. More rently,
det detailed studies have investigated
changes in the changes in the laryngograph output
waveform (Lx) on a cycle-by-cycle basis,
mith wiew with a view to correlating these with the
acoustic output from the vocal tract [2]. acoustic output from the vocal tract [2].
The present work is designed to develop nem series of laryngographically based
plots which can be utilised on a routine plots which can be utilised on a routine
basis for speaking and singing voice basis for speaking and singing voice displays to be developed to, give feedback in singing/speaking voice production
data, subjects, and results
Four adult male singers took part in the experiment. Two are 'trained', having
had formal voice training and extensive solo performance experience; one of these is a baritone (Gw) and the other a tenor
(SB). The other two have choral sining experience and vocal ranges in the simiddle experience and vocal ranges in the middle
(baritonal) range for men; one of these
(DH) is an exper ( \(D H\) ) is an experienced amateur musician
short period, and the other (GL) is untrained; GL made recordings in botha
inatural,
informal style and in quasi-trained style which he adopts for choral-performance.

The subjects were digitally (PCM) recorded onto videotape in the anechoi room at UCL, with the output from a hig quality condenser microphone (tp) on on
channel and taryngograph output
waveform (Lx) on the other.

The data consisted of:
1) a reading of a phonetically balanced
passer asproximately two passage lasting approximately two 2) five monophthongal vowels, in the environments \(/ \mathrm{b}\) d/ and \(/ \mathrm{m} \mathrm{m} /\), spoken wit
 ( 165 Hz );
3) major scales exhibiting each singer's
range, sung on the vowel \(/\) a/; and range, sung on the vowel/a/; and
4) a performance of "God Save the Queen" starting on \(G(192 \mathrm{~Hz})\).
The analyses consist of the following (see the speech pressure waveform ( 5 p ); b) the laryngograph output waveforn passing through the throat between tw voltage driven electrodes placed on the wings of the thyroid cartilage; the peak
thus correspond to the maxima of vocal thus correspond to the maxima of vocal
fold closure and the valleys to maxima glottal opening, in each cycle [1]; fron c) vertical period markers derived fro d) a plot of the logarithm of fundamental frequency (derived on a perime ( \(F x\) ); and ariod basis from a ) again e) two plots of the open quotient (0al),
which is defined as the duration of the which is defined as the duration of the
open phase of each cycle divided by the
duration calculated from \(L x\) by different metho
f vocal fold closure in a glottal cycle o be the peak of the differentiated \(L x\)
aveform, the point of opening to be the minimum in the differentiated \(L x\) waveform; whilst the second (0Q2) takes
he upper 70\% of the peak-to-peak the upper \(70 \%\) of the peak-to-peak losure of the glottis and the lower \(30 \%\) orepresent an open glottis (see [3] for
full description)
Figs. 2 to 6 show these analyses plotted for the first note of the final
occurrence of the word "God" (E 330 Hz\()\) in the sung performances of "God Save the Queen" by each of the subjects. Fig. \({ }^{1}{ }^{1}\)
shows equivalent plots for the vowel \([\) ] spoken by a female subjert with high fall
intonation. In each figure pertaining to intonation. In each figure pertaining to
singing, the oq plots derived by both singing, the 0Q plots derived by both
methods remain relatively steady; mean nethods remain relatively steady; mean tabulated in Fig. 7 . This table also
gives summary statistics relating to the speaking voice of each subject based on the reading of the passage (section 1 of he recording) which have been derived fistribution plot [4]. This plot consists of a histogram of the number of consecutive pairs of TX period values
which fall within the same histogram 'bin'. The summarised statistics show the number of such pairs in the plot for that subject (under the heading
"samples"), the fx range at the \(0.1 \%\)
 alue. Mean values of \(0 Q\) calcutated by
the two methods are also given in the the two
table.
discussion and conclusions
In spoken data, evidence has been found
[2] for a 'preferred' value of \(F x\) towards the lower end of a speaker's towards he lower end of a speaker's overall
peaking range, at which the vocal folds ibrate with optimal efficiency and closed phases are value of \(F x\), open and the peak-to-peak amplitude of the Lx aveform tends to be at its maximum. preferred frequency of vocal fold a preferred frequency of vocal fold
vibation is found in Fx distributions or stretches of continuous speech which have their modes near this \(F \times\) value. It is plausible to suggest that this Fx eparture/arrival point for prosodic non-pitch prominent syllables. Fig. i llustrates this for the speech of woman (EA), whose Fx range is measured
as 118 Hz to 371 Hz and whose Fx mode is 47 Hz (Fig. 7); this speaker's \(0 Q 1\) and
around the point at which her Fx contour pass through 147 Hz .
It has also been found [3] that for many speakers closed phase duration varies
considerably more with Fx than does ope phase duration. more with \(F x\) than does open remains comparatively constant while the closed phase is shortened as \(F X\) rises and
lengthened as FX falls. phase is roughly falls. Thus the closed the open phase is rather steadier. Whil can be seen in the plots for our speaker
(Fig. 1) where \(0 Q\) values, calculated by both methods, tend to fall with th falling Fx
The majority of a singer's pitch range
makes use of \(f x\) values which are hig makes use of Fx values which are high range. In view of speaking pitch observations on speech, one might expect raised 0 V values at sung pitches at the
higher end of the range. This does not higher end of the range. This does not
appear to be the case with our trained singers. Figs. 2-6 show OQ values for the upper limit of the measured fill speaking range for each subject: Fig. 7 gives a summary of their speaking ranges
and modes. The singers are ordered by experience, and our speaker (EA) by included as the final table entry for
comparison. This ordering of subjects comparison. This ordering of subjects
corresponds closely to the trends in oal corresponds ciosely to the tren
and 0 q 2 values for the singers.
Subjects \(G W\) and \(S B\) are professionally trained with many years solo performance experience. CW is also a singing values, calculated by both the mean of values, calculated by both methods, are
markediy lower ( \(30 \%\) to \(38 \%\) ) than the values found for the other subjects (49\% to 75\%). Subject DH, who has had some
singing training, and extensive choral singing training, and extensive choral
experience at an amateur level has mean OQ values close to \(52 \%\). Subject GL, who has had no formal singing training,
recorded productions in two maners, an ecorded
informal
styductions
in two
(GL(U)) \(\underset{\text { maners, }}{\text { and }}\) an quasi-trained style (GL( \(V\) )), and it is
clear that he attains more appropriate on values when he adopts his choral style. The mean 00 values given for our speaker (EA) must be interpreted win reference to ig. l, since it is clear that the od values vary over a wide range with \({ }^{\mathrm{F} x}\)
change: her oq values are above soo during the first portion of the utterance and they descend below \(50 \%\) towards the

These data suggest that there is a clear rend towards lowered \(O Q\) values with erformance ecause speech data super is of not

\section*{references}

OQ values correlate with raised \(F x\), and therefore lowered oq in singing, must presumably be a direct effect of a
trained style of singing. This implies trained style of singing. This implie
that an important mechanism involved note productions by o triained singer is
the considerable lengthening of the the considerable lengthening of of the closed phase in each larynx cycle with
respect to the open phase. This has two respect to the open phase. this has two
main consequences: firstly the voice quality becomes less breathy; and
secondly the longer closed phase ensures secondy the longer closed phase ensures
nore prolonged substantial acoustic output from the vocal tract as the coupling-in of the subglottal cavities
(and the associated increase in acoustic damping) occupies less of the cycle. Thus the singer makes use of a natural
acoustic consequence of an action which coustic consequence of an action which requires no additional
pulmonic energy, to achieve this increase in output.
uture work in this area will include ider range of subjects with various evels of singing training and experience in order to evaluate the robustness of
these measures. The possibility also exidsts of a new form of visual display to aid the singer, which could complement Sing sing assessment and development
SINGD) system currently aimed pitching by children from five years ppwards [5]. This system makes use of ardware interface, specially developed on ble stimates fundamental frequency from an ibrato input; it also allows work o ystems of different musical traditions A new oq component musical traditions.
discussed the lines iscussed above, would make a significant omprehensive and coherent tool for tudents of singing.

\section*{aCknowLedgement}

The authors would like to thank Graham Welch and Simon Bainbridge for thei Peter Davies for his in making recordings Peter Davies for his OQ analysis package
and his help with software modificter and David. Smith for the Tx processing
[1] Fourcin, A.J., and Abberton, E.R.M, (1971). "First applications of a ne Review, 21, 172-182.
[2] Lindsey, G., \(\begin{gathered}\text { Davies, } \\ \text { Fourcin, } \\ \text { (1986). }\end{gathered}\) Fourcin, A. (1986) "Laryngeal sequences",
Proceedings 258, IEE
99-103. Conference
(3] Davies, P., Lindsey, G., Fuller, H. in glottal open and closed "Variation in glottal open and closed phase fo
speakers of English", Proceedings speakers of
the
Institute of

Fourcin, A.J. (1981). "Laryngographi assessment of phonatory function" The American Speech Language Hearin
Association (ASHA) Reports, Associat
\(116-127\).
[5] Howard, D.M., Welch, G.F., Gibbon, assessment and development of singin ability, -initial results with a nem
system", Praceedings of the system", Proceedings, of the
Institute of Acoustics,, in
[6] Howard, D.M. and Fourcin, A.J.
(1983). "Instantaneous voice period estimation for Electronics Letters, \(19,76-78\).

(





\section*{Nicole Scotto di Carlo \& Denis Autesserre}

Institut de phonétique - U.A. 261. CNRS.
Universite de Provence, France.

\section*{resure}

Dans l'enseignement du chant, une tradition datant de plusieurs siacles, insiste sur 1rimportance du solulevement du voile du palais pour l'émission de
luigu. Or, tous nos examens physiologiques ont rél'aigu. Or, tous nos examens physiologiques ont re-
velé que dans ce registre il était relativement abaisse.
Nous tentens d'expliquer cette contradiction et de comprendre coment une telle erreur dans 1'appré-
ciation d'un mouvenent a pu etre comise par des sujets dont les sensibilités internes sont extrémement développeses.

\section*{1. - introducticn}

Depuis le xulle sizcle od sint parus les premiers ourrijes strieux de techrige vocale, jasau a nos
 dans le chant, en farticalier peur leemission de remeju:
ercurt trois sizoles, on a érit et enseigné que terote tu palais cerait se sevierer procressive-

 -

\section*{.. - proticle exementr}
1. - EMrssis:-ments:

 MChomision semre.

 2




trois principaux registres et sur les mêmes notes que celles sélectionnées pour l'examen radiologes calques de chaque trame ( 50 par seconde) ont êté ensuite dessinés.
B. - Paranètres analysés
1. Sur les calques radiologiques,

Te degré de relèvement du voile a été estimé part ir de la ligne bi-spinale prolongé jus. a'a l'arc antér ie. de atlas.
la fermeture vélo-pharyngée est mesuré dans
la région de constriction maximale située entre le dos du voile et la paroi postérieure
2. Les données endoscopiques préci isent les rensel.
grements fournis par les clichés radiologiques, sur les mouvements antéro-poster ieurs du voile et apportent une information complémentaire en ce qui concerne les mouvements des parois pho
rymgiennes. Toutefo is, les mesures des docunnents endoscepiciues ne peuvent aroir qu'une valeur \(r\) e. lative en raisen des déformations optiques (de. type grand angulaire) et des dippacene
thels du fibroscope en cours d'examen. Sur les calques endescopiques,
les mouvenents arto-postérieurs du voile sont mesurés par ráférence à un axe par-ado
dian cui relie le centre du voile a la paro pestêtieure du pharym;
les céplacements des parois laterales du pha. rymx ont étés mesurées par référence à une per. pendiculaire à l'exe para-riedian au nivedud la constriction maxinale (Fig. 1 A).

\section*{III. - RESLTATS}

Gans te catre linits de cette etude, rous n'avars reteru cie deux voyelles extrestes en ce qii con. come la pesition cu raile:
 fans vaysile nasale, cuverte, detencue, qii entrat ee sen diaissement-







figure iA

figure 2

a a: arc anterieur fn: fosses nasales


[a] Grave


Figure 2B


Figure 20
endoscopiques de respiration.
Les ressultats des mesures eff ques radiographiques et endos.
tableau I: Mesures radiologiques.
\begin{tabular}{|c|c|c|}
\hline & Relèvement & Fermeture \\
\hline Respiration & 0 & 7.5 mm \\
\hline (i) Grave & 7.5 mm & 1 mm \\
\hline lilaigu & 4 mm & 2 mm \\
\hline [ä| GRAVE & 2 mm & 6 mm \\
\hline [â) AIGU & 3 mm & 4 mm \\
\hline
\end{tabular}

TABLEAU II : Mesures endoscopiques.
\begin{tabular}{|c|c|c|}
\hline & Mouvements antéro-postérieurs & Mouvements latéraux \\
\hline Respiration & 21 mm & 5.9 mm \\
\hline [il grave & 12.3 mm & 1,7 mm \\
\hline lii algu & 13.4 mm & 3.7 mm \\
\hline lal GRAVE & 21 mm & 5 mm \\
\hline [ä AIGU & 14.5 mm & 4 mm \\
\hline
\end{tabular}

\section*{iv. - comemtaires}

Les tableaux I et II démontrent l'existence d'une correlation positive entre le relevement du voile pharynx. pharynx.
En revanche, relèvement et fermeture vélo-pharyngée
sont inversement corréles.
on a donc , Rerme/Retréci \(\sim\) Abaissé/Ouvert/Elargi ce qui signifie que la fermeture vello-pharyngee ne
peut être realisee qu'en relevant le voile et en peut etre récissant les parois latérales du pharynx. Or, rétrécissant les parois laterales du pharynx. Or,
dans le chant, le passage velo-pharynge et la totat
lité du pharynx doivent rester ouverts. Pour ckanlité du pharynx doivent rester ouverts. Pour ckan-
ter on doit donc necessairement abaisser le voile, ter du moins, utiliser des positions velaires pro-
ou ches de l'abaissement. L'analyse détaillee des doches de abaissement. L'analyse détaillee des documents radiologiques et
d'ailleurs cette hypothèse.
A. - Voyelles parlées et voyelles chantées dans le
-

Si le relèvement et l'accolement du voile soct tor Si le relèvement et l'accolement du voile sont tou-
jours liés dans la parole, il n'en est pas de même dans le chant oü soulevement et accolement sont
dissociés. dissociés.
la voyelle /i/ qui est la plus tendue et la
fermé du systeme vocalique français, la plus fermee du systeme vocalique françats,
radiographie du grave montre qu'il n'y a pas
dio d'occlusion velo-pharyngee conme dans la parole,
mais au contraire, une ouverture de \(1 . \mathrm{mm}\).
'endoscopie met en évidence un resserrement des parois latérales du pharynx beaucoup moins pro nonce qu en voix. parlee et
voile moins accentuê (Fig. 2 A )
2. La réalisation de la voyelle nasale / \(\tilde{a} / n e ́ c e s\) . La realsation da dans le registre grave que dans la parole
portante. portante.
Les calques radiologiques et endoscopiques montrent que pendant l'émission de la voyelle \(/\) à/ dans le grave, la position du voile se rapproche
de
- Réalisations des voyelles dans l'aigu

Lors de 1 'emission de l'aigu, le voile du palais orcupe une position spécifique qu'il ne prend ja-
mais dans la parole et qui est intermédiaire entr mais dans 1 parole et qui est intermed
la position rele enter
relevee/tendue des voyelles orales fernasales la pig. 2 C et 2 ) 1. Pour la réalisation de la voyelle /i/, on obser.
ve sur les calques radiologiques une modifica-
tion tres nette de la forme du voile lorsque le tion tres nette de a forme du voile lorsque 1 (
sujet passe du grave à 1 'aigu (fig. 2 A et 2 C ). 2. En revanche dans le cas de la voyelle / ã/ le
voile du palais conserve sa forme mais change voite du palais conserve sa forme mais change
diorientation pour 1'aigu où il se redresse sans se soulever (Fig. 2 B et 2 D).
Dans le registre aigu, la difference entre orale e de maintenir la distinction des timbres vocaligues, de maintenir la distinction des timbres vocaliques,
le soprano a opéré de très légères modifications destinés à conserver les caractéristiques essen. tielles de ces deux types de voyelles: labialisa-
tion, augmentation de 1 louverture buccale, abaissetion, augmentation de l'ouverture buccale, abaisse-
ment du voile, postériorisation de la masse linguale, dilatation de 'espace velo-pharyngé pour A ces modifications infimes, vient s'ajouter pour A ces modifications infimes, vient s'ajouter pour
la voyelle nasale un rétrécissement important de
l'espace compris entre la face endobuccale du 1espace compris entre la face endo-buccale d
voile et le versant pharyngien de la langue; qui passe de 12 mm pour \(/ \mathrm{i} / \mathrm{a} 5 \mathrm{~mm}\) pour /ă/ (Fig. 20 et 2 D). Le son vocalique étant moins, oralisé paraitre davantage nasalisé (HUSSON \(1 /\) ). .
L'endoscopie ne fait pas apparaître de differnces nondoscopie ne fait pas apparaitre de différences
notables entre le \(/ \mathrm{i} / \mathrm{et}\) le /ã/ aigus. Par rapport a la voyelle orale, la nasale se caractér ise par un tress léger abaissement du voile associé a un infine
élargissement des parois latérales du pharynx (Fig. elargissement
2 e et 2 D .

\section*{v. - discussion}

A l'issue de cette étude, on peut se poser dell questions:
pourquai le voile du palais a-t-il cette posicon particuliere dans l'a a a gu?
coment expliquer la sensation de soulevement que ressentent les chanteurs alors que leur voile on relativement basse ?
1. La position spécifique du voile du palais dans siolgu peut s'expliquer d'un point vue phy
a) Du point de vue physiologique,
postérieure du pharynx est associé pour 1 a parole a u un double effet
- des muscles du voile
le peristaphylin interne (levator veli palatini) associé au palato-pharyngien et au pala-to-staphylin (musculus uvulae), et
des muscles du pharynx.
le constricteur pharyngien supérieur qui agit sur les deux diamètres du pharynx (les cons-
tricteurs moyen et inférieur ayant surtout une tricteurs moyen et
action élévatrice).
Ces differents groupes musculaires fonctionnant en synergie, about issent à une fermeture de type
shinctér ien qui risquerait d'entrainner un serrage au niveau du pharynx lors de 1 'émission de
1aigu. Pour éviter une trop orande des muscles pharyngiens et velaires, le chanteur va soulever son voile sans velaccoler a la chanteur
vasterieure du pharynx
val poster rieure du pharynx grâce a 1 action simulryngien (l'activité du palato-staphylin étant moindre dans ce cas).
la parole, on peut été remis en question pour comme tenseur, du peristaphylin extervention, muscle du voi le totalement indépendant des autres muscles du pharynx
b) Du point de vue acoustique et perceptif,
afin de mettre en evidence l'influence Even-
tuelle de cette position du voile sur le timbre de la voix chantée, nous avons demandé à un soprano d'emettre des vocalises du grave à l'a igui, d'abord normalement, c'est-à-dire avec un voile en position basse, puis avec le voil
du palais en position haute. ans le second cas. l'analy
apparaittre une atténuation tres nette du singin ormant a ansi qu'une diminution importante de deamplitude du vibrato de fréquence (qui passe
de 11,58 svt a 24,80 Svt, autrement dit de \(1 / 4\) de ton a un \(1 / 2\) ton).
Les deux vocalises soumises à 1 appréciation de professionnels du chant ont etté jugees à a l'una-
nimité de la façon suivante : le son de la veca ise émise avec le voivante : le son de la vocaSualifié de "plat", "terne", "écrase"; alors que e son de la première vocalise emise avec le
vile abaissé est considéré comme "beau", "rond" et "puissant"
Sans etre en me
Sans etre en mesure d'affirmer 1'existence d'une resonance nasale dans le chant, nous constatons
avec TARNEAUD \(/ 2 /\) que 1 'accees de 1 'air pulmonaire aux fosses nasales "embellit le color is de

Des générations de professeurs ont par 1 é de "1a
voate du son" qu'tl faut realiser en "soulevant" le voile. son" qu" taut realiser en "soulevant cients de ce "soule mement" qu'ils maitrisent au long dement. Or, ainsi que nous 1 'avons vu tout cupe dans la etude, le voite du palais ocdidin de co
appréciation de compre comment une telle erreur dans mise par des sujets dont lem peuvait être comrés sont extrêmement développées, nous avons realisé un examen ent developpees, nous avons
voile et de Ta luette par voie buccale d'observer pour liémission de lacale nous a permis sion transversale du voile et un étirement des
piliters postérieurs piliers postérieurs, associés à une hyper-ré-
traction de la luette. C'est ce soulèvement important de la région
uvulaire qui donne aux chanteurs lifllusion de uvulaire qui donne aux chanteurs 1 itilusion de soulever l'ensemble du voile; ce qui explique
que cette erreur ait pu etre perpetuee pendant si longtemps par les chanteurs et les profes-

\section*{VI. - CONCLUSION}

Dans la parole, lorsque le voile du palais es relevé au maximum, il vient s'accoler contre 1
paroi postérieure du pharynx et isole totalement naso-pharynx de la cavité buccale; ce qui n'es reste ouverte en permanence ainsí cavité nasal les télexeroradiongraphies que nous avions réalisées
lén
sur différents sur différents chanteurs professionnels.
Certains auteurs comme BARTHOLOMEW 13
Certains auteurs comme BARTHOLOMEW/3/ ou HUSLER
/4/ estiment cette ouverture indispensable dans le chant : "When singing, the nasal cavity must stay open (because it is) one of the main resonators in singing"
D'autres, comme BUNCH \(/ 5 / \mathrm{en}\)
"autres comme BUNCH /5/ en nient 1 'existence
"Both actions (elevation and tension) are mos important for speech and singing are most and blocks off the nasal phary the oral pharynx undesirable nasal tone". pharynx, preventing an Sans prendre parti dans. cette querelle, nous constatons néanmoins sur nos documents l'existence grave a l l'aigu.
pour l'émission dion qu'occupe le voile du palais pour l'emission de l'aigu, nous pensons qu'elle
résulte dun equilibre physiologique entre les muscles velaires et pharyngiens.
Des etudes complementairns ser
Des études complementaires seront nécessaires pour preciser si cette position du voile n'est pas la
consquence d'autres coordinations motrices lifes a 'augmentation de 1 'ouverture buccale et au

\section*{bibl iocraphie}

1/. HUSSON, R., La voix chantée, Gauthier-Villars, Paris, \(1960,205 \mathrm{p}\).
21. TARNEAUD, J., Le chant, sa construction, sa

13/. \(\begin{aligned} & \text { destruction, Maloine, paris, } 1946,135 \mathrm{p} \text {. } \\ & \text { BARHOLOMEW, W. T., TThe role of imagery in }\end{aligned}\) voice teaching", Proceedings of Music Tea1936: :78-93. HUSLER, F. \& RODD-MARLING, Y., Singing, the physical nature of the vocal organ, Hutch inSon, London, 1976, 148 p .
Springer ver lag, wien - New the singing voice, LEGENT, Fi, PERLEMUTER, L., VANDENBROUCK, C.,
Cahiers d'Anatomie ORL, vol Caniers
les, pharynat, Masson, Paris,. \(1986,137 \mathrm{p}\).

The pitch of glide-like fo curves in votic folk songs

\section*{Jand ross} Dept, of Computational Linguistics
Institute of Language and Literature
Lauristini 6, 200106 Tallinn Lauristini 6,
Estonia, USSR

ABSTRACT
It has been shown recently that in Votic folk songs two successive tone glides, one clear unambiguous pitch sensation. An experiment was conducted where musically curves with their voice. The stimuli \({ }^{\circ}\) consisted of four-note excerpts from the natural song performed by a low female
voice, where the third note corresponded to a glide-like \(F\) variation. The results confirm that the perception of such \(F\). curves belongs to the category of fusion, which is characterized by the pitch sensa
tion near the arithmetic mean of the terminal frequencies and a small dispersion of the subjects' responses, However, it
seems more appropriate to define the pitch seems more appropriate to define the pitch overall duration of the note.

INTRODUCTION
In speech, permanent \(F{ }_{O}\) changes are very common while long time intervals with a unusual. Music, on the contrary, is considered to be a sequence of notes, \(i\).e. of discrete segments with a relatively stab pitch each. Actual relationship between pitch and frequency in musical performance can, however, be quite complex. When a
particular note is perceived as having stable pitch it does not necessarily mean that during this note \(F\) should behave as
stably as the pitch. Am8ng such frequence changes which contribute more to the over all impression of sound than to the pitch sensation, the best known is vibrato.
brato can be defined as a simultaneous frequency, amplitude and phase modulation Evidence can be found in literature that in European concert singing \(F_{0}\) can be semitones, the modulation rate being 5.5 Recentiy Recently glide-like F variations in notes
with a stable pitch have been described in Votic one-voiced folk songs \(/ 2 /\). (The Votes are a Baltic-Finnic ethnic minority

Such a transition does not occur at the and of even repetitions as they terminate total number of repetitions being twelve the present melodic segment occurs six times. The F patterns of the notes marked
with an asterisk are presented in Fig. 1. Fig. 2 displays the \(F\) curves of the note next to that with an asterisk (i.e. the inal note in the example presented above,


Fig. 1. Fo patterns in a Votic wedding song which are perceived as having a to the frequency pitch. Six F patterns are normalized with respect axis (abscissa). Ordinate: the frequency scale (Hz) and its division according to the equal temperation. The right arrow on the abscissa
roughly corresponds to the point at two thirds of the overall note duration. Mean \(F\) values from a pitch-matching test, with standard de-


\footnotetext{
Fig. 2. Fopatterns in a Votic wedding song which are perceived as having the ame pitch as those in Fig. . Absassa
}
tern). The difference between Figs. 1 and to find an answer to at least necessary tions in this connection. First, what is of fh8 value corresponding to the pitch whether the pitch of the note with an as terisk is the same as the pitch of the next note. A psychoacoustical experiment questions.
group living near Leningrad.) As was shown in \(/ 2 /\) glide-like F variations in these songs tend to occur due to the
incidence of the metric accent, word stress and melody culmination. They have a shape somewhat similar to a circumfle where the right side is approximately ference between the initial and the final frequencies is considerable and in the case of the (left-side) rising glide can As a matter of fact, the decision about the perceived pitch stability in such cases can be made without special experi written transcription of performed song into conventional notation is an oblisavery procedure and ethnomusicologists are very sensitive even to minor pitch changed
which are beyond the limits of conventional notation. There is a whole arsenal of special symbols designed to mark down
such changes. We have compared the conventional of the songs under investigation with the results of an F extraction procedure and have not found any special
symbols at the notes with a glide-like \(F_{0}\) variation which means that these notes are perceived as having a stable pitch variations mainly in one song called \({ }^{\text {nidd }}\) monishment of the bride". This song beongs to the older layer of the Baltic Finnic musical folklore, the origin of he 11 th century. The song is characterized by a strongiy recitative manner of inging and is performed by a low female Hz. During the song one and the same melody pattern is repeated 12 times with
possible modifications. Glide-like \(F\) variations occur most frequently where an odd repetition is passing over to an even one. The transition looks like this (the
first note of the even repetition, which first note of the even repetition, which \(F_{0}\) pattern, is marked with an asterisk):


\section*{gocedure}

The song "Admonishment of the bride" was tored on a magnetic disk of the EC1010 computer from a tape-recorder via a lowkHz and a \(12-\mathrm{bit} \mathrm{A} / \mathrm{D}\)-converter with a ampling frequency of 10 kHz . Six odd-to even transition and played back to subjects riam a 12 -bit \(\mathrm{D} / \mathrm{A}\)-converter, a lowpass fil ter with a cutoff frequency of 5 kHz and
TDS -1 earphones. The subjects were free to regulate the SPL to a comfortable level and listen to every sample (almost dentical to each other musically) as nany times as they chose. The subjects third note in the melodic pattern with their voice. (This pattern was pro to them in a writen form, two male and one female,
mhree subjects, two
participated in the experiment, all with participated in the experiment, all with level but with no reported absolute hearing. They were told to use octave transpositions of pitch in a more comfortable frequency to sing in a more comfortable requency
range. As all 3 subjects responded to 6 melodic patterns, the total number of answers on a magnetic disk using the hardware mentioned above and run through a pitch detection program. The resulting \(F_{0}\) were smooth enough with a frequency change of no more than 5 per cent. The frequency the response in every case.

RESULTS AND DISCUSSION
Both male subjects were able to match the pitch of the stimuli with no octave transguency range as the singer originally did The female subject performed the task one octave higher. So, the requency values smaller ones during the following computation. e assumed that in the original song the and frequency devi of internal tone scale ne and the same note may occur only incidentally. The mean \(F_{0}\) value of all of tight side of Fig. 1, with standard deviight sion. As one can see, the range of standard deviation is practically identical o. the range of the \(\mathrm{Fo}^{\circ}\) variation in Fig. 2. So we can conclude that the pitches of he note example above) are equal despite ponding Fo patterms sponding Fig pattems.
Nabelek, Nablek and Hirsh \(/ 3 /\) have
two terminal frequencies are connected by two tinear frequency change. They have found that three modes of perception can be distinguished with sudcision. Fusion is characterized by a pitch sensation near the arithmetic mean of the terminal frequencies and a small dispersion of re-
sponses. In the case of separation the pitch of the glide is matched at one or means that the subjects' responses are means that distributed among the frequency axis between the terminal frequencies. to belong to \({ }^{\circ}\) the category of fusiongs as o belong to the category of cts responses s small and the perceived pitch correfinal frequency but is rather matched at the middle of the glide. Nábélek et al.
have concluded that in the case of tone have concluded that in the case of tone during 100 per cent of the burst duration, usion occurs when the difference between erminal frequencies of is not too great long. As one can see in Fig. 1 , in Votic ongs \(\Delta \mathrm{f} \approx 50 \mathrm{~Hz}\) and \(t_{b} \approx 100 \mathrm{~ms}\) in the case of a rising glide (the left par
the circumflex) and \(\Delta f \simeq 30 \mathrm{~Hz}\) and th 200 ms in the case of a falling glide Che right part of the circumflex). When those of Nabelek et al. considerikg the left and the right sides of the \({ }^{\text {F }}\) pattern separately, we find that single tone
bursts with such parameters clearly fall to the category of fusion. So we can conlude that the results are in good agreement with their investigation,
However, the conclusions by Nãek st al . are rather general in nature as they enable us only roughly to determine the \(F\) palue which corresponds to the percelve authors wrote even more cuatiously that
"in fusion... the sound burst was matched In fusion... the sound burst was match by a single frequency located somewhere In the experiment of Lublinskaya \(5 /\) sub focts had to mimic with their volion in synthetic vowela/ with \({ }^{\circ}\) glide-like frequency change. The autho proposes that the most important task is quencies of a glide whereas the pitch as corresponding to their arithmetic mean can be considered their derivative the sponse curves in her sindudy c8nfirm that it is the terminal frequencies th
stressed in subjects responses. stressed in subjects' responses
Rossi \(/ 6 /\) has shown that the pitch of the synthetic vowel/a/ with both an ascending and a descending glide-1ike \(F\) change
\(\left(\Delta \rho=23 \mathrm{~Hz}, t_{\mathrm{t}}=200 \mathrm{~ms}\right)\) is percived at the point of tho thirds of the overall duration of the vowel. This point approxi
mately corresponds to that marked with an arrow at the right side of Fig. 1. As curves are passing quite a narrow fre quency region of 224-226 Hz which very
closely corresponds to the mean of the closely corresponds to the mean of the
subjects subjects restching experiment. So our experi-
pitch-mat mental resu.
Rossi, too.

\section*{conclusions}

The pitch of tone glides has been explained on the basis of hypothetic mechanisms operating both in frequency and
time. domain. When pitch is measured in the frequency domain, it is the determination of the initiai and final frequencies that seems to be of the greatest
importance. In the time domain, the pitch should correspond to the \(F\) vaiue at the point of two thirds of the overall durpresent experiment can be explained both present experiment can be explained bo
on the basis of the frequency and the time domain hypotheses, but as the latter precisely, this explanation Should be

ACKTOWLEDGEME:NTS
Thanks are due to Ingrid Rüütel for valuSirje Murumets for editorial assistance

\section*{references}
/І/ В.П.Морозов. Гиопиизические основы во-
 contours and the scaie structure in Votic
folk music. - Preprint KKI-37. - Tallinn 1985 I.V.Nábĕlek, A.K. Jábělek, I.J.Hirsh. itch of tone bursts of changing fre-
 Pitch of Naundek, A.K. Nábělek, I.J.Hirsh. dich of sound bursts with continuous or
Acoustinuous change of frequency \(/ /\) Joc. Am. - Vol. 53 . Acoust. Soc. Am. - Vol. 53. F - 1973. - P .
1305-1312. \(1305-1312\).
\(5 / \mathrm{B.B.Jin}\) сом иэменения частоты воспроизведение голока // Сенсорные системы / Вопросы теории и методов иследования восприятия речевы

16/ M. Ross
\(6 / \mathrm{M}\) Rossi. La percention des glissandos /Scedants dans les contours prosodiques
Phonetica. - Vol. \(35 .-1978 .-\) P. 11-

APPLICATION OF AUTOMATED IDENTIFICATION METHODS OF BOW STROKES
TO MUSICAL FOLKLORE RESEARCH
Dedicated to Professor

\section*{Artūras Medonis Academy of Sciences
of the Lithuanian SSR of the Lithuan}

ABSTRACT
The purpose of the presented paper is features of an automated investigation of music/speech and simple speech signals. An algorithm of musical parameten of speech parameter recognition. Topical aspects of the automated ciphering
in case the height of the musical folk lore sounds is the same are analysed in our report.

INTRODUCTION
"Lithuanian people's songs art is exceptionally rich and various. The Lithua
folklore Manuscript fund stores about half a million records of songs". 17 The most urgent problems of the Lithua-
nianfolklore songs were reviewed by professor J.Ciurlionyte for the first time outside the republic \(/ 9,10 /\). After tha the songs are investigated and systema
tized in the following organizations: - the Folk Music Study of the Lithuanian J. Ciurlionyte) \(/ 6\), \(8 /\), - the Folklore Department of the Institue of the Lithuanian Language and Litera-
ure of the Lithuanian Academy of Scienes /7, 17/.
An evolution of folklore witnesses the
improvement of folklore investigation m mprovement was attained thanks to the application of new technical equipment (phonograph, tape-records). Lately folklorists ften solve their problems with the help
f computers, i.e. cipher, analyse and systematize the songs.
From the first stages in folklore investigations both the linguists and etnomusicologists are excited by these problems in
the junction of the folklore music and the junction of the folklore music and
linguistic text \(/ 1,1\), \(17 /\). E. S., Vicepresident of the Foikiore Board of the USSR Composer's Union Alexeyev \(E\). explores
the interrelation between musical intonathe and verbal inflection on the basis
of Lithuanian folk-soncs \(/ 1 /\).

Biruté Sinkeviciūté
ithuanian SSR State Conservatoire Vilnius, USSR

Our report deals with a specific aspect of the above junction: it presents an es the algorithm is based on the application of characteristic speech parameters when the height of the sounds analysed is the same (Note example I, case /a/).
1

Note example 1.
\(/ a /[7]-a ~ c a . ~\)
, b/i: - consonants with independent musical height and duration; /c/O - a melodic phrase performed /d/m - a case when both vowels of diphtong have independent musical durations.
The purpose of the presented paper is to diacuss the common and distinctive features of automated investigation of music/ speech and simple speech signals.
The 1986 International Computer Music Con-
ference (ICMC) was held in Hague, the \(\mathbb{N e t}\) ference (ICMC) was held in Hague, the Net
herland. October \(20-24\). We presented a re hort in which we discussed our main topic on the identification of violin strokes in a real-time performance system" in this
ICMC. Now let us review the report in shor and to present our main material.

\section*{METHOD} Our paper 118 deals with the automated
identification of violin strokes in case
the neis same. E.g. it happens in the main theme of same. E.g. it happens in the main theme
Concert No 2 E-dur by J.S. Bach (for vio-
lin and chamber orchestra). Estimations by

\[
\begin{aligned}
& L_{k}=\left(\sum_{i=1}^{\infty} x_{i}^{2} / N\right)^{1 / 2}, k=1,2, . \\
& \text { obviously sufficient for } .
\end{aligned}
\]
\(\qquad\) are obviously sufficient for sounds and pauses in a pizzicato case but it is no (1) the estimates slightly differ from: one another and the corresponding algorithm identifies the beginning
end of the strokes unprecisely. The violin plate bears a property to reging gradually after stopping playing. martele envelope is the following: of the martinning of a new stroke we listen to the sounds of new and earlier strokes resonated by a violin plate
Analogous features of merging sounds are typical of speech analysis too: the sig the limits of separate sounds. Segmenta tion of diphtongs is especially difficult as the 15 .
tes \(/ 15\).
We proposed not only to measure the sound parameters, but also to register the sup plementary infor
Formalization of the above statement: let us consider a violin stroke identification
function \(F(y)\) where \(y=f(y)\) let the function of where \(y=\varphi(\nu, L, t)\) - is \(\eta, L, t\) are the violin sound parameters: pitch, intensity and duration, correspondingly. The aim of the automated identi-
\[
\begin{aligned}
& F(y)= \begin{cases}a, & t<t_{j} \\
(a \leftrightarrow \pi-m \cdot n .) & \text { in case } \\
b, & t>t_{i} \\
\hline & (b \leftrightarrow V-m, n)\end{cases}
\end{aligned}
\]
\[
\begin{aligned}
& \left(b, t>t_{j}(b \leftrightarrow V-m . n)\right. \\
& \text { The segments } X_{K 1}^{\prime}, X_{k 2,}, X_{K N}: L_{K+1} \geqslant L_{K} \\
& (k=12 \ldots) \text { were investimated for }
\end{aligned}
\]
\[
\begin{aligned}
& \text { purpose: The alcorithm is sufficient for } \\
& \text { pizzicato stroke identification, but in } \\
& \text { martele case the segments } k: L_{k+1} \gg \text { in }
\end{aligned}
\]
\[
\text { martele case the segments } k: L_{k+1} \geqslant i_{k}
\]
were not detected. Therefore, we proposed
to consider the function \(F(y, z)\), where
\[
\begin{aligned}
& y=\varphi^{\prime}\left(v_{1}, t\right) \\
& \gamma^{\prime}\left(t_{i}\right)=\left\{\begin{array} { l l } 
{ 1 , \text { as } } & { \psi ^ { \prime } ( t _ { i } ) < \psi ^ { \prime } ( t _ { i + 1 } ) } \\
{ 0 , \text { as } } & { \psi ^ { \prime } ( t _ { i } ) = 0 \text { ot } \psi ^ { \prime } ( t _ { i } ) } \\
{ - 1 \text { as } } & { \psi ^ { \prime } ( t _ { i } ) > \psi ^ { \prime } ( t _ { i + 1 } ) }
\end{array} \left(\begin{array}{l}
\left(v-m_{1} . n_{1}\right)
\end{array}\right.\right.
\end{aligned}
\]

How we deal with the application of the nian musical folklore antomation of Lithusciphering of the original, in case the height of the sounds sung is the same,
note (note example \(I\), case /a/) is an urgent Iustrates the situation when a consonant
is in good agreement with musical duration

A phonetic syllable in the speech analysis speech torrent, unit of the pronunciation, which forms the words rhythmically and with emphasis/14/. In literature we did a phonetic syllable in the aspect of musical folklore analysis; let us denote it in terms of a "musical syllable"
There are two points of view between etno-
musicologists on the above problem: musicologists on the above problem: sound which has no influence on the defi nition of etnomusicological parameters of structure, ambitus, the stable-rhythm sounds of the melodic vertical - the lower (b) musical syllable is
ral sound which is namely a structural sound which is an independent unit and
therefore is fixed in musical notation.
There are many peculiarities in folklore
singing and untraditional elements of mu-
sical notation, used to express them, e.g. sical notation,
Let us consider a musical syllable dura-
tion (MSD) function \(F(y)\), where \(y=\varphi(x)\langle t\)
is a function of a musical sound determination. The aim of the \(\operatorname{liSD}\) identification is to define the moments \(t_{j}\) :
\(F(y)=\left\{\begin{array}{ll}a & t<t_{j} \\ b^{\prime} & t>t_{j},\end{array}\right.\), when \(\gamma=\) const
For this aim the sfegments \(k: L_{k+1} \gg L_{k}\) are searched as they are presented in the me-
thods for violin stroke identification Thods ar violin stroke identification. (e.g. sound intensity variation is often possible in the same vowel, as it is shown
in fige for vowel "e"). Supplement parameter has to be applied to musical parameter determination: classification parameter "voiced speech/unvoiced speech seg-
ments" are widely used in speech analysis ments, are widely used in speech analysis/
e. \(16 /\) conseguently it is expedient to consider the function \(F(y, z)\) : \(y=\varphi(\nu, L, t)\) \(z=\psi(\tau) \quad \begin{aligned} & 1, \text { when } \tau \text { is a voiced speech } \\ & \text { segment }\end{aligned}\) O, when \(\tau\) is an unvoiced speech The value of parameter \(\tau\) can estimated using one of the numerous algorithms di
cussed in special literature \(/ 16\), \(19 /\).


Fig. 1 Acoustic signal of word sung


Fig. 2 Acoustic signal of word sung "tétis" RESULTS
A musical fragment was introduced into the universsl computer BESM-6 (Note exampat 4 knz because the fragment was a low
register melody. For 100 ms acoustical gments the intensity was computed according to statistics (1) and an algorithm of
a delay function \(D(p)\) was applied to estimate the pitch. The estimates of \(\mathcal{V}\) and \(L\) musical duration. Therepore, it is expedient to deal with the function with
parameters, 1 , e , to describe \(~\)\((y, z)\). where \(z=\psi(\tau)\). Estimation of the algorithm
for segment vocalization is based on form segment vocalization is based on a common interpretation of energy and zero of this methods fives more concrete results


Note example II.

\section*{\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Fitch \(\left(H_{2}\right)\) & 1232.56 & 125.41 & 124.03 & 132.32 & 133.85 & \\
\hline In & \\
\hline
\end{tabular} \begin{tabular}{|l|l|l|l|l|l|}
\hline Intensity & 19.741 & 20.319 & 24.451 & 8.572 & 6.748 \\
\hline
\end{tabular}} \begin{tabular}{|l|l|l|l|l|l|}
\hline Pitch \(\left(H_{2}\right)\) & 138.33 & 135.51 & 129.03 & 131.41 & 132.11 \\
\hline
\end{tabular} \begin{tabular}{l|l|l|l|l|l|}
\hline Intensity & 17.648 & 20.809 & 17.642 & 19581 & 20.499 \\
\hline
\end{tabular} \begin{tabular}{ll|l|l|l|l|}
\hline Sound & \(-a-\) & \(-a-\) & \(-a-\) & \(-a-\) & \(-a\) \\
\hline
\end{tabular}

Table I. Estimates of parameters
of the sung word "mama"
\(\mathrm{x} \quad \mathrm{x}\)
In comparison with a real-time performance system it is sufficient to work in interactive regime when the masical folkior signal is processed. That allows to widely
nation. In contrast, violin stroke identification requires the application of fast algorithms. One of such is presented lay function
\(D(p)=\sum_{k+1}^{M}\left|y_{k}-y_{k+p}\right|, \quad M<N, \quad p=0,1, \ldots, N \cdot M\). As usual, in speech signal processing one of the three models is applied: excitation model
model iner
per
By extending the conclusion of Hess our cation of the consists in that the appli hods is not sufficient in music/speech signal processing. Perception models, based on the musicai knowledge, are preferable. The results below of our experiment
done on the pitch determination illustrate done on the pitch determinatio
this standpoint rather well.
Let us consider the following mathematical
\[
y(t)=\& f(t)+\xi(t), \quad 0 \leq t<\infty
\]
\[
\text { here } f\left(t^{\prime}=\sum_{i=1} A_{y} \cdot \sin \left(2 \pi \cdot v^{\prime} \cdot t+\varphi_{i}\right)\right.
\]
\(y(t+T)=y(t), \quad T_{\text {is a period, }} \lambda=1 T_{1}\) pitch of the function \(y(t) ; \quad j(t)\) is a
 specirai analysis:


Fig. 3


tations of the functions \(I_{N}(r) H_{N}(v) Q_{N}(V)\).
obtained by theoretical series \((\%)\).





 8 illustrate g

Fig. 8
of \(I_{\mu}(\nu) H_{N}(\gamma), Q_{N}(\nu)\)
series of sound "a"
generated by a real
I. \(\left.Z_{N}(\lambda)=\frac{\Delta t}{2 \pi N} \right\rvert\, \sum_{k=1}^{N}\left(y_{k}-\bar{y}\right)\).
\(\left.e^{-i k \cdot 0 t \cdot \lambda}\right|^{2}, \lambda\)
\(, \lambda \geqslant 0: \lambda=2 \pi)(5)\)
is a periodogram of time series (4) at the
 the periodogram are calculated values of sis of the algorithm of FFT .
\(\hat{\forall}=\Delta t \cdot\left[\right.\) are mox \(\left.I_{N}(2 \bar{\pi} v)\right]\)
estimate \(\left(5_{\varepsilon}\right)^{\delta}\) by the above -the pitch
II. \(H_{N}(\nu)=\sum_{i=1}^{p_{N}} J_{N}\left(z \pi \cdot \nu_{j}, j\right)\)
\(\hat{i}=\Delta t\). lare of periodograms (6)
\(\mathcal{V}=\Delta t \cdot\left[\arg \max _{\mathrm{m}} H_{N}(\nu)\right]\)
-the pitch estimate \(\left(6^{\prime}\right)\)
III. \(Q_{N}(\nu)=H=1\)
- the product of pertodograms (7)
\(\hat{\nu} \cdot \Delta t \cdot\left[\operatorname{arf} \max Q_{v}(\nu)\right]\)
Fe deal with estimate (7) time series. The modelling series is
\(y_{k}=\sum_{j=1}^{5} A_{j} \cdot \sin \left(2 \pi \cdot v_{j} \cdot k \cdot \Delta t\right)+\varepsilon_{k}, \quad k=1,2, \ldots, N(8)\) wing \(N=2^{E}\) of parameters are the follo\(\gamma_{\mu}=1\left(2=2^{2}, l=10, \quad \Delta t=0.02(\mathrm{~ms})\right.\)
\(\gamma_{H}=1 /(2 . \Delta t)=25(\mathrm{kHz})\) the Naikvist's frequency
\(\nu=220 \mathrm{~Hz} ; A_{1}=0.1, \quad A_{2}=1.0 \mathrm{~A}_{3}=0.2, A_{1}=0.6\), \(=0.15\)
 The results of appication of \(q=5\) andgorithms \(q\). mate \(\hat{i}=220 \mathrm{~Hz}\) corres in Fig. \(3-4\). Pitch esti-

Iue \(\gamma\) in case \(q=5\). In another case, as \(q=10\) sible in a mathematical algorithm sense, put it is not logical in the aspect of musical theory. As it is well known \(/ 13 /\) in the
theory, harmonics form consistent series o usical intervals: octava, quinta, quarta, .tertia etc. There are following relations of harmonic frequencies in our example, as
\(q=0,220 / 10=2 / 1\)-octava, \(440 / 220=2 / 1-\) octa va, \(660 / 44023 / 2\)-quinta etc. Octava interval is repeated in our series, but it is imposuntertone does not exist in a musical so as unds). Pitch estimate \(\hat{v}=220 \mathrm{~Hz}\) generates refore, it is true. mhis musical knowiedge
is laid in percetion models, is laid in perception models, based on the application of algorithms of harmonic sieve type/2/.
corresponds series of the sounds "a" and "é of a music/speech signal. "mama", "teitis" parameter of has the influence on the esti Therefore, models is preferable again.

\section*{ACKNO WLEDGMENTS}

We highly appreciate the attention of our Juzeliunas, A. Dikčius the Lithugutis, \(T\) te Conservatoire), V.Pikelis and J. Kazlauskaite (Institute of Mathematics and Cybernetics of the Lithuanian Academy of

\section*{REFERENCES}
1. Alexeyev E. (1986). The Pitch Nature of Primitive Singing. Sovetsky Kompozitor,
 An implementation of Gol pitch in speech: 3itch perception". JASA 75, p.1855-1857. hering and catalogation of folklore cipdies. Music, ISSE 1 , p.121-123(in Lith.). 4. Askenfelt A. (1984). Study Jour bowing Rechnique! -Quarterly Progress and Status na Music Acoustics, Royal Institute of echnology, Stockhoim.
i986). Folklore collection. \(\forall\) ilning runng. Baranauskiené \(V\). Medonis A., Medonis tithuanian folkiore unanimous songs (in Iithuanian, to be printed).
7. Collection of the Lithuanian songs(1980) vol. It The Songs of children. Prepared by ilnius, Vaga, -760p. . Cetkauskaité G. (1981). The Dzakai Me. Ciurlionyte J. (1949). Lithuanian foik ong, Sovetskaya Muzika, No 6, 60-64p. (in Russian).
10. Ciurlionyte J.(1955). From the histor
of the Lithuanian folk-song. Sovetskaya Muzika, No 2, 69-77p. (in Russian). 11. Ciurlionyte J. (1984). A song as the research object. Collection of papers "Daily works", Vilnius, Vaga, 46-53p. (in Iith). 12. Hess W.(1983). Pitch determination of speech signals. Berlin, Springer, -701p. 13. Kazlauskas J.(1975). Musical instruments and score. Vilnius, Vaga,-222p. (in Lithuanian).
14. Lithuanian Dictionary(1981). vol XIII, Vilnius, Mokslas, p.872-873 (in lithuan.) 15. Pakerys A. (1982). The Prosody of the standard Lithuanian language, Vilnius, Mokslas, -214 p .(in Lithuanian).
16. Rabiner L., Shafer R.(1981). Digital processing of speech signals. 17. Sauka D.(1986). Iithuanian folklore, Vilnius, Vaga, -317p. (in Russian). 18. Sinkevičiūté B., Sondeckis S., Medonis A.(1986). On the identification of violin strokes in a real-time performance system. Proceedings of the XII ICMC, 187-191p. 19. Zue V.(1985). The Use of Speech knowledge in Automatic Speech recognition. Proceedings of the IEEE, v.73, No 11, p75-91 APPENDIX (CONCLUSIONS)
The main points of the report are:
1) discussion of the problem of a searching for the common and distinctive features of an automated investigation of music/speech and simple speech signals on the basis of Lithuanian musical folkiore (see note ex I) 2) parameters of the musical and speech processing are closely interconnected; therefore their common interpretation makes it possible to estimate musical duration of sounds more precisely in case their height is the same; 3) an exact definition of a term "musical syllable" is a topical problem in the aspect of automated ciphering of melodies. There are same specific leatures of music/ speech sounds: sometimes consonants are in agreement with independent musical height and duration (note example I), necessary to express; another well-known case deals with the singing of some melodic fragment per-
formed by one and the same vowel. Both the the specific elements are distinctive features of an automated investigation of music/speech and simple speech signals; 4) there are some common features of the above signals:
a) acoustic parameter - pitch, intensity and duration - are most importance for both types of signals,
b) a necessity of diphtong segmentation in music/speech and simple speech processing (Note ex.I / / / ) ;
5) direct application of pure mathematical methods are not sufficient in music/speech signal processing.

\section*{Aleksej Klyuchevsky}

\author{
Centre of Studies in Musical Folklore of Siberia and the Far East Novosibirsk Conservatoire Novosibirsk, USSR, 630099
}

\section*{ABSTRACT}

This is an attempt at applying the linguistic phonetic approach to the analysis of chants \(/ 1 /\). A new phonic notation is suggested and peculiarities of the phonological system of Yakut chants are discussed.

\section*{INTRODUCTION}

Musical culture may be seen as onemore level of natural language with its own paradigmatics and symtagmatics and is in some special way connected with the phonological level of language, above all, to prosody. Or, to use another terminology, musical culture lies within the linguistic competence. Chanting brings into operation some additional rules affecting all the componepts of grammar and imposes some special markings in the lexicon. The semantic representation also changes. This hinders the understanding of a chant by the language-users whose linguistic competence does not include musical culture. In this case non-musical speech may be regarded as an unmarked performance with a zero feature.
1.0. The traditional five-lined tempered octave system, adequate to the European culture as it has evolved, cannot efficiently express the system of meaningful musical stylistic characteristics (musical space and time) of non-European cultures. That is why musical structures that are felt to be very simple appear rather awkward when it comes to notation. Every musical system has its own way of segmenting the sonic ambit (the scope within which melodic development occurs). Proceeding from the idea of the discrete character of modal cells, we suggest here a music notation which stands in the same relation to traditional notation in music as phonological notation is to phonetic transcription.

\subsection*{1.1. Basic notions.}
1.1.1. Basic tones (bases). A folk chant is oriented around several basic tones (or bases), that is, pitch constants structuring musical and intonational development. Each basic tone (base) nay be represented by one pitch or by a pitch zone, depending on the structural peculiarities of the melody. This allows us to classify chants

Yurij Sheikin

\section*{Dept. of the Philology of the North, Institute of Language, Literature and History Yakutsk, Yakut ASSR USSR, 677000}
according to the types of the development of basic tones (measured in kHz ), as we do in classifying intonational patterns in sentences.
1.1.2. Musical Intonemes. Elementary units of a chant are discrete modal cells which we shall call musical intonemes, or, simply, intonemes.

Intonemes are distinguished according to the following characteristics:
1) basic or gliding, that is, oriented or not oriented towards basic tones.

Basic intonemes differ depending on the basic tone they are oriented around. Here they are divided into upger and lower.

Gliding intonemes are oriented around basic intonemes and are divided into falling and rising. In our text gliding intonemes do not occur. 2) simple - complex. Simple intonemes can be short or Iong. Short intonemes include those with a duration of 1,2 or 3 conventional units.

Intonemes that are longer than 4 units are called long.

Complex intonemes consist of several simple intonemes linked together.
3) ornamented - unornamented. Ornamentation is a slight constriction of the upper part of the vocal cords and a uvular trill, an active sound ejection developing into a normative constant which, with Yakuts, goes beyond speech phonation. Ornamentation can be partial preceeding, partial following and continuous.

Such ornamentation may be quite prolonged at a certain pitch. In this case, it forms a characteristic tone at a stable pitch, sustained above the fundamental tone, which gives the effect of a binary dependent phonation. This is a special type of Yakut chanting, called kilthaq.

Intonenes may be preceded or followed by a checked intoneme, that is, an intoneme with a duration of less than 1 unit.

\subsection*{1.2. Notation symbols and intoneme combinations.}
(The present notation is slightly suggestive of the generally accepted notation in music, of the staves in particular. We think it quite possible that a more consistently symbolic notation /say, linear/ might be proposed. The process of analysis itself will determine the most suitable notation).
1). Basic tone (bases) \(\qquad\) measured in Hz
2) a short simple unornamented basic ower intoneme (duration - -
mple unornamented basic intonemes (duration-2 and 3 respectively) 4) \(\xlongequal[\text { bic intonemes }]{\text { a long simple unornament }}\)
asic intonenes (duration - more than
O-preceding ornamentation
6) continuous ornamentation
 checked element
(duration a rising unornamented gliding intoneme (duratio falling unornamented gliding intoneme (duration - 1)
, length, ornamentation and checked elenents for gliding intonemes have the same symbols as for basic intonemes.
For instance, 898 The elements, described may occur in various
combinations. The link between elements is shown
by juxtaposition or by a connecting line. E.g. by juxtaposition or by a connecting line. E prosodic features (the type of prosory is clear
fron the context) and there are specific pecufrom the context), and there are specific pecu-
liarities of combinations of the prosodic features and units. A prosodic feature symbol is
placed in front of brackets. In case of hierac placed in front of brackets. In case of hierachi-
cally ordered prosodic features the order of the cally ordered prosodic features the order of th
feature is shown by its position with respect to the brackets.
1) KIIIhaq (see above) + kIl ( \(\overline{\text { In kIIIhaq bracketed are only unornamented }}\) )
intonemes. 2) Inhalatory chanting (inspiration) -+ inspir. tory chanting.
3) Exhalatory chanting (expiration) is urmarked Yet, when alternating with inhalatory chanting it nay be designated as + expir.
However, this seens, strictly speaking, redundant 4) continuous and simultaneous pharyngal and
Howere laringal constriction - phar. (
Witnin brackets all elenents may occur.
The above elenents, however, , o not exnaust the
vast variety of prosodic features. vast variety of prosodic features.
2.2. The beginning of the chant (to denote it
we shall use the term musical initial, hereafter we shall use the tern musical initial, hereafter initial) sets the articulary position of the
chant, in other words, the pitch relations to be chant, in ther words, The pitch in say, it determines the basic tones (bases). They are given
simple vowels, usually of the simple vowel sinpiangle. In our example, though, the vowel I is introduced there, too. Every syllable of the
initial opens with prothetic or epenthetic coninitial opens with prothetic or epenthetic con-
sonants, conditioned by following vowels. The initial of the chant in question is
 ( \(\mathrm{i}-\mathrm{e}-\mathrm{e}-\mathrm{i}-\mathrm{e}-\mathrm{i}-\mathrm{e}\) ),
ijau-ijau-ijau (i-a-u-i-a-u) (Lamut chants)
jawa-jawa (i-a-u-i-a-u) (Udihe chants).
3.0. In Yakut folk chants we observe a number of phonetic pectic folklore
Yakut vowels may be described in terms of the following phonological distinctive fea high, low, back, labialized, long (tense?).
Due to vowel harmony the number of distinctive features to oppose the vowels within one wordform is reduced. This allows us to regard vowel
hany as a prosodic feature. The hierachy of harmony as a prosodic feature. by the position with respect to the brackets (analogous to 1.3.) In the Yakut language there is a consisten palatal harmony and a more or less consistent
labial harmony \(/ 2 /\). The degree of aperture is abial harmonized but we shall not discuss it here he zone ( \({ }^{-}\)back) and rounding ( \(\pm\)lab.) features are indicated in front of the brackets, whereas
the indications as to the rise and quantity of vowels are given inside. So, inside, we find a ind of phonological vowel matrix where the zone and rounding qualifications are not made ex
cit. - To designate then we shall use capital letters denoting back non-labial vowels. 3.1. There are lexenes where labial or palatal
armony is irrelevant. E.g.: doydu-daydI (the harmony is irrelevant. E.g: : doydu-daydI (the
world) \(: \pm\) lab.+ back (dAydI), sirey-sIray (a face) \(-1 \mathrm{lab},{ }^{+}\)back (sIray).

This freedom iike prosodic features of ther languages, is used in poetry in two ways: first, in alliterations, second, together with
alliterations, in semantic characterization, alliterations, in semantic characterization, since in many attributes of the upper world of
the Yakut mythological cosmos we find lexenes with + lab. - back features, whereas . lexenes
with - lab. + back features \(/ 3 /\) are found to denot ith - lab. + back features 13 / are found to denot attributes of the lower world, that is, their
full distinctive-feature (and, thus, articulatory) opposition is made effective use of
3.2. Consonants also show a tendency toward a distinctive-feature homogeneity. Also used as assimilation accoding to tasalisty consonat assimilation accoding to hasality feature, magan - white, bayana - marana -majana -a post
suppor
3.3. In chanting the opposition with respect to the quantity of vowels becones irrelevant, since short vowels may be drawled, too
3.4. Drawling in a chant may bring about the neutralization with respect to the harmony of vordform elements or separate vowels which are back dyphthong Ia is monophthongized and becones a neutral vowel.
3.5. We have also observed certain dissimilation processes at junctures of wordforms
tagmas which become phonetic words.

elbeq ugus kenne \(\rightarrow\) el-be-fü-uios-kem-je -
3.6. In drawling and tone-falling narrow vowels a.6. In drangized. E.g.: or otun - of otuon -
are dyphthon
cild; körbötün-körbötuön - (he, she) will look

NOTES \& REFERENCES
11 We chose a text in the Yakut language since due to the regularity of the phonological and gramatic structures Yakut texts are most convenient for all types of linguistic analysis. He hope to apply this approach t
of other Syberian folk material. /2/ N.D.D' jačkovskij. Zvukovoj stroj jakutskogo
jazyka. C.1. Vokalizn.Jakutsk, 1971,pp. 120-124. \(13 /\) An oral communication by L.L.Gabyševa, who subject, however yet unpubished.
SUPPLEEENT
Fragments of the algys analysed (algys is Fragments of the algys analysed
ritual request for a child's soul) First, the record is given in the traditional
music notation then, in the new simplified misic notation, then, in the new simplified
notation, and finally goes the text. The position notation, and inally goes the text. The positi
of intonemes next to the basic tones indicates
fluctuations of fluctuations of the pitch zone.
2. 2 line

3. 7 line


Interaction between formant and harmonic peaks in vowel perception.
Hector Raul Javkin, Hynek Hermansky and Hisashi Wakita

Speech Technology Laboratory, Santa Barbara, California

\section*{abstract}

The listener of a voiced vowel receives a signal consisting of formant-modulated har-
monics. How this information is used in deriving both vowel timbre and resulting vowel identity is still not well understood. The suggestion by Klatt ( 1985,1986 ), that listeners perceive the actual resonance peaks, is contradicted by many works,
including Mushnikov and Chistovich (1971) and Carlson, Granstrom and Fant (1975) who proposed weighted averages of neighboring harmonic peaks as the correlates of perceived vowel quality. Our perceptual experiments and re-analysis of the formant (1955) and Nord and Sventelius (1978), support an interaction between formants and harmonic peaks in vowel perception.

INTRODUCTION
Although the influence of fundamental frequency on the perception of vowels is by now generally accepted [1, \([1,7,9\), etc.], Klatt [ 5,6\(]\) has recently suggested that subjects respond to cormant peaks without being
affected by the location of the harmonic peaks deteraffected by the location of the harmonic peaks deter-
mined by the fundamental, although he did find evidence for a normalization related to FO.

We found surprising support for the role of harmonic peaks in vowel perception in difference limen data shown in figures 1 [3], and 2 [8]. Both works provide the original measurement points along with the interpolated sensitivity curves. The measurements required a
generous amount of interpolation to obtain smooth generous amount of interpolation to obtain smooth
curves. If one takes into account the frequencies of the harmonic peaks in examining the published graphs, the origin of some of the outlying points can be hypothesised. The experiments were carried out with analog circuitry which might have produced some errors in fundamental frequency setting. If we allow for slight
deviations of FO values, almost all outlying points can be hypothetically attributed to the harmonic peak spacing. In Hermansky and Javkin [4] we reported on

PERCEPTUAL EXPERMMENTS
ORMAN FREOUENCY DIFFERENCE LIMEN
flanagan (1955)


PRRCPTUAL EXPERIMENTS
FORMANT FREOUENCY DIFEERENCE LIMEN nord ano svetlenius (1979)

further difference limen experiments on selected vowels that generally confirmed this hypothesis. Figure 3 shows the results for one of these experiments, for a vowe with formants at \(500,2000,2500,3500\) and 4500 Hz .
Randwidths were \(50,90,120,150\) and 180 for these Bandwidths were \(50,90,120,150\) and 180 for these formants. The fundamental period was varied between To
\(=8.5\) and \(T=8.0\) msecs. in 0.1 msec. increments. \(=8.5\) and \(\mathrm{T}=8.0\) msecs. in 0.1 msec. increments.
Dashed lines in the figure connect points with equal formant frequency deviation from the reference vowel Asymmetries, resulting from different distributions of harmonic peaks depending on the fundamental, are quite substantial. Figure 4 shows the results of the experiment with the same vowel but with the funda-
mental period \(\mathrm{T} 0=4.2 \mathrm{msec}\) (with consequently wide harmonic spacing). Here the sensitivity curve shows an irregular (non-unique value) portion, similar to those observed in Flanagan's [3] data, coincident with a har monic.

FORMANT FREQUENCY DIFFERENCE
LIMEN- DIFFERENT FO


Figure 3.


Figure 4.

The results provide further evidence for the hypothesis that the human auditory system tends to shift the formant peak estimate towards the neares harmonic peak, but do not provide a basis for quantifying this shift. Carlson, Fant and Granstrom [1]
attempted to model human listeners' perception of formant peaks and proposed the idea of "most important frequency" or MFF, which determines the weighted means of the two most prominent harmonics by an equation which can be written as follows:
\[
\mathrm{MIF}=\frac{f_{m} W_{m}+f_{n} W_{n}}{W_{m}+W_{n}}
\]
\(f_{m}\) is the frequency of the most prominent harmonic, \(f_{n}\) is the frequency of the next most prominent harmonic, and \(W_{m}\) and \(W_{n}\) are the weights given the respective harmonics. Carlson et al made the weights equal to the amplitude of the harmonics in the Son
space, so that \(S_{m}\) and \(S_{\text {s }}\) were used for \(W\) and \(W\)

This formul \(S_{n} m_{n}\) and \(W_{n}\)
This formula suggests that listeners will accurately
nd the peaks when a formant lies between two harfind the peaks when a formant lies between two har-
monics, but will be less accurate when a formant coincides with or is close to a harmonic. An average of the two strongest partials, even one that is weighted towards the stronger, contains at least some contribution of the second strongest partial, and pulls the model's calculation of the formant away from the for-
mant peak. If listeners can accurately find the formant peak when it coincides with a harmonic, the model will differ from their responses. The hypothesized estimation contains another, implicit hypothesis. Taking an arithmetic weighted mean in the sone space makes the assumption that listeners evaluate the amplitude of two neighboring harmonics for the purpose of peak location sounds presented separately. That is to say, they evaluate the relative amplitudes of the two without an interaction that increases the perceived amplitude of one or diminishes the perceived amplitude of the other.

Carlson et al conducted a perceptual experimen with Fo values from 100 to 160 Hz in 15 Hz steps and F1 values ranging from 250 to 350 Hz in 25 Hz steps. Their results showed that their hypothesis worked the
best among those examined, although its prediction is quite different from the perceptual data when \(F 0=100\) and \(\mathrm{F} 1=300\), i.e. when the formant coincided with one of the harmonics.

A less compressed scale such as magnitude or intensity will increase the contribution of the stronger partia and can increase the correlation between the output o Carlson et al's equation and their experimental data. It
should be noted, however, that using a less compressed scale is functionally similar to using the same scale but with the addition of some form of peak enhancement. effects of categorization that occur in vowel perception and investigate the psychoacoustic effects. Accordingly single-formant stimuli with a single resonance driven by a pulse train with a flat spectrum were synthesized.
was kept constant at 200 Hz . One set of stimuli had was kept constant at 600 to 800 Hz in 20 Hz increments, the other set had the same increments, but ranging from 2000 to 2200 Hz . Both sets were prepared with thre bandwidths, of 50,100 , and 150 Hz , for a total of 66 stimuli. Durations of the single-formant stimuli were 500 msec with 40 msec leading and 70 msec tralling msec leading and 120 msec trailing edges. The inter stimulus interval was 200 msec .

The presentation of the stimuli and the recording of responses were performed by a computer with a 10 bit digital-to-analog converter using a sample rate of Hz with the output appropriately filtered. The stimu different subjects, who listened through earphones insid a sound-treated room. Subjects set the loudness of presentation to a comfortable leyel, and the level wa checked visually after each subject completed the exper iment. None of the subjects reported any hearing pathology. For each rial, subjects heard one Their
single-formant stimuli followed by a sine wave. Their task was to match the timbre of the first stimulus by adjusting the frequency of the sine wave, using keys on a computer terminal. Their responses were limited to between 550 and 850 Hz for the F1 range stimuli and between 1950 and 2250 Hz for the F2 range stimuli. wished and heard a repetition of the two stimuli after each adjustment. When they indicated satisfaction with a match, their last adjusted value was automatically recorded in a computer file and the next trial began.
RESULTS OF MATCHING EXPERIMENT
Twelve subjects participated in the experiment. The task proved quite difficult for some subjects and
two were eliminated after complaining of the difficulty and giving over a third of the responses at the response limits. The results for the different bandwidths did not differ significantly but were noisy. The results were band-limited to within 150 Hz (approximately two standard deviations) of the presented stimuli in order to
limit somewhat the distorting effects of outliers. This meant that, for example, responses greater than 750 Hz to a 600 Hz stimuli were dropped from the data Because of the band limitations in the presented stimul and in the possible subject responses, points far away
from the stimuli would severely distort the means. In from the stimuli would severely distort the means. In
addition, given a fundamental frequency of 200 Hz , a addition, given a fundamental frequency of 200 Hz , a
response of more than 750 Hz to a stimulus with a for mant at 600 Hz might be the result of approaching the
harmonic at 800 Hz . The results for the three bandwidths were combined in table i, showing the nd in table 2 , showing the results for stimuli in the \(\mathrm{F}_{2}\) range.


Figures 5 and 6 graph the same results. Subjects responses are represented by a solid line. The predic F calculated in sones are represented by tude are dashes; the predictions calculated in mage predictions of MIF in the intensity space are shown alternating short and long lines.



Figure 6.

The results for both sets are similar at their endpoints, although the data for the F2 range shows a less smooth pattern than the data for the F1 range. Both show a tendency for stimuli with harmonics close to the to show a "plateau" when the formant is equidistant between harmonics. The responses would approximate a straight line if subjects were responding to the location of the formant peak without regard to the location of harmonics, so that the experiment confirms the effect of harmonic peaks. Nevertheless the experiment does not confrm the predictions of Carlson et al

\section*{CONCLUSIONS}

It is clear from the experiments reported here, as well as the vast majority of the experimental literature, that the location of harmonics plays a role in the perception of vowels, and, more specifically, that harmonic
peaks which coincide or nearly coincide with formants tend to attract judgments of formant location. This effect appears to be too strong to be represented by a weighted average of the two most prominent harmonics in the loudness space. Such an average can be improved by using a different scale, effectively expanding the differences in amplitudes. Although the results reported
here are still somewhat sketchy and must be considered with caution, they support the idea that such an expansion is necessary to describe the response of the human auditory system.

\section*{REFERENCES}
1. Carlson, R., Fant, G., Granstrom B. 1975. Two formant models, pitch and vowel perception - in Auditory Analysis and Perception of Speech (G. Fant \& M.A.A. Tatham, eds.) Academic Press, London.
2. Chistovich, L.A. and Chernova, E.I. 1986. vowels: a model and experiments. Speech Communication 5:3-16.
3. Flanagan, J.L. 1955. A difference limen for vowel formant frequency. Jour. Acoust. Soc. Am. 27.3:613-617. 4. Hermansky, H. and Javkin, H.J. 1986. Evaluation of ASR front-ends using synthetic speech - Paper
presented at the 112 th Meeting of the Acoustical presented at the 112 h Meeting of
5. Klatt, D. 1985. The perceptual reality of a formant frequency. Jour. Acoust. Soc. Am. 78, Suppl. 1:S81
6. Klatt, D. 1986. Representation of the first formant in speech recognition and in models of the auditory peri-
phery - Proceedings of the Montreal Symposium on phery - Proceedings of the Montreal Symposium 7. Mushnikov, V.N., Chistovich, L.A. 1971. Method the experimental investigation of the role of component loudnesses in the recognition of a vowel. Akusticheskii Zhurnal 17.3:405-411.
8. Nord, L., Sventelius, E. 1979. Analysis and perception of difference limen data for formant frequencies. STL
81. Perceptual dimension of openness in vowels. Jour. Acoust. Soc. Am., 69.5:1465-75.

\section*{ACKNOWLEDGEMENTS}

We would like to thank Ted Applebaum, Jared Bernstein, Gregory De Haan, Brian Hanson, Dennis Klatt, Katia McClain, Lucio Mendes, Paul Neyrinck, Ben Reaves and Kathy Sangster for valuable discussions and help in various aspects of this paper.
the study of auditory detection of the jump of formant frequency AD ALAECTION OF THE A CONSONANT
V.v. Lyublinskaya, E.I. Stolyarova, S.Y.zhukov
favlov Institute of Physiology of the Academy of Sciences
of the USSR, Leningrad, 195164
the analysis of transitions in speech signals.
According to some neurophysiological research the neurones in auditory system respond in a special way to the rapid changes in amplitude or spectral characteristics that occur in speech. The neurones which respond only to the positive rones which respolitude jumps (on- and off-responses) have been described in many papers/4/.

The simulations of such reactions was realized by the functional model of auditory determination of the amplitude irregularities (ADAI) /3,5/. It includes a model of peripheral spectral analyser (the "cochlea") and the system of the envelope processing in every frequency channel.

Positive and negative markers strictly localised in time are the response to the respectively amplitude increase and decrease in the channels. The signal is represented in the ADAI model as the space-time distribution of the positive and negative markers in the channels. It was assumed that the markers might be used to form the segmentation function of speech flow and to sample the spectral information/3/. For this purpose, it is necessary to assume the integration of similar markers over the frequency channels. At the same time, on-and oflresponses to narrow frequency signals may be strictly localized in frequency \(\begin{array}{ll}\text { cy determination. For this reason it } & \text { responses to narrow frequency signals } \\ \text { seems useful to apply the well-known } & \text { may be strictly localized in frequency } \\ \text { scale. This mas also confirmed by the }\end{array}\) principles of auditory processing for
psychoacoustic data /1/. The narrow time and frequency localization of these reactions assumes the formation of space--time distributions as the response to the formant transitions.
This work was aimed to find out the possiblility to use the responses of the ADAI model for the analysis of such acoustic events as the formant frequency and amplitude fumps. The present research has been inspired by the well-known fact that the jump of the formant frequency or the amplitude jump along the vowel-like segment of the signal is identified as a consonant and the whole signal as the syllable CV or VC depending on the direction of the jump \(/ 2,3 /\). The jump value determines the phoneme quality of the consonant. When the jumps are relatively large the stimulus is perceived as \([\mathrm{m}] \mathrm{V}\) or [ n\(] \mathrm{V}\), when the jumps are smaller as [ \(l\) ] \(/\) /2/. The present research comprised 2 stages. Psychoacoustic experiments with synthesized vowels were carried out during the first stage. They were devised to determine the physical value of the jump of formant frequency and amplitude \(/ \triangle F 1\) or \(\triangle A 1 /\), when they were identified as the consonants [ m ] or [l] . The stimuli with the studied characteristics were analised in the functional model of peripheral spectral analyser and in ADAI model during the second stage.

\section*{PRRCEPTION EXPERIMENTS.}

Synthesized two-formant vowels ( \(192 \mathrm{~ms}-\) 24 pitch periods, 8 ms each) were used In experiments. The parallel formant analog synthesizer generated the stimuli. The variations of stimuli parameters were realized in 2 ways, as shown in figure 1. The parameters \(\mathrm{F} 1_{c}\) and \(\mathrm{A} 1_{c}\) of the first segment (the "consonant" segment, 64 ms ) were controled. The second formant mas constant and it was 10 dB less than
the level of the first one. The set of experiments has been done, each test included only one type of stimuli. The values of F1 and F2 of the synthesized vowels are shown in the Table.


Fig.1. Structure of the stimuli in experiments: a) the amplitude envelope; b) the formant trackes; c) the markers in the channels of the ADAI model.

Table
The parameters of the stimuli and expe-
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{\begin{tabular}{|l|}
\hline\(V\) \\
\(O\) \\
W \\
W \\
E \\
\(I\) \\
\hline
\end{tabular}} & \multirow{3}{*}{\[
\begin{aligned}
& \mathrm{F} 2 \\
& (\mathrm{~Hz})
\end{aligned}
\]} & \multirow{3}{*}{\[
\begin{aligned}
& F 1 v \\
& (\mathrm{~Hz})
\end{aligned}
\]} & & I & & & \multirow[t]{3}{*}{\begin{tabular}{|l|}
\hline S \\
\hline B \\
J \\
\hline
\end{tabular}} \\
\hline & & & \multicolumn{2}{|l|}{\(\triangle \mathrm{F}(\mathrm{Hz})\)} & \multicolumn{2}{|l|}{\(\triangle \mathrm{A}(\mathrm{dB})\)} & \\
\hline & & & [m] & [L] & [l] & [m] & \\
\hline \multirow[t]{2}{*}{u} & \multirow[t]{2}{*}{625} & \multirow[t]{2}{*}{400} & 120 & 60 & 4.4 & 11.1 & 1 \\
\hline & & & 80 & 50 & 3.4 & 7.6 & 2 \\
\hline \multirow[t]{2}{*}{九} & \multirow[t]{2}{*}{1480} & \multirow[t]{2}{*}{400} & 120 & 60 & 5.7 & 14.0 & 1 \\
\hline & & & 100 & 60 & 4.8 & 11.2 & 2 \\
\hline \multirow[t]{2}{*}{\(i\)} & \multirow[t]{2}{*}{2250} & \multirow[t]{2}{*}{400} & 120 & 50 & 6.7 & 13.7 & 1 \\
\hline & & & 100 & 60 & 4.3 & 12.9 & 2 \\
\hline \multirow[b]{2}{*}{e} & \multirow[b]{2}{*}{1800} & \multirow[b]{2}{*}{440} & 140 & 60 & 5.7 & 13.5 & 1 \\
\hline & & & 130 & 50 & 4.3 & 11.9 & 2 \\
\hline \multirow[b]{2}{*}{0} & \multirow[t]{2}{*}{780} & \multirow[t]{2}{*}{535} & 175 & 55 & 4.3 & 9.6 & 1 \\
\hline & & & 165 & 95 & 3.8 & 8.6 & 2 \\
\hline \multirow[b]{2}{*}{\(\varepsilon\)} & \multirow[b]{2}{*}{1665} & \multirow[b]{2}{*}{585} & 205 & 75 & 5.7 & 10.9 & 1 \\
\hline & & & 205 & 115 & 3.8 & 11.5 & 2 \\
\hline & & & 500 & 160 & 5.0 & 5.5 & \\
\hline \(a\) & 1100 & 900 & 500 & 210 & 3.8 & 9.0 & 2 \\
\hline
\end{tabular}
orthods - adjustment and identifica tion - were applied in experiments. In the first case the subject controled the values of \(F 1_{c}\) and \(A 1_{c}\) to achieve the perm ception of the stimulus as \([m] \nabla\) or ( \(\ell\) ) V .
Results of the adjustment were registered by the experimenter.
according to the second method the sets of ere presented to the subject, a stimul were pres varied rithin definite limits.
Two subjects participated in adjustment experiments and five subjects - in identification experiments
The results of the first type experiments are shown in the Table where the average values of \(\triangle F 1\) and \(\triangle A 1\) are indicated as the responses of each subject, when the stimuli were determined as the [ \(\ell] \nabla\) or [ m ] \(\nabla\) gyllables. The identification arinents date are analogous and the experiments data are analo.
The main properties of the perception of the jumps of formant frequency and amplitude are the following:
1. The perception of F1-jump depends on the quality of the vowel. The higher \({ }^{\mathrm{P} 1}{ }^{\prime}{ }^{\prime}\) the larger the jump \(\Delta F 1\), percepted as the consonant must be.
2. No regular dependence on \(\mathrm{F}_{\mathrm{v}}\) in the perception of the A1-jump is revealed. 3. The common feature inherent in perception of both frequency and amplitude jumps is revealed. The larger jump was identified as an \([\mathrm{m}]\), the smailer one as an [ \(\ell\) ].

YODEL RESPONSES TO mHE STIMULI
The sets of stimuli phonetically identified as \(V\), \([\ell] V\), [m]V according to \(\triangle F 1\) and \(\triangle A 1\), were chosen for the ana\(\triangle F 1\) and \(\triangle A 1\), were chosen for the ansysis in the model. The markers dis bution at the moment of the Jump was
operation were possible depenaing on the threshold value of markers generator: at the threshold of the detection of amplitude irregularity in the signal or at the threshold of the detection of the consonant while changing the amplitude of the signal.
the sir the first condition the responses of the ADAI model were distributed on a Wide frequency ranges. Under the second condition the markers were obtained in narrow frequency ranges near F 1 and F 2 . We calculated and compared the number of channels were the marikers could be registered at the moment of the jump. The or marked channels correlate with umber of marked channels correlate with ditions.
he patterns of the markers distributions were different for the frequency and amplitude jumps: only positive markers near \(\mathrm{F} 1_{\mathrm{V}}\) were registered for the amplitude jump, at the same time, the positive markers near \(\mathrm{P} 1_{y}\), as well the negative ones near \(F 1\) were obtained for the frequency jump.
discussion and conclusion
The ADAI model reveals cues for the dis tinction between frequency and amplitud jumps, on the one hand, and allows to estimate the values of these both jumps ccording to the reguts of these expeconts to here feature riments. We hope that the model feature can help to describe the formant trangitions in speech signals. The experiment data don't allow to make a conclusion about the information used by man for the phonetic interpretation of the fre quency jumps. Whether he uses the time -frequency distribution of on- and off--responses only or he follows also the formant tracks. Possibly, both procesaings are necessary to provide the effec tive auditory perception of speech sig-
nals.

\section*{a grarences}
1. Акустика речи и слуха: Сборник научных роот/Ред.- Л.А.Чистович./- Л.:Наука 1986. - 144 c.
2. Жуков С.Я. Жукова М.Г. Восприятие слога в зависимости от его формантной струкгуры. - Физиология человека, 1978, т.4, туры. - Фи
с.220-224.
3. Физиология речи. Восприятие речи человеком./ Чистович Л.А., Веннов А.В., Гранстрем М.П. и др./ Л., 1976, 386 с. (Руководетво по физиологии).
4.Delgutte B. Some correlates of phone tic distinctions at the level of the auditory nerve.- In: The representation of speech in the peripheral auditory system. Amsterdam, 1982, p. 43-60.
5. Koshernikor V.A., Stol jarova E.I. Segmentation of speech by a model of auditory system. - Symposium Franco--Sorietigue sur la parole, Lannion, 1983, p.95-105.

PERCEPTION OF FIRST AND SECOND FORMANT FREQUENCY TRAJECTORIES IN VOWELS*

\section*{Caroline B. Huang}

\author{
Departmout of Electrical Engineering and Computer Science and \\ Research Laboratory of Electronics
Massachusetts Iustitute of Technology \\ Massactusetts Iustitute of Technology
Cambridse \\ Cambridge, Massacb
}

\section*{ABSTRACT}

Previous studies suggest that the first formant trajectory in vowels is perceived differently from the second formant trajectory. F1 may be perceived as a weighted time-average of
its time-varying frequency values (Huang, 1085, Di Bencdetto, its time-varying frequency values (Huang, 1985, Di Bencecto,
1087). F2 in ligh vowels may be perceived with an overshoot (Linullom and Studdert-Kenuedy, 1967). The present study examines F 2 in the low vowel region using synthesized utterances. Results from idcurtification tests suggest that F2 in low vowcls is perceived with an overshoot of 60 Hz in some contexts.
However, ressults from precliminary experiments in which subhowever, resentsts from prehiminary experimented vowels in nonsense words to stealy state vowels seemin to conflict with the perceptual overshoot theory for F2.

\section*{INTRODUCTION}

The present study addresses the question: Is the first formant trajectory in a vowel perceived in a different manner from the second formant trajectory? Does a person listening to a vowel with time-varying formant frequencies use one strategy to determine a single value for the vowel's height, which is related to F1, and another stratto F2? Evidence from perceptual tests, which is related strategies for F 1 and F 2 perception are indeed diferent.

There are also theoretical reasons which suggest that F1 and F2 could be perceived differently. F1 and F2 correspond to independent phonological features, high-low and front-back, respectively. The phonological features independent articulatory (and therefore F1 and F2) have and tongue body backness. Tongue movements height ning speech may result in different coarticulation effect for F1 and F2 trajectories. In the vowel spectrum, the spectral prominence corresponding to F1 may be widened or obscured by nasalization, which introduces a pole-zero pair to the spectrum (Stevens et al. [8]) or breathiness, which increases the amplitude of the fundamental harmonic (Bickley [1]). The F2 spectral prominence is not Supported by grauts from NiINCDS (Nos. Ns-04332 and Ns-07040)
subjected to such effects. The different acoustic character istics of F1 and F2 could be mirrored in their perception.
The properties of the peripheral auditory system form the basis of an alternative reasoning for the possibility that F1 and F2 are perceived differently. F1 and F2 oc cupy different frequency bands in the vowel spectrum The peripheral auditory system processes low frequency differences in they sounds differently, as shown by tory nerves which respond most strongly to low frequenc sounds when compared to those for auditory nerves re sponding most strongly to high frequency sounds. By this reasoning, it may be hypothesized not only that the F1 and F2 trajectories are perceived differently from each other, but that any formant trajectory is perceived differen depending on whether it is high or low in frequency

\section*{PREVIOUS STUDIES}

Studies by Huang [3], Di Benedetto [2] and Lindblom and Studdert-Kennedy [ 6\(]\) can be interpreted as evidence for F1 and F2 trajectories being perceived differently. Ead study consisted of a series of tests in which subjects were
presented with the synthesized vowels in nonsense words and asked to identify the syod vowels in nonsense wing forced choice between tho vowe or two chases of vowels

In Figure 1, the F1 trajectories for equivalent stimul inuang's study ares and data from five subjects, each of the stimuli would be called \(/ 1 /\) half of the time and \(/ \varepsilon /\) half of the time. Results for F1 target frequuum (not shown) were very similar. Th up to about 20 Hz in with the longer onslide and offglide to to higher F1 target value to be perceived to be equivalent to the stimulus with the shorter onglide and offglide. These re sults are conssistent with a theory of perceptual averagin of F1. Subjects seem to perceive an effective F1 frequenc) which is between the maximum and minimum frequencies attained in the formant trajectory. Unfortunately, in this


Figure 1: F1 trajectories for three equivalent stimuli in
Huang's study.
study F2 was also varied, but only by half the change in F1 frequency on the Bark frequency scale (Schroeder et al. (7]). It may be argued that the change in F1 was perceptually more important

In Figure 2, two vowel trajectories from Di Benedetto's study are shown. The FI trajectory shape was differen tho topes of stimuli. The trajectories for F2 and all hypes of stimul were the same and symmetric for both the same average (defined the two FI trajectories hav s. time curve divided by the durationder thajectory are perceived to be different yowats The of the curve), they with the early steady state caused each of four subjects to dentify the vowel as \(/ \varepsilon /\) more than half the time, and the trajectory shape with the later steady state was identified os/1/ or /i/ more than half the time. The tendency was he same for three other subjects who were native speakars of languages other than American English, although de larget value of the fifty-percent crossover stimulus was eren. These results can be accounted for if a weighted more importance the early portion of the vowel is given The later portion must be later portion is hypothesized. ince it was shown in Huag's non-zero weight, however, ectories as in Figure 1 with the same arget frequency are not equivalent.

Lindblom and Studdert-Kennedy's study suggests that is perceived with an overshoot. For example, for an F2 seem to which rises to a target and falls again, subjects than the frequin effective F2 frequency which is higher not hypothesized actually attained. Note that if it is Lindblom and Studert and F2 are perceived differently, be in conflict with the studies describudy would be seen to lormants in their study had peschlict above. The vowel fajectory was the same for all stimuli, while the F2 and \({ }^{F} 3\) trajectories were either concave upward, resulting in \({ }^{\text {a nonsense }}\) word of the form \(/ \mathrm{jVj}\) / or concave downward, resuling in a nonsense word of the form \(/ \mathrm{w} \mathrm{V} /\). The tar-


Time. ms
Figure 2: F1 trajectories from Di Beuedetto's study. The vow
els are perceived as \(\varepsilon\) and t .
gets for F 2 and F 3 were varied while the target for F 1 re mained fixed for all stimuli, yielding a continuum between the vowels \(/ \mathrm{v} /\) and \(/ \mathrm{I}\). Subjects'identification of the voweis with parabolic formant trajectories were compared to their identification of steady state vowels. The equivalent fifty-percent crossover points derived from the median for the steady-state vowels fro the identification curves fifty-percent crossover shifts from ten subjects and median to the steady state vowels. (An ine two contexts relative percentage identification of a stimulus as curve shows ple, versus the stimulus' position in the continuum.) The targets of the equivalent steady state and \(/ \mathrm{w} \mathrm{V}_{\mathrm{w}} /\) stimul differ by 185 Hz . The targets of the equivalent steady state and \(/ \mathrm{j} \mathrm{V}_{\mathrm{j}} /\) stimuli differ by 75 Hz .

There was much inter- and intra-subject variation in Lindblom and Studdert-Kennedy's data which probab arose from subjects' difficulty in hearing the \(/ \mathrm{w} \mathrm{V}_{\mathrm{w}}\) / and j V / stimuli as words. Huang [4] did a similar but smalle study using the nonsense words / \(\mathrm{ww} \mathrm{V}_{\mathrm{wa}} /\) and obtained more consistent data which confirm Lindblom and Studdert-


Figure 3: F2 trajectories for equivalent stimuli in Lindblom

\section*{F2 PERCEPTION IN THE}

LOW-VOWEL REGION
Lindblom and Studdert-Kennedy's study investigated F2 in the high-vowel region. The present study exam ines F2 in the low vowel region. Utterances of the form \(/ 2 w \mathrm{Vwo} /\) and \(/ \mathrm{jjVj}\) / were synthesized using the Klat cascade formant synthesizer [5]. The target for the second formant of the vowel/V/ was varied in 57 Hz steps from 1090 Hz to 1720 Hz , a range of values appropriate for the vowel continuum \(/ x, a /\). The vowel had four formants, and the first, third, and fourth formant targets were 695 Hz 2425 Hz , and 3500 Hz , respectively, for all stimuli. Two vowel trajectories in the nonsense words were parabolic and were concave upward for the / / / context and concav downward for the /w/ context. Steady-state vowels with formant frequencies at the targets of the parabolic tra jectories were also synthesized. The utterances were pre sented to five subjects in forced-choice identification tes in an order which ensured a balanced context. Each stim ulus was repeated twelve times. Nonsense words of the same type and duration were presented together

Fifty-percent crossover points were obtained by hand-fifty-percent crossover points for each subject and tor the averaged identifcation curves are ch Figure 4, the F2 trajectories of equivalent stimuli derive from the crossoverpoints from the averaged data are show There is a shift in fifty-percent crossover point of 60 Hz
\begin{tabular}{|c|c|c|c|}
\hline Subjects & \[
\begin{aligned}
& / \mathrm{w} /, 200 \mathrm{~ms} \\
& / \mathrm{w} /, 100 \mathrm{~ms}
\end{aligned}
\] & Context
steady, 200 ms
steady, 100 ms & \[
|\mathrm{j} /, 200 \mathrm{~ms}|
\]
\[
/ \mathrm{j} /, 100 \mathrm{~ms}
\] \\
\hline \multirow[t]{2}{*}{nd} & 5.2 & 5.5 & 6.8 \\
\hline & 4.5 & 5.5 & 6.5 \\
\hline \multirow[t]{2}{*}{ms} & 6.8 & 6.5 & 8.2 \\
\hline & 6.1 & 5.8 & - \\
\hline \multirow[t]{2}{*}{aw} & 5.8 & 7.0 & 7.5 \\
\hline & 5.2 & 7.0 & 8.5 \\
\hline \multirow[t]{2}{*}{th} & 6.2 & 5.1 & 6.8 \\
\hline & 5.5 & 4.6 & 8.1 \\
\hline \multirow[t]{2}{*}{cb} & 6.1 & 6.5 & 7.2 \\
\hline & 5.5 & 6.8 & 7.2 \\
\hline \multirow[t]{2}{*}{Average} & 6.1 & 6.2 & 7.2 \\
\hline & 5.5 & 5.8 & 7.6 \\
\hline
\end{tabular}

Table 1: Results of the present study: \(50 \%\) crossover points
from identification curves. The numbers refer to the stimulus numbers. Stimulus 1 was the most / \(a\)-like; Stimu lus 12 was the most / \(x /\)-like. The lower the crossover poin he more stimuli in the vowel continuum were called \(/ \mathrm{a} / \mathrm{T}\). Th



Time, ms Figur
study
when comparing the vowels in the \(/ \mathrm{j} /\) context to the stead state vowels. The shift is in a direction consistent with a hypothesis of perceptual overshoot. On the average, there is no shift in the crossover point when comparing vowels dividual subjects showed shifts in both directions. There are small shifts in crossover point when comparing the 200 ms vowels to the 100 ms vowels in both the / \(\mathrm{w} /\) and ji contexts in directions indicating that the perceptual over shoot effect increases for shorter duration stimuli.

\section*{PRELIMINARY RESULTS FROM} VOWEL MATCHING EXPERIMENTS

The same five subjects were then asked to match the wowels in the nonsense words to steady state vowels. Fl F3, and F4 of the steady state vowels for matching were at the target frequencies of those formants in the vowels in the nonsense words. The F2 of adjacent steady state ive position bo vowel continuum. Nonsense word stimuli were chosen in which subjects had unambiguously identified the vowels The subjects matched the vowels by playing any desired vowels in sequence on a computer as often as they wished. As shown in Figure 5, subjects tended to match a vowe in the /w/ context to a steady state vowel with a lower F2 than actually attained in the parabolic trajectory, sug gesting that F 2 is averaged. Subjects also tended to matcl a vowel in the / j / context to a steady state vowel whose arget was lower than actually attained in the parabola, al overhist

If F 2 were perceived with averaging in the /w/ context he vowel in / 2 W V wa/ should be equivalent to a steady state vowel whose F2 frequency is below that actually at with in parabolic trajectory. That is, to be consistent with the trends seen in the preliminary vowel matching ex.


Figure 5: Data from the preliminary matching experiment honsense word. Points show the F 2 of the steady state vowel natched to the 100 ms and 200 ms parabolic vowels.
periment, the fifty-percent crossover stimulus on the iden lification curve should be closest to the most extreme / \(a\) stimulus for the steady state vowel continuum and closest o the most extreme \(/ x /\) stimulus for the vowels in th j// context. The identification data for subjects TH and are consistent with the trends seen in the preliminary sem to conflict with this trend.

\section*{DISCUSSION}

Apparent conficts between the identification test re sults and the vowel matching results must be explained. The two kinds of experiments may be yielding information about different aspects of vowel perception. In this tudy, the matching experiment only investigated vowels Wich had been unambiguously identified by the subjects, hile identification tests only yielded information about the vowels at the perceptual boundaries. A new vowel acciing experiment must be done using the entire conwan of vowels in nonsense word contexts. The tasks of this may also explain vowel matching are different, and fifcation, a subiect labels thr it an internal idea of how the vowel should sound. This internal idea" may change depending on the context of he vowel. In vowel matching, a subject compares two "exlernal" \({ }^{\text {" }}\) vowels and is not required to label. A subject may bel the vowels before matching them, however. Subjects
may listen to the vowels more analytically in the match ing test than in the identification test, especially since the were allowed to play the vowels as often as they wished in this matching experiment. Subjects may use more lan guage knowledge to perform the identification task tha the vowel matching task. Individual subjects strategies may account for the individual differences seen in the data
Trying to determine whether the effects observed are result of language learning or of properties of the peripheral auditory system is essential to understanding thes served effects can be reproduced using a model incorporating current knowledge of the peripheral auditory system.
Data from identification tests in previous studies and the present study are consistent with the hypothesis that the F and 2 lrajectones are perceived diferently. Howeraging and F2 with an overshoot does not account for all the effects observed in different types of experiments. Further work needs to be done to understand the relationship between the identification experiments and matching experiments for both F1 and F2 trajectories.

\section*{REFERENCES}
(1) Bickley, C.A.A Acoustic Analysis and Perception of Brathy Vowels. Working Papers, Speech Conmunication
1, Rescarch Laboratory of Electronics, MIT, 1982 .
[2] Di Bencletto. M.-G. An Acoustical and Prceptual Study
on Vowel Height. Doctoral dissertation, Universitit deglit

[3] Huang, C.D., Ferceptual Correlates of the Teuse/Lane Distinction in
MIT, 1985 .
(4) Muan, C.B. The Effect of Formaut Trajectory and Spectras
els,, Proceeding
ICASSP
[5] Klatt, D. Software for a Cascale/ Parallel Formant Syn-
thesizer. JASA \(67(3): 971-995\), 1880.

(7) Schrocder, M.R., Atal, B.S. and J. L. Hall. Olijective Masking Properties of Human Auditory Perception. In M. Lindlllon hull S. Oinman (editors), Frontierpt of Speech Communication
London, 1979.
(8] Stevens, K. .., Fant, C.G.M. and S. Hawkins. Some Acous. ical and Ferceptual Correlates of Nasal Vowels. In R.

on vowel height: acoustic and perceptual representation by the fundamental and the first formant frequency

\section*{Maria-Gabriella Di Benedetto (*)}

Department of information and Communication (INFO-COMM)
University of Rome
LIa Sapainza'- Faculty of Engineering Universitit of Rome 'La Sapienza'- Faculty
Via Eudossiana, 18 -00184 Rome, Italy.
abstract
Acoustic properties of vowels, which can be hypothesized to classity
vowels aliong a dimension of height, are investigated. In paticular. vowels along a dimension or height, are investionated
vowel representation in the ( \(F\) I-FO) dimension \(F i\) and \(F 0\) are expressed in Bark) tor five vowels of American English is presented and this analysis is compared with the analysis of the same speech
materials in the traditional F1 vs F2 space. Results show thal ndividual differences are reduced when the (F1-FO) dimension used in the case of low vowels while for high and mid vowels the
difference in FO values among speakers is largee than that of \(F 1\) Values. Perceptual experiments have been carried out using CVC and one-formant synthetic stimuli to examine the influence of Fo o
the perception of vowel height. Results are in areement with the observations on the acoustic analysis and suggest that either \(F 1\) and Fo are related in a more complex way than the (F1-F0) Bark
ransformed difference or that the Bark scale should be modified al rransformed diffe
low frequencies.

INTRODUCTION
Traditionally, vowel sounds have been classitied along several dimensions: height, backness, tenseness, etc. The formant epresentative of the e difterent dimencisions. For example, it is well kown that the first formant frequency ( \(F 1\) ) is an acoustic feature wowel backness.
Syrdal ( 1985 ) has introduced the Bark-ranstormed (F1-F) distance into a model for the auditiory representation of vowels. Syrral
observes that the Bark-transtormed (F1-Fo) dimension corresponds observes that the Bark-transtormed (F1-FO) dimension corsesponds
to a dimension of vowel height. The results of Syrdars analyses are in agreement with the perceptual results found by Traunmuller ( 1981 ). The latter proposes that the prevailing criterion for the perception of
vowel height is the distance between F and F expressed in Bark, when FO is not between 350 and 400 Hz , approximately. distance to classity vowels according to vowel height. Acoustic
 space the analysis in the \(F 1\) vs \(F 2\) space. Perceptual experiments which have been carried outt using CVC and one-formant synnthetic
stimuli, to investigate the influence of \(F 0\) in the stimuli, to invescigae.
height are described. The agreement of the results obtained with the indings of the acoustic analysis and their interpretation are then

ACOUSTIC ANALYSIS
\(\frac{\text { Experimental conditions and procedures }}{\text { Five vowels of American English }[1, \varepsilon, x,}\) analysis. In the vowel system of American \([1]\) are the object of this characterized by the feature (-round) and by being monophthong while the other vowels are all either (+round) or diphththongizal.
 the context of voiced and voiceless stop consonants ([bdidered in
(ग) this work was carried out while the author was with the Speech
Communication Group at the Massachusetts Institue of Technology. Cambridge, MA, USA.
forming CVC syllables, pronounced in the sentence frame "The gaain. All the combinations between the vowels and the consonants espect of voicing. In addition, hVd and \#Vd syllables are analyzed. ales, uttered the speech materials. They were asked to pronounce hhe sentences care tully and clearly. if a mistake occurs, the senterce set of syllables is pronounced three times. Thus, three version ins of ach yowel in each consonantal context are available. The speech materials are recorded in a sound-treated room using high quality speaker's mouth is about 20 cm . The recorded materials are then evaluated by a phonetically sophisticated listener. The speech signal
is then stored on the MIT-Speech VAX-750. For this puposes, \(i\) is ow-pass fitered at 4.8 kHz and sampled at 10 kHz The speech materials are analyzed using a software program
KLSPEC developed by Dennis Klatt (1984). This program compules a 512 -point DFT transform of slices of the signal (predifferenced and window is 30 ms at the sampling rate considered. in addition vindow is 30 ms at the sampling rate considered. in addifion
undamental frequency (Fo) is determined by colecting frequencies of local maxima occuring below 3000 Hz and \(j\) judging it to be the
frequenc (F) program KLSPEC also calculates a spectrogram-like spectrum which is obtaines by windowing a slice of signal (255 samples and
computing a 256 -point DFT. A weighted sum of adiacent DFT samde energy is then computed for each of 128 spectrogram-like filies Local maxima in this spectrum are most often indicative of the
requency positions of the formants. An interpolation algoritn requency positions of the formants. An interpolation alogrithn
impoves the accuracy over the 40 Hz resolution implied dy a 128 .
sample spectrum over 5 kHz . sample spectrum over 5 kHz . The spectrogram-tike spectium has
been used for the estimation of the formant frequencies of the vowels under analysis. in some cases, in which thequencies olgorithm is is nol successtul, the formant frequencies are manually extracted. DFI
spectrum slices samoled every 5 ms are plotted and the frequenco spectrim slices sampled every 5 ms are plotted and the friquencon
positions of the formants are evaluated by visual examination of the evolution of the locations of the DFT spectrum peaars in time. The
temporal sampling point of \(F 1\), F2 and \(F 0\) is the time at which \(F 1\)
 values of F0 and F1 are convered into a critical band tonality scale
according to Zwicker and Terhardt's ( 1980 ) mathematical according to Zwicker and Terhardt's.
approimation as adopted by Syrdal (1985).
Results of cacoustic measw

\section*{\(\frac{\text { Resulls of acoustic measurements }}{\text { As expected, the highest } F \text { Fi is }}\)}

As expected, the highest FO is found for the temale speaker (CR)
\((191 \mathrm{~Hz})\), while FO for the two male speakers (JP) and (KS) is comparable ( \((1118\) and 127 Hz , respectively).
The results of the analysis of the vewels The results of the analysis of the vowels \([I, \varepsilon, 叉, a, a]\) tor the thee speakers considered in the ( \(F\) Fr-F0) vs \(F 2\) space and in theff 1 I the
space are extensively described in Di Benedetto (1987). In the present paper, results soro only one of the speakertio (KSS)/ and oneof
the versions are presented as show in Fig. Figure a ahows tha the versions are presented as shown in Fig.1. Figure ta shows tha
overrapping occurs in the ( \(F 1\)-FO) dimension only between \([9]\) and overlapping occurs in the ( \(F 1\) (-FO) dimension only between \([[d]\) an
A] In the \(F 1\) vs \(F\) s space (Fig. 1b) overlapping occurs betwen
Al
 the [i], [I] and \(\mathfrak{x}]\) areas are well separated. The use of the (fifer voweslion contiguous along the (F1-FO), dimension, for (KS). The restlis)
cbained tor the other versions and ctained or the other versions and speakers (Di Beneredito, 1987 ,
a) \(f\)

b) F


Figure 1: Results of the analysis in the a) ( \(F 1\) 1-F0) vs F2, and \(b\) ) in the F1vs F2 spaces of the vowels \([I, \varepsilon, \notin, a, \wedge]\) (speaker ( \(K S\) )). Each vowe is considered in 20 different consonantal contexts.


he averaged values are obtained by pooling all the consonantaa contexts and versions.
grouping and separation of the vowel areas in the (F1-FO) dimension,
compared to what was obtained in the F1 dimension. Howeve probiems of overlapping still occur between vowel areas of a single
speaker in the (F1-FO) dimension. One should note that the difierences in ( \(F 1\) 1-FO) values between vowels in voiced and
1oiceless consonantal contexts are lower than in \(F 1\) values (Di enedetto, 1987) COnse ( Senedetto, 1987 ). Consequently, one of the factors which
contributes to a better separation of the vowel areas is that in the (F1Fo) dimension the vowel areas are better grouped.
he results of the comparison the vowel areas of the three speakers lesangues), (JP) (open losangues) and (KS) (full squares) the F1 (ful
 nd Fig. \(2 b\) shows that the difference in the comparison of Fig. 2 or difterent speakers is reduced using the ( \(F 1\) 1-FO) parameter for th

 S ) and (JP) and this effect is and he vowel [i]. Wowls by Peterson (1961) has been carried out. It is noticed on eterson's datat that the difterence in \(F\) values vetween male and temale speakers, depends upon the range of 1 vilues. In partitutar
it observed that this difiterence for high vowels is much smaller than
tor non-hile Ior non-high vowels, and this difiterence increases when \({ }^{\text {F }}\),
increases. This result confirms what is observed in the present study Syrdal (1985) reports the Bark-dififerences means for ten vowels of American English on the Texas Instruments data base which consists women and 51 children. The data reported by Syrdal contirm that the lerence in ( \(F 1\)-FO) values between male and female speakers epends on the height of the vowel considered. Note that both Peierson's and Syrdal's results are based on vowels pronounced in
hVd or hVC words while the vowels of the present study are considered in several consonantal contexts.
conclusion, acoustic analysis of the five vowels \([I, \varepsilon, x, a, a, \lambda\) has Shown that, in the dimension representing vowel height, individual
difiererences for low vowels are reduced when the vowels are rpresented by the difference ( \(F 1\)-FO) rather than by Fi. For high and mid vowels, on the other hand, a smaller shift in
dimension would be needed to correct the differences in Fo .

PERCEPTUAL EXPERIMENTS

All the stimuli used in the experiment described were synthesized
with the Klatt synthesizer (1980, 1984).
Description. The aim of this experiment is to investigate the
influence of fo on the perception of vowel height, using dVd Muence of FO on the perception of vowel height, 1 sing dVd
synthetic syllables. One set of stimuli is characterize dy \(\mathrm{FO}=125 \mathrm{~Hz}\)
125 -stimuili) while the two other sets of stimuli consists of stimuli 125 -stimulii) while the two other sets of stimuli consists of stimuli
which are identical to the previous ones as regards F 1 and higher tormant, while Foo of the stimulious this experiment is increased in two of 10 stimuli characterized by difiterent values of F 1 maximum ranging from 300 Hz (stimulus \#1) to 500 Hz (stimulus \#10) in steps
of 30 Hz . Experiment 1 consists of two phases: a vowel identification est and a "boundary" identification test.
The subjects were all non-naive listeners, native speakers of American English and members of the Speech Communication
 itterances as \(i, e\), as justified by the results of a previous experiment itterances as \([i, e]\) as j
Di Bi Benedeto, 1987 ).
in the second dhase, 125 -simulit, 185 -stimuli and 245 -stimuli were
ised. Sequences of stimuli (and the same sequences in reverse order) characteresized by the same Fo were played to the subiects who
were were asked to declare when their perception of the synthetic vowels
presented changed from \([1]\) to [e] or viceversa. Each sequence, in each order, was presented three times. Three subjects participated in this test.The subjects' description is identical to that of the subjects
who participated in the vowel identification experiment Results. Results of the identification test are presented for Hz in FO does not result in a clear effect on the identification unctions for any of the subiects who participated in the test. The
anree subjects who participated in the "boundary" identification test

 perceived as [e], when the sequences presented are ordered with ascending stimuli number, or the last stimulus which is perceived as If], in the case of sequences ordered according to a descending hree subiects who participated in this test, an increase in FO from oundary between [i] and [ e ], while a variation in FO trom 125 to 245
 was observed in the results otataited in with sequences of stimuli with

\(\frac{\text { Experiment } 2}{\text { Description. The aim of this experiment is to investigate the }}\)
 Hz were generated. The one-formant stimuli with \(\mathrm{FO}=125 \mathrm{~Hz}\) were
haracterized by five values of the lormant ( F 1 ) \((300,350,400,500\),
 stimuli with \(F O=185 \mathrm{~Hz}\) and values of \(F 1\) ranging from the \(F 1\) value of
the standard stimulus to the \(F 1\) value that would give the same \(F 1\) - \(F 0\) the standard stimulus to the 1 value that would give the same Fi.f0
for comparison and standard stimuli. Each pair was played three
times. The same procedure was repeated with the same standard imes. The same procedure was repeated with the same standard
stimuli (FO=125 Hz\()\) but the comparison stimili were characterized by
 were non-naive listeners, native speakers of American English, and
members of the Speech Communication Group at the Massachusetts members of the Speech Communication Group at the Massachusetts
Institute of Technology. They all named English as their best
language. They were asked to indicate which pair of stimuli was most language. They were asked to
similar in terms of vowel height.


Figure 4: Results of the bound simuluid identification test for the three subicats. Each tor on the tigure eof dififerent shape tor each subject) [e], in the case of the three stimuli Fo types.
experiment 2. Figure 5 shows on the abscissa the standard 5 and 6 show the red (with \(F O=125 \mathrm{~Hz}\) ) identified by the \(F\) 1 maximum value, and on the
ordinate the Orainate the comparison stimuli (with \(F O==185 \mathrm{~Hz}\) ) which, ane mancthed
against the stand stimulus is matched against three comparison stimuli: one with the
same same \(F\), one with the same ( \(F 1\)-F0) (in Heriz) and one with a \(F 1\) each standard stimulus, Fig. 5 shows the value of \(F 1\) tor best match each stand
the case of each subject individually ( \(1^{\circ}\) column: subject (MA), 2 columne subject (TCC), etc, as shown on the figure). A full (open
symbol indicates that the corresponding comparison stimulus \(w\) a symbol indicates that the cortesponding comparison stimulus wa
never (alaways) Coosen as stimulus or best match by
Pube subiect Pever (aways) chosen as stimulus tor best match by the subject.
Partialy open symbols indicate the percentage of times that this
particular stimulus was chosen tor best match. Figure 6 is simila particular stimulus was chosen for best match. Figure 6 is similar to
Fig. 5 but indicates the results of the test in the case of the
cos comparison stimuli with Fo=245 Hz. In this case, each standard
stimulus can be matched against tive comparison stimuli: one with the stimulus can be matched against ive compariston stimuli: one witit the
same \(F 1\), one with the same ( \(F\)-FO) and tre with intermediate values of \(F 1\), between the same \(F 1\) and the same ( \(F 1\) 1-FO). As in
Fig. 5 , the value of \(F 1\) for best match is indicated by partial or complete blanking of the corresponding symbol, for beach puatial oct Figure 5 shows that the \(F 1\) value e or best math, in the ease of stimul watites \(=185 \mathrm{~Hz}\), corresponds to a exact tormant match tor tow F
values 350 Hz . For other values of F the match is in generaal between an exact tormant match and values of \(F 1\) leading to
similar ( \(F 1\) I-FO) values. Note that in the case of the highest \(F 1\) value
 Tor the stancar and (CH) and is close to this value for (KS). One should
subject that when \(F 1\) is high enough (tor values higher than 400 H ,
note the approximately) \(F 1\) is out of linear Bark range. Consequently, the ( \(F 1\) 1-
FO) distance expressed in Bark is always lower for comparison stimuli
than tor standard stimuli when \(F 1\) is in this range,
Figure 6 shows that the value for best match, in the case of stimu with \(\mathrm{FO}=245 \mathrm{~Hz}\) is in general at intermediate values of 1 F1, belwee
an exact tormant match and values leading to similar ( F -FO values lor comparison and standard stimulii. In the case of the lowest value with stimulit characterized by \(F 1=330 \mathrm{~Hz}\) corresponding to the firs intermediate step. For values of \(F 1\) in the middle range ( 350,400 and
500 Hz ) the match shitts to stimuli with intermediate \(F 1\) values highee
 F1 of the standard stimuli: Note, in fact, that for standard stimuilit wit \(F 1=350 \mathrm{~Hz}\) the match is in general against comparison stimuli wi
\(F 1=410 \mathrm{~Hz}\) and that or standard stimuli with \(\mathrm{F} 1=400 \mathrm{~Hz}\) or \(\mathrm{F}=5=0\) Hz , the match is in general against comparison stimulif \(F 1=460 \sim 490 \mathrm{~Hz}\) and \(F 1=600-590 \mathrm{~Hz}\), respectively. The case of
standard stimuli with \(F 1=600 \mathrm{~Hz}\) is simiar to the case of \(F 1=400 \mathrm{~Hz}\) and \(\mathrm{FI}=500 \mathrm{~Hz}\), but note that for one subject (CH) the match parially aganst stimulan and standard stimuli leading to similiar(f)
Fo) values forcompaison
discussion
Results of the perceptual experiments have shown that the influen of \(F O\) in the perceplion of vowet 1 In particular, vowel identification experiments using co cr syythetiu
stimuli, have shown that an increase in FO from 125 to 185 Hzz does not result in a clear effect on the identitication tunctions, while
variation trom 125 to 245 Hz does result in consistenty difteren judgements. A second experiment has been described, in whit one-formant stimuli with \(F O=125 \mathrm{~Hz}\) and various values of \(F 1(3)\)
\(350,400,500,600 \mathrm{~Hz}\) were matched against \(350,400,500,600 \mathrm{~Hz}\) ) were matched against one-formant stimuin
which Fi was adjustable and FO equal to 185 or 245 Hz Results show that the value of \(F 1\) for best match was usually between comparison and standard stimuli. The match was close. to Fi lor to F1 values and approached in general similar ( F 1 -FO) values for hig Hz were considered, the match reached the same ( F 1 1-FO) values \((\) Hertz) for companison and standard stimuli. It has been noticed thal comparison stimuli than ior standard stimuli.
The results of the perceptual experiments presented are results of the acoustic analysis have shown that in the dimens results of the acoustic analysis have shown that in the vimetis ai reduced when the vowels are represented by the ( \(F 1-F 0\) ) ditieteren
rather than by \(F 1\). For high vowels, the shift in the \(F 1\) dimension account tor difterences in ( \(F 1-\)-F0) increases the acoustic variability effect is observed. In these cases (high and mid vowels) , it has been osserved that a smaller shitt in the F 1 dimension woula be needed with three differerent values of \(F 0(125,185\) and 245 Hz\()\) have been used. The average FO value of the female speaker considered in ition as previousily mentioned. The results of the perceppual experiments Io \(\mathrm{FO}=125 \mathrm{~Hz}\) and \(\mathrm{FO}=185 \mathrm{~Hz}\), have shown that tor low values OF Fl , Correspondingly, no should note that it has been obsenved that the vowel area of the high vowel (II) for the male and the temale speaxess is high, a change of FO from 125 to 185 Hz influences and \(F 0\) but similar ( \(F 1\) hol and that stimuli with difiereni values smol


Fioure 5: Results of experiment \({ }^{\mathrm{F}(\mathrm{FO}=125 \mathrm{~Hz})}\)
Figure
rowel height. Correspondingly the acoustic analysis has indicated that the location of the [æj-area corresponds to higher has indicated the case on the fermale spee.
The interpereation of the results obtained can be given as follows.
 low values (below \(\sim 200 \mathrm{Hzz}\) ) 1 may ye considered, by the perceptual
mechanism which processes it relative to the extreme end of the
scale scale the end of the scale is used as ananchor point) and is then the
most relevant factor in vowel height perception. When \(F 1\) is high (as most relevant factor in vowe heigigt perception. When \(F 1\) is high (as
in ow vowels) and Fo s sufficientiy tar from \(F\) I, \(F 1\) may be considered
 sed as an anchor point, and the distance between \(F 1\) and \(F 0\) (in Batk in determinant in the perception of vowel height. When \(F 1\) is at
intermediate values, or the distance between \(F 1\) and \(F 0\) is not large
enough, \(F 1\) and \(F 0\) would enough, \(F 1\) and \(F 0\) would both intervene in the perceptual process
determining vowel height in a relation which would not atribute the
 Unitom vowel notmalization in agreement with Fant's study (1975). carired out by Delgutte and Kiang (1984), as pointed out by Stevens
(1985). These investigators have obsenved the location of the laggest (1985). Tes investigators have observed the location of the largest
components in the discret Fourier transforms of perio histograms omponed from auditory-nerve fibers wivh various values of the
characteristic trequency (CF). The stimuli were steady-state two characteristic irequency (CF). The stimuli were steady-state two
formant stimuli with \(\mathrm{FO}=125 \mathrm{~Hz}\). Delgutte and Kiang note that for all
 where the harmonics close to \(F 1\) dominate the response spectra. In
addition, they observe that this region is flanked on the low-CF by adaition, hey obsene that this region is llanked on the low-CF by
another region in which the harmonics close to CF are the largest componenis in the response spectra. These harmonics correspond
to the fundamental frequency or to intermediate values between F1 and Fo. For low vowels.s.this region extendsed sp to about 400 OH H while
on the contrany, tor high vowels, this region is not distinct. Delgutte on the contrary, for high vowels, this region is not distinct. Delgutte
and Kiang observe that correlates with both the position of the \(F 1\) region along the CF dimension and with the extent of the low-CF region". This
osbervation could justify the results of the present study that for low
竍 obsenvation could justify the results of the present study that for low
Fovalues. F1 determest he perception of vowel height when 1 is
low (high vowels), whereas if \(F 1\) is high (low vowels) Fo influences
 Vowe height perception. Untortunately. Delgutte and Kiang do not
present results in the case of higner values of to. Consequenty, the
resulth of the present study in the case of higher values of Foc canot results of the present study in the case of higher values of Fo cannot
be interpeted on the same basis. We want to point out that the be interpreted on the same basis. We want to point out that the
perception of vowels with \(F 1\) and \(F 2\) closer than 3.5 Bark could be
based on one equivalent tormant located in a position intermediate based on one voquivivalent tormant located in a position intermediate
between the two tormats eetween the two formants, according to the categorical perceptual
effect 1 SCG (Spectral Center of Gravity) found by Chistovich et al.
(1979). It (1979). It could be hypothesized then that this one formant is
relevant, in the cases of vowels with \(F 2-F 1<3.5\) Bark, to vowel
height relevant, in the cases of vowels with F2-F1 < 3.5 Bark, to vowel
heiehnt perception.
This specco the problem is not addressed in the present study. We
want


Figure 6: Results of experiment 2 for comparison stimuli with \(\mathrm{FO}=245\)
Hz .
and FO in the perception of vowel height is appropriate in the case of relevant sucls, but that for back vowels additional factors could be
acording to the SCG theory, the relative amplitudes of \(F 1\) and \(F 2\).

\section*{references}

Chistovich, L.A., Sheikin, R.L. \& Lublinskaya, V.V. (1979) "Centre
 Delgutte, B. \& Kiang, N.Y.S. (1984) "Speech coding in the auditor
nerve: I. vowel-like sounds", J. Acoust. Soc. Am. 75 no. 866-878. (1987) Ans, A. Acoss. Soc. Am. 75 no.3 Di Benedito, M.G. (198) "An acousical and perceptual study on Fant, C.G.M. (1975) "Non-uniform vowel normalization", STL-QPS Klatt, D.3.t. (1980) "Sottware for cascade/parallel formant kilatt, synthesizer", J. Acoust. Soc. Am. 67 no.3, 971 .995. Peterson, G.E.E. (1961) "Parameters of vowel quality", J. Speech and Hearing Res. \(4,10-29\)
Stevens, K.N. (1985)' Perso
\[
\begin{aligned}
& \text { Stevens, K.N. (1985) Personal communication. } \\
& \text { Syrdal, A.K. } 1895 \text {, AApects of a model of auditor }
\end{aligned}
\] representation of American English vowels", Speech traunmülier, H. 1981 ) \({ }^{121-135 .}\). Zwicker, Els", J. Acoust. Soc. Am. 69 no.5, 1465-1475. and rate and critical bendwidth as a a function of frequency", Acoust. Soc. Am. 68, 1523-1525

PERCEPTION DE YOYELIES EN CONTEXTE NASAL
DANS L•ESPAGNOL PARLE A YORTO-RICO
carlos a. casablanca

\section*{Département des Humanités \\ Université de Porto Rico à Mayagüe}

\section*{abstract}

Lors d'un test perceptif inspiré de la méthode tape splicing", cent soixante-dix
sujets porto-Ricains se sont prononcés sur la qualité orale ou nasale de pla voyelle de la derniere syllabe des mots dont la con
sonne finale avait été effacée electronique ment. Les mots enregistrés étaient du genre VCVC ou VCVN et ceux proposés après découpa
ge étaient du genre VCV. Chaque mot compor tait au moins une paire minimale.
Les mots ont été proposes en deux séries dif férentes, chaque série se différenciant \(u\)
niquement par la quantité de transition retranchée en même temps que la consonne. Dans la premiere série seul 2,5 centièmes la deuxieme c'est la transition toute entierre qui a été éliminée.
Le rôle de la transition
Le rôle de la transition dans la perception a ainsi été mis en évidence et on a pu con-
firmer la portée de l'action assimilatrice.
introduction
De nombreux auteurs se sont intéressés à 1 aspect perceptif de la nasalisation. Des chercheurs tels que Lintz et Sherman \(/ 1 / 0\)
Malécot A. et \(G\). Metz \(/ 2 /\) et Ali Latif \(/ 3 /\) comptent parmi ceux qui ont publié le récomptent parmi ceux qui ont pult de test perceptifs effectués sur des
sultat sujets français ou américains.
ainsi que techniques mises en application, dans 1 'élaboration de leurs exper inences dif fèrent grandement selon la langue étudiée, duite et le but recherchê. Les résultats ob nus ont pu, eux ausi varier conséquen Ainsi Lintz et Sherman ont conclu que le de gré de nasalisation d une voyelle que contex te nasal varie d'après la hauteur de la vo
elle, les voyelles hautes étant les moins elle, les voyelles hautes étant les moins tion, les voyelles postérieures étant les moins nasalisées. les conduit par ali indiquent que les consonnes qui suivent la voy
elle basse \(/ a /\) ont été perçues comme nasales plus souvent que les consonnes se trou-
vant après \(/ u / \mathrm{et} / \mathrm{i} /\). Dans le même article

Ali démontre que dans le cas des syllabes du type CVVN le sujet peut détecter la pre ne nasale ainsi que la transition la conso ne nasachées. Ceci est dû selon Ali à llape ture prématurée du chénal vélopharyngal ticipant la consonne nasale finale.
Dans la même perspective nous avons un test qui a pour but de mettre en éviden. ce dans l'espagnol de porto-Rico les voyelles que les consonnes nasales adjacentes af fectent le plus.
de la technique de in inspire dans le domaine plicing" ou découpla méthode dite "tape senregistree. La théorie sous jacente qui permet ce genre experince se fonde sur des études cinévement articulatoire peut correspondre à plus dun segment phonétique.
Le concept de co-articulation à la base de notre travail a amené \(V\).A. Kozhèvikov et labe soit \(l^{\prime}\) unité minimale d'articulation. La fusion intime entre les différents élé ments d une même syllabe se traduit presque
obligatoirement par des phénoménes d'articu lation qui aboutissent à la création des va riations allophoniques.
ans le cas des seepments ou des suites qui
comportent un phoneme nasal, il a toujours été admis que la coloration particulière de a consonne est perceptible déja lors de \(\mathrm{l}^{\prime}\) nonciation de la voyelle orale. Vill et
Daniloff \(/ 5 /\) ont demontré que dans des séquences du genre CVN le voile du palais est
rale.
Il importe d'étajlir maintenant et c'est le but du présent travail, si le partage du rait nasal est aussi courant a autres langues pour lesquelles nous avons déja des résultats.
CORPUS Utilise dans le test de perception
Les mots proposés dans le test de percepLes mots proposés dans le test de percep-
tion sont tous bisyllabiques et ont été pri sentes en deux séries. Ils portent tous \(1^{\prime}\)
accent sur la derniére sy plabe et ont ét
enus car ils ont tous au moins deux paies minimales dont une se termine par une
\begin{tabular}{|c|c|}
\hline \({ }_{1}\) ere série & \(2^{\text {eme }}\) série \\
\hline irán & irán \\
\hline mantén & mantén \\
\hline matón & matón \\
\hline cojín & cojín \\
\hline guión & guión \\
\hline liadron & \\
\hline Corán & \\
\hline harem & \\
\hline cai & \\
\hline ladró & \\
\hline mantel & \\
\hline iras & \\
\hline Bali & \\
\hline coral & \\
\hline
\end{tabular}

Aux mots de la première série, sous contrôle de l'oscillographe, nous avons re tranché tiemes de sec. de la transition.
sux mots se terminant par consonne orale nous avons retranché le même segment qu \({ }^{\circ}\) aux mots se terminant par voyelle deux ou trois
vibrations leur ont été retranchées juste vibrations leur ont été retranchées; juste chose" avait été enlevé. Les mots de la deuxième série, se sont vu la transition. Le but de cette opération é élait de cerner le rôle de la latransition. Il convenait de savoir si les sujets portotoute la transition et une partie de la voy plle ont é été enlevés.
Pour nous assurer que rien ne restait de la
transition dans transition, dans certains cas nous avonsdû
couper jusqu'à trente pour cent de la voyel couper
le.
Nous
aide
Nous aurions voulu préparer le corpus à \(1^{\prime}\) aide des cinq voyelies de l'espagnol, mais de l'espagnol empêchent de travailler conenablement avec la voyelle postérieure

\section*{Les sujets}

Le corpus a été prononcé à vitesse normale
par un sujet féminin, choisi parmi douze
candidats pour sa diction claire et pour candidats pour sa diction claire et pour
son accent typiquement porto-ricain. Cette son accent typiquement porto-ricain. Cett
précaution garantissait qu'il n'y aurait pas d dinterférence linguistique a cause de 1'anglais. Avant d'enregistrer le corpus la
fréquence fondamentale de la voix du sujet a été calculée à laide d'un spectrogramme. Clle a a été enregistrée à 140 Hz .
es sujets linguistiquement naifs qui ont eu a se prononcer sur le corpus enregistré Pour diverses raisons. les formulaires de
nulés. Un nombre élevé de réponses garanti pásultats. Les sujets devaient identifier la nature de
la derniere consonne dun mot préalablement enrernstré. Des syllabes du type cVC et
CVVC ont été utilisées, leur derniere concrvo ont été utilisées, leur derniere con-
sonne pouvant être \(/ \mathrm{m} / \mathrm{l} / \mathrm{n} /\) ou un phoneme non nasal. La dernière consonne a donc été retranchee et les syllabes cV et cVr résul-
tantes ont été proposées aux sujets qui de-
vaient identifier la nature de la consonne vaient iden
manquante.

Résultats fournis par la premiere série.
Voici un tableau récapitulatif présentant les mots terminés par une nasale pré qui ont été proposés aux étudiants, ainsi que le
nombre de fois où ceux-ci ont identifié car nombre de fois ou ceux-ci ont identifié car
rectement la nature de la consonne manquante.


La nasalisation dans le cas de "limón". "citron' est évidemment élevée dè cause du pho nème bilabial situé devant la voyelle. La
voyelle postérieure /o/ ne semble pas of frir une résistance importante a a 1 assimila tion nasale. La voyelle antérieure /e/ sem ble avoir m.
que le \(/ \mathrm{o}\)
Nous nous attendions à ce qu'un plus grand nombred'individus jugeât que le plas grand fortement nasalisé; il n'en fut
de cette première série de mots. Aucun des sujets n'a pu identifier comme
telles la totalité des consonnes nasales telles la totalité des consonnes
retranchées. Voici les résultats.


Il est possible d'affiner les resultats.
Pour ce qui est des mots auxquels seul une partie de la transition a a été enlevée.
135 personnes sur 177 soit \(76 \%\) des sujets. ont percule trait nasal au moins cing fois sur neuf. Ces chiffres tendent a a confirmer que lorsque la transition est présente, la nasalite est percue avec urie relative faci-
qu'avance Ali (op.cit) dans son tableau numéro deux page 539 nous constatons qu'ilexplique que tous ses sujets, vingt deux en tout, ont identifié correctement cinq nasales ou plus sur neuf. Dans ses résultats la transition a été complétement effacée. Les résultats de Clumeck / \(6 /\) pour le français révelent que les sujets français n'ont pu déterminer avec certitude si les mots auxquels on avait retranché la dernière con sonne étaient ou non terminés par nasale. Les conclusions de ces deux expériences vont dans le sens de la théorie selon laquel le le degré de nasalité atteint par une voyelle orale diffère selon la langue. Il semble que nos résultats se situent entre ceux d'Alí et ceux de Clumeck.

\section*{Résultats fournis par la deuxieme série.}

La deuxième série comporte cinq mots se terminant par une consonne nasale. Ces mêmes mots ont été utilisés lors de la première série proposée. La seule différence est que cette fois ci, toute la transition a été enlevée. Nous espérions ainsi dégager l'impor tance de la transition dans la perception du trait nasal. Voici les mots proposés et le pourcentage de réponses exactes.
\begin{tabular}{lll} 
matón & \(36 / 177\) & \(=20 \%\) \\
guión & \(72 / 177\) & \(=41 \%\) \\
mantén & \(39 / 177\) & \(=21 \%\) \\
cojín & \(51 / 177\) & \(=30 \%\) \\
irán & \(48 / 177\) & \(=28 \%\)
\end{tabular}

Le pourcentage de réussite dans ce cas est moindre que lorsque la syllabe a été seule. ment privée d'une partie de la transition: \(28 \%\) pour la deuxième série contre \(47 \%\) pour la première série. La plupart des sujets ont percu les voyelles sous étude comme étant complétement orales. Les résultats statistiques montrent néanmoins que les sujets ont eu tendance à répondre au hasard. Avec la transition nous avons dù éliminer, dans la majorité des cas plus de \(30 \%\) de la voyelle.
Remarquons que c'est pour le /o/ que les résultats different le plus. Lorsque toute la transition a été enlevée, la nasalisation a été remarquée environ \(30 \%\) de fois contre \(70 \%\) de fois lors de la série précédente.

\section*{CONCLUSION}

Ce test perceptif laisse entrevoir que les auditeurs portoricains perçoivent dans les voyelles orales une coloration semblable au trait nasal qui normalement n'accompagne que les phonemes nasaux. Cette coloration est importante surtout lorsque la voyelle orale se trouve dans une syllabe terminée par une consonne nasale. position dans laquelle elle subit toujours une assimilation regressive.
Tous nos sujets ont en effet percu avec plus ou moins de netteté la teinte nasale
surtout lorsque la transition \(n^{\prime \prime}\) a pas été retranchée dans sa totalité. L'élimination de toute la transition, ainsi que le raccourcissement de la voyelle qui en découle ont non seulement rendu plus difficile la perception de l'assimilation nasale, mais encore ont incité les sujets à répondre au hasard. Le ròle de la transition n'a donc pas pu être entièrement cerné.
Ces résultats montrent néanmoins que la voyelle / / située en contexte nasal est celle à laquelle on a le plus souvent attribué le partage du trait nasal.

\section*{BIBLIOGRAPHIE}
/1/ Lintz et Sherman, "Phonetic elements and perception of nasality". J. Speech riearing Research 4, 1961. /2/ Malécot A. et G. Metz. "Progressive nasal assimilation in French". Phonetica 26. 1971.
/3/ Ali Latif et al.. "Perception of coarticulated nasality". J.A.S.A. Vol. 49 No2 Part 2, 1971.
/4/ V.A. Kozhevnikov and L.A. Chistovitch, cité dans J.A.S.A. vol. 50 No 2 part 2. 1971. ( il s'agit de la construction CV ; \(15 /\) Kenneth L. Noll et R. Daniloff, "Inves. tigation of the timing of velar mouvements during speech". J.A.S.A. Vol. No 2 part 2 1971.
/6/Clumeck H.. "Degrees of nasal coarticulation". Monthly Internal Memorandum, Phonology Lab. University of California, Berkely, July 1971.

\title{
AN EXPERIMENT ON THE CUES TO THE IDENTIFICATION OF FRICATIVES
}

\author{
HARTMUT TRAUNMÜLLER \\ DIANA KRULL
}

\author{
Institutionen för lingvistik \\ Stockholms Universitet \\ S-106 91 Stockholm
}

\section*{ABSTRACT}

Synthetic fricatives with two spectral peaks scanning a wide range of frequencies were put into three versions of the context <a ' \(\varepsilon\) :>, also generated synthetically, and imitating a male speaker (1), a child (2), and an aroused male speaker (3) with elevated \(F_{0}\) and \(F_{1}\). The stimuli were presented in two orders, with increasing or decreasing frequencies of the spectral peaks, to 16 speakers of Swedish who identified the fricatives as <f>, \(\langle\rho\rangle,\langle\varsigma\rangle,\langle\varsigma\rangle\), or \(\langle\oint\rangle\). In a given context, the obtained phonetic boundaries followed mainly the spectral peak lowest in frequency, while the upper peak contributed only marginally even if it was at a distance less than the "critical distance" of about 3 Bark. In context (2), as compared with (1), the phonetic boundaries were shifted up, but less (in Bark) than the vowel formants.

\section*{introduction}

It is well known that the characteristic frequencies, i. e., the frequencies of the formants and the fundamental in speech sounds with a given phonetic quality vary with the overall dimensions of the speaker's vocal tract. If the characteristic frequencies of vowels are converted into a measure of tonotopical place, such as critical band rate (Bark), differences in speaker size can be seen to correspond to a tonotopic translation of the auditory pattern of excitation र11>.

Identifications of synthetic two-formant vowels revealed that a uniform tonotopic compression of the auditory pattern of excitation with a fixed point in the region of \(F 3\) also preserves phonetic quality <12>. Natural vowels are transformed in this way in shouting and in whispering <11>.

The present investigation is about the transformations the spectra of voiceless fricatives can be subjected to without affecting their phonetic quality. It is known that voiceless fricatives can be synthesized satisfactorily with two resonances and one antiresonance and that the cues to the phonetic identity of voiceless sibilants reside mainly in the stationary part of their spectrum, while the transitions are more important for nonsibilants \(\langle 5,7\rangle\). One-parameter sibilants can be synthesized using a resonance and an antiresonance one octave lower in frequency \(\langle 5\rangle\). Such sibilants lack intrinsic cues to speaker size. In spectrogram reading, the Swedish voiceless sibilants can be distinguished by the frequency of spectral energy onset while there is more variation, even
within the same speaker and context, in the detail above that frequency <6>. A second characteristic spectral peak can, however, often be discerned and one question we address here is whether this second peak is used to normalize for speaker size. We also investigate in how far a vocalic context can serve this purpose.

\section*{METHODS}

\section*{Subjects}

The experiments were conducted with a group of 20 native and 6 non-native speakers of Swedish, all employees or students at the Institute of Linguistics at Stockholm University. None of them reported auditory handicaps and all were familiar with the phonetics of Swedish, possessing /f/, \(/ s /\), / \(/\) /, and \(/ / / /\). We report here the results of 16 native speakers with uniform behavior, mostly speakers of the local variety with the distributional allophones \(\langle\rho\rangle\) and \(\langle\mathfrak{f}\rangle\) for \(\mid \int /\), but including three speakers of southern varieties, who had no <s> in their nwn speech.

\section*{Stimuli}

The stimuli were synthetic VCV sequences. The vocalic segments had been obtained by synthetic imitation of a natural <a's: : \(^{\prime}\), produced by a male speaker of Swedish (Stockholm variety). A three parameter voice source <3> signal in accordance with that utterance was generated by the procedure described in <12>. The vocalic as well as the fricative segments were generated in serial synthesis by use of a block diagram simulating program (sampling at \(16 \mathrm{kHz}, 16 \mathrm{bit} / \mathrm{sample}\) ). Eight vowel formants were used. Their bandwidths obeyed the standard relation \(\mathrm{B}_{\mathbf{i}}=0.05 \mathrm{~F}_{\mathbf{i}}+50 \mathrm{~Hz}\).

The fricatives were generated by feeding white noise through a high-pass and a low-pass resonance filter, both of second order and with \(Q=10\). The two resonance frequencies \(F_{p}\) and \(F_{h}\) were varied in steps of a factor \(41 / 9\) (approx. 1.0 Bark). 42 combinations of \(F_{1}\) and \(F_{n}\) were used to scan the auditory space as shown in rigure 1. The fricatives had a duration of 0.20 s and the intensity onset and offset of the natural <s> was also imitated.

A second version of the vowel context was obtained by a uniform translation of all vowel formant frequencies by +2.5 Bark. The voice source parameters were rescaled in such a way that the mean \(\mathrm{FO}_{0}\), weighted according to amplitude, was also translated by + 2.5 Bark. This transformation
produces the characteristic frequencies in vowel
of children four to five years of age from thos of children four to five years of age
of the same vowels pronounced by men \(<11\) ．

A third version of the vowel context was ob－ tained by a uniform tonotopic compression of al ormant frequencies and the weighted mean
ompression is described by Equation \(\langle 1>\) \(z=Z_{0}+0.15\left(15.5-Z_{0}\right)\)
here \(Z_{0}\) is the critical band rate of a characte ristic peak in the original version，and \(Z\) is the corresponding value in the compressed version
This transformation produces the characteristic requencies of shouted vowels from those of the
 there are，however，additional differences whic have not been imitated of being produced by an aroused speaker rather than by a shouting one． f（in Hz ）into critical band rate \(z\)（in Bark Equation＜2＞that agrees to within \(\pm 0.05\) Bark with the empirical values＜13＞in the range of 0.2
to \(6.7 \mathrm{kHz}\langle 10\rangle\) was used and for reconversion to \(6.7 \mathrm{kHz}\langle 10\rangle\) was used and for reconversion
Equation \(\langle 3\rangle\) ．The formants，which were stationary
 with the weighted mean \(\bar{F} 0\) ．
\(z=(26.81 f /(1960+f))-0.53\)
\(f=1960(z+0.53) /(26.28-z)\)
\(\frac{\text { Table }}{2}\) ：The characteristic frequencies

\begin{tabular}{rrrrrrr}
\hline\(F 0\) & 102 & 110 & 327 & 337 & 298 & 306 \\
\(F 1\) & 751 & 442 & 1153 & 751 & 945 & 699 \\
\(\bar{F} 2\) & 1248 & 1799 & 1626 & 2617 & 1421 & 1932 \\
\(F 3\) & 2501 & 2390 & 3702 & 3525 & 2558 & 2461 \\
\(F 4\) & 3359 & 3413 & 5160 & 5258 & 3287 & 3332 \\
\(F 5\) & 4311 & 4386 & 6977 & 7131 & 4052 & 4111 \\
\hline
\end{tabular}

After D／A conversion the stimuli were recorded on tape in two different orders．First， \(\mathrm{F}_{1}\) and \(\mathrm{F}_{\mathrm{n}}\) ．
started at their highest values， 24 and 25 log． units．Fi subsequently decreased in steps of \(2 u\) ． and \(\mathrm{F}_{\mathrm{n}}\) in steps of 1 u ．until the distance between the two peaks reached \(7 u^{\text {．}}\) In the following de－
scending series of stimuli \({ }^{\text {rit }}\) and \(\mathrm{F}_{\mathrm{h}}\) started 1 u ． below the initial values，etc．In the second order \(\bar{r}_{1}\) and \(\bar{n} n\) started at their lowest values， 7 and 14
\(u\) ．，and ascended in reversal of the first order． u．，and ascended in reversal of the first order． presented twice in succession with an interval of
1.5 s ．In the following，any sequence of this kind 1.5 s ．In the following，any sequence of this kind
is considered as one＂stimulus＂．Each stimulus was is considered as one stimulus．Each stimulus was
followed by a pause of 2.5 s for the subjects to respond．A pause of 5 s was inserted before each
new series of stimuli．The stimuli were presented new series of stimuli．The stimuli were presented
in six blocks，beginning with the neutral male version in the first（1）order，followed by child （2），aroused male（1），neutral male（2），child （1），and aroused male（2）．

Procedure
The subjects were tested in a quiet，sound treated room and the stimuli were presented to them via Sennheiser HD414 headphones at a confor．
table listening level．The subjects received an swer sheets with a set of the five symbols＂\(\theta\) ，\(s\) ， ti，rs，sj＂for each stimulus．After explainin
the meaning of the symbols \(\langle\langle\theta\rangle\) or \(\langle f\rangle,\langle s\rangle\) ，\(\langle 人)\) \(\langle\mathrm{s}\rangle,\langle\{ \rangle\rangle\) and presenting a few stimuli for aquain tance，the subjects were asked to mark for each
stimulus the symbol of the fricative they heard．They were allowed to mark two differen symbols in cases of doubt．Single－symbol response Two－dimensional histograms were obtained fron the distribution of assigned labels as a function of the \(F_{1}\) and \(F_{n}\) values．The histograms were
locally normalized with respect to the total nult． ber of responses to each stimulus and smoothed b a spatial cosine filter．＂Phonetic obundaries
say between \(\langle\varsigma\rangle\) and \(\langle\varsigma\rangle\) ，were obtained by consid say between \(\langle s\) and \(\langle\varsigma\rangle\) ，were obtained by conside
ring only the \(\langle s\rangle\) and \(\langle\varsigma\rangle\) labels and computing the ring only the＜s＞
\(50 \%\) level curve．
RESULTS AND DISCUSSION
Effects of presentation order
＂ 8 ＂－labels were infrequent and mainly attached at the highest resonance frequencies and，occasio－ nally，at the very lowest．The boundaries between
the sibilants are shown in figure 1 ．The effect of contrast can clearly be seen at the \(\langle\varsigma\rangle-\langle\delta\) boundary which is shifted by 0.9 Bark in \(n\) ， tween the two orders of presentation．Since con
trast presupposes that at least one similar stimu． lus has been heard，there is no such effect at thn Figure 1）．There，the responses are，instead likely to be biased by expectation towards \(\rangle\rangle\)
\(\langle\rangle\) responses because the previous series of \(s t\) ． ＜f \(\{\) responses because the previous series of sti
muli \(i\) begun with these sounds．Outside this regio the 〈s＞－〈 \(\varsigma\rangle\) boundary is shifted just as much the \(\langle\zeta\rangle\)－〈 \(\rangle\) boundary．As for the boundary be
tween \(\langle\delta\rangle\) and \(\langle\rho\rangle\) the responses are 1 ikely to be tween \(\rangle\) and 〈 \(\rangle\) ，the responses are likely to
biased towards \(\langle\delta\) ，because this allophone would normally occur in an／af s ：／sequence as pronounced by most of our subjects．This would explain the order of presentation．
Effects of intrinsic properties The perceptual role of the two spectral peaks
in our stimulu can be understood by study ing the
slopes of the boundaries in Figure 1 ．The boundd ries whose slope is not in Figure 1 ．The bound are well approximated by straight lines．Two Imost perpendicular to the－ \(\boldsymbol{F}_{1}\) 人）have a coun the tigerpendicular to the \(F_{1}\)－axis，implying thal
the higher resonance \(F_{h}\) is practically irrelevan
frer the for these distinctions．Then，of course，the di－ stance between the spectral peaks is also irrele
vant．Thus，intrinsic vant．Thus，intrinsic properties of these stimul
were not used to normalize for speaker size． Phonetic boundaries might possibly be given a gross center of spectral gravity，like perceived


Figure 1：Phonetic boundaries between Swedish order of presentation．Pooled and second（dashed）

Figure 2．Phonetic boundaries between sibilants in
contexts of a man＇s（cotinuous），a child （dashed），and an aroused mans s（dash－dotted） （doshed），and an aroused man＇s（d
vowels．Pooled orders of presentation．
ness of our stimuli－as affirmed by informal listening－the results show that sharpess is not
an invariant quantity in sibilants with a given phonetic quality． If the resonances are separated less than a
critical distance of 3.5 Bark observed by Chisto－ ich et al．＜2＞the phonetic boundaries might be expected to reflect an integrated spectral peak．
The main part of our \(\langle\varsigma\rangle-\langle s\rangle\) boundary run hrough an area where \(Z_{h}-Z_{1}<3.5\) Bark（see ever，that this phonetic decision is only based on the pitch of the lower spectral peak or on the sectral onset of auditory excitation．Similar natching tasks \(\langle 4,9\rangle\) for frequencies below 1 kitch
nt The boundaries between＜\(\delta\rangle\) and 〈 \(\varsigma\rangle\) are，how－ ver，not completely independent of \(F_{h}\) ．This may ants for which our synthetic stimuli were closest o the natural versions，as judged by comparison he measured spectra of Swedish sibilants 〈9，8＞ asimilar course if the stimuli had been close mitations of natural sibilants．The phonetic \(Z_{1}+k_{i} Z_{h i}=I_{i}\) haracteris \(Z_{h}\) ，see Table 3，and the perceptual flect the good boundary \(i\) ．The factor \(k\) mi ht ectra of goodness of fit between the auditory natural sibilants，but it might，alternatively，of a function of \(\left(Z_{h}-Z_{1}\right)\) ．In that case the phonetic boundaries in Fi igures 1 and 2 shose the phonetic lighty from（inearis．interestingly，\(k\) is mos negative for \(\left(Z_{n}-Z_{1}\right) \approx 3.5\) Bark．This reminds of
the suggestion by syrdal et al．\(\langle 8\rangle\) to regard thi distance as specific of phoneme boundaries among sonorants．While our data do not immediately sup－
port this for sibilants－the observed atoundari port this for sibuants－the observed boundaries
are not perpendicular to the \(\left(Z_{h}-Z_{l}\right)\)－axis－they do show a tendency in this direction．

Table
in relation to that of \(F_{l}\) ，\(C f\) ．Equation＜4＞．
Phonetic
boundary \(\langle\mathrm{s}\rangle-\langle\varsigma\rangle\langle\varsigma\rangle-\langle\mathrm{p}\rangle\langle\mathrm{p}\rangle-\langle\varsigma\rangle\langle\rho\rangle-\langle\hat{p}\rangle\) \begin{tabular}{cccccc} 
\\
\hline\(k\) & -0.05 & -0.20 & -0.27 & -0.10 \\
\hline
\end{tabular}

Effects of context
Since intrinsic normalization for speaker size is almost absent in in our results，wo wouker size such a normalization，which theoretically would be appropriate，to be mediated by context．Figure 2
illustrates the effects of transforming the spec－ trum of the vowel context．We can see that the boundaries between sidilants are affected by the acoustic properties of the vowel context whose
phonetic quality was close to invariant phonetic quality was close to invariant．
The extent of the boundary shift neutral male and the child version of the vowels （between +0.7 and +1.3 Bark）is，however，smaller

Bark），especially at the 〈s＞－＜h＞boundary． The boundaries in the aroused male version are shifted from those in the neutral version about halfway in the same direction as those in the child version．The 〈 \(\delta\rangle\)－＜\(\dagger\) 〉 boundary（at 11.6 Bark \(=1.6 \mathrm{kHz}\) ）is shifted by roughly +0.3 Bark， i．e．，less than the vowel formants in the same frequency region（ +0.6 Bark）．Since，further，the upper vowel formants（above 15.5 Bark \(=2.9 \mathrm{kHz}\) ） in the aroused male version are not shifted up－ wards but slightly downwards，the shift of the＜s＞ －〈 \(¢\) 〉 boundary（at \(Z_{1}=19\) Bark）can not have been guided by the vowel formants in the same frequency region．Apparently，the sibilant boundaries are shifted about half as much as some weighted mean of the vowel formants，f2 given the highest weight．This would hold approximately for both of our context transformations，but the correlation of the extent of boundary shift with \(F_{1}\) remains an open question．

\section*{ACKNOWLEDGEMENT}

This research has been supported by a grant from HSFR，the Council for Research in the Humani－ ties and Social Sciences．

\section*{REFERENCES}
＜1＞G．v．Bismarck，Extraktion und Messung von Merkmalen der Klangfarbenwahrnehmung stationàrer Schalle，München 1972.
＜2＞＂L．Chistovich and V．Lublinskaya，＂The ＂center of gravity＂effect in vowel spectra and the critical distance between formants＂，Hearing Res．1，1981，185－195．

〈3＞G．Fant，＂Glottal source and excitation analysis＂，STL－QPSR 1／1979，85－107．
＜4＞R．Glave Untersuchungen zur Tonhöhen－ wahrnehmung stochastischer Schallsignale，Helmut Buske Verlag，Hamburg， 1973.
＜5＞J．M．Heinz and K．Stevens，＂On the pro－ perties of voiceless fricative consonants＂，J． Acoust．Soc．Am．33，1961，589－596．
＜6＞P．Lindblad，Svenskans sje－och tje－ljud i ett allmänfonetiskt perspektiv，CWK GTeerup，Lund 1980.
＜7＞J．Martony，＂On the synthesis and percep－ tion of voiceless fricatives＂，STL－QPSR \(1 / 1962\) ， 17－22．
＜8＞A．K．Syrdal and H．S．Gopal，＂A percep－ tual model of vowel recognition＂，J．Acuost．Soc． Am．79，1986，1086－1110．
＜9＞H．Traunmuller，＂Perception of timbre：＂， in R．Carlson and B．Granström（eds．），The Repre－ sentation of Speech in the Peripheral Auditory System，El sevier Biomed．，1982，pp．103－108．

〈10＞H．Traunmüller，＂Analytical expressions for the tonotopical sensory scale＂，part of Ph． 0. thesis，Stockholms Universitet， 1983.
＜11＞H．Traunmuller，＂Some aspects of the sound of speech sounds＂，contr．to NATO－ARW on psycho－ physics of speech perception，Utrecht 1986.
＜12＞H．Traunmüller and F．Lacerda，＂Perceptual relativity in identification of two－formant vowels＂，Speech Communication 5，1987，．．．
＜13＞E．Zwicker，＂Zur Unterteilung des hörbaren Frequenzbereiches in Frequenzgruppen＂，Acustica 10，1960，p． 185.

\author{
Zong-ji \(W_{u}\) ano \(Y_{i} X_{u}\) \\ Institute of Linguistics \\ Chinese Academy of Social Sciences Beijing, China
}

\section*{ABSTRACT}

The distinction between aspirated and non-aspirated consonants in Standard Chinese (SC) is usualiy described in traditional ohonetics as a difference in tores or giottis opening. Our experiments, including acoustic analysis, manometers measurements and perceptian tests with syntnesized consonants, revealed that information aoout aspiration is carried by prolonged turbulence with different features.. The perceptive tues for aspiration in eftricates aisa depend upon the tongue positions of the foilowing vowe!s: when betore a low vowel, the aspiration is realizee as a tricative /h/ immediatly foliowing the reieasing naise, while oefore anign vowe: it is reaiized as the pralongation of the releasing noise.

\section*{INTRODLCTION}
in Staneara Cininese, tnere are two graups of consonants which can be produced ootn with ane without asoiration. These are the voiceiess stops and affricates, each of which is distingwisinea from its counterpart in the feature aspirated/nonaspiratec in the Cininese pinonology.

In many Eurapean ianguages, e.g. Engilsing the aspiration of worg initial stops is only a conditional feature, out in many tone languages, especiaily in Chinese, it is apmonemic feature. in tracitional Chinese phonetic works, the nature of aspiration is mastly discriaed in terms of the force of articuiation: the aspirated comsonants maving greater force of articuiation than the non-espirateo ones. One of the pooular phonetic outiine vooks stated, यIn aspirateo articulation, the air stream expeilee from tne mouth cavity is stronger tnan in nan-esoiretec aticulation.-1JIt.is alsa mentianed mere and there that jan air-fiow atter reiease scalled asoiration", that "the air-flow in non-aspirated sqund is weaker and sherter, ana vise versa', anc that "far an espirated sound, the giottis is qoened Juring reiease, tae air oressure is arge
and the air-flow breatining qut 15 govious", etc.

In recent aecaces, thamxs to the wiediy appilication of pinonetie experimentations phoneticians can stucy tne progiems at aspiration mare oeeply, ane the vei of non-asoiratea/asoiratea oistinction are naw geing raisee gradualiy. Many tecninies mave seen useg for investigating tnis teature in the ieveis of art:culation, acaustics and perception. The VOT features of espirated/ non-aspiratec वpogsitan was examinec in spectragrams are was prqued by perceptian tests as an !modrtant cue [2], there were also investigators ceaiing with the giattic movements, air-fiow rates, and nerves activities. Thase stuaies mave praugnt the aiscussion of aspiration to a high level.[3]

This eaper intenos to mese furtner studies on the. пon-aspirateg/asoirated consonants in Standard Chinese in oreer to raise and answer tine toliawing questions:
1) Which is the main perceqtive cue for aspiration, ethe air-stream force, tne ouration or VOT, or the giottis openins?
2) What are the articuiatory processes oi these consonants?
3) Are tnere any different asoiratior. features petween stops and aftricates?

\section*{EXFERIMENT}

ma:e anc a femaie, af the Beijing cia!ect,
using a ievei recaraer (type: BK 2304) te
measure the amolituces anc the : enet.? aí
the consonantal segments. The amoi ituae
represents the overa: acoustic pressurg
and the iength was measured from tne
reiease goint to the starting ooint of
vawels.
the cancentration erea
amp:ituce were measureg immealately after
the reiease. Tne materia!s were spoken oy
a male Jeijing native.[4]
    Two sets of manometers were usee to
measure the supra-giottis air-pressures Construted by Protessor Peter Lacetoged.
[5] Thanks to the Department of \([5]\) Thanks to the Desartment \({ }^{\text {in }}\) done in their lab by Dr.M.M. Ren. Two intormants,a male anc a temaie, were asked to pronounce all the stops and the
aftricates in Stancara Chinese, aftricates in Stancard, high or iow.
tollowed oy three vowels, For the percestion test, a numser of non-asoirated anc asoirated stoos and
attricates were syritnesizect by a syntmetictan attricates were syntese pionetics asora-
system cesigned oy the phone tory of the Institute of ingelistics, Chinese Acacemy of Sacial Sciences.[6] Selected sampies of spectrograms were mac
of the syntiesized syilagles. For comoarison, we made severai spectrosrams trom Miao languase in Gunzo and Bai-ma languase in ibet, whicn asoirated ricatives, in onder to examine he natur ore kindiy supo ied oy tne Acacemy of Sacial Seremees.

\section*{215c:5SION \\ FORCE OR JURATION? To eetermine Whetner tne force or the length of the
noise alays the major ro:e as tine dercestive cues tor aspiration, a numar of
taperimental.tecinioues were usec. As the
 soace at the selectea exemples are given here. Fig.1 and Fig. 2 are histognams of
the ampituces measurec trom the acoustic necorcs socken oy two subjects \(A\) and \(B\) ( C maie anc a temale). The ampiituce of asoirated stops and aftricates are snown some-
what stronger than that of unasoirated ones, especially in lpal and /iou/, where
the explosion of unasoiratec stoos are too \\ }

\begin{tabular}{|c|}
\hline \multirow[t]{3}{*}{H. Hid.} \\
\hline \\
\hline \\
\hline
\end{tabular}

Fig. 2 histograms of the ampiituae of nonweak to de detected. But in the /pos /t'ul, /ts'a/ anc /ts'u/ spoken oy 3, th results turned out to be just in th
contrary. As a whale,
the ditterence fontrary. Detween the aspirated and nonasoiratec consonants are not \({ }^{50}\) eviaent commanly delieved great aiterences
measurements getween the iength of the measiratea and non-asoirated consonants that. for the stopst the prooartion asoirated stoos is \(11 / 7\) and tnat juration
attricates the proportion ot amplitude in the two catescries
progartion of duration
average, tneir aitterences are around 1.5 to 1 in amoliture and 3 ar more to 1 in Tajie I: gives the cata of suraglottai air-oressure of both stoos aftricates. There are no eirect oropor-

asoirater at tie curazien espirater stoo

ig. 4 Histosrams of the ouration of non-
asoiratea and asoiratec attrisates l'able
stops and affricates in SC
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{\%
d
d
d
\%} & & p & t & k & ts & ts & \(\mathrm{t}_{8}\) \\
\hline & A & 10 & 90 & - & 11 & 89 & 14 \\
\hline & B & 10 & 27 & - & 11 & 31 & 58 \\
\hline \multirow{3}{*}{\%} & & \(\mathrm{p}^{6}\) & ts & \({ }^{*}\) & ts \({ }^{\text {c }}\) & ts \({ }^{6}\) & \({ }^{4}{ }_{8}{ }^{4}\) \\
\hline & A & 11 & 84 & 3 & 11 & 39 & 17 \\
\hline & B & 10 & 24 & - & 19 & 10 & 25 \\
\hline
\end{tabular}

Table II Supraglottal air-flow rate
of stops and affricates in SC

atfricates, although the frietion seems to be the ressulthatairytatrietion seems the air does
not expel continuously out tram the not expel continuously out tram the
pulmanie cavity while the giattis keps
open. Mowover, the widith of the glatis open. Mowover, the widith of the glattis aspirated attritates i7j. So their
flow rate gould hardy be measured. fow rate =ould hardly be measured.
sound SOUND SOURSE The aspiration of
Eansonant is usuaily detinea as a naise.
On the acoustic paint of view, questions On the acoustic point of view, questions
mignt oe raisea as: what are characteristics of these noise? Are they all white-
noise, or noise with ditterent parameters? noise, or noise with difterent parameters?
In the soectrograms of these
consonants, in an aspirated 5 of consonants, in an aspirated stop as /os se,
the asoirated section is a sequence at the asoirated section is a sequence ot
non-perioaitainaise, bearing the acoustic
teatures similar to that of trifative \(/ h /\). teatures similar to that of trieative thi
i.e., the concentration areas are
scattered and conneted the formants of scattered and conneted the formants are of
the tollowing vowei with a \(/\) plain/
 aspirated aftricates as lts ala the
sequence of noise is searated into twa: the tirst part of the noise bears the same acoustic character as the tritative \(/ 5 /\), Thus a ciear boundary the same as itween them is But when an aspirated
shown.
aftricated fallowed by anather vowel as aftricated, followed oy anatner vowel as Sut orolongs the \(/\) s/ \(/\) triction. The no same tif' \(/\) In Stanoard Cninese. These can de interpretation. When the vaphel atter an is iower than that of the cansonant as. /ts/ is released and the constriction la/, no tursulence will be proauced with the tongue tip. then the aspiration has to De formed by anather way, 50 a /h/ like
turbuience is procuced at the oack area at the tongue. This can be seen in the X-ray films. But in lts'l/, when the val far apart tram the position oopes not move
gesture of the vowel for the gesture of the vowei is homorganic wi
that of \(/\), \({ }^{\prime}\), but the stricture slightly eniarsea ang the turaulence dispiayed by the vaice
the PERCEPTION TEST In orcer to prove percention tests are arrangea.a numser of synthesizer \(\begin{aligned} & \text { Some of the consonants }\end{aligned}\) in whith the aspirated sized oy changec oy coupie the amp, sections ar are
the length of the triction. The parameter of the trictive part of tine aftricates are given oased on the quality of h/ or of
the same as the friction of attricates.




Fig．Spectrograms of syntmesizec affricates／ts／in difterent nammers tailowed oy vowei／a／（see text）．
equa！e the amplitude af／f／，／tई̧／dauble the length of／s／ano／tsh／，is／ts／ taliowd by／h／．The perceptian result is promissing in the last sample，anc in which a boundary petween the twa frictians is prominantiy seen．Fig． 6 is a samp！e of affricate／ts／fallowed oy the vowel／i／， ana a／tf／toilowea gy the vowel／i／，both with their frictions cous：eg the ength ar tallowec by h／i better results are aכtained oy daubled the lengtns instead of pius a \(/\) h／．


F：s．6 Soectragrams ot syntnesizec attr－ Eates／tg／Enc／t戸／in oifferent manners failoweo دy vowe！s \(/ \mathcal{/}\) anc ／i／respectiveiy（see text）．
it is interestins ic nave this resuits revealed in certain minority ：anguages in China．For exampie，there are non－aspirated／aspirated pairs ir Miae Ianguige of Guizhous ootn the aftricates and frictives can be asoirated．Fig．7 5nows two pairs ot＂sa＂／＂s＂a＂are ＂Ei＂／＂E＇i＂，in which we car see tnet＂s＇e＂

sa \(s^{6} a\left(s^{h} a\right)\)
＂measles＂\({ }^{n}\) thick＂

＂gal1＂＂clear＂

Fis． 7 Spec．mograms of non－assirazed end aspi－atec fricatives／s／arc／a／ir Miac anguage．
is＂s＂plus＂h＂with a bouncary in the triction，while＂F＇i＂is a prolonged＂ai＂ without any boundary in the friction．

\section*{CONCLLSSION}

The staps and．he aftricates＇in Stanciard Cininese，exist two manners of articulation，non－aspirated and aspirated． The perception rues are mastly based upon the noise duration rather than the force． Moreqver，the acaustic teatures of the aspirated noise are ditterent in twa types according to the following vowels．The aspiration is tormed by adding a＇／h／sounc after release it it is toliowed oy an open vowel；while formed by prolonging the iensth of noise if fallowed by e high vowel homorganic with the consanant．

\section*{RミこミマENCE}
［1］C．P．Lua，J．Wans，Out line of Genera Phoneties，Commercial Press， 1981.
［2］A．5．Abramson，L．－isker，Vaice－timing serception in Soanish ward initial stops，」．Phonetics 1， 1973
－3］H．Hirase，Laryngeal adjustment in ＝ansonent praductian，Phanetica 34，1977
－4j Z．J．Whed．s The Spectrographic Alour If Mono－Syilavies of Stancara Chinese， C．S．S．P．， 1986.
E5JP．Lacetosec，A．Traiil，Instrumental pronetic fieldwork，Report in Insti．Ling． こhi．5c：．， 1983.
［t］5．Yans and Y．Xu，A soitwère systen for synthesizing Chinese soeecin，Prac． Inter．Cong．on Chi．Intor．Process， Beijing： 1997.
－7E R．Iwata，H．Hirose，Fioeroatic acoustie studies ot Mancarin stoos anc attricates，Ann．Bull．RIİ 15，i976．

\section*{PERZEPTIVE BEWERTUNG DER TSCHECHISCHEN EXPLOSIVLAUTE}

\author{
Sáva Hlavá
}

\author{
Phonetisches Labor \\ Institut für tschechischen Sprache ČSAV Praha, čSSR
}

RESUME
Die beschriebenen Experimente sollten \(\mathrm{Be}-\) ziehungen zwischen signifikanten Merkmalen der tschechischen Explosivlaute feststellen. Der Wichtigkeitsgrad, gemeinsame Vertauschmöglichkeit und Reduktion der Merkmale wurden। definiert. Die Merkmale waren: das explosive Geräusch, das postexplosive (PE) homorgane Geräusch und Transiente an dem die Konsonante begleitenden periodischen Signal.

\section*{EINLEITUNG}

Gegenwärtige Methoden der Sprachsynthese benutzen meistens digitalisierte Segmente mit der Länge \(20+30 \mathrm{~ms}\). Im Verarbeitungsproze muss man wichtige perzeptionsrelevante Merkmale bestimmen, die keine Verzerrung erleiden dürfen. Für Explosive ist das besonders wichtig ihres transienten Charakters wegen. Das Sprechsignal wird durch verzerrende Einflüsse beeinträchtigt; zugleich wirkt aber auch deren Kompensationsfaktor. Die Gesamtverständichkeit kann auch dann erhalten bleiben', wenn einzelne Faktoren der Laute in veränderter. Weise realisiert werden. In der Sprachsynthese kommt es darauf an, welcher Teil des akustischen Signals fur die Perzeption des untersuchten Explosivs der wichtigste ist: das explosive Geräusch, das PE homorgane Geräusch oder Transiente an dem die Konsonanten begleitenden periodischen Signal. Das Experiment wurde mit tschechischen stimmiosen Explosivlauten \([p],[t]\), \(\left[t_{1}\right]\), [k] durchgeführt. Bei der Bewertung anderer Explosivlaute muß man die verschiedenheiten in der Lautbildung und deren perzeptionellen Bewertung respektieren.

\section*{BENUTZTE MESSMETHODE}

In der Sprechforschung benutzt man häufig die segmentale Synthese. Für die Analyse der Sprechelemente ist es jedoch zweckmässig mit naturlichem Signal zu arbeiten. In unserem Labor verwendeten wir die Methode der mechanischen Montage des bei höher Geschwindigkeit \(76,2 \mathrm{~cm} / \mathrm{s}\) arbeitenden vollspurigen Tonbandes. Mittels dieser Methode ist es möglich:
1. beliebige Kombination der Signalabschnitte zu konstruieren und einzelne Teile dabei auslassen
2. ausgewählte Abschnitte genau an Stellen zu bringen die vorher im Spektrogramm definiert.wurden
3. voraus definierte Signalubertragung zu bestimmen und das Signal in der Intensităt zu modifizieren
4. die gesàmte Aufnahmelänge konstant \(z u\) halten \(b z w\). sie nach Bedarf zu modifizieren
5. einzelne Teile des Signals durch andere zu ersetzen
6. das Originalspektrum der Restteile und die Zeitverhältnisse nur minimal beeinträchtigen.
Die Zeitdauer des Uberganges der verbundenen Teile war meistens 10 ms (Abb. 1).


Abb. 1

Diese Länge ermöglichte die maximale Information über das ursprüngliche Signal zu behalten und glefchzeitig das Entstehen von Ubergangserscheinungen \(z u\) begrenzen. Der Ubergang. wurde dort gelegt, wo konnte man keine signifikante Signaländerung erwarten. Das Material wurde wie folgt verarbeitet:
a) Das Spektrogramm der Aufnahme wurde verfertigt.
b) Nach Auswerten des Spektrogramms wurde mittels Montage ein modifiziertes Signalmuster erstellt.
c) Das Spektrogramm des Musters wurde verfertigt.
d) Das Muster wurde perzeptiv gewertet.

Die Bewertung der Ergebnisse ist dadurch beeinflußt, daß das Maß an Wichtigkeit des perzipierten Signals in keinem konstanten, inearen Verhaltnis zur Intensität steht. Die genaue Auswertung der zeit- und Spektralverhältnisse muß also sehr sorgfältig ausgeführt werden.

GRAPHISCHE DARSTELLUNG UND PHYSIOLOGISCHE PROZESSEN
Unter Anwendung der Booleschen Algebra können die, für die Identifizierung des tschechischen Explosivs notwendigen Bedingungen
\[
E_{n}=\bar{F}_{o} \quad F_{\text {char }} T
\]
\(E_{n}\) - Erkennbarkeit des nicht stimmhaften Explosivs
\(\mathrm{F}_{\text {o }}\) - Grundton der Stimme - charakteristisch verstärkte Fre char - charakteristis
F - Zeitfaktor (Dauer, Anderungsgeschwindigkeit...)
Eine Analyse des Artikulationsprozesses zeigt, daß nach einer relativ langen Unterrechungsphase des Vokaltraktes eine jähe ffnung folgt. Ihrer phasikalischen Reali ierung entspricht ein Ablauf der nur eine
 Das öffnen des Stimmweges verläuft nur in erster Approximation sprunghaft, der Erregungsimpuls entsteht also mit beschränkter Geschwindigkeit. Das breiteste Spektrum erregt der Anlaufteil des Impulses, sofern dies wird zum größten Teil durch die Arti kulationsweise beeinflußt. In der weitere Phase des öffnens entsteht ein homorganes postexplosives Reibegeräusch, modifiziert urch das Erweitern des Spaltes. Beide Ge äuscharten werden durch die filtrierende die Parameter der Höhlen sind veränderish meistens zugleich mit Veränderungen des rausches. Folgt auf ein Explosiv ein weitees Explosiv, endet der ganze Prozeß bei der em zweiten Explosiv entsprechenden Okkluion. Das Geräuschsignal des ersten Explo-
 nach der Explosion ein periodisches Signal an. Durch Resonanz wirà dieses Signal in requenzbereichen verstärkt, die durch das ansonst abschwächende homorgane Geräusch les ausklingenden Explosivs betont werden chwächt und durch as maskiert; in seiner Anfangsphase kann also dieses zur Erkennbarkeit des Explosivs beitragen. Der letzte Teil des fließenden Uberganges gehort zum typischen Bereich ces ierten iberganges kann weder die Zugehörigkeit de okal, noch diejenige zum Explosiv mit genugender Genauigkeit bestimmt werden. Bei guter Aussprache sind im Spektrum zwe eile zu erkennen: die Explosion und as ostexplisive Gerausch, bei verschlechter ich beide gleichzeitig. Sprechen ist die Explosion häufiq geschwäch oder (in spektraler Darstellung) fehlt sie ganz. Im Falle der segmentalen Darstellung es Sprechsignals (z.B. bei der LPC Syn heslen oder wird sie in entweder ganz egments dargestellt. Solche des ganzen der Verlangerung wirkt sich meistens al störend aus.

EXPERTMENTELLE ANORDNUNG DER VERSUCHE
Die durchgeführten Experimente sollten folgende Fragen beantworten
1. Welche ist die Bedeutung der eigentlichen Explosion und des PE Geräusches?
2. Welche sind die Folgen einer Verkürzung der eigentlichen Explosion bei fehlendem PE Geräusch?
3. Welche Folgen hat das Aussetzen der Explosion bei behaltenem PE Geräusch? Welche sind die Folgen der fehlenden Explosion und des PE Geräusches bei befolgenden vokals?
5. Welchen Einflus auf die Perzeption des Explosivs hat das vollkommene Beseitigen des periodischen volikommene beseltigels bei behaltener Explosion?
6. Gelten analogische Schlüsse, wenn das Explosiv vor einem anderen Explosiv oder inem Vokal steht?
Die Versuche wurden mit tschechischen Wörtern entsprechend cen Formeln \(\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{~V}\) und \(\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3} V\) durchgeführt. Untersucht wurde der Einfluß von Veränderungen am
a) explosiv in der Initialstellung ( \(C_{1}\) )
b) explosiv in der Medialstellung ( \(C_{2}\) vor \(C_{3}\) ) c) \(\operatorname{explosiv}\) in
Vokal \((\mathrm{C}, \mathrm{V})\)
d) Ubergangsyebiet aes Vokalanlaufs nach einemi Exrlosiv ( \(\mathrm{C}_{2} \mathrm{~V}\) )
Die Worte wurden aus Tonbandaufnahmen guter Aussprache in einer akustisch gedämpften Kammer des Phonetischen Labors des Instituts für tschechischen Sprache der CSAV in Praha ausgewählt. Die Aufnahme wurde mit 2 männlichen Stimmen durchgeführt.
normaler Aussprache wurden nach den
Regeln der zufälligen Anordnung mit mittels Montage modifizierten Proben vermischt, und ihre Perzeption wurde mittels einfacher Anhörteste uberpruft. Bei der Probenverfertigung benutzte man ein Eichsignal \(2 \mathrm{kHz}, 100 \mathrm{~ms}\), jedem Test wurden Proben derselben Stimme vergleichen. Die Anhörgruppe betrug etwa 10 Personen ( \(7+11\) ); es handelte sich dabei um geborene Tschechen mit phonetischer Ausbil aung sowie auch ohne dieser, jedenfalls mi normalem Gehor. dreistufigen Skala:

Vormaler Gehöreindruck, ohne wahrnehmbare 2. Gehöreindruck
tätsänderunck mit wahrnehmbaren Quali
3. Erkennbarkeit des Lautes gleich Null (der Laut nicht perzipiert, durch anderen Laut substituiert, nicht erkennbar).
Das Auswerten der Eirgebnisse geschah nach Schema: Urteile ( \(1+2\) ) gegenüber 3.
Die Explosive nach a) und b) wurden in zwei tage modifizierten Froben enthielten in diesen Fallen sowohl das Auslassen der Explosion (-E) als auch das Auslassen des homorga.nen PE Geräusches (-PE).

Die Explosive nach c) und der Ubergang nach d) wurden in vier Tests verarbeitet (C, D, E, F). Im Test C wurden die Proben des normalen ( \(V_{n}\) ) oder veränderten ( \(V_{\text {med }}\) ) Vokals kombiniert mit Modifikationen des Explosivs mit ausgelassener Explosion ( \(-E\) ) oder ausgelassenem PE Geräusch (-PE). Die verändernormale Anlaufteil der periodischen Schwingung des Vokals durch den medialen-stationären - Teil des Vokals ersetzt wurde. Es entstanden 4 Modifikationen: \(-\mathrm{EV}_{\mathrm{n}},-\mathrm{PEV}_{\mathrm{n}}\), \(-E V_{\text {med }},-P E V_{\text {med }}\)
Der Test D enthielt Modifikationen der Länge des explosiven Gerausches vor dem Vokal mit ersetztem Anlaufteil. Der Rest des PE Geräusches war 5 ms und die Explosion wurde Die Proben \(E_{15+5} V_{\text {med }}, E_{10+5} V_{\text {med }}\), \(E_{5+5} V_{n e d}\), \(\mathrm{E}_{\mathrm{O}+5} \mathrm{~V}_{\text {med }}\).
Der Test E bestand aus Proben mit ausgedassener Explosion und ohne PE Gerausch, in folgte, oder war der Anlauf durch den Me dialteil ersetzt. Ein langsamer Intensitäts anlauf dieses substituierten Teils erfolgte mit Längen von \(10,20,40,70 \mathrm{~ms}\) : so wurde das weiche Ansetzen der Intensitat Frequenzveränderung fehlte (die aber im normalen Sprechsignal immer vorhanden ist). So entstanden die Proben \(-\mathrm{EV}_{\mathrm{n}}\), \(-\mathrm{EV}_{\text {med }}\) \(-E V_{\text {med20, }}-E V_{\text {med40 }},-E V_{\text {med70 }}\).
Im Test \(F\) wurden Proben mit Explosion vor dem Vokal, dessen Anlaufteil durch den Medialteil ersetzt war, mit Proben ohne Explosion •und PE Geräusch vor dem Normalvokal, niert. Prem ersetzten Anlaurtell kombi niert. Proben \(+E V_{\text {med }},-E V_{n},-E V_{\text {med }}\).
Der angeführte Arbeitsgang ist anhand ausgewahliter Beispiele dokumentiert. Die Ab chischen worten Spektrogramme des tschenach \(c\) ) und d) und Verarbeitung nach \(E, F\) Es handelt sich um das Wort [tka:t] (三weben). Abb. 2 zeigt das Originalspektrum mit gut entwickeltem Ubergang der Laute [ka:].


Explosion und mit \({ }^{4}\) ze Geräusch. Der Anlauf


Abb. 5 zeigt das Spektrummit ausgelassener Explosion und PE Geräusch und mit ersetztem Anlaufteil des Vokals (ähnlich wie in Abb. 4). Die Länge der Proben entspricht der Ori ginalaufnahme. Bei der Auslassung des Originalsignals wurde ein Blank derselben Länge aus demselben Tonband benutzt. Partien räuschhintergrund der Tonaufnahme wie beim umgeberden Signal dargestellt. Die Montage nach Abb. 4 und 5 kann man künstlich (nur im Labor) erzielen. In der Sprache ist es infolge der endlichen Trägheit der sich bewegenden Stimmorgane nicht erreichbar. \(2 u r\) in der der Einfluß aller Signale des Explosivs vollkommen unterdrückt wurde. Ảhnliche Verarbeitung wurde auch für den Fall mit dem Explosiv in der Medialstellung benutzt ( \(C_{2}\) in der Gruppe \(C_{1} C_{2} C_{3} V\) ).


Bei der Verarbeitung der Ergebnisse benutzte man statistisches Testverfahren. Jede Probe wurde im Test \(2+3\) mal präsentiert. In jedem Test wurde das arithmetische Mittel der richtigen Antworten und die Standardabweichung ermittelt. Richtige Antworten bewegten sich im Bereich ungefähr \(83+100 \%\).

\section*{AUSWERTEN DER ANHÖRTESTE}

\section*{Das Auswerten der Teste ergab:}
1. Die Perzeption des Explosivs in Medialstellung blieb im Prinzip ungestört:
a) bei Auslassen der Explosion, wenn ein PE Geräusch folgte,
b) bei Auslassen des PE Geräusches, wenn die Originalexplosion vorhanden war.
2. Wurde das PE Geräusch ausgelassen, führte ein weiteres Kürzen der Explosion zu einer schlechteren Erkennbarkeit des untersuchten Explosivs. Im Grenzfall verschwand es vollkommen. Es handelte sich dabei um eine fehlende Perzeptionserscheinung, nicht um das Verwechseln mit einem anderen Laut.
3. Wurde im Signal nur das PE Ceräusch behalten, blieb auch in diesem Falle die Perzeption weitgehend ungestört.
4. Wurden sowohl Explosion als auch PE Geräusch ausgelassen und der Anlaufteil des folgenden Vokals behalten (wie in Abb. 3), blieb die Perzeption ebenfalls ungestört.
5. Das Vertauschen des periodischen Anlaufteils des Vokals bei behaltener originaler Explosion (Abb.4) hat auf die Explosivperzeption ebenfalls keinen bedeutenden Einfluß gehabt.
6. Analogische Schlußfolgerungen zeigen, daß jedes der drei untersuchten Elemente für die Perzeptionserscheinung allein genügt. Die Kombination von zwei oder allen Elementen hat redundanten Charakter und verbessert die Verläblichkeit der Perzeption.
Im Kontrollversuch wurde die Explosion als auch das PE Geräusch ausgelassen und der periodische Anlaufteil des Vokals wurde durch den Medialteil ersetzt (Abb. 5). Das relevante Explosiv konnte keinesfallsidentifiziert werden. Die ursprüngliche Gesamtqualität blieb dabei erhalten. Dies führte zu einer merklichen Verlängerung der Vokalperzeption. Eei Verlängerung des Intensitätsanlaufs der substituierten periodischen Komponente in Abb .4 und 5 (schrittweise bis 80 ms ) konnte die Voraussetzung nicht bestätig werden, daß ein hartes (kürzeres) Ansetzen des periodischen Teils die Identifizierung des Explosives verbessert, sofern es nicht zugleich von einer entsprechenden Frequenzänderung begleitet wird.
Aus den Messungen folgt ebenfalls der \(\mathrm{Be}-\) weis der hohen Perzeptionempfindlichkeit des Gehorrs für signifikante Ubergangsprozesse. Z.B. eine Verkürzung des relevanten Geräuschsignals des [ \(k\) ] bis auf ca \(15+10 \mathrm{~ms}\) (Extremfall) hatte keine Einfluß auf die

Erkennbarkeit des Explosivs, unter der Voraussetzung einer Explosion mit gut entwickeltem Spektrum.
Im natürlichen Sprechsignal ergänzen sich also gegenseitig alle Komponenten: Explosion + PE Geräusch event. die periodische Komponente im Anlaufteil des folgenden Vokals. Eei idealer Artikulation ist das nach der Explosion folgende Signal redundant, umgekehrt bei schlechter Artikulation mit fehlender (ungenügend entwickelter) Explosion kann die zweite oder die dritte Komponente die Explosion vertreten. Besonders markant ist diese Iatsache bei der Kombination Explosiv + Vokal. Diese Wertung ist natürlich diskutabel: es kann ebenso behauptet werden, daf im gelaufigen Sprechsignal der Einflus der Ubersancsuebiete primar zur Geltung kount, wahrend die eigentliche Explosion eher zur redundanten Information gehc̈rt.

\section*{SCHLUSSFOLGERUNG}

Die beschriebene Methode demorstriert die Annahme, dab tschechische Explosive mittels mehrerer sich gegenseitig vertretender Merkmale bestimmt werden können. Die Spektrogramme der modifizierten Signale wurden zur Auswertung des Charakters von mittels der Perzeptionsteste identifizierten Probenbenutzt.
Die Perzeptionsauswertung der tschechischen Explosivlaute Beruht also auf der Bewertung der einander sich vertretenden Merkmale (Redundanzprinzip). Für richtige Bewertung des Explosives genügt nur eineinziges Merkmal von den hier beschriebenen (cinzelfälle natürlicher und künstlicher Sprachdegradation). Schlußfolgerungen kann man bei der Sprachsyntheseprogrammierung ausnutzen.

\section*{LITERATUR}
1. F.S.Cooper, P.C.Delattre, A.M.Liberman, J.M.Borst, L.J.Gerstman: Some experiments on the perception of synthetic speech sounds. JASA 24, 1952, 597-606.
2. E.Fischer Jörgensen: Tape cutting experiments with Danish stop consonants in initial position. ARIPUC 6, 1972, 104-- 168.
3. A. van Katwijk, J. t'liart: Intelligibility of syllable - tied interrupted speech. I.P.O. Report April 1967, 99 -- 102.
4. B.Lindblom: Accuracy and limitations of Sonagraph measurements. Proc. of the IV Int. Congr. of Phon. Sci., Helsinki 1961.
5. G.E.Peterson, W.S.Wang: Segmentation techniques in speech synthesis. JASA 30, 1958, 739-742.
6. G.Ungeheuer: Systematische Signaldestruktion als Methode der psychoakustischen Phonetik. Phonetica 18, 129.

\author{
Peter Roach Andrea Dew Paul Rowlands
}

\section*{Department of Linguistics \& Phonetics University of Leeds, U.K.}

\begin{abstract}
Research in the automatic transcription of speech sounds by computer requires a detailed and accurate comparison between the expert phonetician's transcription and the machine's attempt. A computational technique for assessing the accuracy of a machine transcription is described: differences between segments are expressed in terms of a small number of primitive phonetic features.
\end{abstract}

\section*{INTRODUCTION}

A number of modern approaches to the automatic recognition of continuous speech make use of the technique of dividing the stream of speech into a string of segments and labelling these with a chosen set of phonetic category labels ([1], [2], [3], [4], [5]). These categories, which are not necessarily restricted to phoneme-sized units, may be more or less precisely specified. Dalby et al [6] refer to three different types of analysis: Broad Class lidentifying segments as, for example, Nasal, Fricative, Vowel), Mid Class (including details such as whether a segment is voiced or not, whether a vowel is front or back, or whether a fricative is strong or weak), and Fine Class, which is roughly equivalent in precision to a phonemic transcription. Given that such techniques have a useful role to play in a speech recognition system, it can be claimed that phonetic science should be able to contribute significantly to their development, both in their design and in the assessment of their performance. This paper deals with the latter application, discussing the extent to which automatic phonetic transcriptions can be accurately evaluated. This is discussed with reference to a system (which we call LUPINS) developed at Leeds University [7] which carries out speaker-independent Broad Class analysis of continuous speech by automatic segmentation and labelling; while the system was developed using a corpus of recordings from 18 speakers, the

\begin{abstract}
tests reported below were carried out with new data from new speakers and the system's recognition rules were left unaltered. It is claimed that a computational technique for measuring accuracy as outlined here will make testing much more efficient than a "manual" equivalent [8], and should be valuable in making explicit some of the phonetic principles underlying the analysis.
\end{abstract}

RECORDING OF ERRORS IN SEGMENTATION AND LABELLING

As explained in Roach et al (op cit), errors in transcription will be of \(a\) number of different types: (i) a segment is omitted; (ii) a spurious segment is inserted; (iii) a segment is assigned to the wrong phonetic category; (iv) a segment boundary is located incorrectly on the time axis. All of these errors must be detected and recorded in the assessment procedure, and some score reflecting the level of seriousness of the error must be derived. In our present research work (funded by S.E.R.C./Alvey Grant MMI-053) the assessment is carried out by a computer program which takes a transcription of a passage made by a human expert and compares it with the computer's transcription of the same data. The human transcription is always treated as the correct model (though it sometimes happens that the computer's version causes humans to revise their transcriptions). Since the transcription is typed in in the symbols of the Edinburgh Machine-readable Phonemic Alphabet or the "Alvey" ASCII symbol codes [8], while the computer transcribes using only a very small set of symbols (basically comprising Fricative, Nasal, Vowel, Dip, Stop, Flap, Burst, Silence), it is necessary for the human transcription to be converted into this alphabet before the comparison begins. All segments in both transcriptions are given duration values in csec.

A simple form of assessment was used in our earlier work: each error of types (i)
to (iii) above was counted as one error and a final success rate was arrived at by expressing the total number of errors as a percentage of the total number of segments in the passage. Errors of type (iv) were ignored. Scoring on this basis gave success rates in the region of \(80 \%\) for informal conversational speech in six different speakers including female and male. However, it was found that there were many cases where we felt we should treat some errors as "minor" or "forgiveable" (e.g. inserting a very brief Dip (approximant) segment between categorising a sound as a flap when the human had heard it as a brief stop), while other errors were considerably more serious; it was also found that the process of "marking" a machine transcription was a very time-consuming process that needed to be done after each factors that it was decided to develop an automatic assessment technique. An additional advantage of doing this was that the technique should also make it possible to align an unknown recording of speech with its transcription: this has a number of potential applications in the

AUTOMATIC ASSESSMENT OF ACCURACY: EXAMPLES
Two short recorded test passages that were analysed recently are used as examples of the technique. The first passage is by two speakers, one male and one female, and the
M. Hello, operator - operator?
F. Yes, what can I do for you?
M. I'd like to make a telephone call. The second passage is a male speaker saying "Can you recognise this sentence?".
The assessment is done as follows:
(a) The human transcription (H) and the machine transcription (M) are compared symbol by symbol, and each case of
matching symbols is scored as correct symbol.
(b) When a symbol of H is found not to be matched by the corresponding symbol of \(M\), the \(M\) transcription is corrected
in one of the following ways:
(i) if \(M\) has missed a symbol, the symbol from \(H\) is inserted, and one
error is recorded.
(ii) if \(M\) has inserted a symbol that is not pesent in \(H\), that symbol is deleted and one error is recorded.
(iii) if the corresponding \(M\) symbol does not match, but subsequent pairs symbol is marked as incorrect, and is replaced by the \(H\) symbol. A score for the error between 0 (insignificant) and 1 (complete failure of recognition) is calculated by the and added to the errors total.
(c) If the time values of the \(H\) segments are known (they are always included in transcription files made within our project, but may be missing from other
transcriptions), the time values in \(M\) transcriptions), the time values in \(M\) of the required adjustment is noted and added to a time-adjustment total score; adjustments in either direction on the time axis are treated as positive numbers. This score is kept separate from the scoring of correct/incorrect segments. Time measurement is done in error score is the number of csec recorded in the time-adjustment total as a percentage of the overall number of csec in the entire passage.
A particular case of a "missed symbol" is found fairly frequently when an intervocalic segment is missed and the example given below, for example, the \(H\) sequence / əxer / should have been transcribed as VDV, but came out as a long \(V\); this would result in two errors being recorded, but we feel it is nore appropriate to count this as a cas of one missed segment.
is deliberately ambiguous between "high in amplitude" and "high in frequency", and is used to distinguish / s and \(\int\) Transient (non-transient sounds are capable of having an audible steady state, while transients include plosives, bursts, semivowels and flaps and \(+/-\) Fricative. The features could in some cases be given numerical
(non-binary) values if wished, but for the purposes of this paper only binary values are used. (It is noticeable that even this small set contains mor redundancy than phonologists would approve of). For each feature that was rong in the \(M\) transcription, .2 was the same was added to the "segment correct" total for each feature correctly identified: hence a case of 11 five features being wrong (e.g Burst instead of Nasal) would cause 1 to be added to the total error score. On this basis, eight clear cases of error were selected for illustration and were columns are headed 'H' for the human transcription using I.P.A. symbols, CME for the correct machine equivalent" (i.e. what the machine hrould have produced), (WM for the the error score for that segment.

TABLE 1
Examples of Error Scores
\begin{tabular}{llll}
H & CME & WM & S \\
l & D & FW & .6 \\
d & S & Fm & .6 \\
j & D & Fm & .8 \\
d & S & D & .2 \\
h & B & Fs & .4 \\
g & Fw & D & .6 \\
Sil & Sil & S & .4 \\
n & N & D & .6
\end{tabular}

RESULTS
Space does not allow a full presentation of the analysis of the example passages, but we will discuss one section: the first part is Hello, operator" /helau pparerta which in equivalent machine
symbols is FVDVVSBVDVSBV. Table 2 shows the \(H\) transcription ('H'), converted machine equivalent symbols ('CME'), durations (D1), the actual machine-transcribed symbols ('M') and their durations (D2), The right-hand column gives our evaluation. The error calculated as 4.2, with 9.8 correct symbols, giving a success rate of \(57 \%\). The time-alignment score is calculated

\section*{MEASUREMENT OF ERROR GRAVITY}

Our treatment of cases of incorrect symbols in the \(M\) transcription is still at a provisional stage, but it is clea
that what is needed is some form on distance measure so that a wrong symbol that denotes a segment radically different from the correct one will be counted as nearer the error value 1, and a symbol that is not so different will receive a score that is nearer to zero We measure distance by comparing in earlier work [8] we used phonetic features based on those of Ladefoged [10], but found difficulties in relating some of the features to our labels (which are essentially defined i acoustic terms) [11]. We are currently in the study of perceptual confusions among English consonants by Miller and Nicely [12]: the provisional set of five "primitive" features comprises \({ }^{+/-}\)

TABLE 2

\section*{Sample Assessment of Errors}

Result ErrorScore
correct correct wrong correct spuriou correct correct correct missed (continuation) wrong missed
as \(59 \%\).
Overall scores for the whole of the chosen test material were calculated on the same basis: 92 segments were processed, with a success rate of \(60 \%\). On time-alignment, a total of 954 csec of speech was processed, with a success rate of \(72 \%\).

It is clear from the figures that our automatic segment marking is stricter than our previous technique: this is probably not a serious matter, since our chief concern is to have a technique that is reliable and objective, and which allows us to make comparative judgments about system performance under different conditions. More work to refine the technique is, however, still needed.

\section*{REFERENCES}
[1] D.A.Klatt, 'Overview of the ARPA speech understanding project', in W.A.Lea (ed.) Trends in Speech Recognition, Prentice Hall, 1980.
[2] D.W.Shipman and V.W.Zue, 'Properties of large lexicons', IEE-ICASSP, 1982, pp.546-549.
[3] R.A.Cole, R.M.Stern and M.J.Lasry, 'Performing fine phonetic distinctions: templates vs features', in J.S.Perkell and D.A.Klatt (eds.) Invariance and Variability in Speech Processes, Erlbaum, 1986.
[4] J.Vaissière, 'Speech recognition: a
tutorial' in F.Fallside and W.A.Woods
(eds.) Computer
Prentice Hall, 1985 Speech
Processing,
[5] W.Jassem and P. Domagala, 'Phonetic segmentation in a bottom-up automatic speech analysis',in Proceedings of the International Conference on Speech Input/Output, Institute of \(\frac{\text { Electrical }}{}\) Engineers, 1986.
[6] J.Dalby, J.Laver and S.M.Hiller, 'Mid-class phonetic analysis for a continuous speech recognition system', in Proceedings of the Institute of Acoustics, 8.7, pp.347-354; 1986.
[7] H.N.Roach and P.J.Roach, 'Automatic identification of speech sounds from different languages', Working Papers in Linguistics \(\frac{\&}{\text { Leeds, } 1983 .}\) Phonetics, University \(\frac{\text { of }}{}\)
(rentice Halla 1985 speech analysis',in Proceedings of the
[8] P.J.Roach, H.N.Roach and A.M.Dew, 'Assessing accuracy in automatic identification of phonetic segments', in Proceedings of the International Conference on Speech Input/Output, Institute of Electrical Engineers, 1986.
[9] J.C.Wells, 'A standardized machine-readable phonetic notation', in \(\frac{\text { Proceedings }}{\text { Conference }}\) of \(\frac{\text { the }}{\text { International }}\) Conference on Speech Input/Output Institute of Electrical Engineers, 1986.
[10] P.Ladefoged, A Course in Phonetics,(2nd ed.), Harcourt Brace Jovanovich, 1982.
[11] P.J.Roach, 'Rethinking phonetic taxonomy', in Working Papers in Linquistics \(\underset{\text { \& }}{ }\) Phonetics, vol.4, 1986, Leeds University (to appear in Transactions of the philoloqical Society,1987).
[12] G.A.Miller and P.E.Nicely, 'An analysis of perceptual confusions among some English consonants', J.Ac.S.,27.2, pp.338-352, 1955.

\title{
ETIQUBTAGE AUTOMATIQUE DU SIGNAL DE PAROLE CONTINUE A L'AIDE DE LA VARIATION RELATIVE D'ENERGIE DES SEQUENCES DE PHONEMES
}

\author{
DESI M. RINGOT P. ANDREEWSKY A.
}

\section*{CNRS - LIMSI - ORSAY BR 3091406 ORSAY CEDEX FRANCE}

A threshold-free system for automatic labelling of speech signal is described. Mainly we transform the phonetic strings into energetic strings, using context-based rules or a square matrix which formalises the relative variation of energy between any two phonemes. For 700 sentences database, 95\% of the labels are well matched. The adapration, for other languages is easp.

L'étiquetage automatique, c'est a dire l'attribution de valeurs phonétiques aux spectres obtenus a partir d'un signal de parole, a pour but d'amorcer la phase d'apprentissage indispensable pour effectuer un decodage acoustico-phonétique performant pour la reconnaissance de la parole continue sur des vocabulaires étendus. Dans le présent travail on rappelle diune part les ideses génerales de l'étiquetage automatique du systeme SHERPA et on expose une nouvelle version du module de calcul du profil théorique de la courbe d'énergie lorsque lion connait la chaine phonétique correspondante. Cette modification a comme intérêt dune part de mieux exprimer la théorie sous jacente a l'étiquetage dans SHERPA et, d'autre part, de permetre une extension plus facile de cette approche a d'autres langues.

On donne les résultats de l'etiquetage automatique sur 700 phrases utilisant un vocabulaire de 2000 mots différents.
I. TRANSFORMATION DE LA
PHONETIQUE CHAINE
D'ALTERNANCES PHONETIQUES, A L'AIDE
DE REGLES CONTEXTUELLES.

Les opérations suivantes sont effectuées:
I.1. Définition des classes
phonétiques.
Elle repose sur le principe suivant: deux phonemes qui ont, dans un contexte phonétique identique, un comportement identique sur la courbe d'énergie, appartiennent à la même classe.
0 (occlusives) : /p,t,k,b,d,g/
F (fricatives) : /f,v/
S (sifflantes) : /s,z/
X (chuintantes) : /f,z/
N (nasales) \(: / \mathrm{m}, \mathrm{n}, \mathrm{n} /\)
L (liquides) : \(1 \mathrm{l}, \mathrm{r} /\)
I (semi-voyelles) : /y, w, u/
V (voyelles) :/a, e, \(\varepsilon\); i, \(\mathfrak{J}\)
\(0, \mathrm{u}, \mathrm{y}, \not, \mathrm{oe}, \tilde{\varepsilon}, \chi, \mathrm{e}\) muet/
DEB, FIN
I.2. La chaine phonétique prononcée est transformée en une chaine de classes.
I.3. On écrit des règles phonétiques qui, à la chafne de classes, va faire correspondre une suite de minimums (min), de maximums (Max) et d'alternances secondaires (Alts), a partir de laquelle on va calculer les parametres de lissage de la courbe d'énergie, afin de transformer cette dernière en une suite de min, Max, Alts, ayant une interpretation phonetique.
I.4. Les règles phonétiques opèrent sur les classes et ont par exemple la forme suivante: (le symbole "*" signifie: suivi de)
1) Une occlusive en début d'énoncé prend la valeur 0 .
2) Si O1*L*Y*O2
alors \(01=0 ; \quad L=1 / 2 \quad V=1 ; \quad 02=0\)
3) Si 01*O2*V1*03
alors \(01,02=0\) (b) \(0 ; \quad \mathrm{V} 1=1\)
4) Si O1*V1*02 alors \(01=0\); V1=1 5) Une occlusive en fin d'énoncé prend la valeur 0 .

Appliqués a la chafne phonétique orrespondant a "promptitude"
 (5)
ces règles nous donnent la suite de /2, a suivante:
nous appelerons "chaine des contrastes". Cette chaine fournit le nombre theorique d'alternances qu'il faut conserver sur la courbe d'energie et par conséquent le falloir lisser sur cette quarbe Ces règles contextuelles, ombre de 2000 environ, attribuent des valeurs du type min aux occlusives, Max aux voyelles, min, Max ou Alts aux autres classes de phonèmes en fonction du contexte phonetique immédiat de aauche ou de peuvent dans certains cas regrouper plusieurs étiquettes simples ( \(/ \mathbf{Y} / 1\) ).

Les règles transforment toute chaine phonétique, quelqu'en soit la longueur, en une suite d'alternances du type \((0,1,0)\) qui correspondent a des pseudo-syllabes (dont la définition ne se superpose classique).

Comme on l'a vu dans l'exemple i-dessus, les valeurs \(/ 2\) et à peuvent s'insérer dans l'alternance \((0,1,0)\), ce qui correspond a des fluctuations intrasyllabiques possibles. Le nombre dalternances (0, sent nombre total de et procédure de lissage pour la II. TRANSFORMATION DE LA Chaine Phonetique A LeAIDE D'UNE
MATRICE DES CONTRASTES D'ENERGIE DES PHONEMES.

L'approche par règles contextuelles suppose une étude exhaustive des a mettre en place pour unie langue donnée et son adaptation ensuite a d'autres langues reste complexe. Nous exposons une méthode differente qui repose sur une meilleure definition theorique du problème, et qui est plus facilement générali-

Le principe de base consiste a utiliser l'évolution de l'energie d'un phonème a l'autre, au cours de l'emission d'une chafne phonétique continue.

Dans cette approche, les voyelles se situent toujours aux maximas qui se suivent sans hiatus, sont regroupes en un seul maximum. Tant que, à partir d'une voyelle ou d'un groupe de voyelle, l'energie théorique des phonèmes successifs décroit, on est toujours dans le maximum. Par exemple, dans /artist/, le premier que l'énergie se met à croitre, c'est que 1 'on est passé par un minimum (dans /artist/, on decroit a partir de /a/ en passant par. \(/ r /\) pour aller jusqu'a /t/ et on remonte a partir du /t/ qui est un minimum energétique). A partir du minimum d'energie, et jusqu'au maximum vocalique suivant il peut s'inserer des occlusive suivie de liquide, occlusive suivie d'occlusive, occlusive suivie de n'importe quelle consonne. Pour l'application de ces principes, on a utilise une matrice carrée de dimension 10: 8 classes phonétiques et 2 symboles de début et fin d'enoncé

Nous allons nous contenter de donner la partie de la matrice phonétique "promptitude" /prs̃ptityd.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & 0 & L & v & ... & DEB & FIN \\
\hline \(\bigcirc\) & (1) & 2/2 & + & \(\ldots\) & \(\phi\) & \(\phi\) \\
\hline L & - & - & + & - & \(\phi\) & \(\otimes\) \\
\hline v & - & - & = & . \(\cdot\) & \(\bigcirc\) & - \\
\hline . & & & & ... & & \\
\hline DEB & ¢ & ¢ & + & . \(\cdot\) & \(\bigcirc\) & \(\phi\) \\
\hline FIN & \(\checkmark\) & \({ }^{\circ}\) & \(\varnothing\) & ¢ & - & - \\
\hline
\end{tabular}
a signification de ces symboles est simple:
- Sur la premiere colonne (par laquelle on entre dans la matrice). on trouve la classe du phonème d gauche.
- Sur la première ligne, on
trouve la classe du phonème
de droite.
droite a une énergie le phonème de celle du phonème de gauche
roite a une énergie inferieure a celle du phonème de gauche. - "ぬ" signifie que l'on peut voir une alternance secondaire du ype \(4 / 2\) entre phoneme de gauche et phoneme de droite.
= signifie que les phonèmes gauche et de droite ont une l'algorithme.
-. correspond à une séquence impossible.
i on utilise cette matrice pour transformer la chaine phonetique proptityd/, ou plus exactement sur correspondante ( \(0 \mathrm{LV} 0 \circ \mathrm{~V} 0 \mathrm{~V} 0\) ) on commence par attribuer la valeur 0 aux occlusives et la valeur 1 aux oyelles; ensuite on attribue à dans 0 L V la valeur \(1 / 2\) et on ecrit un a entre les deux occlusives de la equence 00 ; on obtient finalemen la séquence : 1 o \(1 / 20101010\)
iII. Le lissage.

L'objectif du lissage est de ocaliser les spectres correspon ants aux etiquettes des minimums consonnes ou groupes consonnanti ques) et aux étiquettes des maximums (voyelles ou groupes vocaliques). fluctuations spectres correspondants aux délibérément lissés mais ensuite eventuellement, étiquetés après un rexamen de l'aspect de la courbe 'intèrieur de la pseudo-syllabe.
pour cela on effectue un double issage, dont 1 intensite est guidee ontrastsucture de la chaine des Energies puis d'abord sur l'axe de emps. L'importance sur celui de issages energetique ret tempore eut être parametrée
Remarque: il est indispensable efectuer un lissage sur les deux xes. En effet un lissage sur es flue seule risquerait de gommer yllabes l'energie par contrastées Un lissage sur exemple: /si/. /my/) atre le fait qu'il pallie l'inconvénient précédent, permet eliminer des fluctuations petites relate des temps mais parfois des ivement importantes sur l'axe sion du \(k\) les (par exemple l'explo-

Le lissage s'effectue donc en deux temps et utilise deux nombres es: par la chaine des contras otal de premier correspond au nombre ombre d'pseudo-syllabes et donne le onserver après les deux lissages le deuxième correspond au nombre de fluctuations intrasyllabiques possibles et est déterminant pour évaluer 'importance relative des deux issages. Cette importance relative st également régulée par un paramè tre d'ajustement, si les critères de contrôle (Cf ci-dessous) de la bonne qualité de l'etiquetage ne sont pas rifies.
Le double lissage est obtenu par suppression itérative des fluctuajusqu'a obtention du nombre heorique d'extremums

Soulignons que dans cette procédure de lissage, il n'est fait appel aucun seuil ni sur 1 energie, \(n i\) sur le temps, ce qui représente un facteur de portabilité intra rs tres important
IV. PROCEDURE D'ETIQUETAGE.

La procedure d'étiquetage est relativement simple.

Dans un premier temps, on attribue aux extremums sélectionnés par le ilssage, des etiquettes phonetiques consonnantiques (simples ou (simples ou multiples) aux maximas. La valeur et l'ordre des différentes étiquettes sont donnés par la procé dure de transformation des chaines phonétiques.
Dans un deuxième temps, on essaye, a l'intèrieur même de la pseudo-syllabe, de dissocier les la présence dune fluctuation éner gétique intrasyllabique rend cela possible. Par exemple, l'etiquett complexe /pr/ dans la pseudo-syllabe /pro/ pourra etre dissociee en /p/ et \(/ r /\) si entre les extremums correspondant au min: /pr/et max: courbe il existe ainsi compte la de l'energie relative des phonèmes constituant des étiquettes multiples, plusieurs cas de figure que nous ne détaillerons pas ici.

Ces procédures détectent au sens de certains critères, les phrases qui présentent un risque d'étiquetage défectueux. On propose alors une solution de rétiquetage en faisant varier le parametre d'ajustement qui controle l'importance relative des lissages énergetiques et temporels.

La qualité du nouvel étiquetage est à son tour verifiée sur l'ensemble des critères et il est remis éventuellement en cause. On effectue ainsi au plus six tentatives ( le parametre d'ajustement varie six fois): si a la sixieme tentative les critères ne sont toujours pas vérifiés, la phrase est automatiquement rejetée du corpus d'apprentissage.

Actuellement seuls deux criteres sont opérationnels. L'un verifie que les \(N\) occlusives d'un énoncé sont placées sur les N minimas les plus bas de la courbe d'énergie; il détecte les erreurs globales d'etiquetage. L'autre vérifie que deux étiquettes consécutives sont séparees par un minimum de deux spectres; ce critère détecte la plupart des erreurs purement locales.

\section*{VI. RESULTATS.}

L'étiquetage automatique a été teste sur un corpus de 700 phrases de longueur variable de 5 à 10 mots. La qualité de l'étiquetage est evaluée par rapport aux performances de l'étiquetage manuel par un phonéticien; les occurences d'un même mot à des parties differentes du corpus ont la même courbe d'énergie et les étiquettes correspondantes sont placees aux mêmes endroits de la courbe.
Phrases rejetées (critères de contrôle non vérifiés): 15\%. Etiquettes bien placés: 95\%.
Etiquettes complexes: 15\%. complexes dissocies: 50\%
Les 5\% d'erreurs d'étiquetage ont peu de répercussion sur l'ensemble du système car les autres modules de l'apprentissage comportent des controles internes qui permettent de les détecter.

L'adaptation de ce système d'etiquetage a une autre langue que le français est simple. Il suffit de modifier le contenu de la matrice de transformation des chaines phonétiques, en fonction du systeme phonetique de la langue. L'adaptation est en cours de réalisation pour 1'espagnol et litalien.

\section*{BIBLIOGRAPHIE}

ANDREEWSKY A. DESI M. FLUHR C. POIRIER \(F\). "Une méthode de mise en correspondance dune chaine phonétique et de sa forme accoustique". llème ICA, Revue d'Accoustique, 1983, p. 245.

ANDREEWSKY A. DESI M. POIRIER F. "Le système SHERPA-de l'étiquetage phonétique automatique à la reconnaissance par analyse ternaire", 5ème Congrès RFIA, 1985, p.

DESI M. POIRIER F. "Le système SHERPA: étiquetage et classification automatique par apprentissage pour le décodage automatique et la parole continue", Thèse de Doctorat en Sciences, Paris-Sud Orsay, 1985.

LENNIG N. "Automatic alignment of natural speech whith a corresponding transcription", Speech communication, 1983, p.190-192.

MERCIER G. "Accoustic-phonetic decoding and adaptation in continuous speech recognition", Automatic Speech Analysis and Recognition, Reidel Publishing Co, 1982.

WAGNER M. "Automatic labeling of continuous speech whith a Given Phonetic Transcription using Dynamic Programming Algorithms", IEEE Acoustics Speech and Signal Processing, Catalog \(\mathrm{N}^{0} 81 \mathrm{CH} 1610-5\), 1981, p.11561159.

\title{
SEGMENTATION ET RECONNAISSANCE EN PAROLE CONTINUE A L'AIDE des references issues du systeme varap.
}

\author{
RINGOT P. ANDREEWSKY M. DEVILLERS L. DESI M. PARISSE C.
}

\author{
CNRS - LIMSI - ORSAY BP 3091406 ORSAY CEDEX FRANCE
}

\begin{abstract}
We present two possible approaches of continuous speech recogni. tion. The first uses a segmentation obtained by a training process. The second using an appropriate distance allows to simultaneously achieve the segmentation and recognition.
\end{abstract}

\footnotetext{
Dans ce travail, on expose les experiences de reconnaissance qui ont éte faltes, compte tenu du système d'etiquetage automatique employe (utilisé sur un corpus de 700 phrases) et du mode de sélection utllisé dans le systéme VARAP. Deux méthodologies differentes sont exposees. L'une qui procede d'abord a une segmentation, puis a une reconnalssance, la secondereffectue ces deux operations simultanement. Dans ce qui suit, on utilise une distance qui est donnee par la formule :
\(\left|\left(01-x_{1}\right)-\left(02-x_{2}\right)\right|^{+} \ldots+\)
 valeurs valeurs \(01 \ldots 016\) sont les 16
viemier spectre et Xl... Xi6 sont premier spectre et
}

\section*{- SEgmentation obtenue a partir du CORPUS D'APPRENTISSAGE.}

Quatre parametres sont definis:
En, Tm, EM, TM dont la signification est la suivante:
Eqest un seuil minimal d'energie.
In est un seuil minimal temporel.
TMest un seull maximal deenergie.
est un seull maximal temporel.

Le mode d'utilisation de ces quatre parametres est le suivant :
Toutes les alternances qui ont une difference d'énergie inférieure a Em sont lissées tant que leurs fluctuations sur le temps ne sont pas superieures à TM. De méme, toutes les alternances qui ont une fluctuation sur le temps intérieure a Tm sont lisses tant que les fluctuations sur l'énergie ne sont pas superieures a EM. Les parametres Em, EM, Tm, TM sont déterminés sur le corpus d'apprentissage. Pour cela, on sélectionne le plus petit ecart non lisse sur l'energie et sur le temps dans chaque phrase etiquetee du corpus et on calcule pour chacun de ces écarts le nombre de fois dans le corpus où il a été conservé ou lissé Le plus grand des plus petits ecarts de chaque phrase du.corpus donne les valeurs de EM et. de TM.
La sélection des seulls inférieurs Em et Tm sefait en imposant un rapport aussi optimisé que possible entre le nombre de fois ou Em. Tm ont été lissess et le nombre de fois oú ils ont été conservés. étant entendu que l'optimisation est definie par le plus petit pourcentage possible d'erreurs conservés sur le corpus.
Les résultats de la segmentation sur 50 phrases apres optimisation sont les suivants :
Dans les 50 phrases. il y a en tout 1032 segments.
Le lissage optimisé laisse un nombre total d'ajouts égal a 29 et un nombre total d'elisions égal a 28. Parmi les ajouts, 11 y a 14 segments qui correspondent ou bien a des répetitions du même phonème (par exemple /sss/), ou bien a des dissociations d'etiquettes complexes du type voyelle-voyelle (par exemple laa/ qui donne /a/,/a/) ou bien des étiquettes complexes du type voyel-le-liquide (par exemple /ar/ qui donne /a/./r/).
li reste done 15 ajouts qui ne peuvent pas etre interpretes dans le
cadre du niveau phonetique où nous nous situons.
Pour les elisions, 18 segments correspondent à des etiquettes complexes que la segmentation n'a pas dissociees. Ce sont des groupes du ype consonne-liquide ou consonnechuintante (par exemple/b/et/r/ ormant une seule etiquette /br/l ou ncore des groupes du type consonneformant qu'une seule etiquette /td/). ll reste donc 10 segments d'eli sions.
Par consequent, le pourcentage total d'erreurs est de l'ordre de \(5 \%\). Si on se refere a une segmentation est de \(3 \%\) dans notre système de réference qui admet des étiquettes phonétiques multiples.

\section*{II. UNE EXPERIENCE DE SEGMENTATION et de reconnaissance simultanee.}

Cette experience comprend les tapes suivantes:
A. Sur la suite continue des spectres correspondants à un enonce donhe, on preleve les triplets successifs de spectres en commencant dans l'ordre par le premier spectre puis le second et ainsi de suite. Deux fours deux consectrests ont donc tou
B.
dictions triplets sont proposes au dires naire des références ternaires obtenues a partir du systeme VARAP. On obtient ainsi des treillis de quatre phonemes candidats, r sultats d'un scrutin majoritaire ches references quinze plus prol'on tient compte de ictionnaire ou réferences et de leur nombre.ion des simultanement, on conserve ia
tance entre le meilleur candidat du relllis et la référence analysée. et on affiche la courbe des dis:
C. Résultats
. Resultats.
phrases montre tout dectué sur 200 courbe des distances suit les la trastes de la courbe d'energie et qu'elle fournit une segmentation de
meme qualite.

Cela nous conduit à faire la remarque importante suivante: llanalyse centiseconde effectuée utilise un dictionnaire de references qui ne contient pas les transitions. Par consequent, on pouvalt s'attendre à d'energie soient aux minima de la courbe des distances. Une explication de ce phenomene tient dans le fait que la distance utilisée bien qu'etant du type convergence uniforme contient un facteur d'energie quate sur manifeste de maniere impor-

Les comparaisons avec le corpus d'apprentissage font apparaitre:
phos plages de grande stabilite phonetique permettant de determiner des flots de confiance.
- la possibilité en cours d'elaboration d'identifier l'enoncé a partir
de la suite des treillis et de la disposition des extrema de la courbe des distances a l'exception des débuts et des fins d'enonce.
Des depouillements effectués sur 200 phrases donnent des resultats de reconnaissance phonétique tres variables selon les phrases, de lordre de 60 a 75 \%
mettant de degagier mettant de degager une decision a sont en cours d'elaboration.

\section*{bibliographie}

DESI M. POIRIER F. "Le systeme SHERPA: étiquetage et classification le décodage automátique de la parole continue", These en Sciences, ParisSud, Orsay, 1985.

LAZREK M. HATON J.P. "Segmentation et identification des phonemes dans un syseme de reconnaissance automatique de la parole continue".
Congres AFCET Reconnaissance Formes et Intel Reconnaissance des Paris, Janvier 1984, p. 5

MARIANI J. "ESOPE: un systeme de comprehension de la parole contiVue", These d'Etat, Université Paris VI, 9 juillet 1982.

MARIANI J. "Methodes en reconnais sance phonetique" reconnals Toulouse, phonetique", 125-137,

MERCIER G. GERARD M. GILLET D NOUHEN-BELLEC A. QUINTON P. SIROUX J. "Le systeme de reconnaissance de la parole continue KEAL", L2eme JEP,

MERCIER G. "Analyse acoustique et 12eme JEP, GALF, Montréa.l, 1981.

THE ALGORITHM FOR THE PHONEMIC LABELLING AND SEGMENTATION
OF SPEECH WAVEFORMS USING FEATURE MAPS

VLADIMIR CHUCHUPAL

Computer Center of the Academy of Sciences of the USSR Moscow, USSR, 117967

\section*{ABSTRACT}

In this work the algorithm for the phonemic labelling and segmentation of speech waveforms is described. This algorithm is founded on the feature maps: the self-organized neural networks model. The model is able to form automatically a representation of distribution of speech signal parameters. The algorithm desoribed below utilizes this ability in order to form criteria of phonemic labelling and segmentation. In the such manner we produce the representation for not only short-time signal parameters but also of the temporary trajectories of this parameters.

\section*{INTRODUCTION}

One of the most succesful speech recognition methods is one, which founded on the use of statistical laws, which has been established in the speech signal parameters distribution. Therefore, it seems important to investigate methods which is able to accomulate the data abowhich is able to accomulate the data aboters, for example, to approximate the probability density function of mutial distribution of this parameters. Often this task can be solved satisfactory by means of self-organizing neural network models, in particulary, the model. for the self-organized formation of structured feature maps \(/ 1 /\).

Let us \(\mathcal{L}\) be a pattern space, the elements of \(\mathcal{L}\) may be represented by vectors \(\bar{x} \in R\) (pattern vector). The structured representation of is formed with the help of matrix \(M_{L \times L}\) ( feature
map ) with the elements \(\bar{m}_{i j}\). Every \(m_{i j}\) is defined by it's time-variable weights \(\bar{m}_{i j}=\left(M_{i j}^{k}\right)_{k+1,1}\). Initially, the values of the \(\bar{m}_{i j}\) choosed in the randomiy manner. An algorithm creation of features map consist of two steps \(/ 1 / \%\). Fet us, for the time mo ment \(t, t=0,1, \ldots, n, \ldots\) the input pattern vector would be \(x(t)\). Then, in the first step, we define the inderes \(1_{0}, \%_{0}\) of the element \(m_{i c j o} \in M\), such, that:
\[
\left\|\bar{x}(t)-m_{i_{j} j}\right\|=\min _{i, j}\left\|\bar{x}(t)-m_{i j}\right\|(1)
\]

In the second step the modifications of weights \(\mu_{i j}^{k}\) is made. For \(m_{i o j o}\) and its neighbours ( for example, if the radius \(r(t)=1\), the neighbours for the. \(m_{i j j}\) will be \(\left.m_{i_{0+1} j_{0}}, m_{i_{t-1}-1}, m_{i_{0} j_{c-1}}, m_{i_{0} j_{k}+1}\right) i\)
\[
\bar{\mu}_{i j}(t)=\bar{\mu}_{i j}(t-1)+\alpha(t)\left(\bar{x}(t)-\bar{\mu}_{i j}(t-1)\right)(2)
\]

In equation (2) \(\alpha(t)\) satisfy the conditions: \(\sum_{t=0}^{\infty} \alpha(t)=+\infty ; \sum_{t=0}^{\infty} \alpha^{2}(t)<+\infty ; \alpha(t)>0\)

It was shown \(11,2 /\) that for correct choise the values of the \(\alpha(t)\) and \(r(t)\), described above process \(h_{8}\) s the next properties. When \(t \rightarrow \infty\) the values of \(M_{i j}^{k}\) change so, that adjacent elemehts of the matrix \(M\) respond to (in the of the matrix \(M\) respond to (in the sense of equation (2)) closed (.in the
sense of norm \(11 \cdot \|\) ) vectors from space sense of norm \(\|\cdot\|\) ) vectors from space
\(\mathcal{L}\). The distribution of values \(M_{i j}^{k}\) on \(\mathcal{L}\). The distribution of values \(\mathcal{M}_{i j}^{k}\) on
the matrix \(M\) approximates the mutial distribution probability density function for patterns vectors.

The successful application of feature maps for fonemic labelling have been made in the work 13/. But the fonemic qualiti-
s of the sounds depend not only of it' short-time spectra, but also the context - phonemic qualities of the adjacent phonemes. In our investigation the method was described, and feature maps, produced in the such manner, was used for creation the segments boundary criteria and acco mulation the information about temporary traectories of spectral parameters. It's apparently, that this information may be useful for transeme segments analysis.

\section*{AN AUTOMATIC FORMATIONS THE \\ CRITERIA FOR SETTING THE LABELS OF THE SEGMENTS BOUNDARY IN THE} SPEECH SIGNAL

We assume, that the important role in the speech perception belongs to the staionary segments of speech and the silence segments. This segments may be viewed the adaptation's sigmals for our hearing system in the sense of adaptation to amplitude spectra of the sound. herefore, the labels setting, in order to mark the stationary segments, may be useful on one hand, to produce the phonemic identification this segments, and on the other hand, to correctly identify the ransition segments, which phoneme inter pretation depend on long-time information the input patterns we used the short time spectra \(S(\omega, t)\) and the phonemic function 15/: \(\phi(\omega, t)=\lg (|S(\omega, t)|-|S(\omega, t-i)|\) here \(\omega\) denote frequency, \(t\) - time, and \(\tau\) - small time delay. We use the FPT algorithm in order to calculate the 252 point amplitude spectra ( divided into 21 frequency channel in the range 40 Hz 5 kHz ) every 12.6 ms . Central frequency each channel was equally spaced and of channel 22 contented the total energy the segment. The values of fonemic fuation calculated from two adjacent short time spectra. We used the synthetic sounds. Three sounds modelled the vowels. This formant frequency were spaced at \(900 \mathrm{~Hz}, 1600 \mathrm{~Hz}, 2900 \mathrm{~Hz}\). One sound wa represented as an unvoiced fricative.
On the first step we formed two maps: for short - time spectra and the se-
cond map for fonemic function values. The matrix.M contained 66 elements in both cases. The process (1)-(2) contained \(\mathrm{r}=20000\) steps. The values and de creased linearly: \(\alpha(t) * \alpha_{0}(1-t / T), r(t)=r_{0}(1-t /)\) where \(\alpha_{0}=\) \(\qquad\) \(r_{6}=\) . We denoted sound where \(\alpha_{0}\) - We denoted sound stimulus as \(A, B, C, D\). The resulting. maps are shown in the figures-1 and 2. In order to denote the elements of maps the next procedure was applied/1\%. Approximately one hungreed of well known patterns of every sound were presented to imput the algorithm (1)-(2). The element, main if correspondedi (in accordance with (1)) to patterns of the sound \(A\) was denoted \(A\)
```
C - D D D
- - C - A
A - - A A A
A - A - - B
- - - - - -
A - - B - B
```

Figure 1. The feature map for the values of the short - time spectra. The symbol '-' denotes the nolabelled elements.
```
N.- - - - -
- - - - - -
N - N - - -
N N N - - -
- -N - N-
S - N - - -
```

Figure 2. The feature map for the fonemic function values. The symbol ' S ' corres' ponds the values of fonemic functions for stationary segments of the sounds \(A, B, C\). The symbol ' \(N\) ' denotes the same segments of the sound \(D\). The symbol ' - ' denotes the transition segments.

In the segmentation and labelling algorithm we supposed, that elements denoted by the symbols ' \(N\) ' and ' - ' would be correspond to nonstationary segments.

In the work /6/it have been made sug gestion about existance of special cells - detectors for phonemes boundary detection. The first question was: may the map of fonemic function values to be use as as the map of such detectors? We tested this capability of the map using the continious signal, contained 140 above - mentioned sounds. On the map of fonemic function values we obtained the trajectory, consisted of the elements, that corres ponded the sequence of input patterns. The algorithm produced the label of transition region ( segments ) when this corresponded element was belong to transition region of the \(\operatorname{map}\) ( or, another words, was denoted as transition element). The labels of stationary regions were produced in the such manner. In the case of stationary regions the algorithm made an attempt to interpret this segments in accordance with the map of short - time spectra. The analysis of the result shows that all stationary segments belonged vowels sounds have been labelled correctly. About 8 , of the transition regions were omissed. All stationary segments were recognized (with respect to map of short time spectra) right.

\section*{THE USE OF THE INFORMATION ABOUT TEMPORARY TRAJECTORIES OF THE PARAMETERS FOR THE FONEMIC LABELLING}

In order to use the temporary trajectories of the paraneters as a feature patterns, let us see the next feature map ( denote it map III ) formation process. The input vectors for this map consisted from the values of the outputs of the map of short - time spectra ( map I ). The dimensionality of the input vectors to map III is equal to the number of elements in the map \(I\), and the values of the components of this elements are equal to output values ( see equation (1) ) of the correspond elements of the map I ( these output values have been added during some
times ). It can be said, that each ele ment of the map III is connected with each element of map \(I\). In order to control the map III formation process we used the map of phonemic function values ( map II). When the corresponded element of the mapII was the element, denoted as ststionary, the label of stationary segment was produced. Up ta this moment the values have been summing up and the result-was used as the input vector to map III. The produced label element of map II became nonactive for some time. For the formation of the map III we used the map I and map II, described above. The number of elements in the map III was. \(4 \times 4\). The process contains \(T=6000\) steps. The values of the radius \(r(t)\) and parameter \(d(t)\) where \(\mathrm{ch}^{-}{ }^{-}\) osen as it was shown below. The result is presented on the figure 3.
```
BB - - AA
-- - - AA
BC AB - AA
CC -- -- AB
```

Figure 3. The feature map for temporary trajectories of parameters. Here AA, \(B B, C C\), are corresponding to the statiom nary segments, \(B C\) and \(A B\) are corresponding to transition regions.

In the test signal for formation of the map III we used transition region beetween \(A\) and \(B, B\) and \(C, C\) and \(D, D\) and \(A\) only. It is clear, from the figure 3, that no exist elements, that correspond to transition regions \(C D, D A\) and sound \(D_{0}\) e tried to label the test simal, deacriWe tried to label the test signal, descr. bed above, with the help of the map III. In this case the algorithm was the same as the algorithm for the creation of the map III. The only difference between then that in the algorithm of the labelling, every input vectors was identified in according:; with map III. As it was expected, we received 100 of correct detection of transitions between \(B\) and \(C, A\) and \(B\) and stationary segments of \(A, B, C\). But the detection of the sound \(D\) and transition \(\mathrm{re}^{-}\) gions \(C D\) and \(D A\) contained many mistakes.

\section*{CONCLUSION}

It have been shown in our works, that use of model of the feature maps formation flelds the possibility to form in the simple manner the labelling and segmentation rules founded on statistical proper ties of the signal. This rule uses the properties both stationary and transition segments of signal.

\section*{REFEREANCE}
1. Kohonen T. Self - Organization and Associative Memory, Springer, 1983
2. Cottrell M., Fort J.C. A Stochastic Model of Retinotopy: A Self-Organizing Process. Biol.Cybern., Vol.53, No 6, 1986.
3. Kohonen T., etc. Phonotopic maps Insightful Representation of Phonological Features for Speech Recognition, Proc. of PRIP-84, Montreal, pp. 182-185, 1984.
4. Бондарко J.В. фонетичесное отисание Язына и сонологическое описание речи.
5. Пирогов А.А. К вопросу о Фонетическом кодировании речи. Электрос́вязь, I967, ห亏, с. 24-3I.
6. पистович J.А., Венцов А.В., Јюблинская В. В. Слуховые уровни восприятия речи.
Фунциональное модели"ование. В сб.: Акустика речи и слуха. Л., "Наука",
a large bulgarian central allophones data base

PHILIP CHRISTOV
Voice Man-Machine Communication Lab Sofia, Bulgaria, 1090, P, Institute

\section*{ABSTRACT}

In this paper a large data base of Bulgarian central allophones is considered 60 professional about 5000 utteringe from female). They are imbeded in words each pronounced at the end of a standard carrie sentence. Professional analog (motion picture magnetic and optical) recordinga are avallable of the carrier eentences together With the digital recordings (IBM compatimanually extracted from the carrierments, such record is labeled with carrier. Bach which allows computer selecting, sorting and merging the data, according to the par ticular research purpose. The data base is verifyed by a group of 20 listeners by tion procedure (CHRISTic aural identifica-347-34.9, 1973). (CHRISTOV, Ph., Acustica,29,

\section*{IRTRODUCTION}

Contemporary computing technology offers vast prospecte in processing large amounts of speech material in sensible stretches of time. The reaults are free of individual interpretations of the experimental date (as is the case, for example, by visual reading of spectrograms). If by the preparation of the machine speech input suitable knowledge is used, the machine output shou ld be comparable not only within the limite of a given language, but also within the much broader limits of its language group.

\section*{SPEECH INPUT}

A principal requirement in performing meaningfull acoustic measurements upon the phonetic units of speech /1/ is to use as
experimental stuf PHONES (See REMARK) of comparable ALLOPHONES imbededin words, uttered in equal phrases with equal intonation.
In agreement with this requirement the composite parts of the deta base are phones of the central allophones of the Bulgarian speech, namely:
/C- \(\stackrel{t}{\mathrm{v}}-\mathrm{C} /\) - stressed vowels in relevant onvironment of two bilabial consonants
/a-c-a/ - consonants in relevant environment of a preceeding unstreased /a/ and a following stressed 1a/ \(/ 2 /\).
Each phone, together with its relevant environment is put into a major stress fraction of a word, taken from Bulgarian unilingual dictionaries and inserted at the end of a carrier sentence.
The carrier sentence consists of four phrases: The first phrase carries the label of the individual speaker, the second-the label of the phonemic group, the third-the label of the particular allophone and the last-the carrier word.
As shown in the TaBLE except of the six Bulgarian vowels from the central allophones /bivo/ and /pip/, there are vowels from two more allophones which are not central. The first of them, /tit/ is chosen because common words could be found for all bulgarian vowels. The second, \(/ \mathrm{bVb} /\), is the unstressed opposition of the central allopho-
ne \(/ \mathrm{bVb} /\). All consonant phones of the central allophones /aca/ are contained in the same environment speech fraction /naCa/ which is imbeded in the initial part of the carrier word.
The consonant phones in initial and final position in words are presented by the al lophones /Càn.../ and /...nac/. The latter may as well be considered as central for the consonants of these particular phonetic groups. Judjing from the similar phonetic context there is ilttle doubt about their comparability with the central allophones /naca/.

\section*{BUILD UP PROCEDURE}

The data base build up procedure is aimilar to that employed in the classical stu\(d y\) of Potter and Steinberg /3/ the difference being in its intensification by application of computing technology (fig.1). he test utterings are extracted from two groups of speakers:

\section*{30 bass-bariton males \\ 30 mezzo-soprano females}

They all are professionals with distinct pronunciation selected among the radio and television speakers and the actors from the theaters of the Bulgarian capital. Their voices are energetic and belong to people between 25 and 50 years old. From them has been demanded to pronounce each phrase of the carrier sentence indifferentiy, in slow style and with falling intonation.
The working language in front of the microphone was Standard Bulgarian, i.e., the language the speakers are practizing during their public performances.
The speakers read the test material two times from randomly mixed cards to avoid the

AUDITORY VERIFICATION

The auditory verification of the data base /4/ is carried on by a group of 20 lay listeners all native Bulgarians from different parts of the country and with some technological education.
The listeners have been presented two times with sound recordings of the carrier sentences. Having at their disposal listeners cards, containing labeled carrier words, they reacted by filling in the empty spaces in the carrier words with the letters of the phones they heard.
The listeners output was punched on machine cards and processed by a computer program which excludes the responses of the false listeners and punches on cards the labels of uncorrectly pronounced phones.

\section*{analogue data}

During the sound recording session the speakers read the input cards with moderate voice effort and kept a sound level between 60 and 80 dB . The microphone was placed in the middle of a highly damped camera for acoustic measurements.
The audio recording was carried on by a professional sound recording staff which used studio equipment. The frequency response of the sound recording equipment via microphone and magnetic tape was llat between 100 and \(15000 \mathrm{~Hz}( \pm 2 \mathrm{~dB})\) and the noise level via magnetic tape was -64 dB . During the recordings the voltage and the frequency of the altrnating current network remained inside their standard limits: \(220 \mathrm{~V}(+4.5 \%,-0 \%)\) and. \(50 \mathrm{~Hz}(+0 \%)\). The original speech data are recorded on 6.35 mm magnetic tape with tape speed of \(760 \mathrm{~mm} / \mathrm{sec}\). Working copies have been prepared on standard 35 mm motion picture perforated magnetic and photographic tapes including high quality oscillograms and
trivial variable-area photographic motion picture sound recordings. They can be displayed simultaneously and synchronously on motion picture sound editting equipment thus offering the technological prerequisite for simultaneous audio-visual inspection of the analog sound recordings.

\section*{SEGMENTATION}

The "segmentation" of the analog data was carried on manually on a sound reading bench after carreful audio-visual inspection of the sound records and their control oscillograms.
It consists of marking the beginning and the end of each magnetic tape segment, carrying a labeled phone, with a perforation and a strong magnetic pulse (Fig. 2).
The places of the markers belonging to each such magnetic tape segment have been deermined after:
1. The content of the segment has been HEARD as coextensive with the labeled-phohe quality
2. The visual duplicate of the same segment has been OBSERVED on the control oscillogram or motion picture sound record:
a) By the VOWEL-phones: As a mighty tone burst between two weak noisy signals
b) By the CONSONANT-phones: As a moderate or weak noise-like signal between two mighty tone bursts or between a pause and a mighty tone burst.

DIGITAL DATA

The segmented analogue data were fed to the input of an analog to digital converter set "on" by each "Start" marker and "off" by the imediately following "Stop" marker. In the analog to digital converter the nonturbulent segments (vowels and resonants) were sampled with a rate of 20 kHz
and the turbulent ones with 40 kHz to ensu re no lose of audio frequency information below 10 kHz , for the sonant-like, and belon 20 kHz for the turbulent sounds.
The output digital data files were stored In an IBM-compatible magnetic tape memory with recording density of 1600 bit/inch. After the analog to digital conversion the data were processed by a servise program which does three things:
1. Records meaningfull 9-symbol labels at the head of the first block of each file. The simbols are decimal numbers carrying information about the origin, the hys tory, the kind and the inventory of the file. The last symbol in the label is a key which lockes the file if ordered.
2. Performs correction of the segmenta tion.
3. Lockes unfinished files at the end of the tape or files for which no agreement was reached between the speaker and the group of reliable listeners.

\section*{CONCLUSION}

The data base here considered was created for a resenrch aimed at the build up of the phonetic fulcrum of the Bulgarian language for the purposes of computer recognition of continuous speech. It is available in 14 volumes, each stored on a \(1 / 2\) inch, 2600 feet magnetic tape together with a subroutine in FORTRAN IV for sequential or selected reading and/or rewriting of the labeled files. Its output can be easily reshaped by the use of standard sort/merge programs because in the labels are presen explicite symbols except for the phonemic category but also for each individual spe aker and its sex. This way the data base can be used for research purposes not only in the field of trivial and comparative acoustic phonetics but also in studying
the prosodic features in speech connected with the personality and the sex of the speakers.
REMARK
From the different definitons of PHONEMES existing in the linguistic litterature the definition of B. Bloch \(/ 5 /\) is adopted here because it suits best the technological

PHONEME - class of allophones
ALLOPHONE - class of phones in the same relevant environment
PHONE - any continuous fraction of a phrase that is heard as coextensive with a given quality
PHRASE - an utterance or part of an utterance bounded by successive pauses

REPERENCES
1/ Twaddell, W.F., "Phonemes and Allophones in Speech Analysis", JASA,24,607-
12) Stoikov, S., "Introduction into the rev.edian Language Phonetics", 3-th veed., Nauka i izkustvo, Sofia (1966) (In Bulgarian
ds the K.R., Steinberg, J.C., "Towar s the Specification of Speech", JASA, 22, 8 807-820(1950)
4/ Christov, Ph., "A Semiautomatic Speech Sounds Aural Identification Procedure With Its Application to Speech Analy-
5/ Bloch. B. nstudies in colloquie panese", Language,26,86 (1950)

ABLE of involved allophones:

\section*{Test uttering}
position in the Initial Medial Final carrier word



Fig. 1. Flow chart of the data base build up procedure


Fig. 2. (Top) Segment of magnetic tape record carrying the vowel /à from the allophone /bab/ imbeded in the word foaba/ uttered by speaker N.D. (male): (Bottom) Control oscillogram of the same segment
St1, Sp1 markers of primary segmentation \(\mathrm{St2}, \mathrm{Sp} 2\) corrected segmentation

\section*{ФОРМКРОВАНИЕ БАНКА АІІРИОРННХ ДАННЫХ О РЕЧИ ДИКТОРА}

\section*{ВЛАДИМИР САННиков}

DPИИ IPOXOPOB
DPKA YyPABCKHI
Кафедра төории передачи сигяалов, Уосковский электротехническии институт связи, Москва, СССР IIIO24

\section*{АННОТАйя}

Рассиотрена нөлииейио-параметрическая модель речевого сигпала (РС). Дана методика оденки априорных даннн, необходимых для оптииальпои фильтрации РС. Приведены результатн исследования влияния априорных данивх па качество фильтрации, а такхе за зависимости их от длительпости обучарщей выборки, синслового содерваиия и способа проиэнесепия речи диктора.

МОДЕЛЬ' СИГНАЛА И АІРПОРНЕ ДАННЫЕ

Современое состояние теории и техиики цифровои обработки и передачи речи характеризуется пироким использованием иарковских иоделеи \(P C[I, 2]\). На основе концепции переменннх состояния динамической системн, К готорои отнесем систеку речеобразовакия, запишем марковспур иодель PC в виде
\(x_{t+1}=F\left(a_{t}\right) \cdot x_{t}+G \cdot y_{t}+B_{x} \cdot w_{x, t}\),
\(a_{t+1}=\Lambda_{a} \cdot a_{t}+\lambda_{0}+B_{a} \cdot w_{a, t}\),
\(y_{t+1}=F\left(c_{t}\right) \cdot y_{t}+\Psi\left(y_{t}\right)+B_{y} \cdot w_{y, t}\) \(c_{t+1}=\Lambda_{c} \cdot c_{t}\).

Первое уравиение отобрахает гоносовои тракт, второе - управлярдие продесси или сообщекия, характеризурџие изменемия \(з\) времени параметров голосового трахта; трөтье - источних ввазипериодичесхого \(\quad 003\) бумдения тракта; четвертое - параметри источника квазипериодического возбуддекия

В (I) \(\boldsymbol{t}\) - дискретпое вреия, \(x_{t}\) - вегтор отсчетов \(\mathrm{PC}, a_{t}\) - вектор отсчетов сообдения, \(y_{t}\) - вектор огсчетов квазипериодического сигкала возбумдения, \(C_{t}\) - вектор параиетров источиика квазипериодического возбуддепия, \(F\left(a_{t}\right)\) - квадратпая матрида \(с\) элементами \(F_{i, i+1}=\mathrm{I}, i=\mathrm{I}, \overline{m-1}, F_{m, i}=a_{t}^{(i)}\), \(i=\overline{I, m}\), остальние её элементі равны 0 , \(m\) - размерность векторов \(x_{t}\) и \(a_{t}\); пвадратная матрица \(F\left(c_{t}\right)\) строится аналогичио; \(\Lambda_{a}\) - квадраткая матрица, харахтеризуопая корреляциоиные взаииосвязи марковских сообщении; \(\lambda_{0}\) - постояинй вехтор, коториы вместе с матрицеи \(\Lambda_{a}\) характеризует среднее зпачение \(a_{t} ; \psi\left(y_{t}\right)\) - нелинефная фувкция, обеспечиварщая квазипериодическии характер сигнала \(y_{t}\) [2]; \(G, B_{x}, B a\), \(B_{y}, \Lambda_{c}\) - постояннне матрицы; \(W_{x, t}, W_{\alpha, t}\), \(W_{y, t}\), - случаинне нехоррелированние вех-

торы гауссовских пуиов с нудевыми средпими и единичннии матрицаии корреляции. Для полного статистического описания поведе мия систеиы речеобразовамия необходимо задать началькне значения векторов сред иих значении и коррелядионих матриц переценных состояния.

объедиияя перемепине \(x_{t}, a_{t}, y_{t}, c_{t}\) в один олочныи вектор состояния \(z_{t}^{T}=\left(x_{t}^{T} ; a_{t}^{T} ; y_{t}^{T} ; c_{t}^{T}\right)\)
запишем уравнение наблддения в виде
\[
\begin{equation*}
u_{t}=h\left(z_{t}\right)+v_{t} \tag{2}
\end{equation*}
\]

где \(u_{t}\) - паблддаемая последовательность, \(h\left(z_{t}\right)\) - скалярная функция векторного аргуцента, \(V_{t}\) - случаиная последовательиость гауссовского пума паблддении с нудевыи средиим и задамнон дисперсиеи.
Соотвошения (I) и (2) позволярт примеикть алгоритиы марковской фильтрации для ввделения \(\mathcal{X}_{t}\) из \(\mu_{t}\) с одновременньм одениванием процессов \(a_{t}, y_{t}, \mathcal{c}_{t}\). При этои синтез оптимальных алгоритиов фильтрадии возиожен тольно при известных характеристиках РС и его параметров. К такдм априорным данным о речи диктора относятся иатриди: \(G, B_{x}, \Lambda_{a}, \lambda_{0}, B_{a}, B_{y}, \Lambda_{c}\).

Отсутствие достаточно полинх сведении
0 структуре и параметрах системн управления двихением артииуляционного аппарата ие позволяет воспользоваться модельр (I), tar кав указанные иатриды заранее не из вестиы. Поэтому встает задача экспериментаньпого их определения.

В вачестве прибличения к ухазаниым апри орини даниы предлагаетса исподьзовать их локально-постоямиые одении, которие иохво получить при обработке фрагиекта записп PC заданного источиика в отсутствии поуех. Cовокупность отсчетов фрагкента PC образуer обучариу виборку. Собствепио предедура оценки элешектов угазамихх внше матрй и пазывается фориированием бапка априор mых данних о речи дихтора.

\section*{МЕТОДИКА ОЦЕНКИ АІРИОРНЫХ ДАННЫХ}

Фрагмент незашуияниого РС разбивается на сегменти, кахдый длительностьы \(T_{c}=10 \div\) 20 ис. Предполагается, что оцөниваеиын величинн постоянви иа сегиенте апализа. Кахдыи сегмент обучарще⿺辶 виборки класси фицируется по признаку "тон-пуи". На учасгнах типа "тон" оценивартся средние периоды основного тола \(T_{0}\) и первод фориаиты т. \(_{\text {. }}\). Если \(C_{t}\) двуиериий вектор, то его составлавмие \(C_{t}^{(1)}\) и \(C_{t}^{(2)}\) мохно внбрать таг, чтоби при заданных вехтор-фувхции \(\psi(y)\) и хоэффидиентах \(b_{\varphi}\) и \(b_{y}\) дискретное вехтор ное холебание \(\hat{y}_{t}\) ииело собствеинур час тоту \(\hat{F}_{1}=I / T_{I}\) на периоде \(\hat{T}_{0}=T_{0}\). Дaлее по оценкам \(\hat{c}_{t}\) оценивадтся элемемты \(\lambda_{c i j}\) матрици \(\cdot \hat{\Lambda}_{c}\).

Оценка вектора коэффидиентов \(\hat{a}_{t}\) производится по обучарцеу внборве на оспове известных алгоритиов идептификации пара метров стохастических систеи \([3,4]\). Тра ектории оценок \(\hat{a}_{t}\) являдтся тем материа -

лои, которыи необходим для внчисления оцепок \(\hat{\Lambda}_{a}, \hat{\lambda}_{0}, \hat{B}_{a} . С\) этой цельы по траекториям \(\hat{a}_{t}\) вичисляштся векторы средних \(\hat{\hat{a}}\) и стандартних отвлонении \(\hat{\sigma}_{a}\). Перехода к дентрированным и нориированннм тра екторияи \(\tilde{a}_{t}^{(i)}=\left(\hat{a}_{t}^{(i)}-\overline{\hat{a}}^{(i)}\right) / \hat{\sigma}_{a}^{(i)}, \quad i=\overline{\overline{1}, m}\), полагаем, что оии удовлетворярт стохастическому уравненид
\[
\begin{equation*}
\tilde{a}_{t+1}=\tilde{\Lambda}_{a^{\prime}} \tilde{a}_{t}+\tilde{B}_{a} \cdot w_{a, t} \tag{3}
\end{equation*}
\]

Полагая \(\tilde{a}_{t}\) эргодическими процессами, определим усреднением по времени взаиинохорреляционнне матриди
\[
E \tilde{a}_{t+1} \tilde{a}_{t+1}^{\tau}=\tilde{\Lambda}_{a} \cdot R_{a}^{(1)}+\tilde{B}_{a} \cdot \tilde{B}_{a}^{T}=R_{a}^{(0)},
\]
\[
\begin{equation*}
E \tilde{a}_{t} \cdot \tilde{a}_{t+1}^{T}=\tilde{\Lambda}_{a} \cdot R_{a}^{(0)}=R_{a}^{(1)} \tag{4}
\end{equation*}
\]

отвуда находим
\[
\begin{align*}
& \tilde{\Lambda}_{a}=R_{a}^{(1)} \cdot\left[R_{a}^{(0)}\right]^{-1} \\
& \tilde{B}_{a} \cdot \tilde{B}_{a}^{T}=R_{a}^{(0)}+R_{a}^{(1)} \cdot\left[R_{a}^{(0)}\right]^{-1} \cdot R_{a}^{(1)} . \tag{5}
\end{align*}
\]

На основе (3) и (5) с учетом \(\overline{\hat{a}}\) и \(\hat{\sigma}_{a}\)
получаем искомне оценки матриц в виде
\(\hat{\Lambda}_{a}=D_{\sigma} \cdot \tilde{\Lambda}_{a} \cdot D_{\sigma}^{-1}\),
\(\hat{\lambda}_{0}=\overline{\hat{a}} \cdot\left(1-\hat{\Lambda}_{a}\right) ; \quad \hat{B}_{a}=D_{\sigma} \cdot \tilde{B}_{a}\),
где \(\mathcal{D}_{\sigma}=\operatorname{diag}\left[\hat{\sigma}_{a}^{(1)} \ldots \hat{\sigma}_{a}^{(m)}\right]\) - диагональная
матрица стандартмнх отклонених.
Вахным вопросои методики оденки априорmых данных является расчет пеобходиио длительности обучающей выборки. Она равна \(T_{O B}=M \cdot T_{C}\), где \(M\) - цинимальво необходииое число сегиеитов на фрагменте анализа. Ус тановлено, что \(\mathbb{M} \approx 15 \cdot \|_{g}^{-2}\), гдв \(A_{g}\) - доверительный интервал для элементов матриц \(R_{a}^{(0)}\) и \(R_{a}^{(1)}\). При \(\Delta_{q}=0, \mathrm{I}, \mathrm{T}_{0 B}=\mathrm{IO} \div 20\) с. Дальнеуишее увеличение \(\mathrm{T}_{0 \text { в }}\) не приводит к зпачите льноку измепенир оценок данных.

\section*{АНАЛИЗ ЭФФЕКТИВНОСТИ ИСПОЛЬЗОВАНИЯ} AIPMOPHHX IAHHLX

C цельд выявления влияния априорных данных на качество фильтрации, а такзе анализа чувствитеньпости их х способу речеобразования, были проведены различние эгсперимеити. Анализ результатов фильтрации зашуиленного \(P C\) задакного дихтора показал, что при отнощвнии сигнал-пум 0 дб. алгоритмн фильтрации могут бить нерабогоспособныии при пренебрежении априориыи давными о его голосе. Алгорити совместиод фильтрадии PC пи оде нки сообщения обеспе чивает увеличение отвошения сигнад-шун, но не очень значительно. Лучшие результатв получаштся при совиестном оце ниванйи па раметров, фильтрадии и обнаруғении РС. Такая обработка обеспечивает внигриї в отношении сигнал-шуи на 6-9 дб. при вероятности ошибки обнаружения \(10^{-2}\).

Коротво изложим результаты анализа чуьствительности априоринх данных к способу речеобразования, смнсловому содертавид и индивидуальньм особенностям голосов раз личных дикторов. Некоторые аспекти этон задачи рассмотрени в [5]. Эхсперимент состоял в следурцвм. Подбирались фо нограмшд (обучавщие выборки) разннх дикторов. Для каждои фонограммы оценивались траектории сообщении \(\hat{a}_{K, t}, K=\overline{I, N_{\varphi}}\), где \(N_{\phi}-\) число фонограмм. Для установления факта однородности различных траетторий производилась проверка гипотезы о принадлехности всех

траекторий генеральной совокупности. Если гипотеза справедлива, то различия в траекториях оцениваемых сообщений считаптся незначительными и, следовательно, они однородин. В противном случае пеоднороднн.
Это происходит тогда, когда априорнне данние чувствительны к способу формирования фонограмм (темп речи, сиысловое её содерзание, иядивидуальность голоса и др.).

Методика проверки истинности гипотезы состоит в следурщем. На основе преобразования фимера по случайны элементам \(\tau_{i j}\) ворреляционннх матрид \(R_{a}^{(0)}\) и \(R_{a}^{(1)}\) вычисляотся повне случайне величины
\(z_{k i j}=\frac{1}{2} \cdot \ln \left[\left(1+r_{k i j}\right) /\left(1-r_{k i j}\right)\right]\).
Опредедяотся усредненине по всем фонограм
цам величины
\(\bar{z}_{i j}=\sum_{k=1}^{N \infty} \alpha_{k} \cdot z_{k i j} / \sum_{k=1}^{N \infty} \alpha_{k}\),
где \(\alpha_{K}=\mathbb{M}_{K} / 3-3\). Затем фориируется слу чайая величииа взвешенного средиеква̀дратичного отклонения
\(\Delta z_{i j}^{2}=\sum_{k=1}^{N \infty} \alpha_{k}\left(z_{k i j}-\bar{z}_{i j}\right)^{2}\),
инешая хи- квадрат распределение с \(N_{\rho}-I\)
степенями свободы. Теперь, если \(\left.P\left\{x^{2}>\Delta z_{i j}^{2}\right\}\right) d\), то принимается гипотеза об однородности различных фонограмм. Здесь \(\alpha\)-уровень значимости. Эксперимент проводился на речевом материале удовлетворяпцем ГОСТ 16600 -72. Параметры обработки РС: частота дискретизации \(I 5\) кГц, \(T_{c}=I 5 м с, m=2\) и 4.

Анализ экспериментальных данных показал, что априорные данпые, полученные для раз йх дикторов на одной и тои же фразе в естественинх. условиях произнесения с \(\alpha=0,00 I\)

надедно различадтся. Способ произиесения и смнсловое содержание фонограммы практически не влияот на априорнне данннв.

В заклочекии отметим, что проведекныи амализ эффективности использования априорных данных подтверддат практическуд вахность решения поставлеипо䒑 задачи. При этом априорные данные делесообразно формировать для каждого конкретного диктора или группы дикторов со сходныии голосаии.

\section*{ЛИTEPATYPA}
[I] D. Н. Прохоров, "Статистические модели и рекуррентное предсказание речевых сигналов -Радио и связь: М., I984.
[2] М.В. Назаров, D.H. Прохоров, "Методы цифровой обработки и передачи речевых сиғ налов"-Рянио и связь: М., I985.
[3]R.Lee. "Optimal Estimation, Identification and Control."Gamburg, Massachusetts, 1966.
[4] В.Г. Саппиков, D.П. Журавскй, О. Н. Прохоров, "Формирование банка данных о речи
 нара АРСО-I2, Киев-Одесса, I982.
[5] М. В. Назаров, D. Н. Прохоров, D.П. ※уран скин, "Исследование характеристик параметров авторегрессии заданннх источников", Тезисн докл. Всесорзного семинара APCO-I3 Новосибирск, 1984 .

\section*{SPEAKER INDEPENDENT CLASSIFICATION OF VOWELS AND DIPHTHONGS IN CONTINUOUS SPEECH}

Michael S. Phillips
Computer Science Department
Carnegie Mellon University
Pitsburgh, PSA

\section*{INTRODUCTION}

When designing a vowel recognizer for continuous speech, one must consider not only the actual recognition algorithms but also the question of what categories the recog nizer should attempt to identify. Should the vowel categories be at a phonemic level or a phonetic level \({ }^{1}\) ? For a particular level of labeling, how detailed should the categories be? For example, if a phonetic level of labeling is chosen, which allophones should be grouped together? Another important problem is to find a consistent way of labeling speech at a particular level for training and testing the system.

This paper will describe the current design of the vowel recognizer that is under development and present classification results using two sets of vowel labels. The vowel rec ognizer is part of the acoustic phonetic recognition module of the CMU DARPA speech understanding system (Adams and Bisiani [?]). The system consists of a signal processing module, an acoustic phonetic recognition module, a word matcher, and a sentence parser. A block diagram of this system can be seen in Figure 1. The acoustic phonetic recognition module is given various representations of the speech signal as input and produces a network representing possible phonetic transcriptions of the speech signal. The network has nodes representing possible seg ment boundaries and arcs that have lists of labels with associated probabilities.
1. In this paper, the terms "phonemic level" and "phoneme" refer to the speaker's internal representation of the sounds in the lexicon. The term "pho speakers'siniteraal representation of the sounds in the lexicon. The term "pho-
netic level" refers to the actual sound present in the specch signal. For example,
apeakers may produce the word "children" suct that the frst voel woud be speakers may produce the word "ctildren such that the frrs vowel woumpld be
perceived as an an lab it listeners were to base their perception only on the acous perceived as an [ab if ilisteners were to base their perception only on the acous-
tic signal (taking into account acoustic context but ignoring expectations from ic signal (taking into account acoustic context but ignoring expectations rom
exical knowedge). This vowel will be considered to be an [ih) at the phonemic tevel and an [ab] at the phonetic level
2. The erm "segment" is used here ooly to refer to a portion of the speect
it 8. The term "leature" is being used bere as in the patts.
3. The herm "eature" is being used here as in

\section*{THE VOWEL RECOGNIZER}

The job of the vowel recognizer is to produce a list of probabilities of vowel labels given begin and end times for a segment \({ }^{2}\) of the speech signal. In the system, these begin and end times are produced by the segmentation algorithms. In these classification experiments, the hand transcription boundaries are used as the segment begin and end times. The segment boundaries are not considered to be the boundaries of the relevant information abou the vowel since important acoustic information about the identity of the vowel may be present in the vowel's sur roundings. These begin and end times are only used to define the portion of speech that the recognizer is to cla sify.

The vowel recognizer consists of a set of feature \({ }^{3}\) me surement algorithms to measure the acoustic properties of the vowel and a multi-dimensional classifier to produce the label probabilities. The set of feature measurement algorithms should capture all of the relevant acoustic information. The feature measurements for the vowels consist mainly of formant measurements at various points in time formant changes throughout the segment, spectral centers


Figure 1: Block diagram of the CMU system
f gravity measured at various points in time, duration, and average pitch of the segment. Many measurements (for example formant frequencies) are computed in more than one way and it is left to the classifier to decide which is the most reliable way to make a particular measure ment for a particular decision. The complete list consists of about 100 feature measurements.

Each segment is represented as a single point in a multidimensional space which has a dimension for each of the feature measurements. The job of the classifier is to give the probability of each of the vowel categories given a point in this space (Duda and Hart [2]). The classifier used consists of \(\left(\mathrm{n}^{*}(\mathrm{n}-1)\right) / 2\) pairwise classifiers where n is the number of vowel categories. The pairwise classifiers are used rather than a single classifier so that the number of dimensions can be as low as possible for each classifier A single classifier would have to use all of the dimensions that were needed for all labels. Each pairwise classifier is able to use only the features needed for that particular pairwise decision. For example, this allows the system to use a formant tracker specifically designed for front vowels in the [iy] vs [ih] classifier, a formant tracker specifically designed for back vowels in the [aa] vs [ao] classifier, and some spectral centers of gravity for the [iy] vs [aal classifier

Each classifier is a two-class, n-dimensional Bayesian classifier where \(n\) is the number of feature measurements used for that particular pairwise decision. The classifier as umes a multi-variate Gaussian model of the data samples from each vowel category and given the feature measure ments for a segment, assigns probabilities for each vowe category based on that model. Training consists of selecting the best features for each pairwise decision and esti mating the parameters of the Gaussian model from a se of training data. Feature selection is done by performing a best-first search through all combinations of available features, using classification performance on a subset of the raining data as the criterion for deciding which combination of features is best

The vowel category probabilities from the pairwise clas sifiers are combined in the following mánner: For each pairwise classifier, the vowel category with the highes probability is given a vote. The probability of the vowe category with the greatest number of votes is the average of the probabilities of that vowel category from each of the pairwise classifiers involving that vowel category. The robability for each other vowel category is the probability of that vowel category from the pairwise classifier for that vowel category versus the vowel category with the greatest number of votes. The probabilities are then normalized so that the sum of the probabilities for all vowel categories equals one.

\section*{VOWEL CATEGORIES}

In recognition of vowels in continuous speech, the perormance of the recognition system will be greatly affected by the choice of vowel categories that the recognizer is attempting to identify. Since the labels given to vowel segments in the training data define the recognizer's models of the vowel categories, the procedure used to obtain these labels is an important factor in determining the system's performance.

The goal of the vowel recognizer is that its decisions should be based on the same information that a human listener would use when making a decision about the vowel. Since the current design of the vowel recognizer works without any top down information from the higher levels of the system, this goal must be altered slightly: the vowel recognizer should use all the information that a human listener uses except any higher level language knowledge.
A listener's perception of a vowel in continuous speech is affected by many factors other than just the acoustic properties of the segment (Rudnickey and Cole [3], Jacob et al. [4]) The neighboring phonemes affect the acous tic realization of the vowel and the vowel affects the realization of the neighboring phonemes. Listeners take into account these local acoustic effects when making a judgement about the identity of the vowel. Listeners are also ble to use information from a larger acoustic context speaking rate, speaker characteristics, etc.) to make udgement about the vowel. They will also be influenced by their expectation of what the vowel should be given beir lexical and semantic knowledge.

The vowel recognition system should take into accoun as much of the acoustic information as possible to make a decision. This seems to mean that vowel categories on a phonetic level rather than a phonemic level should be used. The acoustic realization of a phoneme depends on higher level rules of the language. Since the vowel recognizer is only able to use acoustic information and not higher level information, it would not be able to map the varying acoustic realizations to the intended phoneme.

It's not clear how to obtain vowel labels at a phonetic level. If listeners are presented with enough of the signal to obtain the complete acoustic context, they will learn what words were spoken and be influenced by the expected phoneme. Alternatively, If short segments of speech are presented, the listeners will only be able to use the local acoustic context. Sentences composed of nonsense word could be used for training and testing the system. This would allow listeners to hear the entire utterance without being having any expectations of the intended vowels. The problem with this approach is that the speakers may have difficulty speaking the sentences in a natural manner.

Since the recognizer must map acoustic information
onto probabilities of vowel labels, the labels used for training and testing the system should have as consistent as possible a relationship to the acoustic information. There is ambiguity in phonetic labels (Church [5]). Even if listenis ambiguity in phonetic labels (Church ers were able to hear vowels in their full acoustic context ers were able to hear vowels in their phonemic expectation, without being influenced by their phonemic expectation,
they would not always agree. Effects such as listeners bethey would not always agree. Effects such as listeners be-
ing influenced by their phonemic expectation or not being ing influenced by their phonemic expectation or not being presented with the full acoustic context will increase the
amount of ambiguity. Since the recognition performance amount of ambiguity. Since the recognition performance of the system is limited by the amount of ambiguits the la vowel categories in the training and minimize the amount of additional ambiguity.

\section*{LABELING}

Two labeling procedures were tried. In one, the people doing the labeling are able to hear the entire sentence and in the other, listeners are given the vowel segment with only a small amount of acoustic context. Both labeling procedures used the same set of labels. This list can be seen in the confusion matrices in Table 3.
The first set of labels used were the hand transcriptions being done for the DARPA speech project's acoustic phonetic database. These transcriptions are made by listening to the utterance, giving a phonetic transcribtion. running an automatic alignment program, and correcting alignment errors. Besides hearing the whole utterence, transcribersare able to see a spectrogram and other displays and are able to play any section of the utterance. The transcriptions are intended to be phonetic transcriptions but are biased towards the expected vowel in the cases where the realized vowel was ambiguous.

The second set of labels were produced by presenting trained listeners with each vowel segment in its local acoustic context. The segment boundaries were obtained from the hand transcriptions mentioned above. Each vowel segment was first played imbedded in the section of speech starting from the beginning of the transcribed segment before the vowel to the end of the segment after the vowel. After a half second pause, the vowel segment was played in isolation. The listener was able to have these two speech tokens played as many times as necessary. The listener then gave a phonetic label to the vowel with the option of responding with "not sure".

\section*{TESTS}

The training data for these tests consists of 1000 utterances from 100 ( 30 female and 70 male) speakers from the DARPA acoustic phonetic database. All of the utterances were labeled both by doing the hand transcriptions and the labeling by listeners described above. The labeling by
\begin{tabular}{|c|c|c|}
\hline & \begin{tabular}{c} 
Testing labels \\
Listener labels
\end{tabular} & Transcription labels \\
\hline Training labels & (top1/top2/top3) & (top1/top2/top3) \\
\hline Listener labels & \(48.3 / 68.7 / 79.3\) & \(40.3 / 60.8 / 72.4\) \\
\hline Transcription labels & \(41.4 / 64.3 / 77.1\) & \(46.2 / 68.1 / 78.3\) \\
\hline
\end{tabular}

Table 1: System performance on the four combinatious of training and testing labels. The numbers given are the percent agreement to the testing labels in the top choice, the top two choices, and the top 3 choices of the vowel recognizer.
listeners was done by four listeners (each listener labeled a subset of the 1000 sentences).

The testing data consists of 160 utterances from 20 ( 6 female and 14 male) speakers. The testing speakers and utterances do not overlap with the training speakers and utterances. The testing data was labeled by the hand transcription and also by three listeners. Each listener labeled all 160 sentences so that listener versus listener agreement could be tested.

The system was trained on both types of labels and tested on both types of labels. The listeners gave a "not sure" label to \(3.6 \%\) of the segments. These "not sure" labels were ignored during training. For testing the system on listeners' labels, the segments that were given the "not sure" label were automatically relabeled with the label from the hand transcriptions. The results of these tests from the hand transcriptions. The results of these tests can be seen in Table 1.
The labels obtained from the three listeners were compared to each other and also to the hand labels. Two comparisons were done: In one, only segments that were not given the "not sure" label by any of the listeners were used. In the other, all segments were used and "not sure" answers were considered to be errors. A summary of These results can be seen in Table 2. Confusion matrices for av-
\begin{tabular}{|l|l|l|l|l|}
\hline & & \\
\hline & Listener 1 & Listener 2 & Listener 3 & Transcriptions \\
Listener 1 & - & \(64.8 / 65.8\) & \(69.9 / 65.8\) & \(63.0 / 59.2\) \\
Listener 2 & \(64.8 / 65.8\) & - & \(66.9 / 62.3\) & \(59.9 / 55.1\) \\
Listener 3 & \(69.9 / 65.8\) & \(66.9 / 62.3\) & - & \(64.8 / 62.2\) \\
\hline
\end{tabular}

Average Listener versus Listener agreement 67.2/62.7
Average Listener versus Listener agreement 67.2/62.7
Average Listener versus transcription agreement 62.5
Table 2: This table shows the labeling acreement between ail Table 2: This table shows the labeling agreement between For each entry, the first number is the percentage agreement considering only the segments that no listeners gave a "not sure label. The sccond number is the percentage agree for all segment coumting "not sure" labels as errors
rage listener versus listener agreement and for average listener versus hand label agreement can be seen in Table liste
3.

\section*{DISCUSSION}

From the results in Table 2, it can be seen that the listeners agree with each other \(67 \%\) of the time and they gree with the hand labels \(62 \%\) of the time. It seems that there is at least a small difference in these two type of labels. This difference may be due to convention differences between the two types of labels or it may be that the re lationship between the acoustic information and the hand labels is less consistent for some distinctions than for the listener's labels. For example, it may be more difficult to make a judgement about the vowel color without being biased by phonemic expectation when listening to the entire utterance. It may also be true that the listening labels are less consistent than the hand labels for some other distinctions. For example, it is likely that it is more difficult to make a decision about vowel reduction in the listening labeling procedure since the listeners were not presented with the entire utterance and do not have access to information about speaking rate and the relative amplitudes of neighboring syllables.

A


B
\begin{tabular}{|c|}
\hline  \\
\hline
\end{tabular}

Table 3: Confusion matrices for average listener versus listeuer comparison (a) and average for listener versus hand transcription
(b) (b). In (b) the row is the hand transcription label and the column is the listener label.

When trained and tested on the hand labels, the system's first choice accuracy is \(46 \%\) and when trained and tested on the listeners' labels, the accuracy is \(48 \%\). A larger difference in performance can be seen comparing testing the system on the same type of labels as it was trained on versus testing the system on the other set of labels. Again this could either be explained by a convention difference or by a difference in the types of inconsistencies in the two labeling procedures.

It certainly seems that there is a large amount of ambiguity in the vowel categories being used for the vowel recognizer. The upper limit to the performance of the vowel recognizer is the amount of ambiguity present in the mapping from the acoustic information to the vowel labels. Since the listeners only agree with each other \(65 \%\) of the time, this is the upper limit for the vowel recognizer performance if it is trained and tested on these labels. Obtaining labels that have a more consistent relationship to he acoustic information either by redefining the vowel cat egories or by developing a better labeling procedure should directly improve the performance of the vowel recognizer From the system performance data, it seems that the two labeling procedures investigated so far have approximately equivalent amounts of ambiguity. If some distinctions are made more consistently with one procedure than the other, perhaps a better labeling procedure would combine the best aspects of both.

\section*{REFERENCES}
(1) Adams, D. and Bisiani, R., The Carnegie-Mellon University Distributed Recognition System. Speech Technology, Mar/Apr 1986, 14-23.
[2] Duda, R. and Hart, P., Pattern Classification and Scene Analysis. John Wiley and Sons. 1973.
[3] Ruduicky, A. and Cole, R., Effect of Subsequent Context on Syllable Perception.
ogy, 4(4):c38-647. 1978.
[4] Jacob, B. et al., The Effect of Language Familiarity on Vowel Discrimination. Presented at 100 th meeting of the Acoustical Society of America, Los Angeles California, November 1980.
[5] Church, K., Phrase-Structure Parsing: A Method for Taking Advantage of Allophonic Constraints. PhD. Thesis, MIT, 1983.

\section*{SPEARER-INDEPENDENT SPEECB-RECOGNITION USING ALLOPHONES}

Knstitut de \({ }^{\text {Ka }}\) Cormunication Parlée
Institut National Polytechnique de Grenoble 46, Avenue Félix Viallet
38000 GRENOBLE, FRANCE.

\section*{ABSTRACT}

This study concerns the determination of the allophones that are necessary for achieving a good recognition of the French numbers by a speech recognition system based on a Markov modelling
approach. The allophones have been distinguished, approach. The allophones have been distinguished,
for the vowels, by the formant transitions at the "onset" and at the "offset", and for the consonants, by their phonetical characterization.

For this specific application, using an aver-
of 2 allophones by phoneme and a few "clusage of 2 allophones by phoneme and a few "clusters", we achieved 94.9\% correct recognition rate on the whole numbers, for 13 speakers that were
not in the training set.

\section*{INTRODUCTION}

A speaker-independent speech-recognition sysem has io deal with all the possible acoustical variations result from various speakers, different possible pronunciations and corticulation ffects. The recognition system we used [1], part of these variations approach, can handle training procedure. However, the basic units, used to describe the words (usually phonemes), have different acoustical realizations depending on the context. If one uses a specific acoustical number of necessary models would be pretty large. But, for any phoneme, several contexts may have nearly the same influence on its acoustical reali ation. So a good tradeoff, between accuracy and or a given is to use different acoustical models nce is different enough.

That is the reasons
lophones as each of them corresponds tudy the ticular acoustical realization. It is worthwile entioning that this study concerns only a pecific application, namely the French numbers between 0 and 999 , and thus has no pretention to phones. Nevertheless, the set of allophones determined in this study may be extended as needed to fit a new vocabulary. The French numbers us of the French language. The of the consonants limited vocabulary restrict the number of contexts for each phoneme, thus, we were able to conduct ull study of the different contexts for this pecific application

After a description of the data base, this paper details the different realizations of th
phonemes. For the vowels, we used mainly the

\section*{D. Jouver}

Centre National d'Etudes des Télécommunications Route de Trégastel
2300 LANIION, FRANC
transition of the formants, and for the consonants, their phonetical characterizations. end the paper by an application of the allophone
in a speech recognition system.

\section*{data base}

The data base contains about 3000 French numbers between 0 and 999 . They were recorde the speakers have a "standard" pronunciation except one having a strong regional accent.

The table lists the different phonemes of the data base. For typographical reasons we denot the phonemes by one or two ascii characters, and we specified here the standard phonetical meaning when different from the notation used.
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{Vowels} & Oral & i, ei(e), ai( \(\varepsilon\) ), a, \(o(\partial)\), au(б), ou(u), \(\mathrm{eu}(\boldsymbol{\varnothing})\), oe( \(\boldsymbol{\alpha}), \mathrm{e}(\boldsymbol{\partial})\). \\
\hline & Nasal & \(\mathrm{an}(\tilde{\mathfrak{a}})\), in \((\tilde{E})\), un( \((\tilde{\mathfrak{\alpha}})\), on( \((\tilde{\mathcal{F}})\) \\
\hline \multirow{5}{*}{Consonants} & Plosive & d, t, k. \\
\hline & Fricative & v, z, f, s. \\
\hline & Liquid & \\
\hline & Nasal
Semivowel & n. \\
\hline & Semivowel & w, \(y(y)\). \\
\hline
\end{tabular}

This study, concerning the determination of the allophones, was conducted using the spectrograms of the data in association with the pitch and the waveform.

\section*{VOUELS ALLOPHONES}

One of the main acoustical realizations the context influence on the vowel is the transi tion of the formants at the "onset" and at the "offset". For practical reasons, related to the we will treat separately the consonantic influence, the pause influence, the possible devoicing and the case of adjacent vowels.

\section*{Consonantic Influence}

From the locus theory 12,31 , which explains the transition of the formants at the "onset" or the "offset" of the vowels by the point of articd 6 classes for the consonants. We grouped together the apico-dental and the predorso-alveolar contexts because the transition of the formants the induce are very similar [3].
\begin{tabular}{|c|c|c|}
\hline Labial & f, v & io- \\
\hline Dental & t, d, n & (apico-dental) \\
\hline & s, z & (predorso-alveolar) \\
\hline Velar & k & \\
\hline Labio-palatal & y & \\
\hline Labio-velar & \({ }^{*}\) & \\
\hline Uvular & r & \\
\hline
\end{tabular}

Instead of measuring by degrees the displace[4], during the realization of the vowel, we will characterize the allophones by their full context The next table reports the vowels of the data bas and the contexts in which they occur. Each ro corresponds to a left context, and each column to and "Lvel" for labio-velar. In order to topalatal, all the positions we add the "pause" and "vowel contexts. They will be treated later on.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Left \({ }^{\text {Right }}\) & Labi & Dental & Lpal & Vela & Uvul & Paus & Vowe \\
\hline Labial & & in & in & in & & in & in \\
\hline Dental \(\{\) & an & ai, an, eu & an & an & ei & an & an \\
\hline Lpal. & oe & \(\underset{i}{i, ~ i n, o u ~}\) & & & 0 & eu & ei \\
\hline Lvel. & & a & & & & a & \\
\hline Velar & & a,an, in & & & a & & \\
\hline Uvular \{ & \[
\begin{aligned}
& \text { au } \\
& \text { oe }
\end{aligned}
\] & \({ }_{\text {an }}^{\text {an }}\) au & au & au & & au & au \\
\hline \begin{tabular}{l}
Pause \\
Vowel
\end{tabular} & & \[
\begin{aligned}
& \text { an } \\
& \text { on }
\end{aligned}
\] & & & & un & \\
\hline
\end{tabular}

Taking each vowel in each possible context application. However, one can allopo define a sub set by grouping together for each vowel some conshould point onearly the same influence. from one vowel to another. For example, for the oral vowel/au/ we can put together the right contexts "velar", "labial" and "pause"; but for the fealizations an/ we will have to keep separate the labio-palatal" contexts to "velar" an ransitions on the formants.

\section*{Pause Influence}
sible for theral 3 different realizations are posfible the "onset" or the "offset" of a vowe an have a to a pause. Just after a pause, we aspirated (devoiced) sloginning. synchronized or an before a pause, we can have a glottal stop, a synchronized a devoiced ending. A synchronized beginning or ing of corresponds to a progressive rising or fal ling of the pitch and of the intensity showing a ind the velum and the the vocal cords vibrations ial fed beginning or ending results from a pa laving forward or backward assimilation, the pause the same effect as a voiceless context

\section*{ovel devoicing}

The voicing feature appears to be rather
cobust for the vowels. Only one context was
strong enough in our data base to devoice a whol owel. This context was /s.w s/ for the vowe a/ in the word "60" (/s.w.a.s.an.t/). After voiceless consonats the vowel \(/ a /\), surrounded by ecomes coarticulated with the surroud feature and

\section*{Adjacent vowels}

For 2 adjacent vowels, belonging to differen words, we noticed the following realizations: For nstressed vovels the transition of the formant smooth and uninterrupted. For stressed vowel. between the vowels and they to 200 ms ) appears glottal stop, or the transition is realized by glottalized vocalic portion having a low pitch.

\section*{Summary}

Because of the implementation in the speech and the "vowel" system we group together the "pause induce formant transitions, and the transitions between adjacent vowels are handled by specific coustical models. In order to obtain a good representation of the various transitions of the phants we had to define an average of 2 alloor each vowel, reported in the following used does not take into account the pause influence and
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Vowel & i & ei & ai & a & o au & ou & oe & eu & an & on & in & un \\
\hline Alloph. & 2 & 2 & 2 & 3 & 1 & 3 & 1 & 2 & 1 & 4 & 1 & 4 & 1 \\
\hline
\end{tabular}

\section*{UUPRASEGMENTAL INFORMATION}

As this speech recognition system does not use pitch information, and also because for such short sentences the pitch is not a useful syntaxic hierarchical cue, the only suprasegmental informaThe importance of the vocalic duration is justified by the facts that, besides an obvious correlation between word and phoneme durations, the degree of perturbation of the formants by the convowel. Also, the knowledge of the minimal duration is useful for designing the acoustical models. For these reasons we haved started a statistical analysis of the segment durations.

The vowels before a pause are longer than the same in other positions. This agree with the fac that, in French, the stress is on the last syll corresponds for our application to the ofte numbers. One of the most important acoustica realizations of the stressed syllables is the onger duration of the vocalic nucleus. In onsed syllable, the inluence of the following consonant on the vo
vious studies \([7,8]\)

The vowel duration in a non final syllable herefore unstressed position, is strongly corre lated with the duration of the sense-group. How-
ever the duration of a stressed vowel is
independent of this influence. For example, the /a/ appearing in the third syllable of a 6 syllables sense-group lasts 54 ms as regards to 82 ms
when being in the unstressed syllable of a 2 syllwhen being in the unstressed syllable of a 2 syl1stressed syllable, it lasts 164 ms in a 6 syllables group even followed by a shortening cononant such as /t/ in French, compared to 144 ms , eteris paribus, in a 2 syllables word

\section*{neutral vorel - schia}

The neutral vowel should be treated like a possible occurence place rather than an acoustical slow speaking rate in a careful articulation manner, it is possible to pronounce a schwa at the end of every isolated word ending by a consonant. However, for connected words such as the numbers, his neutral vowel may be pronounced at the end of or the schwa (e) is pronounced or not, mplies 4 different theoretical patterns for a quence like "55" (/s.in.k.an.t.(e).s.in.k.(e)/).

For a correct identification of the neutral ovel, one needs to use suprasegmental information such as the vocalic duration. The duration seems to be the more appropriate cue for differentiating
the schwa from the vowels /oe/ and /eu/. For example, the duration of the schwa before a paus was always very short compared to the duration of he previous stressed vowel

\section*{CONSONANTS ALLOPHONES}

The different realizations of the consonants are first described using phonetical characteris tics such as nasalization, labialization, etc, as After that, we treat the case of the epenthetic sounds and the voicing feature.

\section*{Allophonic characterization}

Nasalization: This concerns the stop consonant after a nasal vowel. The voiced stop/d/may, by completely nasalized. For the voiceless stops, nasal consonant may be realized before it or even replace it.
Palatalization: This concerns the stop consonants in a right labio-palatal context, or before a palatal, anterior vowel
Labialization: This concerns the fricatives fol lowed by a labio-velar semivowel, or preceeded by rounded posterior vowel
Vocalization: This concerns the voiced fricative v/ and the liquid / \(\mathrm{r} /\) in some intervocalic posi tions (for example /oe.v:in/ in "80" and /a.r.an
in "40"). Fricatization: The unvoiced realization of \(/ \mathrm{r} /\) is in a strict sense a fricative [9]. The devoicing nay occur, for some speakers, even in an intervocalic context.
Rolled: This concerns, in our data, only the
unvoiced \(/ \mathrm{r} / \mathrm{after}\) the voiceless stop consonan
/t/. This realization is produced by a flapping (quasi occlusion) between t.
Tense: For these data, the consonant duratio Tense: For these data, the consonant duratio
vary a lot in two positions: first or last consonant of a sense-group adjacent to a pause. Some studies [10] note an increase in the tension of the articulators, the vocal cords and the velum
for the initial position of a sense-group and for for the initial position of a sense-group and for
the stressed syllable of the group. We will the stressed syllable of the group. We will
denote as "tense" the corresponding realization o the consonants. This characteristic does not correspond to the feature "tense" as defined in some classical theories of segmental phonology
[11], but rather defines some consonantic realiza[11], but rather defines some consonantic realiz

An initial voiced consonant may
short duration, and even vanish, in which case the only remaining cues are the formant tran sitions at the "onset" of the following vowel (for
example \(/ \mathrm{y} /\) in \(/ \mathrm{y} . \mathrm{i} . \mathrm{t} /\) or \(/ \mathrm{v} /\) in \(/ \mathrm{v} . \mathrm{in} /\) ). For example /y/ in \(/ \mathrm{y} . \mathrm{i} . \mathrm{t} /\) or /v/ in vin . in . Fo
these reasons we have to define, in an initia position, just after a pause, 2 allophones with different acoustical realizations and differen durations for the fricative /v/ and the semivove y/, one corresponding to a "standard" pronuncia-
tion and the other to the "tense" realization. At the end of a sense-group, in a stressed syllable the VOT of the unvoiced stops, when followe immediatedly by a pause have the same realization as "tense" consonants for some speakers (importan

Speaking rate and epenthetic sounds
For some speakers having a rather slow speaking rate we notice the realization of 2 epenthetic sounds, one consonantic and one vocalic. An
unvoiced consonantic "closure" is realized in a unvoiced consonantic "closure" is realized in
context where the nasal consonant is preceeded b an unvoiced consonant; this occurs for the consonant \(/ \mathrm{n} /\) preceeded by the voiceless stop \(/ \mathrm{t} /\) or the devoiced fricative \(/ z \%\) A neutral vowe (schwa) may occur when the voiced realization /r/ is followed by a voiced consonant.

\section*{Voicing feature}

The voicing feature, for the consonants, is ften inaccurate and is strongly influenced by the context. In fact, its modification, due to coar
ticulations effects, appears to be the same for most of the consonants: stops, fricatives an semi-vowels. For voiced consonants, the pause has the same influence as an unvoiced context, and forward or backward assimilation. The following table gives, for the specified contexts the consonants for which the voicing feature may be modi fied:
\begin{tabular}{|c|c|c|}
\hline Consonants & Left context & Right context \\
\hline d, z, v. & Pause & Vowel \\
z. & Vowel & Pase \\
y, w. & Unvoiced consonant & Vowel \\
t, k. & Vowel & Vowel \\
\hline
\end{tabular}

Sumnary
The following table lists for each charac teristics the consonants that are affected, an the contexts that induce this modification by
forward or backward assimilation. The "*" denote forward or backward assimilation.
an irrelevant context (ie anything).


\section*{RECOGNITION TESTS}
he applied this study to the speaker indepen dent recognition of the French numbers between base of 26 this recognition test we used a dat speaker having recorded the 10 digits, 50 , eac numbers between 00 and 99 and 50 between 000 and 99. Half of this data base was used in the stud of the acoustical realizations. This data base 2 parts. The data from 13 speakers yere used for training the model parameters, and the data for the 13 other speakers were used for measuring the recognition performances in a speaker independen mode. The acoustical parameters used are the Mel frequency cepstrum coefficients, plus the total
energy and its temporal variation. They are computed every 20 ms (frame rate) using the are com 24 Mel filters; the bandpass of the signal being 6.4 hKz .

The reference point, for measuring the improvement due to the allophones, is a phonetic based model, in which the words are described as Sequences of phonemes, each of them being
represented by the same acoustical model, independently of the context. However, because of stroncoarticulations effects, the sequences /t.r/ thus and \(y\).i/ were considered as basic units and model. Were represented by a single acoustical model. Using this description, we achieved 93. the testing set. Using an average of 2 allophones by phoneme, introducing specific models to handle thans between adjacent vowels, and keepin \(94.9 \%\) correct mentionned above, we achieved base, thus reducing recogition rate on the

\section*{CONClusion}

This paper shows that a good description of the vocabulary improves the performances of a and the different pronunciations are predicted the acoustical models have just to take int
ccount the variations due to the various speak ers. However, it seems that to correctly predict consider, besides the immediate context, the indirate of the current sense-group. The set speaking hones, defined for this specific application, can easily be extended to fit new vocabularies.

Although the current version of our speec recognition system cannot handle segment duration information, we noticed that the duration is an important cue for differentiating a final devoiced inal drom \(/ \mathrm{s}\). An extra cue for identifying after the fricative.

\section*{BIBLIOGRAPHY}
[1] D. Jouvet, J. Monné, D. Dubois: "A ne network-based speaker-independent connectedword recognition system"; IEEE proc ICASS
1986, Tokyo, pp 1109-1112, April 1986 2] P. Delattre, A.M. Lieberman, F. C. Cooper: "Acoustics loci and transitional cues for conSonants"; JASA, No 27, pp 769-773, 1955. 3] E. Emerit: "Nouvelle contribution à la Vol 30, No 1, pp 1-31, 1974.
[4] M. Rossi, Y. Nishinuma, G. Mercier: Mndices acoustiques multilocuteurs et independance du la parole"; Speech communication, Northla parole"; Speech communication, North-
Holland, pp 215-217. subséquentes"; Le Maitre Phonétique, 67, 3-ième série, London, 1939.
6] F. Dell: "L'accentuation dans les phrases en francais" in "Les représentations en phonolo-
gie" (F. Dell, D. Hirst, J.R. Vergnaud), Herman, 1984.
Cristo:
De la microprosodie à
\({ }^{\text {A }}\) intonosyntaxe"; Thèse de doctorat d'Etat, Université de Provence, 1978
81 K. Bartkova, C. Sorin: Predictive Model of Segmental Duration in French"; (109-th ASA Meeti
1985.
[9] F. Lonchamp: "Phonétique et phonologie"; Formation au traitement de la parole, Fascicule 1 ,
Institut National Polytechnique de Grenoble, Grenoble, 1986.
10] J. Vaissière; "variance and invariance at the word level" in "Invariance and variability in speech processes" "edited by J.S. Perkell
111 R. Jakobson, C. Gunnar, M. Fant, M. Halle: "Preliminaries to speech analysis: The dis tinctive features and their correlates"; The IT Press, Cambridge, Massachusetts, 1969

\section*{ТАБЛИЧНЫИ МЕТОД ВЫЛЕЛЕНИЯ ПРИЗНАКОВ РЕЧЕВВГО СИІНАЛА \\ И НОФОНЕМНОЕ РАСПОЗНАВАНИЕ РЕЧИ}

\section*{ЛОДОВИК ЕВТЕНИН КУЗЫМич}

Институт кибернетикп им．В．М．Гдушкова АН УССР Киев，СССР 252207

\section*{АННотаІІия}

Поэтапное устранение избиточности из квантованних параметров описания речевого сигнала，а также учет контөкста，то есть， окружения каждого интервала анализа на－ правлени в конечном итоге на однозначное указание значения выдөляемого признака，а в случае пофонемного распознавания－ номера фонемн．

\section*{BBETEHUE}

Применяемне в распознавании речп тишв перввчного описания речевого сигнала пред－ ставлнid собо⿺夂 многомернне векторн，между комнонентами которнх имештся различного рода зависжмости．При этом паждая отдель－ ная компонента несет не очень много инфор－ мапии о выдөляемом признаке．Инфоормация как он размазана по компонентам，причем значительная часть иноормапии о значении внделяемого признана содержится в нонтекс－ те，то есть，в компонентах первичного опи－ сания сигнала на соседних интервалах．Ес－ тественно в связи с этим попытаться со－ брать по возможности вср информапиш，отдав ＂воду＂из номпонент первичного описания， соответствуопих интервалам анализа с их окружением．

Предлагаемни метод вклочает этап обу－ чения，для которого необходжмо накопить и разметить обучампуио внборку／OB／．Формаль－ но размеченная ОВ представляет собой по－ следоватөльность пар \(g(n), v(n), 1 \leqslant n \leqslant L\), где \(g(n)=\left\{\varepsilon_{i}(n)\right\}_{i=1}^{m}\)－\(m\)－мернн⿺辶 вектор

первичного описаиия речевого сигнала на \(\mathrm{n}-\mathrm{M}\) интервале анализа，а \(\geqslant(\mathrm{n})\)－значе－ ние выделяемого признака \(v\) на этом ин－ тервале，ц－объем выборки в интервалах авализа．

Под выделяемвм признаком могут пони－ маться признаки различного характера：на－ пример，признак тон／пум，артикуляпионнв параметрн или номер фонемн．Во всех слдча－ ях предполагается，что область значөний признака разбита на \(2^{k}\) подобластөй， где \(\mathrm{k}=1\) длл двопчных признаков п \(\mathrm{k}=6\) для номера фонемы являотся двумя прайним значениями．

В качестве первичного описания могут использоваться самне различнне набори па－ раметров，например，коэффицдентн отражения и интенсивность сигнала или де значенпл энергии в частотннх полосах．Могут пршио－ няться также у набори разнороднивх парамет－ ров．

Обучение имеет цельо построение пре－ образования параметров первичного описаидя данного интервала анализа пу онружавпих его в значение признака，притисанное этому шитервалу．

Построение требуемого преобразования будет производиться поэтапно．При этом ол этапа к этапу будет уменьшаться количество битов，необходимых для храненхя опшсания． На заключительном этапе требуемое для это－ то количество битов должно совпасть с раз－ рядностью \(k\) виделяемого признака．

Возможны два варианта постановки \({ }^{\text {зд－}}\) дачи построения преобразования．В опном

из них процесс построеншя преобразования направлен на повышение инф्वормапионно⿺辶 на－ сдменности каддого бита описания．Во вто－ ром варианте цөлью каждого этапа наряду со сжатием описания явллется снижение ве－ роятности ошббки распознавания значөния признака по отдельным элементам описания очередного уровня．Именно этот вариант п оудет рассмотрен ниже．

\section*{УМЕНЫUEHZЕ ИЗЕЫТОЧНОСТИ，ОРИЕНТИ－} POBAHHOE HA CHRZEHUE पИСЛА ОЩИБОК

Прөдлагаемый метод излагается на прммере выделения признака，который может принимать значения от 0 до I ，то есть， требуөт для задания четырех бит．

Преположим пока，что всө компонентв первичного описания проквантованы на I6 уровне⿱⿱亠䒑日，и，таким образом，представлены четирехразрядным двоичным кодом．

Образуем составное восьмиразрядноө огисание из \(\varepsilon_{1}(n)\) п \(E_{2}(n):\)
\[
g_{1,2}^{1}(n)=g_{1}(n) \cdot 16+g_{2}(n) .
\]

Исходя из байесовского критерия，по－ строим решавщее правило для оптъмального распознавания значения признака \(v(n)\) по \(\mathrm{g}_{1,2}(\mathrm{n}) \quad\)－С этой целью для кахдого восымразрядного двоичного кода \(k_{8}\) огре－ делим то значение \(k_{4}\) признака \(v\) ， колорое встречается наиболее часто в паре \({ }^{0} \mathrm{k}_{8}\) ：
\[
k_{4}=f^{1}\left(k_{8}\right)=
\]
\(\underset{k_{4}}{\operatorname{argmax}} G\left(n \mid E_{1,2}^{1}(n)=k_{8}, v(n)=k_{4}\right)\) ．
сунит
здесь означает количество
әлементов в множестве－аргументе．
Теперь можно опрөдөлить первуь компо－ ненту описания второго уровня：
\[
s_{1}^{2}(n)=f^{1}\left(s_{1,2}^{1}(n)\right) .
\]

Аналогичная процедура выполняется над

трөтьееи I четвертой компонентами оптсания первого уровня，в рөзультатө получаем \(\mathrm{g}_{2}^{2}(\mathrm{n})\)－вторур номпоненту опрсания вто－ рого уровня п т．Д．Такем образом мн по－ строим преобразование описания первого уровня в огисание второго уровня．При этом міх снизим информационнай объем описания вдвое，учтем взахмосвлзх медду парамп ком－ нонент \(и\) ，вероятно，повысим надедность распознавания．

Таким же образом пөреходим к описани мм третьего п других уровней，до тех пор， пона не получшм описания из однол компо－ ненты \(g^{5}(\mathrm{n})\)／пред＂оложив，что первичное описание состояло пз I6 компонент／．

Далеө можно учесть окружение \(n-\)－о интервала анализа．Для этого описаннур вы－ ще процедуру склеивания следует применить п \(g^{5}(\mathrm{n})\) й \(\mathrm{g}^{5}(\mathrm{n}-1)\) ；в результате по－ лучпм описание следукмего уровня \(g^{6}(n)\) ． Затем объединяем \(g^{6}(n)\) й \(g^{6}(n+1)\) и преобразуем в \(\mathcal{E}^{( }(\mathrm{n})\) пт．д．С наждвм этапом мв теперь увеличиваем размер фраг－ мента，участвукщего в формпровании решения о значениц признака \(v(n)\) на \(n-M\) ин－ тервалө анализа．Этот процесс может бнть остановлен либо при достижении заданной длины фрагмента，либо в том случае，ногда число опибок при распознавании ОВ переста－ нөт умөньшаться．

Если элементы первичного описания кмешт болыпую разрядность，чем значение признака，на первом этапе следует внпол－ нить продедуру склеивания длл каждото та－ кого элемента в отдельности．

Если，напротив，разрядность каких－то компонент описания меньше разряпности зна－ чений признака，при построении прөобразо－ вания склеивания следует объединять боль－ шее чшсло компонент，что позволит лучше использовать взаимосвязи между ними．

Рассмотрим теперь случай признака большей разрядности，например，пусть этим признаком будет номер фонемд．

Будем исходить из того，что число Фо－ нем не превзшает 64，таким образом，значе－

ния признака \(v(n) \quad\) в этом алучае являвтся пестиразрядными двоичными кодами. Процедура склеивания потребует в әтой ситуапии построения таблиды из \(2^{6} 2^{6}=4096\) шестиразрядвых двоичных чисел. В том случае, когда первичное описание состоит пз 16 компонент п когда мы хотим для распознавания на \(\quad \mathrm{n}-\mathrm{m}\) интервале использовать информапиию \(04-\mathrm{x}\) прөдыддушх пи 4-х последупинх интервалах, потребуетсл объем памяти 48 K байт.

Для уменьшения затрат памяти желательно научиться выполнять процедуру склеивания таким образом, чтобы в результате получались не пестиразряднне коды описаний следуюиих уровней, \(a\), например, четкрехразрядसне.

В связи с этдм вознинает несколько интересных задач.
I. Tребуется построить репающее правило, минимизирупщее вероятность опибки распознавания объектов из \(N\) классов, если ответами распознавния могут оыть только \(t\) классов, \(t<N\). При этом задается тольно число юлассов \(t\), а нание именно это будут классы также необходимо определить.
2. Требуется склеить шестиразрядные ноды в 16 групा так, чтобы объединение этого нового четырехоитового описания с некоторнм другтм фуиксированным шестиразрядным позволпло бы распознавать номер гласса с минимальной вероятностьо ощибки.

Репение люоой из уназанных задач позволяет заменить преооразование-склейку \(2^{6} \times 2^{6} \rightarrow 2^{6}\) двумя преооразованиями: \(2^{6}-2^{4}\) п \(2^{4} \times 2^{6}-2^{6}\), что дает экономию памяти почти в четнре раза. Ясно, однако, что второй вариант в большей стөпени способствует повншению надежности распознавания.

Еце больную энономир памяти дало бы репение следукмей задачи.
З. Допустим, что имеется два пестиразрядннх описания \(g_{1}(n)\) и \(g_{2}(n)\) Требуется найти два склеивапитих прюобразо-

вания \(f^{9}: 2^{6}-2^{r}\) и \(f^{2}: 2^{6} \rightarrow 2^{5}\), \(r+s=m, 6 \leqslant m\), таких чтобн составное описание ( \(\left.f^{1}\left(g_{1}(n)\right), f^{2}\left(g_{2}(n)\right)\right)\) нозволяло бн распознавать номер класса (фонемы) с минимальной вероятностьы опибоKU.

В этой задаче \(r\) и \(s\) также являнотся пскомыми параметрами. Задав таб, ML получим экономию памлти не в 4 раза, как в прөдыдушем случае, а в десятнш раз. При этом, однако, надежнооть распознавани будет меньше, чем в предыдущем случаө.

Приняв \(m=10\), мы получпм вариавт в которнй задача 2 входит в качестве частного случая. Поэтому здесь мы могли он рассчитивать на повышение надежности распознавания по сравненио с вариантом 2.

Итак, результатом обучения будет совокупность склеивагпии отооражении, надное из которых задается таблицей, содерқащей информагпр о разбиении множества помбинапий значений параметров на подмножества.

Распознавание с помощыд этих таблй тривиально. Нужно последовательно преобразовывать значения компонент описания в соответствии с этими таблицами; окончательнни результат преооразования описания на данном интервале анализа и лвляется ответом распознавания. Необходимамии операциями при этом являются операция объепинения пвух кодов в один код-аргумент п операгия извлечения из соответствупций ячейки таблицы кода-значения параметра описания следуюпего уровня.

\section*{SAKJIOYEHIE}

Предложенннн табличный метод способствует накапливанию (нонщентрапии) ино̆ормации, существенной для распознаваншя. Процедура распознавания тривиальна пाопользует лишь две очень простые операпии. Учет контекста дает основания надеяться на эффективность табличного метода распо знавания. Использование многодикторной \(O B\) создает предосылки для распознавания реп многих дикторов без подстройки.

\section*{DIFFERING IN DISTINCTIVE QUANTITY}

\author{
G. Kuhn \\ 96 Leigh Avenue Princeton, NJ 08540 USA
}

\section*{ABSIRACT}

We report the results of an experiment on talker-dependent, connected recognition of 10 Estonian CVCV words that differ in distinctive quantity. The words were spoken, and recognized, in sentence pairs of the form "Did you say (word 1, word 2, word 3)? No, I said (word 4, word 5, word 6)." The test sentences were spoken either at the same rate as the training sentences, or at a much faster rate. Each word was modelled with spectral estimates for four variable-duration states.

The best recognition results obtained on the test words spoken at the training (faster) rate, were 88x (64\%) without probabilities or likelihoods of durations or duration ratios, \(87 \%\) ( \(68 \%\) ) with likelihoods of durations, and 85\% (77\%) with likelihoods of duration ratios.

We conclude that speech rate can be a major problem for automatic recognition of these words, and that in these experiments the problem was not completely overcome using ratios of successive state durations.

\section*{INTRODUCTION}

In the field of automatic speech recognition, there is new interest in implicit [1] and explicit [2,3] modelling of speech state durations. However, unless there is a correction for speech rate, expected state durations may be inappropriate. In languages which use distinctive quantity, like Estonian or Finnish, inappropriate state durations could lead to misrecognition of a large number of words.

In this paper, we report the results of an experiment on automatic recognition of 10 Estonian CVCV words that differ in distinctive quantity.. Estonian is described as having three consonant quantities and three vowel quantities: short, long and overlong \([4,5,6,7]\). Within our vocabulary of 10 Estonian words to be recognized, 4 words participated in 2 two-way quantity contrasts: tee:de-teete and kude-kuu:de; and 6 Words participated in \(2 \cdot t h r e e-w a y\) contrasts: toode-tootetoo:te and kade-kate-katte.

\footnotetext{
CORPUS

Speech was recorded while one of the authors (KO) tead a prepared text. The text consisted of a
}
randomization of 36 occurrences of each of the 10 mords, embedded in 60 repetitions of the sentence pair "Kas sa Uitlesid (Did you say) 'word 1, word 2, word 3'? Ei ma ütlesin (No I said) 'word 4, word 5, word 6'". The randomization was constrained so that each word occurred 6 times in each position in each sentence of the pair.

The text was recorded 3 times. In the first two recordings, one sentence pair was spoken every 6 seconds. In the thitd recording, one sentence pair was spoken every 4 seconds. The first recording was used to train the word models, while the second and third recordings were used for the recognition tests.

Each recording was digitized at 10000 samples/s. The digitized recordings were parameterized in centisecond frames using a 10 -channel, filter-bank spectrum analyzer.

\section*{WORD MODELS}

We used 95 "word" models, one each for Kas sa, ütesid, Ei ma, utlesin, (pause), and the 10 CVCV words. The models for uitlesid and Utlesin had six. states. The models for all other words had four states. Each state had an initial segment of fixed duration, a center segment of variable (possibly 0) duration, and a final segment, again of fixed duration. The minimum duration of a state was thus the sum of the durations of its initial and final segments. The minimum durations of the four states in the \(10^{\circ} \mathrm{CVCV}\) words were \(3+2,3+3,3+2\), and \(2+3 \mathrm{cs}\).

The word models were trained using two passes through the training productions. Pass 1 started with DP alignments [8] to the "miniav". The miniav for each word is that training production which has minimum average distance to all training productions of the word. Pass 1 alignments minimized the distance between each training production and the miniav. Means and a covariance matrix were computed over the spectra aligned to each segment of each hand-marked state of the miniav. pass 2 alignments maximized the probability of the training productions given the Pass 1 means and covariances. Duration estimates (minimum, average, maximum) for each state were produced from the Pass 2 alignments.

In some experimental conditions, spectral estimates were tied across word models, j.e., the weighted average of the means and the weighted average of the outer-product matrices were computed over corresponding

\section*{segments of the states looped together below:}

here we refer to the s is justified because of the good correspondance over alignments to the miniav). The weignts were the number of were tied, there each segment. When spectral estimates models 'in word pairs kude-kue:de, toote-too:te, and kate-katte.

\section*{recocnition}

The routines for connected recognition computed a spectral match score for the best path through an entire recording \([9,10]\). That score was the maximum product of the likelihoods of the observed spectra, over all segments of all states of all words on the path. The itkelihood of a single spectrum \(O_{t}\) under the continuous for spectral shape
\[
L\left(0_{t} \mid j, i, w\right)=\frac{P\left(O_{t} \mid j, i, w\right)}{\Sigma_{j} \Sigma_{i} \Sigma_{w} P\left(0_{t} \mid j, i, w\right)}
\]

The recognition routines used the notion of a contrast expected to be confusable under a pure spectral that we score. Kas sa, Ei ma and (pause) were each assigned to one-word group. Ütlesid and ütlesin were assigned to a two-word group. The 10 CVCl words were assigned to four contrast groups, one for each \(\mathrm{v}_{1}: / \mathrm{e} /\), /u/, /o/ or /a/.

The recognition options were:
1) expanded range of state durations;
2) restricted word order
3) independent probabilities of state durations;
4) independent likelihoods of state durations give 5) the contrast group;
5) multivariate likelihood of state durations given
6) indepentent likelin
6) independent likelihoods of a pair of state
7) independent likelihoods of a second

State duration ratios given the contrast group;
8) multivariate likelihood of the second pair of
state duration ratios given the contrast group.
With expanded state durations, durations in the range \(0.5 * \mathrm{~min}_{i}, w\) through \(1.5 *\) max \(_{i}\), were permitted.

With restricted word order, kas sa could only
 could only follow (pause), utlesin could only follow Ei ma; while the other 10 words and (pause) could follow
with independent probabilities of state durations, the spectral score for each possible duration of each protability maltiplied by \(P\left(d_{i} l l, w\right)\). \(P\left(d_{i} \mid i, w\right)\) is the discrete binomial state duration of word \(w\), under (mini,w, average \(i, w, \max _{i, w}\) ).

With independent likelihoods of state duration given the contrast group, the spectral score for ea possible duration of each state was multiplied by
\[
L\left(d_{i} \|, w, G(w)\right)=\frac{P\left(d_{i} \|, w\right)}{\sum_{m \in G(w)} P\left(d_{i} \| ; m\right)}
\]
with the multivariate likelihood of state durations given the contrast group, the spectral score for each word \(w\) was multiplied. by the tri-vartate gaussia \(L\left(d_{s-2}, d_{s-1}, d_{s} \mid w, G(W)\right)\), where \(S\) is the number of states word w .
with independent likelinowds of a pair of state duration ratios, the spectral score for each word \(x\) wis multiplied by \(\pi_{r} t\left(\right.\) ratiol \(\left._{\mathrm{r}} \mid \mathrm{w}, \mathrm{G}(\mathrm{w})\right), \mathrm{r}=1,2\). The underlying duration ratio pdf's, P(ratior \(/ \mathrm{w})\), were discrete binomials parameterized by the (min, expected,max) value was (1) was

The second pair of duration ratios tested [12] was
ratio \({ }_{1}=d_{s-2} /\left(d_{s-2}+d_{s-1}\right)\)
ratio \(=\left(d_{s-2}+d_{s-1}\right) /\left(d_{s-2}+d_{s-1}+d_{s}\right)\)
With the multivariate likelinood of the second pait of state duration ratios given the contrast group, the spectral score for each word was multiplied by the bi-variate gaussian L(ratio , ratio \(_{3} / \mathrm{w}, \mathrm{G}(\mathrm{w})\) ).

\section*{result}

Boxes are drawn on the confusion matrix in Table tet the count in the boxes divided by the count in the 10 rows be a "similarity score" (these words were at leasi recognized as a word in the same contrast group). Then this confusion matrix shows how a recognition score of baseline system was run on the 6 s/pair test recording. The baseline system used the observed range of state durations, separate spectral models, unrestricted word order, and a path score based only on the spectral match.

Figure 1 gives recognition results in terms of recognition scores on each test recording, and average of recognition scores for the \(65 /\) pair test recording is labelled "G6". The curve of recognition scores for the 4s/pair test recording is labelled "4". The curve of average similarity scores is labelled "SIM".

Under conditions 0-3 in Figure 1, the baseline systed was three cumulative changes: expanded range of durations (condition 1), tied models (condition 2), and restricted word order (condition 3).

Not surprisingly, both the recognition score for the \(4 \mathrm{~s} / \mathrm{pair}\) recording, and the average similarity score, improved with the expanded range of durations.

The recognition score for both recordings decreased with the tied models, because there was no dill between the models in word pairs kude-kuu:de, toote
too:te, and kate-katte, so the routines always chose the first insted word of each pair. However, the averag \(97.2 x\) to \(98.2 x\).

Restricted word order did not significantly affec the recognition or similarity scores.

Conditions 4-9 of figure 1 used expanded durations, tied models, and restricted word order. Conditions 4-6 used recognition options \(3-5\), respectively. Conditions
\(7-9\) used recognition options \(6-8\), respectively.

\section*{discussion and conclusion}

As figure 1 shows, the best recognition results obtained on the test words spoken at the training (faster) rate, were 88Z ( \(64 x\) ) without probabilities or
likelihoods of durations or duration ratios, \(87 x\) ( 688 ) With likelihoods durations or duration ratios, 87x (68x) likelihoods of duration ratios.

Figure 2 is a plot of \(L(\) ratio, \(\mid w ; G(w))\) for the cvcv contrast groups (from top to bottom) with \(\mathrm{V}_{1}=/ \mathrm{e} /\), / \(/ / /\), /o/ or \(/ \mathrm{a} /\) /. Figure 3 is the analogous plot for ration. The solid curves are for the models made from the raining productions. The dashed curves are for models made post hoc from the 4s/pair productions. As modelled, the ratio, contrast between toote and too:te was

Figure 4 is a scatter plot of the values of ratio, and ratio \({ }_{3}\) observed while modelling the cycy words in the raining recording. Figure 5 is the analogous plot for the 45/pair test recording. Polar coordinates were used ngle these plots, i.e., the radius is ratio , and the contrast boundiries. Assuming independence, quantit
figure 6 is a scatter plot of the values of the rations of \(\mathrm{V}_{1}\) and \(\mathrm{C}_{2}\) observed while modelling the cVCV ords of the training recording. Figure 7 is the inogus plot for the 45/pair test recording. The hinimum permitted state durations were apparently someor the 4s/pair recording.

We conclude that speech rate can be a major problem or automatic recognition of these words, and that in hese experiments the problem was not completely overcome ing ratios of successive state durations.

REferences
II) R.K. Moore, M.J. Russell and M.J. Tomlinson locally constrained dynamic programming in automati peech recognition", Proc. leek Intl. Conf. Acoustics, 2] T.H. Signal Processing, 1982, pp. 1270-1273.
modelling of speech- A.S. House, Characterization and Conf. Acoustics, speen diti 2791-2794.
A. M. Russell and A.E. Cook, "Experimental evaluation ouration modelling lechniques for automatic speec cooustics, to appear in Ptoc. IEEE Inti. Conf. ACoustics, Speech and Signal Processing, 1987.
[4] P. Ariste, "A quantitative language", Proc. Third Intl. Cong. Phonetic Sciences, 1938, pp. 276-280.
vowels of three phonological degrees of length" Pron Fourth Intl. Cong. Phonetic Sciences, 1962, pp, 682 587.
[6] I. Lehiste, "Temporal Compensation in a quantity language", Ohio State University Working Papers in Ling 171 A. Cek. "Es, pi S3-67
ty: notes on the perceptio duration", Estonian Papers in Phonetics, 1979, po. 5
[8] H. Sakoe and S. Chiba, "Dynamic programming algorithm optimisation for spoken word recognition", LeE Trans. ASSP-26, february 1978, pp. 43-49
[9] T.K. Vintsyuk, "Element-wise recognition of contin kibernetika, 7, 1971, pp. 133-143. a given vocabulary" [10] J.S. Bridle, M.D. Brown and
tinuous connected word reconition using whole "Contemplates", Radio \& Electronic Éngineer, 53, 1983, pp. 167-173.
[11] U. Lippus, "Prosody analysis and speech recognition strategies: some implications concerning Estonian",
Estonian Papers in Phonetics, 1978, pp. \(56-62\). stonian Papers in Phonetics, 1978, pp. 56-62. ity in Estonian", Ph.D. Thesis, Univ. of Co 1976.

rable 1. Confusion matrix obtained when a baseline system was run on the \(65 /\) pair test recording












\title{
COMPUTER RECOGNITION OF ISOLATED WORDS IN fixed Leng fi feature space
}

\author{
ALGIMANTAS RUDŽIONIS
}

Speech Research Laboratory
Kaunas Polytechnical Institute
Kaunas, Lithuania, USSR 233028

\section*{ABSTRACT}

After the bounaaries of separste words were defined, each word was divided linearly into \(K_{S}\) static and \(K_{D}\) dynamic segments. With a fixed number of spectral components \(L\), arbitrary reference words have equal volumes. Several vocabularies of digits and of 100 geographic names were read, and recognition accuracy was estimated in relation to \(K_{S}, K_{D}, L\) and to the number of repetitions \(R\). It is shown, that with a aatisfactory training, even small computers can recognize about 100 words with a 1 to \(2 \%\) error rate without any devices of increasing their operation speed.

\section*{I. INTRODUCTION}

A good number of studies on the main parameters of speech recognition aystems, and to the main factors determining their success have appeared recently /l-4/. We find such studies as \(/ 3,4 /\) revealing the difficulties encountered in attemps to evaluate the advantages of different parameter descriptions of signals, as well as of different methods of comparison. Some of the recent works consider comparison of words divided into fixed number of segments \(/ 5,6 /\). This approach ensures considerably higher recognition speeds, as compared to the non-linear time mode.Per-
haps because of the insufficient local similarities of words, the advantages of dynamic transformations of time function are not always exploited.
The present study was aimed at an evaluation of speaker dependent recognition. when separate words are described by fixed numbers of static and dynamic segments of the speech aignal, and when the reference of any word is of the same dimension. This mode of description opens new potential ways of word comparison, including polydimensional rating. We consider here the most simple, but not the less important parameters: number of atatic \(\mathrm{K}_{\mathrm{S}}\) and dynamic \(K_{D}\) segments, number of spectral components \(L\) and effect of training es number of repetitions \(R\).
Our results on several vocabularies of Russian words suggest a continous decrease of the error rate with increasing \(K_{S}, K_{D}\), I , R. In particular, which \(\mathrm{K}_{\mathrm{S}} \sim 8, \mathrm{~K}_{\mathrm{D}} \sim 4\), L~8 and satisfactory training, on-line recognition of random vocabularies of about 100 words is possible without any increase in the processing speed, at the error rate of 1 to \(2 \%\).

\section*{2. GENERAL REMARKS}

The suggested approach has the undoubtful advantage of speed. The effecta of small values of \(K_{S}, K_{D}, I, \cdot R\) on its reliability is to be estimated yet. Intuition sug-
that higher values of these parameters should extract more information from the speech signal. But we are also interested in the least admiasible values and expect significant effects of the vocabulary content. Let us now consider some special aspects of the problem.
2.1. Extration of Features from Speech Signals
Normal logarithmic spectral from the filter bank were chosen as primary features. A word was first described by sequence of spectral vectors \(S_{K}(l)\) every \(T\) seconds, where \(K=1,2, \ldots, K_{W}\) number of apectral vector; \(K_{W}\) - duration of a word expressed by the number of vectors, and \(l=1,2, \ldots, \mathrm{~L}\) number of a spectral component.For a word divided into \(K_{S}\) static segments, its division points \(\varphi_{s}\) are
\[
\begin{equation*}
\varphi(s)=\operatorname{INT}\left[1+(s-1)\left(k_{w}-1\right) / k_{s}\right] \tag{1}
\end{equation*}
\]

INT stands for a whole part, \(S=1,2, \ldots K_{S}{ }^{+}\) +1. Static aegments \(F_{S}(l)\) are formed by \({ }^{\prime}\) averaging spectral vector in intervals \(K=\) \(=\varphi_{s}, \ldots, \varphi_{s+1}\)

The filter analyser used contained \(L=24\)
filters, discributed on a semi-logarithmic scale. Dimensional variation of features (L) over the freguency scale was performed either by averaging subsequency spectral frequency components, or by choosing a certain part of component say, in the range of the telephone channel, which is further denoted by \(\mathrm{L}_{T}\).
2.2. Introduction of Dynamic Segmente A certain part of useful information in recognizing speech signals may be gained from changes of the signal spectrum. Its most simple estimation is through the spectrum dynamiça
\[
\begin{equation*}
\tilde{S}_{k}(l)=\sum_{V=1}^{\infty}\left|S_{k+j}(l)-S_{k}(\ell)\right| \tag{3}
\end{equation*}
\]
where \(K=1, \ldots, K_{w}-J\). For the \(K_{D}\) dynamic segments \(F_{D}(\ell)\), in (2) \(S_{K}(\ell)\) is replaced by \(\tilde{S}_{K}(l)\). One of the other possible estimations of spectrum dynamics is weighting by linear functions. But its result was
not significantly better, so that (3) was used thanks to its simplicity. The absolute value of (3) has an effect of limitation, but we used it successfully to denote preservation of feature values inside one byte, without any additional operation. Vectors \(S_{K}(\ell)\) were followed every 10 ms with assumed \(\mathrm{J}=3\). Size of a reference word was in our case equal to \(L\left(K_{S} K_{D}\right)\) bytes and did not depend on the duration \(K_{w}\) of a word. Recognition was carried out by Euclidian distance minimum. 2.3. The Level of Training The often applied one-time reading of a vocabulary as a means of training for iso lated words recognition systems suffers a high degree of randomization of reference words. As a main parameter in our study we chose the estimate of the training set, that is the number of repetitions \(R\) for \(a\) reference word. The level of training is significantly dependent on the distance measure and on the dimension of the reference word. From practical considerations we consider here only small values of \(R\). On the other hand, a proper level of training can reveal the information efficiencs of separate features, and the application limits of the suggested approach.
2.4. Vocabularies Studied

The resultant recognition accuracy is aignificantly influenced by the vocabulary length and especially by its content. To combine practical interest with fundamental solutions, we selected the following vocabularies: \(w_{1}\) - names of 100 towns in the Soviet Union, included as a demonstration of the recognition accuracy on vocabularies of medium length; \(w_{2}\) - Russian digits from zero to thousand (38 words); \(w_{3}\) - Russian digits from zero to nine ( 10 words); \(w_{4}\) - Ruseian digits from eleven to twenty ( 10 words). Vocabularies \(w_{3}\) and \(w_{4}\) constitute parts of vocabulary \(w_{2}\). Vocabulary \(w_{3}\) consists of most frequent in computer recognition words, and
vocabulary \(\quad w_{4}\) is a most difficult vocabulary, because all its words have a common stressed second part.

\section*{3. EXPERIMENTAL RESULTS}

Most of the results refer to a single speaker. Hardware consisted of a dynamic microphone, a spectral analyser and a microcomputer. Each word was repeated several times, but direct recognition was estimated repeatedly on the second reading, until a statistically significant relation was found. Where possible, several parallel reference vocabularies were formulated. The number of control outputs for each test point was from 500 to 8000 .
The main studied parameters were: \(\mathrm{K}_{\mathrm{S}}, \mathrm{K}_{\mathrm{D}}\) numbers of static and dynamic segments; L - number of spectral components (in the telephone channel range \(L_{T}\) ); \(R\) - number of training repetitions.per word; \(\mathbb{N}\) - vocabulary length; \(B\) - number of bits for a vector component of a reference or of an input; \(N_{C}\) - number of control inputa; I-period of following the spectral vectors from filter analyser ms.
Number of static segments. Fig. 1 shows recognition accuracy for different \(\mathrm{K}_{\mathrm{S}}\). A significant effect of the vocabulary structure is evident, Fig.lb, combined With the effect of the level of training Fig.la. Vocabulary \(w_{4}\) is by far more difficult, than vocabulary \(w_{3}\), because in \(w_{4}\)


Pig.1. Recognition errors as a function of the number of static segments. ( \(L_{T}=8\), \(2=10\) )
information is concentrated in the first unstressed parts. Vocabulary \(w_{2}\), which is nearly four times longer, is nearly as difficult as vocabulary \(w_{4}\) for \(R=I\), but its recognition accuracy improves largely with the number of repetitions, Fig.Ia. In general, recognition accuracy is unsatisfactory at \(K_{S} 8\).
Dimension of spectral representation. Typical results in Fig. 2 support the expected increase of the recognition accuracy at larger L .


Fig.2. Recognition errors under the effect of spectral resolution ( \(\mathrm{K}_{\mathrm{S}}=4, \mathrm{~T}=20\) ). Level of system training. The effect of \(R\) as also estimated on vocabularies \(\mathrm{w}_{3}\) and \(w_{4}\) which described by \(K_{S}=4\) static segments. The error rate in vocabulary \(W_{4}\) was never lower than \(p \approx 7 \%\) because of its incomplete information, even at levels of training as high as \(R=100\). Vocabulary \(w_{3}\) was nicely recognized at \(\mathrm{R}=3\) (Fig. 3 .


\(w\)
\(N=10\)
\(N\) \(L_{r}=8\) b)

Fig.3. Recognition errors of \(w_{3}\) and \(w_{4}\) at different levels of training ( \(\mathrm{K}_{\mathrm{S}}=4, \mathrm{~T}=20\) ).

\section*{Effect of apectrum dynamics.}

Introduction of dynamic segments was shown in 2.2. Let the words be presented \(K_{S}=6\)
static and \(K_{D}=4\) dynamic segments. A proper level of training was ensured by numerous repetitions ( \(R=20\) ). It follows from table I, that dynamic segments carry 2 to 4 times less information than static ones, but combined application of both gives 3 times error rates, than static segments only. Note also, that with a satisfactory training, the accuracy of recognition is nearly independent of the vocabulary length.

Table 1. Recognition errors of three vocabulariea from their static dynamic and mixed segments, \% ( \(L_{T}=8, R=20\), \(N_{C} \approx 1000\) )
\begin{tabular}{|c|c|c|r|r|}
\hline \(\mathrm{K}_{\mathrm{S}}\) & \(\mathrm{K}_{\mathrm{D}}\) & \({ }^{W_{1}}\) & \({ }^{W_{2}}\) & \multicolumn{1}{|c|}{\(\mathrm{w}_{4}\)} \\
\hline 6 & - & 6,5 & 5,3 & 5,6 \\
- & 4 & 15,2 & 19,5 & 11,6 \\
6 & 4 & 1,8 & 1,6 & 2,2 \\
\hline
\end{tabular}

Presentation accuracy of reference words. The volume of a reference word depends on the number of bits, which are given for each component of the vectors sequences. On the other hand one might expect that the more reliable reference words are also


Fig.4. Recognition error rate of the bit number in the reference sequence ( \(L=24\), \(K_{S}=4\) ) 。
less sensitive th the accuracy of their presentation. Fig. 4 shows the recognition errors of 50 words (vocabulary \(w_{2}\) plus 12 control words) and of vocabulary \(\mathrm{w}_{4}\) of ten words, when the reference words and the input worda were represented by a different number of bits (B). The lower curve, Fig.

4a represents reference words of increased reliability thanks to higher R. Here a decrease of \(B\) down to 3 bit has no significant influence on the result.
Vocabulary \(w_{4}\) is highly sensitive to a decrease \(B\) of even at \(R=100\).

\section*{4. CONCLUSIONS}
1. Recognition of words in finite spaces of features with small reference sequencies ( 8 to 16 segments) and proper levels of training can be suggested for vocabularies of up to 100 words and medium processing speed.
2. Introduction of dynamic segments considerable (3-fold) descrease of the erros rate. A continous decrease of the error rate was observed with increasing \(K_{S}, K_{D}\) I and R .
/I/N.R.Dixon, H.F.Silverman, "What are the significant variables in dynamic programming for discrete utterance recognition?", ICASSP 81, pp.728-731.
/2/ A.Weibel and Yegnanarayana, "Comparative study of Nonlinear Time Warping Techniques in Isolated Word Speech Recognition Systems", IEEE Trens.ASSP31, pp.1582-1586, No.6, Dez.,1983.
/3/B.A.Dautrich, L.R.Rabiner, T.B.Martin, "On the Use of Filter Bank Features for Isolated Word Recognition", ICASSP 83, pp.1061-1064.
/4/N.Noncerino, F.Soong, L.Rabiner, D. Klatt, "Comparative Study of Several Distortion Measures for Speech Recognition", ICASSP 85, pp.25-28.
/5/ D.Burton, "Applying Matrix Quantization to Isolated Word Recognition", ICASSP 85, pp. 29-32.
/6/ H.Iizuka, "Speaker Independent Telephone Speech Recognition", ICASSP 85, pp.842-845.

\section*{Valeria Kuznetsova}

\author{
Department of Philology, Moscow State University Moscow, USSR, 119899
}

\section*{ABSTRACT}

In the present paper the problem of decoding the results of the first stage of speech recognition into vocsbulary units is discussed. The open syllable is proposed as the basic element for such decoding. The final decision is made with consideration both lexic and phonetic oontext. The context function is carried out by specially organized vocabulary module in the system.

\section*{INTRODUCTION}

Lately the problem of mapping the results of preliminary acoustic analysis onto linguistio units draws great attention of different researohers. This problem is very important both for the description of the model of human speech perception and for developing the systen of automatic speech recognition and understanding.

The purpose of the present paper is to suggest the solution of this problem in relation to the system of automatio speech recognition. Not discussing in detail the problem of human speech perception, we adopt the following startingpoint hypothesis:
I. The decision about signals phonetic content is made for elements corresponding to syllables. 2. Until the content is correlated with the semantio meaning of the unit it is considered to be preliminary and is represented by a limited set of variants or by generalized phonetio content.
3. To arrive at the final interpretation of the signal (to correlate it with some vocabulary unit and to define its phonetic composition more accurately) multifold strategy is implemented on the basis of the information supplied by phonetio and higher levels of analysis.

The present paper deals with the problem of the phonetic structuring of vocabulary module, so without taking into consideration higher levels of linguistic analysis we'll describe some possible model of transition from signal representation (in teras of the first stage alphabet) to vocabulary units.

\section*{PHONETIC SYLLABLE RECOGNITION}

The basic element of our recognition model is an open syllable. The selection of this unit is supported both by the acoustic-phonetic lite-
rature data regarding it to be the minimal unit of speech perception and production \(/ 1 /-/ 5 /\) and by the possibility of automatic segmentation of the results of the first stage recognition into elements corresponding to open syllables /5/, /6/.

The results of the first stage recogrition presented in /6/ were used to test the model's reliability. Signal, corresponding to syllable, automatically having been singled out and reoorded in terms of the first stage alphabet (FSA) is oompared with syllable sample (SS) from the systen's memory. Each SS is correlated to phonetic syllable. Thus the result of the first stage reoognition goes into the input of the given submodale while in the output there are syllables in phonetic transcription.

These SS were designed on the basis of analysis of the results of the first stage recognition of the definite system with regard to possible within-syllable coarticulation and the duration of syllable's constituents. Thus SS are in their nature idealized, generalized concept of the results of the first stage recognttion and are recorded in terms of FSA. The SS set is determined by the requirements put on the recognition system vocabulary. It is rather small in case of limited vocabularies. For evolving systems of automatio speech recognition with extensive and unlimited vocabularies the SS set must be compiled with regard to syllab:le statistics. The existing syllable statistics for Russian speeoh /7/, /8/ do not fully answer the requirements of this problem as they are received on the basis of idealized transcription of written texts. Contrary to the statement in / // syllables constituting these statistics cover no more than \(60 \%\) of different type oral texts, as it was shown in our experiment. Thus taking the statistics presented in \(/ 8 /\), as the starting point we are now compiling a fuller statistics that would comprise up to 1000 open syllables revealed from the recordings of different types of oral texts. This statistios would supply the basis for SS set of the speech recognition system with extensive vocabulary in which every syllable would get SS representation. The model was tested with SS set of 100 syllables and vocabulary of 200 words.

The syllable corresponding to signal is selected by means of comparing the entering signal to each SS and is determined by minimal
stance between them. The distance \(1 s\) measure means of conseoutive comparison of each sihelp the to elements of the sauple (PD) stored in the systen's memory. MPD comp ses conventional distances between element FSA constituting the signal and SS.

We used the following technique for crealing urD. Each element of FSA oorresponds to haraoterized by presence/absence of some feat ure and the strength of its manifestation (e.g. absence of fundamental frequency is characterires of its eanifestation along ith ther features voiced obstruents, sonorants and vovels are distinguished)

The difference between FSA elenents regarding each feature was estimated by assigning ertain marks to them. The results of our ana in ion. The distance between reliable feature as given a higher mark, while the distance between less reliable ones was given a low mark, hat is the scaies of distances were not line. Thus the scales were made not for elements lements are characterized, ance between the constituents of the coupared eatures of FSA elements was put into MPD. In he process in a number of cases frequent subsitution of elements of the alphabet in the signal or complete absence of such substitution The teohnique desoribed
above can be preseents of PSA, and \(M\) is characterized by the set f features \(/ x_{1}, \ldots, x_{i} /\) while \(\mathrm{s}-/ x_{1}^{\prime}, \ldots, x_{i}^{\prime} /\) then
\(R_{M, N}=r_{\left(x_{1}, x_{i}^{\prime}\right)}+\ldots+r_{\left(x_{i}, x_{i}^{\prime}\right)}+k_{M, N}\)
here \({ }^{\mathrm{R}}, \mathrm{M}_{1}\) is the distance included in MPD, . \(x_{i}, X_{i}^{\prime} /\) - the distance in the soale for each sitution frequency of elements in the definite eoognition system.

IVe have distinguished and soaled the folowing acoustic features:
2. Presence of formant structure and degree of ts manifestation
. Intensity
. Main area of energy concentration
5. PII frequency

These acoustio features are highly analoous to syllable contrasts desoribed by L. Bonnce of durational difference here seales. It is impossible to introduce this feature into KPD because the decision is made about each tie segment of the signal, and not about segment corresponding to some phonetic unit (whether son between signal duration and sample duration is introduced into algorithm for calculation of distance between the result of the first
stage reoognition and SS. It seens interestin to oompare our data with those obtained on the basis of /I/. By means of the teohmique described above we have construoted MPDI on the basis of the soales corresponding to syliable contte distance rarely ooinoide as singled out fes tures do not match coupletely, although some general tendency in the sequence of elements of the alphabet which are arranged according to the degree of eloseness to each element can be observed. He are planning to oompare the efficiency of the matrix in the recognition systen. SS set allow us to put forward a prelininary hypothesis about some syllable corresponding to the certain signal. As it was mentioned above suoh decision is represented by either a set of syllables with ninimal distances from the signal (in our case 3 minimal distances were taken the syllable, reflecting generalized phonetio content (e.g. TA - a syllable consisting of unvoiced atop and non-front vowel). Whether a set of variants or a generalized content would be selected for syllable recording depends on the signal's oharacter (the degree of manifestation rete sound with greater or lesser preoision) or on its distance from the sample. Such attitud seems quite reasonable as not always in the signal there are acoustic cues that would allow sit to correlate it with some definite sound syllable or even word /II/, /I2/.
the structuring and use of the vocabulary As the result of the program for oomparing the signals of the first stage recognition with llables' string. This faot determines the oharacter of phonetio description of the vocabula ry. The constructing of the vocabulary oan b divided into 2 stages.
On the first stage lexical units in the Corm close to idealized phonetio transcriptio are reoorded as strings of open syllables. on the most frequent substitutions in recognition being singled out in the preliminary analysi are inoluded into transoribed word recording. I 11mited vocabulary is used on this stage it it dvisable to, set apart possible quasizomonys ach the consonants at the beginning of the secon syllable are phonetically very similar and pratically undistinguishable in the process of recognition or are distinguished irregularly).

Each transoribed recording is correlated with corresponding word or words and in the case of reliable syllable recognition we get
lling of the words on the vocabulary output.

The program for syllable joining compar all possible strings of syllable-candidates ith those reoorded in the vocabulary and corresponding to real words. These equivalents a hen reoorded into speling and sent syllables
that do not correspond to any vocabulary unit are eliminated. This programinitates the role In sone cases it's possible that a whole group of syllable strings would correspond to vocabulary units, thus we'll get 2 or more words at the output. During program approbation such cases were rather few and the number of words at the output didn't exceed 3. This can be explained by the small size of the vocabulary. Theoretically the number of variants for the selected number of syllable candidates \(/ 3 /\) is 3 ,
where \(X\) stands for number of syllables in the siven word. He suppose that in such cases the clinination of extra variants 18 possible on a higher level of analysis and it corresponds to the role of syntactic, pragmatic and semantio A more complex perception.
situation when some syllables are identified incorreotly and none of the strings of syllables at the input of the vocabulary module corresponds to the vocabulary units. In this case uliple strategy of word search must be impleented. This strategy must be based on some fabal with a lexical unit and its seguent cosposition /in other words the strategy is phone-tic-context dependent/. The number of syllables In a mord, stress position, rhythmical structuof a word as a whole, basio /most reliable in the prooess of reoognition/ syllables, inias such phonetic factors here. The can be named seleoted factors and their number cause the vooabulary structure, the determining of absolurely reliable factors cause in its turn the trategy of word search in general: consequent aroh beginning with subrocabularies, composed isarding to absolutely reliable word charaotetion/ and onto subvocabularies based on less reliable phonetio word oharacteristics, were only oandidates selected with the help of "reliable" subvocabularies are taken into consideation. As the first stage recognition results tor ahsolum to consider every selected faorallel word search se, one has to turn to parather complicated procedure.
The vocabulary has the following structure. The vocabulary is reoorded in the form of its in aciants /subvocabularies/, which are organized subvocardance with the selected factors. Some siullar rhythis derived into parts coaprising ted at the basic syllables and so on. Strings of syllable candidates which have no corresponang lexioal elements in the main vocabulary re entered into all these subvooabularies and hididates are seleoted every subvocabulary word oaristios identical /in the structural oharactered string. Ford oandidates are entered into the analyser which in the output delivers words present in all registers. If no such words can be identified word oandidates with the highest arks are seleoted. For this purpose to each of
the subvooabularies a certain rank is assigned according to the reliability of the factor ref oted in xt .

At present we are conducting an experiment ained at selecting faotors used in word recogation and defining the degree of their reliability. For this purpose the results of syllable recognition with false deaision were given to a group of experts, who using the words phonetio features and unlinited vocabulary put tion of these results. The group consists of 4 linguists who can theoretically ground their deoisions. The data thus obtained are of prelithary charaoter but it should be pointed out that the experts pay attention to the words \({ }^{\prime}\) rhythaical strioture and to the segnent compo
vocabulary module


\section*{Fig.}

The generalized scheme of the vocabulary odule work

With the use of limited vocabulary and pragmatically oriented recognition system the strategy of word prediction can be used
In this case the reliability of recognition of syllables and the probability of their substitution must be taken into account. The vocabulary must be built in the form of a matrix ref leoting the consecutive member of eaoh syllable the vocabulary beginning with the nost rellable syllable to its possible left or right neigh bours. If the supposed neighbouring syllables coincide with the result of the recognition or If they are not oontradictory to it / that is, are inoluded into the register of possible subcontent/the search is conducted further on. On the basis of some given text pragmatics semantically and syntactically oriented subvocabularies can be selected to conduct the search whi le the sequence of entering into each subvoca bulary will be determined by the previously re gnized words
This mode

This model has no computer-progran reali-
zation, yet we present it here in accordance with the concept that in speeoh recognition as well as in human speech perception it's impossible to liait oneself to one particular strategy. The final decision can be made on the basas of identification of the word image as a whole, on the basis of the analysis of the factors /phonetical as well as relating to other levels of analysis/ determining this image, on the basis of prediction of syllables and larger units /words and word combinations/ by limiting the oommunicative vocabulary according to the pragmatic oontent of the text.

\section*{MODEL'S EXPERIMENTAL APPROBATION}

Model's partial approbation /syllable recognition and word selection in the vocabulary with the help of the vocabulary of basic syllables/ was conducted on the vocabulary of 200 words and a set of 100 syllable samples. Syllable candidates are obtained as the result of the realization of the program for comparing of the first stage signals with SS. Strings formed of syllable candidates are recoded into vocabulary units. As the experiment demonstrates, for a small vocabulary it's sufficient to introduce 1 or 2 subvocabularies. 3 operational variants of the program are possible: simple joining of recognized syllables, word prediction by means of the subvocabulary of basic syllables, refusing to make final decision in case of false recognition or absence of the basic syllable in the string. For the purpose of limiting the number of analysed strings the syllables undoubtedly falsely recognized /initial and final syllables that got into middle position, middle syllables that got into initial or final position/ are eliminated. The result appears in the spelling form with an index showing the ratio between the number of correctly recognized syllables and the total number of syllables in the word. Below some examples of different variants of the decision are given:


The experiment was conducted on oomputer SM-4 with positive results.

\section*{REPERENCES}
/I/ Бондарко Л.В. Фонетическое описание языка и фонологическое описание речи. Л., I98I.
/2/ Вондарко Л.В. Слог: правила интуиция, механизмы. - В кн.: функмиональнал просодия текста.М., 1982.
/З/ Бондарко Л.В. Акустические характеристини речи. - В кн. : Слух и речь в норме и патологии /внп. І/. Л., I974.
/4/ Уровни языка в речевой деятельности: к проблеме лингвистического обеспечения автоматического раепознавания речи./Под ред. Л.В. Бондарко. - Л. 1986.
/5/ Белявский В.М., Светозарова Н.Д. Слоговая фонетика и три фонетики Л. В. ІІербы. - В кн.: Теория яэка. Методы его исследования и преподавания. Л., I98I.
/6/ Белявский \(\mathcal{B}\). М. Автоматичесная сегментация слитной речи. - В сб.: IX Всесоюэная акустическая конференция. Тезисы понлапов. М., I977.
/7/ Елкина В.Н., Ппина Л.С. Статистика открытых слогов русской речи. - В сб.: Вьчислительные системы, I4. Новосибирск I964.
/8/ Златоустова л.В. и др. Алгоритмы преобразования русских орфографических текстов в фонетическую запись. М., โ9'70.
/9/ Москаленно Т.А. Акустический анализ согласных звуков в целнх автоматического распознавания руссной речи. - В сб.: Автоматическое распознавание слуховнх образов: Тезисы покл. и сообщ. АРСО-I4. Каунас, 1986.
/IO/ Кузнецова В.Б., Смирнова О.Н. Анализ надежности автоматичесного распознавания фонетических признанов. - Там же̂.
/II/ Проблемы и методы энспериментальноФонетического анализа речи. Л., t981.
/І2/ Кузнецова В.Б. О возможном способе Пормирования словарных эталонов.В сб.: Автоматичесное распознавание слуховнх образов: Тезисн I2-го \(^{\text {- }}\) Всесоюзного семинара АРСО-І2. Үиев, I982.

SEARCH FOR OPTIMAL TEACHING PROCEDURE AND WARPING ALGORITHMS FOR ON ISOLATED WORD RECOGNITION DEVICE
K. Vicsi, G. Lugosi, T. Linder

Acoustical Research Laboratory Hungarian Academy of Sciences

\footnotetext{
An automatic word recognizer was developed using a preprocessor constructed on the base of a psychoacoustic model. In every 10 ms 5 parameters characterize one word. Different time warping algorithms were examined and made a comparison between them to find the optimum for the recognition accuracy and for the recognition time. Some teaching method was also examined to choose the best for recognition using the simplest teaching procedure.
}
der lautlichen Seite der individuellen sprecherischen Tätigkeit auf der Grundlage von bewulst durch Fachleute formulierzeptierten Regeln, die für den Gebrauch lautlicher Mittel der jeweiligen Sprache maßgeblich sind. Sie ist nur für entwikselte, allseitig normierte 1 teraturspra chen charakteristisch. Dank der Vielfalt maximal reglementiert setn schriftlichen als auch in ihrer mindlichen Existenzform, was die Aneignung dieser Sprachen und ihre Anwendung als Verstanaigungsmittel erleichtert. Die Kodifizierung einer AN setzt enne ziemlich hone Entwicklungssture der artikulatorischen Phonetik de Etappe in der Festlegung von Normen einer entwickelten Literatursprache dar

Die AN einer entwickelten Literatur sprache beruht aup einer detaillierten Beschreibung der lautlichen Seite der mundichen literatursprachlichen Kommunischreibung ermorglicht es vor allem, den Lautbestand der jeweiligen Literatursprache in ihrer mindlichen Form, d. h . inren normativen Lautbestand zu ermitteln Die Laute der jeweiligen Literatursprache ollen genügend einförmig artikuliert wer hrer normativen Artikulation gesichert
wird.
In Doch werden die Laute im Sprechstrom in Gruppen artikuliert, welche Folgen von niteinander nahtlos verbundenen, ja einander durchdringenden akustischen Ereigtorische Tätigkeit des Sprechers hervorge racht werden (eine solche minimale Folge ildet die Silbe). Die artikulatorische
ätigkeit des Sprechers verläuft innerhalb ines zwischen zwei Pausen liegenden rum sollen die Artikulat ununterbrochen. Da iur das Aussprechen von unmittelbar benachbarten Lauten erforderlich sind, unbe ingt nicht nur einander angepabt werden, ondern auch einander durchdringen, was die notwendige artikulatorische Fusion und de Kontinuität der Lautung ermöglicht. ikulation von isolierten Lauten durch die Regeln ihrer normativen Artikulation im rechstrom ergänzt
Die Befolgung der beiden Regeltypen rlaubt es, 1) eine mehr oder weniger ein riche Aussprache dieser Laute zu erhicht zu überschreiten, unterhalb welcher le Aussprache undeutlich wird.

Endich enthät die AN einer Literarsprache auch den in orthoepischen wortand in festgelegten normativen Lautbe tand einzelner Wörter. Die Festlegung Wortern" /3/ vereinheitlicht die Aussprache and Lautung von Wörtern und Wortformen im

Sprechstrom. Von Zeit zu Zeit finden im rmativen Lautbestand einzelner Wörter eranderungen statt, die durch die Umver ellung von Lauten im 1iteratursprachlise Veränderungen sollen in den nacheolgenden Auflagen von Aussprachewörterbuichern und sonstigen Nachschlagewerken ihre Widerspiegelung finden.
prechie AN einer entwickelten Literatursprache, als Gesamtheit ihrer obengenannfolgende Merk 1) sie ist kodifiziert, d.h. als Gesamtheit von Regeln in einschlägigen Anleitungen festgelegt;
terliegt terliegt bestimmten Regeln, die das Resultat einer zielgerichteten Tätigkeit von timalsten Artikulationen und kommunikativ am meisten berechtigten Realisationen ein zelner Laute und des normativen Lautbestandes einzelner Wörter bezweckt;
hält nur solche Regeln, die es alle mittersprachlern erlauben, sieh allen MutErlernen der Literatursprache anzueignen; 4) sie ist stabil und veränderlich zugleich, d.h. sie behält ihre Qualität im ganzen im Laufe einer gewissen Zeit unter allmahlichen Veranderungen einiger die periodiachen Prärischen Praxis, wa manchmal sogar eine teilweise Neufestlegung der Norm notwendig macht.
Charakter hat einen sozial bewubten Charakter, deh. sie ist von den Trägern einzig richtige Gestaltungsweise als die einzig richtige Gestaltungsweise der laut mündlichen Kommunikation, als Muster, an welches sie ihre artikulatorische Tätigkeit angleichen, bewußt akzeptiert;
6) infolge der bewußten Anerkennung durch die Träger einer Literatursprache ist sie fur jeden Muttersprachler in komdie Anwendung der jeweiligen Literatursprache erfordern.
Wie Solche Merkmale der kodifizierten AN wie ihre Kodifiziertheit, ihr Bearbeitetsein, ihre Zugänglichkeit, Stabilität und der artikulatorischen Tätigkeit beim literatursprachlichen Sprechen immanent eigen. Solche Merkmale aber wie bewußten Charakter und Verbindlichkeit erhält die kodifizierte AN sozusagen von außen im Ergebnis ihrer Billigung und Anerkennung durch che.
Die Aussprache, die der von den Trägern einer Literatursprache akzeptierten AN entspricht, wird als normative Aussprache (Literaturaussprache, Musteraussprache usw. bezeichnet. Die normativen genwart existieren mindestens in zwei

Formen. Eine davon ist ihre am meisten verbreitete Standardform, die fur alle in kommunikativen Situationen verbindlich ist, in welchen sie sich mit der Notwendigkeit konfrontiert sehen, die Literatursprache in ihrer mundlichen Form anzuwen den. Eben diese Form wird gemeint, wenn lichen Sinne des Wortes oder der Standardassprache (dem orthoepischen Standard) spicht. Die andere Form der normativen Aussprache ist ihre Höchstform, die eine adellose lautung der literatursprachi hen mundichen Rede sichert. Sprechen der
 iesem Grund als Biihnenaussprache bezeicht/4/. Die Buhnenaussprache stellt gleich am die berufsbedingte Form der Literaturaussprache dar.

Die beiden Formen differieren voneinnder vor allem durch die Unterschiede im her den normativen Lautbestand von Wörern einer Literatursprache realisieren, och können sie voneinander auch in \(\mathrm{Be}-\) sonderheiten der Artikulation einzelner aute abweichen. Dabei ist fur die Buinnenasifizierten Lautung von Wörtern und ren Formen charakteristisch, denn nur die maximal genaue Wiedergabe ihres normativen Lautbestandes ermoglicht es den Zu schauern, wie weit entfernt von der Buihn sie auch sitzen mp̈gen, Wöter und Wortgruppen muhelos zu identifizieren und sogesprochen wird. Die Literaturaussprache im eigentlichen Sinne des Wortes (Standardaussprache) läßt eine bestimmte Variabilitat des normativen Lautbestandes eizelner Wörter und Wortformen zu, die urch verschiedene Ursachen hervorgerufen kommunikativen Situation, regionale Besonderheiten der Artikulation einzelner Laute, Unterschiede im Entwicklungsgrad orthoepischer Fertigkeiten u. dgl.).

Die normative Aussprache der Literatursprachen der Gegenwart weist in ihrer was vor allem für Sprachen charakteristisch ist, die auf größeren Territorien gesprochen werden /5/. Die Standardaussprache der polynationalen Literatur sprachen (z.B. Englisch, Spanisch, Deutsch) existiert in einer Reihe von nanationale Varianten der normativen Aussprache einer Literatursprache unterscheiden sich voneinander dadurch, daß jeder bzw. jede von innen einige Besonerheiten enthalt, die durch die Einwirkung von Generation zu Generation mindlin uiberliefert werden.

Von der kodifizierten Standaraaus-
prache heben sich inre regionalen Abarten ab durch Abweichungen von den norma. tiven Regeln der Artikulation einzelner aute bzw. durch Verletzungen des normativen Lautbestandes einzelner Wörter. Reionale Abarten der Literaturaussprache den Grenzen eines Nationalstaates nebeninander besteher und verwendet werden, kann man als regionale Typen dieses rthoepischen Standards betrachten.

Nationale Varianten der Standardaussprache polynationaler Literaturspra ane die sich vonenancuion einzel qute und Abweichungen im normativen autbestand einzelner Wörter unterscheiden, stellen nationale Aussprachenormen polynationaler Literatursprachen dar.

Regionale Typen der Standardaussprache erfahren keine bewußte Festlegung in schen Wörterbüchern. Ihre Besonderheiten erden in diesen Nachschlagewerken ledigich erwähnt, wenn sie deren Autoren ichtig erscheinen. Ebenso werden di andlungen innerhaib regionaler Typen der tandardaussprache höchstens nur mitbelungen in der kodifizierten normativen Aussprache - welcher Herkunft sie auch sein mögen (Folgen von spontanen Lautveranderungen in bestimnten Positionen oder Veränderungen in der sozialen Zusammensetzung der Träger einer Literatursprache Konkurrenz von territorialen Aussprachdier Beobachtung von Fachleuten, ds es hre Aufgabe ist, jede kodifizierte All von Zeit zu Zeit mit der fortschreitenden Entwicklung der jeweiligen he in Einklang zu bringen.

Mit Rücksicht auf alle vorhergehenen Ausfuihrungen könnte folgende präzivorgeschlagen werden: unter einer kodifi zierten \(A \mathbb{N}\) ist eine in einschlägigen \(\mathrm{An}^{-}\) leitungen und Wörterbuichern reglementier und von den Trägern der jeweiligen Liter tursprache bewubt als verbindlich akzepnelle Gestaltungsweise der lautiichen Seite der mundlichen literatursprachlichen Rede zu verstehen. Diese Gestaltung weise der lautlichen Seite des literat sprachlichen Sprechens setzt vor allen, die Einhaltung sowohl bestimmter Regeler Folgen im Sprechstrom steuern, als auch des normativen Lautbestandes einzelner Wörter voraus. Sie ist wandlungsfähig und wird deshalb notwendigenfalls auf ihre Entsprechung der literatursprachlichen Sprechwirklichkeit iuberpruift und - wenn nötig - dieser Sprechwirklichkert angepaßt. Eine kodifizierte AN exich voneinander durch Sphären ihrer Anwendung
nd den Genauigkeitsgrad in der Einhalung normativer Vorschriften unterscheiden. Die oben besprochenen Begriffe, die die internationale Kodifikationspraxis iderspiegeln, erlauben es in erster io der kodifizierten AN ersichtlich ist, eiTheorie der kodifizierten AN zu entickeln. Mit Hilfe dieser Begriffe lassen ich nicht nur der synchrone Zustand und die Geschichte einzelsprachlicher kodifiierter Aussprachenormen be Normen junger iteratursprachen, deren Festlegung noch bevorsteht.

\section*{ANMERKUNGEN}

Vgl., z.B.: Norma i social'naja differenciacija jazyka. M., 1969; Semenjuk N. orma. - In: Obşcee jazykoznanie. Formy susčestrovanija, funkcii, istorija jazyka. . 1970, s.549-596; Skvorcov L.I. Teore tičeskie osnovy kultury reči. M., 1980; erius D. Untersuchungen zur Herausbildung einer nationalen Norm der deutschen 1 , 1967.
- Achmanova O.S. Slovar lingvisticesich terminov. M., 1969, s. 270.
. Šerba L.V. Jazzykovaja sistema i rečevaja dejatel'nost'. L., 1974, s. 141-146. tr.i. Avanesov untergend normierten und der freien d.h. weniger normierte Abart des neutralen Aussprachestils, oder zwischen Buihnenaussprache und orthoepischem Minimum, das fuir jeden Träger der russischen Literatursprache absolut notitig 1st. Slehe: Avaneso 6-e izdanie. M., 1984, s. 35-36. Eine andere Scheidung innerhalb der normativen Aussprache des Deutschen schlägt G. Meihold vor, der mit dem Begriff orthoepischer Formstufen arbitet und neben der vollen Formstufe (gedeutsche Dichtung zweirache unterscheidet, die er als gehobene Formstufe und rormstufe des Gesprächs bezeichnet. Jede von ihnen zerfällt in zwei weitere Stufen: hohe Formstufe und gemäßigte Formstufe eierseits und gehobene Formstufe des Geandererseits. Siehe: Meinhold \(G\). Deutsche tandardaussprache tautschwächungen und ormstufen. Jena, 1973 (Wissenschaftliche eitrage der Friedrich-Schiller-Universi tät Jena 1973), S. 71 ff.
. Vgl., z.B.: "Die Einheit der Literaturprache "auf dem ganzen Territorium" Normen in einzelnen Teilen dieses Territiriums nicht qus". Siehe: Skvorcov L.I. Teoretičeskie osnovy kultury reči. S. 119. Vgl. auch: Kleine Enzyklopädie. Deutsche Sprache. Leipzig, 1983. S. \(383{ }^{\text {f. }}\)

ZUR FRAGE VON STILISTISCHETN VARIANTEN IN DER DEUTSCHEN STANDARDAUSSPRACHE UND IHRER BERUCKSICHTIGUNG BEI DER NORMKODIFIZIERUNG

\section*{EVA-MARIA KRECH}

Wissenschaftsbereich Sprechwisaenachaft der Martin-Luther-Universitat Halle-Wittenberg Halle/Saale, 4020, DDR

\section*{Zusammenfassung}

Die Brauchbarkeit von Normkodifizierungen der deutschen Standardaussprache hangt zunehmend davon ab, inwieweit phonostilistische Differenzierungen bericksichtigt werden. Eine systematische Untersuchung stilistisch bedingterschiedliche Grede der Artikulationspräzision in ausgewählten Kommuikationserelgnissen zu ermitteln und auf e in Bedingungsgefilige zu beziehen. Es wird uber eine pilotstudie berichtet, die einen Beitrag zur Bearbeitung der
Problematik darstellt.

Unter Standardaussprache wird hier die allgemein realisierte, akzeptierte und der Hoch- oder Iiteratursprache verstanden. Der Begrifp bezieht sich damit nicht auf eine exklusive oder elitäre Sprechweise, schließt andererseits aber auch nicht territorial gepragte oder saloppe umgangsdardaussprache wird von geubten Sprechern in gelesenen, memorierten, halbirei und frei gesprochenen AuBerungen realisiert. Ihr Anwendungsgebiet reicht von der feier. lichen Rede im Grobraum bis zu Gesprächen zwischen wenigen Kommunikationspartnern und beachränkt sich nicht auf öffentliche und offizielle situationen.
Ke nach dem konkreten Verwendungs- bzw. aussprache jedoch in Gestalt unterschiedlicher Artikulationspräzisionen Varianten auf, die stilistische Funktionen erfullen. D.h., die der Ifteratur- oder Hochsprache eigene stilistische Differenziertheit besitzt ein Pendent in der Aussprache. Solkünfiger Aussprachenormierungen erhöt werden, durften diese phonostilistischen Difierenzierungen zu berlicksichtigen sein. Untersuchungen zur Ermittiung stilistisch. bedingter Aussprachevarianten schlie Ben notwendigerweise an jene Erhebungen zum Sprechgebrauch an, auf denen die kodifiAussprachen \(/ 1 /\) basierte und die z.B. den
r-Laut \(/ 2 /\), die Behauchung der Verschiuslaute /3/, den Schwa-Laut /4/, den Vokal einsatz / \(5 / \mathrm{u}\). a.m. betraien.
Diese Frhebungen hatten eine ganze Reihe satzphonetisch-intonatorisch und koartikulatorisch bedingte Varianten prinzipiell auch in der Standardaussprache gebrëuchlich sind. Es handelte sich dabei im wesentlichen um Lautschwachungen, d.h um Veränderungen, Reduktionen und Lautschwund im Konsonantismus und Vokalismus, akzentes, als Ausdruck der Relaxation für die schneller gesprochenen, unbetonten Positionen kennzeichnend sind. Die Untersuchungen des Sprechgebrauchs hatten jedoch auberdem aufgedeckt, daB diese Varianten - offensichtifich abhängig von einem umfassenderen Bedingungskomund unterschiedifch häufig auftreten, und \(z\) war phonetisch insbesondere vermittelt Uber Sprechspannung und Sprechgeschwindigkeit.
Eine systematische Ermittlung phonostilistischer Differenzierungen erfordert somit festzustellen, unter welchen Bedingungen beim Gebrauch der Standardausder Laut schwe unterschiedilisen Funktion besitzen, d.h. zur Charakterislerung konkreter Kommunikationsbereiche und zur Verdeutlichung der den Kommunikationsbereichen zugehörenden dominierenden Funktionen der sprachlichen Kommunikation beitragen.
Zunächst sei unterstellt, dab bei entsprechenden Untersuchungen die Lautung wird, die gesellschaftlich relevant und fur einen bestimmten Typ von Kommunikationsereignissen repräsentativ sind. Fin bisher keineswegs gelöstes Problell stellt jedoch die Frase dar, welche kopkreten Bedingungen und Merkmale der mahi munikation im Zusammenhang mit der winter Artikulationspräzisierungen wichtig sind.

In neueren Darstellungen, bei denen es um die Untersuchung und Zuordnung /6; 7/ sonie erstmals im Rahmen einer Normko firierung /8/ um Empfehlungen zum Gebrauch phonostilistischer Differenzierunen geht, vurden mit den Yerkmalen vorle achtexten sowie freies Sprechen in unerschiedlichen Gesprächsstufen und Re eformen bereits wesentliche Kriterion berdcksichtigt, die die Artikulationspräzision beeinflussen. Allerdings durie der Bezug auf diese Merkmale noch die Funktion der Auberung, die Struktur des Kommunikationsereignisses und die sozialen Beziehungen zwischen den Kommuniationspartnern mehr oder weniger ausgepart. Da sich somit noch nicht auf eine yatematisierung zurickgreifen läßt, die nögliche Bedingungen, unter denen Standardaussprache realisiert werden kann, tung der Merkmale beruicksichtigt, bleibt segenwärtig nur, die jeweils konkreten edingungen zu erfassen und zu beschreiben, unter denen die zu untersuchende ußerung produziert wurde. Das 2 iel ist, dabei zunehmend zu einer fur Normierungszwecke brauchbaren, d.h. auf einen praktikablen Umfang beschränkten, Beich phonostilistische Differenzierungen kiassifizieren lassen.
Im folgenden werden Merkmale aus dem (umiassenderen) Bedingungsgefuge sprechsprachlicher Kommunikation angefuhrt,
de für den Sprecher apeziell bei der
isionen
oignis wesentlich sein können.
Dabei werden z.T. vorliegende Typik-
schlussel u.ä. genutzt/i0; 11; 12/:
Art der Äußerungsproduktion: \(z\).B.
textreproduzierendes Sprechen:
Vortragen memorierter Äußerungen halbireies Sprechen
- Preies Sprechen:
in verschiedenen Formen der Rede und des Gesprächs
Planung der Sprechhandiung: z.B.
喅111stische Merkmale der Textsorte:z.B.
wissenschaftliche Texte Sachprosa
- nichtwissenschaftliche Sachprosa
riviale Alltagstexte
kunstlerische Texte: z.B.
gebunden - ungebunden,
grobes Pathos - geringeres Pathos
dominierende Funktion der Âußerung: z.B.
- Praxisfunktion
nvermittelnde Funktion: informie-
- Verhaltenssteuernde u. meinungsbildende Punktion (primär rational- primér emotional Wirkend): aktivieren
- phatische Funktion: Kontakt herstellen oder aufrecht erhalten
- expressive Punktion Texte
Kommunikationsgegenstand/Thematik: z.B.
- tragisch - komisch
sprachliche Gestaltung des Textes: z.B. - abstrakt - konkret

Modalitiat der Themenbehandlung: Grad der offizialität (Geprägtheit durch - ofnen gesellachaftlichen Aurtrag)

Grad der Offentlichkelt
Inszeniertheit des Komunikationsereig nisses bzW. der situativen Bedingungen: inszeniert - nicht inszeniert
Strukturmerkmale des Kommunikationsereig-
- einseitig - wechselseitig (Dialog /

Griseltig - wechselseitis (Dengespräch)
- direkt - indirekt
- interpersonal - medienvermittelt
verstärkt
räumiliche Bedingungen: z.B.
- Saal - mittelgroBer Raum - Kleiner Raum
sozialer bzw. beruflicher Status der
- Beruiksprecher - nicht Berufssprecher

Hierarchieverhältnis zwischen den Part-
- Pern:
- nicht gleichberechtigt (Privilegierung / Unterordnung des Sprechers)
Bekanntheits- bzw. Vertrautheitsgrad: - bekannt - nicht bekannt - nicht ver Größe und Art des Hörerkreises: z.B.
- Massempubir relativ großer Hörerkreis - Inhomogener relativ großer H - strukturierte solner Hörer

Art der vom Sprecher realisierten dominierenden Ansprechhaltung, der spezifiven Grundgestus: Z.B. - persongerichtet - sachgerichtet ungerichtet
- ansprechen - nennen - sich aussprechen

Intensität des Hörerkontaktes:
- eng - nicht eng (locker)
Ausprägungsgrad der vom Sprecher
realisierten Fmotionen: realisierten kmotionen:
Grad der muskulären Spannung entsprechend dem konkreten Ausdrucksgehalt (z.B. Zorn Bitte, Reaignation):

路 In einer Pilotstudie wurde die Aussprache von 7 Berufssprechern in \(z\) wei verachiedenen Klassen von Kommunikationsereignissen auditiv untersucht 113/: beim Prosatexten erzählender Art. Bei diesen vom Funk gesendeten Beiträgen interessierte der Grad der Artikulationsprïzision der Vokale e und i in den Artikeln zu und die. Grundsatzich war nicht zu erwarten, dab die volle Form, d.h. die Ausprache mit geschlossenem langen Vokal häurig zu beobachten ist, da auf die ArSatzakzent fallt. Sie finden wort-oder Regel also stets in den spannungsloseren und auch schneller gesprochenen Pasaegen der Âußerung. AuBerdem kommt hinzu, daß sie in ihrer position vor einem potentiell akzentuierten Wort einem zusätzlichen Spannungsverlust unterliegen. Bei berprufung der Frage, ob bestimmte Auspragungsgrade der Schwächung außerdem für harakteristisch gind wride Bereiche den zwischen voller form [de]
de: \({ }^{e}\) ] und [di:], Kiurzung des Vokals: [de \({ }^{\mathrm{E}}\) ], \([\mathrm{di}]\) ung und zusätzlicher Verändekals: \([d \varepsilon(e)]\), [dI]. Weiterführende Reduktionen der Vokale kamen in dem Material nicht vor
Folgende Hauptergebnisse lieBen sich er-
(s. Tabelle)

Es zeigt sich somit vor allem:
In samtlichen untersuchten Ãußerungen herrscht die erste Reduktionsstufe (Kürie Taut vokals) vor.
chern weniger häufig und ist den N-Spre ausgeprägt als bei den P-Sprechern ark kann vermutlich als Merkmal fur stilistische Differenzierungen im Bereich der
tandardaussprache gelten. Zusätzliche tersuchungen der Sprechgeschwindigkeit er gaben:
pluktuation, ditliche Geschwindigkeitsgeschwindigkeit von Sprecheinheit Sprechprecheinheit beträgt bei den N- \(2 u\) 33 Silb./Min., bei den P-Sprechern 55 ern ilb./Min. Damit nehmen die Vokal schwis hungen eindeutig, wenn auch nicht proportional, mit der atärkeren Bewegtheit

Aussprache der Vokale e und in in den
Artikeln 'der' und 'die' bein
und Prosatexten (P)
\begin{tabular}{|l|l|l|l|l|}
\hline & \multicolumn{2}{|c|}{ der } & \multicolumn{2}{c|}{ die } \\
\hline \begin{tabular}{l} 
Re_ Spre- \\
ali- cher- \\
sa- grup- \\
tionsart
\end{tabular} & N & P & N & P \\
\hline \begin{tabular}{l} 
volle Rea- \\
lisation
\end{tabular} & \(41 \%\) & \(25 \%\) & \(38 \%\) & \(24 \%\) \\
\hline \begin{tabular}{l} 
Vokal- \\
kurzung
\end{tabular} & \(56 \%\) & \(63 \%\) & \(62 \%\) & \(76 \%\) \\
\hline \begin{tabular}{l} 
Vokalöff- \\
nung (neben \\
Kurzung)
\end{tabular} & \(3 \%\) & \(12 \%\) & - & - \\
\hline
\end{tabular}
der Sprechwelse bei den P-Sprechern zu. Bei einem Vergleich der kommunikativen wird deutilich: Unterschiedechergruppen allem hinsichtich der stilistischen Mermale der Textsorten, der dominierenden Funktion der Äußerungen, der emotionalen Anteilnahme der Sprecher, des Hö-N-Sprecher Absicht sachbetont \(u\) informioren. Die Ansprechhaltung ist indirekt, der Hörer kontakt locker. Fine emotionale Komponen te ist nicht spurbar. Die P-Sprecher ver mitteln Texte erzählender Art, die das Grenzgebiet zur Belletristik wio auch da zur Alltagsrede tangieren. Die Texte die nen der Unterhaltung und haben eine phaeine enge Vertrauthe sprecher siourn. Meist dominiert ein direkter Angprechmodus. Obwohl auch diese Sprecher lesen, entsteht der Eindruck einer lockeren Gesprächshaltung mit mittelstarker emotionaler Anteilnahme der Sprecher. Damit be stätigt sich wiederholt /14/, daB die bisher kaum beruicksichtigten \(/ 6 ; 7\); \(8 /\) Punkt halen und sozialen Agpekte we n fur Grade der Lautschwächung darstellen

\section*{Iteratur}
/1/ Wörterbuch der deutschen Aussprache, Herausgeberkollektiv unter Leitun
12/ Uibrich, H.: T. A, Uental phonetisch auditive R-Untersuchungen im Deutschen, Berlin 1972
3/ Lotzmann, G.: Zur Aspiration der Ex/4/ plosivae im Deutschen, Göppingen 19 4/ Meinhold, G: Die Realisation der deutschen ), ( -2 m ), (-al) inche. In

ZPSK 15 (1962), H. 1/2
5/ Krech, \(\mathrm{E} .-\mathrm{M} .:\) Sprechwissenschaft ich-phonetische Untersuchungen zum Gebrauch des Glottisschlageinsatzes in der allgemeinen deutschen Hochlautung, Basel/New York 1967
derdaus
/ Iotzmann, G
Standardaussprache durch Sprecher zieher. In: sprechen, Zeitschr. \(f\). Sprechwiss., Sprechpädagogik, Sprechtherapie, Sprechiounst, ReGroBes Wört
Grobes wrterbuch der deutschen Aussprache, Herausgeberkollektiv, 1. A.
Krech \(\mathrm{F}_{\mathrm{o}}-\mathrm{M}\)
Grundiagen bei u konzeptionellen Kodifizierung der deutschen Standardaussprache. In: Bericht uiber die 14. Sprechwiss. Fachtagung, Wiss. Beiträge d. Martin-LutherUniv. Halle-Wittenberg 1987
/10/ Steger, H., Deutrich, H., Schank, u. Schütz, F.: Redekonstellation Text sorte im Rahmen eines Sprachver, haltensmodells. In: Gesprochene Sprache, Jahrbuch 1972, Düsseldorf 1974
/11/ Schank, G. u. Schoenthal, G.: Ge(12) Sprochene Sprache, Tubingen 1976 Sriefs grifis Funktionalstil. In: 2PSK 34
Alachner. \({ }^{3}\)
kale in den Artikeln ndern und ndien in Abhëngigkeit von der Geschwindigkeitsfluktuation und \(z\) wei verschiedenen Formstufen. Dipl.-Arb. Halle (unveröff.)
14/ Krech, E. Ho: Probleme der Kodifi zierung deutscher StandardausspraLinguistik 1987 ( Wängler)

URBAN SPEECH AS A PRODUCT OF STANDARD, COLJOQUIAL AND DIALBCTAL SPEECH

\section*{L.A.Verbitskaya}

Dept.of General Linguistics, Leningrad State University
Leningrad, USSR, 199034

This report deals with the problem of inter- and intralanguage interference. Two types of experimental data have been ciation in various areas of Rusianusecondily, Russian speech of native ana, ers of other languages in a number of Soviet Republics.
It was found that there were similar de\(\forall\) iations from the norm in the speech of non-native speakers of Russion, i.e.abglides in vowels ation and lack of ispecific peculiarities.
The speech of native speakers of Russi an was influenced by the dialectsl, colloquial and popular features.

In our time the Russian language has beome not only a tool for multinational of the Soviet Union, but mather Rablics age used intensively in all spheres of republics. second language in a number of epublics
have lead to the menetration communication literary language into every of Russian crany of the Russian Federation, where exerts a certain influence on the dialectal speech of many a city. And the inalects on the national languages and dideviations from the norm in the produces realization of phonologically phonetic properties of the phonetic system. The nfluence of the Russian li terary. The ge on dialects and national languages should be subjected to special investiga non. Russian language influence on the ance of "borrowed" phonemes, elongside Russian lexical loanwords. Dialects are gradually destroyed by the effects of lierary pronunciation, the sound systems
are altered, although certain dialecta patterna show various degrees of stability/i, \(2 /\).
We have observed Russian speech as it is spoken by the metropoiitan population or lics, as it is in the cities that Rep clash and interaction of normative and dialectal speech and colloquial speech is the sharpest.
The study of city speech may be approached in various ways. First, we may record standard Kussian speech in a specific picture of the language interfarence condly, we may record the phonetic syatem of the Russian language in various functional conditions and define the more stable and the more mutable elements, i.e.find the weak points, elements that strong points that do not change The oim of the present investigation, ducted in the Phonetics Department of Leningrad University, is to 8 tudy the functioning of the phonetic system of the view. On the basis atigation of national-Russian bilingualism and intra-lingual interference, we hope to give a well-rounded description of the phonetic properties of the Russis As anguage.
As an aid to understanding the nature of have considered cases demonstrating the variable degrees and quality of opposition to Rusbian phonetic properties. Features under consideration are the effect on Standard Russian of Russian dial ects, Uf closely-related languages (such nate but not very close languages ( \({ }^{\text {as }}\) Latvian and Lithuanion) and of unrelated ones(Estonian, Azerbaijanian and Georgian).
For comprehensive inves.tigation of dial ectal interference, the dialecte from North Russian cities (Archangel, Murmandid Vologda and Perm), Central Russian cities (Gorky, Pakov, Yaroslav1, Kuiby bever, ensk, Kursk, Myazanssian cities Smolnodar), Russian cities of the Urala, (Sve-
ralovak, Chelyabingk and Nizhny Tagil), and Siberian cities (Tomsk, Omsk, Novosirexts and krasnoyarsk)
prequency compiled with regard to the frequency of vowels, consonants and their coxts were tin Standard Russian. The the cities under study of by groups from speakers representing good and por native in cormand of Standard Russian. The material was listened to by the experimentor, by a group of native subjects and then analysed experimentally. All deviation from the standard were fixed in the listand subjected to statisticel systematized which revealed the most striking perceptual features and statistically significsant segmental units (stressed and unstresbions) and consonants and their combinaIt is not always easy to diff features. between segmentel ay aurarereniate tures; for instance, a lack of unstressed reduction, which must be considered sesmental, leads to rhythmical alteration in construction affects the suprasegmental The description the utterance.
ies of dialects ond the phonetic properttheir comparison with the phonetics of in tandard Russian was followed by expert ental analyais. Both qualitative and quantitative differences were taken into account in the comparison of phoneme inven ories.
age main difficulty for the second-languis the necessity of mastering an articul ation that differs from the articulation of his native tongue and of accepting certain distributional rules.
languages, and even of dialeakers of other ter their pronunciation habits in order o produce sounds having analogies in nir mother tongue, and, moreover, they ust master new distinctive features, an tional rules of oppositions, and distrib-
 exacting than that of the vowels.
hen, too, both vowels and consonants are ind in syllables in speech production ronus perception, so that defects of pronunciation of one group of sounds inringe on the other
he norm should be distinguished in
composim, namely., orthoepy, the phoneme manifestation of phonetic correlates of a phoneme in a word. These aspects are rel-
atively tively independent. Orthophonetic distor ef of the porsible wi thout the disturbaneme structorthoepic norm, while the phon in spite of normative use of phonemes. republics of Russian speech in the union
by the charactaristics of the Russien phonological system, by the specific co rrelation of sounds and letters and for this reason must be uniform (for example sion of 1-gides of vowals the omised in the speech of all people obser no matter what their native languare was). On the other hand, it is influenced by the native language.
stems is condition the two phonetic ay stems is conditioned to a certain extent may be true of the the renic kingip This well as the purely typological resemblance.
Moreover, the genetic affinity is not a decisive factor. Kuch more important are em. Therefors, the of the phonetic syat languages closely. akin. (for instance Russian and Ukrainian) and languase that are genetically not related (Russian and Azerbai janian) can produce sound distortions. seemingly of the seme type
(i.e. sort sibilants, \(/ 1 /\) sound instead of \(/\left\langle/\left.\right|_{\text {, soft }}\right.\) the aibilants, \(1 /\) goynd instead les where in Russian there should be a soft consonant + vowel \(/ \mathrm{t}_{\mathrm{ja}} /\), \(/ \mathrm{mja} /\) and \({ }^{\text {a }}\) so forth. On the other hand, in some cases mistakes of this kind are completely absent when unrelated languages come in contact
languages, the very closeness cognate grammatical structure and lexical similarity encourages the use of lexemes and morphemes of the native tongue involving sound subs aused by phone tic difficulties.
nce of unrelated languages analysis of the phone tic system will be sufficient including not only the set of phonemes entation in syllables and larger unita). ntation in ayllables and larger units), all possible substitutions must be acounted for.
The stuay of Russian speech as a second language has revealed various numbers of deviations from the norm, minimal for Byelorussians, and maximal for sstoninot at all alike. Some are found onty in the speech of a certain language i the substitutions of sibilants by shibilants in the Russian apeech of sstonlanguages, but their realization and languages, but their realization and phonological nature do not coincide. Russion phonetic system are undoubtedly difficult for speakers of other languases, who replace b/ with i/ becaube
they do not have the they do not have the /bl sound (such as gian). Or in cases where the same oppo-
aition exista but the vowels are of diferent quaities(i.e.0krainian). The no the Russian speech of Estonians, Maldavians and Azerbaijanians. The deviation fro the standard is connected, first, with he specific articulation of the native \(/ 61 /-1 i k e\) sound and, second, wi th the incorrect articulation of the syllable ition for which inforia pelling rules.
he speakers of all nationalities mispro nounced the Russian \(i /\), though more raely than \(/ 61 /\). The vowel become more retracted if preceded by a partially palatathus, both these traits were linked with ncorrect syllable production and depend d on the rules. of phoneme realization in
The commonest violation of orthophonic standards were the retention of unstressed ally palatalized or non-palatalized consonants (Moldavians, Azerbaijanians, Georgians, Armenians, Ukrainians, Latvians, with anians, Byelorussians and Estonians), the ronunciation of \(/ 0 /\) instead of \(/ a /\) and 'a/ preceded by palatalized consonants Georgians, Ukrainians, etc.).
These mistakes are obviously caused by the different vowel distribution in the native language of the speakers, nomely in the ab sence of vowel gradation of stressed and nstressed phonemes characteristic of Rus ian. orthophonic nature, inel articulation are of of \(/ \mathrm{e} / \mathrm{by} / \varepsilon /\), excessive vowel diphthongization and insufficient qualitative and quantitative reduction of /a/,etc.
The main difference in phonological relalanguages in the pronunciation national consonants is the presence versus absence of consonant palatalization. In a number of languages this opposition does not occur at all(Estonian, Georgian, Armenian, Azerbaijanian). In some other national in the same way \(i\) pairs are not contrasted position in Byelorussion) or palatalized consonants are produced differently than in Russian(i.e. \(/ t^{\prime}\), d \(1 /\) in Li thuanian) This accounts for a number of or thoepic mistakes, And here, too, there are significant differences, depending on the na Vore of consonants.
tion is observed both in Russian ond opposinational languages investigated (except in Estonian), but in Azerbaijanian and Georgian consonants in some positions are only partially voiced. In addition, the disents in several languages studied does
coincide with Russian. This produces both phoneme gtakes.
nians and native speakers (except In thuonants in the word-final position. The largest number of deviations from Standard Kussian has been registered in the Russian speech of sitonians, who do zed versus non-palatalized consonants, voiced vs.voiceless and sibilant vs.shiilant. In addition, they make no contra\(t\) between fricatives and affricates. The number of accentual traits in Russian peech of other native speakers can be ans -20, Azerbaijanians--17, Moldavians -I'7, Latvians and Ukrainians --I5, Lithanians. --14, Byelorussians--10.
Our data for this investigation have shon that phoneme infringement in word production is caused by incorrect phoneme istribution. Even native Russian speaktandard Russian at times.
he majority of mistakes appear to be the result of orthophonic deviations from he standard, i.e.insufficient palataliation, weak velarization, affricates with incorrect durational correlation of occive diphthongization of vowels, more pen or more close vowels as compared to the standard, etc.
The speech of cognate language representtives(Byelorussians or Ukrainians) also haracteristic of colloquial speech or of opular language which indicates an inufficient knowledge of standard pronunciation.
In the speech of urban residents of large cities of the Russian Federation along with standard usage in the pronunciation ed both orthphonic and orthoepic deviations. A certain set of relevant features of segmental and suprasegmental levels, s pecific city pronunciation variant is to a considerable extent determined by the phonetic systems of the surrounding diapeculiarities were the most striking, hile in Southern Russian dialects, con onantal peculiarities stood out. The viddle Kussian pronunciation variant in nly some intona wind ferent.
The absence of a common pronunciation norm can be explained, on the one hand, by the flow of rural population bringing dialectal speech to the cities, and, on the other hand, by the comparatively recent spread of the spoken mass media, while the written literary language has a long in
many suropean and other languages.
Oldar dialects have a stronger influence on apeech than newer dialecta. However, of city dwellers are net in the speech found.along with normative usage of vowels and consonants, and a kind of "phoneperception of speech as lisb the general es of grammar and word usage are if rul ed.
Deviations of an orthophonic nature that 0 not affect the phoneme composition of rthoepic peculi widespread and stable then pronunciation of ar of a plosive \(/ \mathrm{g} /\) ).
In addition to dialectal features having definite local occurrence, the apeech an overwhelming majority of speakers mere, for instance, delab features. These unstressed /ustance, delopo dabialization of an dard reduction of \(/ a /\), substitution of af fricates /c/ and /c/ by fricatives, /s/and sonse/, the reduction of final / \(t^{1} /\) in a slábas ' \(\%\), etc. These such as "cáa סocmb" In the speech of Leningraders tures occur tes, especially in the case of young
people.
ubstitutions of fricatives for affric es, as a most characteristic feature of only quial speech has been described not but also specialists in Russian philology, ges, such as Slavic and or onder langu oweis and consonic and Germanic erent ways in the interaction of the neive language standard, dialect and the popular language. Here the difference bet nterference \(f\) the former is incorr marked. Typical ulation (a more retracted and open artiafter which leads to distorted vowels n st consonants in CV syllables, where e palataliz language the consonant should interference, while for intralingual tion do not depend on in rowel pronunc interference result is affected not tic by the differences within the phones instems involved (phoneme differenut by number, their distribution,etc.), n the in the interaction takes place. ve language interence of Russian and a natorrect reading of the theounter an inor in sound-to-letter transition. The aracter of sound interference shows an a approach to mastering Standard Russi-
She degree
nd the native of kinship between Russian tself. The number of accentual traits in be Russian speech of speakers of other
languages gives interesting data for further typological conclusions. In this respect languages such as Armenian and Geogian form one group, Azerbaijanian and Mrainian a second group, and Latvian and er of accent traits ocupians in a num ate position between ukrain an intermedlosussians.

\section*{REFERENCES}

\section*{/I/ L.A.Verbitskaya, "Russian Orthoepy",}
/2/ L.V.Bondarko, L.A.Verbitakaya et al. Sound System interference" (in Russian), Leningrad, 1987.

Irina G. Torsuyeva-Leontyeva

\section*{Translator's Department} Maurice Thorez Moscow State Institute of Foreign Languages Moscow, USSR 119034

\section*{ABSTRACT}

The paper discusses the status of the phonostylistics, its reference to stylistics and other linguistic sciences, the purpose of phonostylistic studies; it also discusses the problem of phonostylistic units as secondary from the point of view of their reference to language units.

La phonostylistique est une science en formation, son statut est encore indéterminé, ses limites sont assez vagues. Ainsi, parait-il nécessaire de préciser ses rapports avec la stylistique, sa place dans la phonétique; de mettre au clair ses catégories, ses fonctions, son objet d'étude, ses unités et ses méthodes de recherches.

D'après I.Fónagy la phonostylistique a pour origine les travaux de J.Laziczius, qui distinguait les variantes combinatoires, les variantes libres non expressives, les variantes libres expressives. La phonostylistique procede d'une part de l'étude des fonctions de la langue (Bihler, Troubetzkoy, Martinet, Jakobson, Riffaterre, Léon), d'autre part des
données empiriques (souvent subjectives) et des descriptions impressionnistes. Quant aux travaux stylistiques, les descriptions des formes sonores ne sont pas justifiées par l'analyse phonétique expérimentale.

Il existe actuellement plusieurs définitions de la phonostylistique vue sous I'angle de ses tâches \([I, 2,3,4]\) qu'on peut regrouper de la manière suivantes: I) la phonostylistique étudie la valeur symbolique des unités minimales de la langue; 2) elle révèle un système d'unités phonostylistiques aussi rigoureux que celui de phonèmes; 3) elle fait ressortir les valeurs potentielles de la matière sonore du message; 4) elle décrit les traits phonétiques dont l'emploi crée un effet stylistique; 5) elle étudie les variantes de discours (classes sor ciales, sexes, groupes d'âges et professionnels, situations de discours, etc;) 6) elle cherche à établir les règles d'encodage supplémentaire du message.

La liste de ces tâches est assez vaste, aussi pourrait-on la restreindre, compte tenu de I'existence de la dialectologie, de la sociolinguistique, de la psycholinguistique, de la phonosémantique,
dont l'objet d'étude s'avère plus ou moins clair . Ainsi, la tâche N I se rapporteraity à la phonosémentique (étude du symbolisme phonétique), tandis que la tâche \(N 5\) relèverait de la dialectologie, de la psycholinguistique et de la sociolinguistique.

Les quatre tâches restantes doivent être analysées en partant de la définition de l'objet de la phonostylistique. Cette dernière étudie les caractéristiques acoustiques du texte (message) d'où sa parenté avec la phonétique. A notre avis l'objet de l'étude purement phonostylistique peut être conçu comme le choix conscient de variantes libres des unités sonores du message. La description de ces variantes relève de la dialectologie, de la sociolinguistique, de la psycholinguistique, etc., tandis que leur étude stylistique est le propre de la phonostylistique.

Les quatre tâches qui restent se divisent ainsi en deux groupes: I) les tâches phonostylistiques; 2) les tâches à dominante stylistique (stylistico-phonétique).

Le premier groupe vise à dégager n système d'unités (phonostylèmes, d'après P.Léon) différent de celui du code phonologique (éléments segmentaux et suprasegmentaux). Par exemple, les modèles d'expression des états émotionnels; les caractéristiques acoustiques de différents types du discours (dialogue spontané, conférence, discours politique, etc.); les paramètres des registres stylistiques (niveau moyen, familier, re-

\section*{cherché) (voir la tâche N. 2).}

Les tâches du deuxième groupe sont de préférence stylistique. C'est-à-dire elle visent non pas l'établissement des modèles, mais le dépouillement des contrastes phonétiques qui provoquent ''effet stylistique.

On sait que les définitions du style sont variées et contradictoires. Le style est conçu comme un choix ou bien comme un écart de la norme. Le choix se base sur la compétence linguistique et exige la connaissance des modèles, des paramètres de la norme considérée comme un étalon, un standard. Mais il est clair qu'il existe plusieurs types du discours chacun ayant sa propre norme. L'effet stylistique est également possible dans les limites de ces normes, d'où l'extrême importance de la notion du contraste.

L'étude de la distribution des; contrastes phonétiques dans le message permet de révéler un encodage supplémentaire, les sèmes-clés et les sèmes potentielles.

Il s'en suit que la créativité stylistique n'est qu'une activité linguistique secondaire, qui organise le message afin d'exercer une influence sur le destinataire. On présuppose que ce dernier connaftrait les variantes segmentales et suprasegmentales, propres aux sociolectes, jargons professionnels, patois, registres de la langue et à différents types du discours.

Dans ce cas les modèles de description (voir la tâche \(N 2\) du premier groupe) concernent les variantes et non
pas les unités. Il en découle une définition des unités phonostylistiques différente: celles-ci représentent des combinaisons de variantes libres des unités phonologiques (segmentales et suprasegmentales). Elles s'avèrent donc être des unités secondaires, le résulta甘 de l'activité linguistique secondaire.
J.Laziczius distinguait parmi les variantes libres les variantes expressives et non expressives. Cette conception s'accordait avec la théorie stylistique des années 30 (Ch.Bally en particulier) qui étudiait les faits d'expression du language organisés du point de vue de leur contenu affectif. Si l'on reconnait le caractère secondaire des faits phonostylistiques, il est inutile de distinguer les variantes expressives et non expressives, car une variante non expressive peut acqérir de la valeur stylistique dans un contexte. Le but de l'analyse phonostylistique est donc de révéler les valeurs potentielles des variantes libres. Dens ce cas la notion du contexte devient particulièrement importante.

L'intérêt pour la phonostylistique est justifié par la nécessité d'élaborer et d'approfondir le problème du contenu de la forme, ce qui est important notamment pour la traduction, la composition des textes publicitaires, des discours politiques, etc.

Références
I. P.R. Léon. Essais de phonostylistique. Montréal, Paris, Bruxelles. Didier, I97I.
2. I.F6nagy. Le statut de la phonostyIistique. Phonética, 34, I-I8, 1977.
3. F.Carton. Introduction à la phonétique du Prançais. Paris. Bordas, I974.
4. G.L.Van den Berghe. La phonostylistique du français. The Hague, Paris. Mouton, I976.

\title{
ATTITUDINAL SEMANTICS OF PROSODY AND ITS METALANGUAGE
}

\author{
YURI DUBOVSKY, GALINA YERMOLENKO
}

English Phonetics Dept.
Pyatigorsk State Institute of Foreign Languages
Pyatigorsk, USSR 357533

\section*{ABSTRACT}

Alongside the theoretical discussion of terminology and metataxonomy problems dealing with speech prosody an approach towards setting up a correlation between a semantic label, attitude and its prosody is presented.

Prosodic features differentiating the labels that denote "friendly attitude" in English are described on the basis of the lexico-semantic and semantico-prosodic experimental data. Different degrees of descriptive power of verbal metalanguage units under study are revealed.

\section*{INTRODUCTION}

Semantic description of speech prosody involves the problem of an adequate linguistic terminology and metalanguage. As it is put in /I/, a great deal of difficulties ascribed to intonation are, in fact, difficulties of inadequate metalinguiatic description.
A metalanguage system is regarded as possessing a hierarchic field structure the elements of which are in hyponimic relations. It comprises a core, or a relatively closed class of generic notions (terminology) and a periphery, or a relatively open class of specific notions (metataxonomy, nomenclature).
As far as terminology is concerned, it is submitted to a formal claim made to any terminological language: terms should be neutral and monosemantic at least within the limits of a certain metalinguistic system.
Metataxonomy with labels as descriptive units has been devoted very poor attention to in contrast to terminology. There is a considerable disagreement between linguists es to what labels should be: nonverbal or verbal, artificial signs or linguistic ones, etc. The trouble is that lexical labels are not pure terms, they are borrowed from the popular speech. For this reason the majority of them are rather polysemantic than unequivocal, as terms should be. Their heavy dependence upon specific con-
texts creates a good deal of ambiguity and
misunderstanding. Polysemy and synonymy do
not seem to be the only variables that affect the choice of lexical labels,metaphorical use and evaluative colouring being the rest.
However, there is no need to reject common words as labels since any natural language possesses the metalinguistic function,i.e. it is capable of describing itself rather sufficiently. Besides, specific nonverbal metalanguages do not hold good for broad scientific descriptions.
Metalinguistic units, either verbal or non verbal, reflect two planes of description: the plane of expression and that of content, the deacriptive categories being partiy terms, partly labels.
The plane of expression in speech prosody can be rendered with both verbal and nonverbal descriptive units. The latter are symbolic-graphic means - prosodic transcriptions and representations. A verbal metalanguage is made up with the terminology of basic prosodic notions, i.e. units, components, structures, etc.and the metataxonomy of their specific types.
The plane of content in speech prosody is described with verbal terms and labels.
Terms are used to refer to the communicative types of utterances, registers of speech, phonostyles etc., as related to the communicative and stylistic meanings of speech prosody. Semantic labels are, for the most part, of attitudinal character. They are made use of to describe the pragmatic types of utterances, of emotional and attitudinal connotations referring to the pragmatic and attitudinal aspects of speech prosody.
Any metataxonomy could be likewise characterized by a hierarchic organisation. In the attitudinal metataxonomy, for example, semantic labels fall into clusters headed by labels of a more general meaning. Related to terms as notions of higher generality labels are regarded to be specific names referring to prosodically and parainguiatically expressed emotions and attitudes.
This class of label proves to be the least systematized though the attitudinal function of intonation has been the subject of intensive study over a number of years. It may account for the fact that attitudinal labels denote psychological states
affects, feelings). Therefore,the choice label was habitually associated with a lassification of emotions which seems more to be the province of psychology and physiology rather than linguistics. Any uccess in developing the attitudinal me ataxonomy is hardly possible until deinite suprasegmental features conveying pinned down with a specific label. Thus, the elaboration of the metataxonomy f attitudinal prosody is highly dependen pon a set of variables: the notational ystem (ordinary words), meaning-relations etween words (polysemy, synonymy), the ssential hat complex overlapping peycho physiological processes, on the other uprasegmental phenomena).
rom the afore said one might see that emantic labels perform two functions: ) convey certain attitudinal meanings; ible for their communication.Accordingly the study of labels could be carried out n two large spheres both involving semanic equivalence of different types. the firat sphere embraces all kinds of seantic correlations between: a) attitudes and emotions proper as between notions With their semantic volumes standing in ion, complementation and contiguity; b) attitudes and labels as between notions and lexical units; c) labels themselves as etween lexical meanings (synonymy, antonymy, hyponymy).
sychologically attitudinal labels render eneral emotional colour, specific attiy. These components could interact and be reflected in labels' meanings in different ways. As notions attitudes differ in seveal qualitative and quantitative features haracterizing their psychological and physiological nature: intensity, direction and cause of origin, etc.
Intensity seems to be the most prominent eature of any affect. The information about the degrees of intensity is reflected in labels' meanings. It, thus, makes up a semantic component and could refer to it (a single lexico-semantic variant), or ven to another semantic component. Inten sity could also be associated with referential properties (denotational intenaity), ith emotional evaluation (connotative intensity) or with both simultaneously. Since the denotational meaning of the attitudiaffects and feelings one the notions of the denotational (emotional) intensity re lected in their semantic structure. Intensity as a semantic feature could be re ealed through the analysis of labela possible due to the markers of intensity
available in the entries. The analysis is aimed to reveal intensity-differences bet ween labels in order to relate the data obtained to the results of prosodic analysis.
Phe second set of questions is connected maintaining a three-member correla egmantal means. In the frame of this cor relation a semantic label refers to a oundle of distinctive prosodic features and paralinguistic phenomena carrying ome kind of attitudinal meaning. This approach to the description of the attible as compared with the previously used technique when separate intonation patterns and pitch movements signalling emotions were explained by a great deal of mbiguous lexical means.
The hypothesis that definite suprasegment ls are fixed to specific labels has aleady been proposed and tested. However ainly with the auditory impreancens and perceptive correlates of the attitudinal labels. The acoustic aspect of this rela tionship still remains undiscussed.
METHOD
In the present study our concern was a group of semantic labels referring to the prosodically manifested friendly attitude The grouping was done on the basis of thesauruses and explanatory dictionaries. After some hesitation the total number of labels was confined to 8. The group is the same time it the synonymic series. The core of it is made up by synonymous adverbs amiably, amicaby , in a friendly way with the attitudina meaning in question as a basic one. The periphery is constituted by quasisynonymous adverbs intimately, cordially, heartiIy, \(\frac{\text { warmly, }}{\text { Iy }}\) attitude \(\frac{\text { warm-heartedly }}{\text { being secondary }}\) or atten thant. The label in a friendiy way was taken a dominant of the series.
The textual material for investigation as taken from fiction ( 125 samples). The samples were microsituations (of 3-5 sentences) intended to express various nuan ces of the friendly attitude. In these ed as response remarks. Test sentences 166 in total) were selected to be as olourless as possible with respect to exics and grammatic structure. Tape-reordings of the microsituations were obained from 3 male and 3 female native speakers (professional teachers) who sil malated 8 variants of the friendy a he auditory analysis was arranged in 3 eries. In the first series 5 trained isteners were to assess whether the tap recordings sounded natural and had any
connection with the friendly attitude.The
atisfactory examples werl 140 in total) to be later subjected to the instrumental analysis
In the 2 -nd series \(10^{\circ}\) linguistically naive native speakers were presented the tapereco 18010 in The hearers identified the attitudinal va riants with most appropriate and accurate descriptive terms while the tape-recordings were played. To do the task the in formants were provided with lists of 17 labels ( 8 test labels and 9 additional to anj other descriptive cotedries resor wished. Listening was repeated as the informants wished.
Some time later the hearers were played the whole microsituation recorded to do the same task. This was thought reasonable to indicate the effects of contexts on attitude recognition
teachers of English) informants (Russian phonetics made prosodic transcriptions of the recorded test phrases. They made use of the set up type of symbolic-graphic marking to describe prosodic features. The instrumental analysis dealt with the which were interpreted as it is suggested in /2/.
RESULTS
The detailed lexico-semantic analysis has the discussed. The one exception to this servation occurs in the label warm-hearted 1y. There is only one explanatory dictionary \(/ 3 \%\) where the explanatory dicWas found to be directly mentioned in the entry of this label. In the rest of the synonyme Observations of the and heartily
of the attitudinal intenaty incit markers ifferences between the labels in this pect. Attitudinal intensity was the greatIn the core of the group and the least about the periphery of it. One can talk dinal intenaity displayed nature of the attitugeneral (in a friendly way) the labels amiably, amicably), derivative (intimat heartily adional or attendant (cordially, The analy, warmly, warm-heartediy) tinguigh yis made it possible to disinguish 3 degrees of friendly attitude consideration: exhibited by the labels under \(\frac{\text { amiably, amicably), moderate (intimately }}{\text { and }}\) and low (cordially, meartily, warmly, Agrm-heartedly).
attitude is concerned signify of friendily attitude is concerned significantiriendiy
ferent results were obtained.

Heartily and warmly available in the ent as indir the other labela can be regarde tensity, either general (for warm-hearted ly), or related to friendly attitude (for cordially). In this sense, labels heartil and warmly perf
nal intensives
in the dictionsives have not been revealed ore' labels and explanations of the tifies to the moderate nature, with regard to emotional intensity, of the attitude in question displayed by them. We also failed friendly attitude in the explanations these labels. Some of the internal sives found out for the 'core' labels characterize poaitive evaluation rather than friendly attitude.
In contrast, internal intensives revealed for the 'periphery' group contribute to. sity.
As a result 3 degrees of emotional intensity pertinent to friendly attitude were stated: high (heartily, warmly, cordially), moderate (intimately, warm-heartediy) and low (in a friendly way, amiably amicably).
We can easily deduce from what is said above: attitudinal intensity of the meaning friendiness to smb.' is recipro In listening oxperiments involving isolated test phrases label identification was greatest for heartily ( \(90 \%\) accuracy) and dially (the percentage of correct identifications ranged from 70 to \(60 \%\) of the instances). These were closely followed by intimately, amiably ( \(60-50 \%\) of cases) For amicably, warmly, warm-heartedy iden tifications were considerably reduced (the recognition score was no higher than \(10 \%\) completely random. As far as labels amicably and warm-heartedly are concerned, their poor identification may be accounted for several reasons First, it is probably caused by either to specific (amicably) or too amorphous (warn heartedly) lexical meanings they possess descriptive power, devoid of any specification with respect to suprasegmental means. If the latter is true, these labels are useless as descriptive terms. However more research is needed to confirm their descriptive inability.
Frequency of use could give rather valuable additional data as to the descriptive status of labels. There is a tendency for easily identifiable labels to be frequently used as descriptive terms of other attitudinal variants, while the reverse is true for hardly recognizable labels. However, there is no regular inter-
and frequent use. On the whole, labels of more general meaning of friendiiness tend to be frequently used to refer to other attitudinal variants (in a friendly way, intimately, cordially). This is not true for easily recognizable heartily. The matter is that heartily is very often used to label general emotional colour. That is why listeners often ascribe descriptive terms emphatically or impatiently to this attituđinal variant.
Label identification of test phrases pronounced within the context was, to some extent, negligible. This finding is in agreement with the results of label identification experiments done by D.Crystal /1/. Easily identifiable labels tend to have high recognition scores in both cases (in a friendly way, amiably, cordially, heartily). Amicably and warm-heartedly proved to have similar identification (10\(15 \%\) of correct instances). The exception could be made for warmly. The influence of context was rather strong in this case; correct identification rose to \(40 \%\). These observations suggest that labels could be used as terms out of context. However, the statement requires experimental confirmation since attitudinal variants rarely were ascribed a single label. Analysing the prosodic features of the attitudinal variants under study we have obtained a) constantly overlapping, b) variationally overlapping characteristics and \(c\) ) distinctive features by which a certain label differs markedly from the rest. The latter two are briefly outlined below.
Amiably - b) no instances of high initial fundamental frequency ( \(F_{0}\) ) levels, few instances of mid-narrow \(F_{o}\) rangea in preheads, relatively low \(\mathrm{F}_{0}\) peak values; \(a b-\) sence of medium-zone mean syllable duration; low minimum-zone intensity of unstressed syllables;
c) low decreased-zone intensity of unstressed syllables.
Amicably - b) relatively high mean values of mid-wide Fo range in terminal tones, few instances of mid-narrow \(F_{0}\) range in the utterance;
c) high mid-narrow \(F_{0}\) range average values in terminal tones.
Friendly - b) moderate reccurrency of wide Fo range in the utterance; high upper limit of high-wide and fuil \(F_{0}\) registers in terminal tones and heads;
c) low \(F_{0}\) medium range mean values in terminal tones; low minimum-zone average intensity of unstressed syllables,high medi-um-zone average intensity of unstressed syllables in preheads.
Intimately - b) frequent wide Fo range in the prosodic structure; low medium-zone intensity of stressed syllables;
c) high mean values of mid-wide \(F_{o}\) range in terminal tones and heads, low \(F\) minimum values of nuclear syllable followed by a post-nuclear syllable; high de-
creased-zone mean syllable duration. Cordially - b) high frequency of mid-narrow and mid-wide \(F_{0}\) registers in prosodic structures; low decreased- and mediumzone intensity of unstressed syllables; c) low mean values of mid-narrow \(F_{0}\) range in pre-heads.
Heartily - b) instances of extra-high \(F_{0}\) final level, no cases of mid-narrow and mid-wide \(F_{0}\) registers in pre-heads; increased upper iimita of wide \(\mathrm{F}_{0}\) register in prosodic structures, increased \(F_{0}\) peak values; high \(\mathrm{F}_{\mathrm{o}}\) minimum values; high mini-mum-zone mean intensity values of unstressed syllablea;
c) increased upper limits of high-wide \(P_{0}\) register in terminal tones; high Fo peak values in nuclear syllables; high de-creased-zone mean syllable duration.
Warmly - b) no instances of mid-wide and narrow \(F_{0}\) range in terminal tones, no instances of narrow and mid-wide \(F_{0}\) range in prosodic structures as compared to the 'core' labels and labels heartily, warmheartedly; relatively high mean values of mid-narrow and wide Fo range, particularly in comparison to other 'periphery' labels;
c) high minimum-zone shortest duration. Warm-heartediy - b) mid-high, low, extrahigh and mid-low (in decreasing rank of Irequency) Fo initial levels; high average values of minimum-zone intensity of unstressed syllables;
c) high-narrow \(F_{0}\) range mean values in pre-heads.
As the results of the experiment show the most marked and functionally loaded are heartily, in a friendly way, intimately. They are most readily identified by the listeners too. The fact that certain prosodic structures are associated with a certain label makes it possible to speak about such labels as having a strong degree of descriptive power. On the contrary, labels with only some distinctive prosodic features 'attached' to them are of very little metalinguistic help (amicably, warmly, warm-heartedly) or of no use at all (such as 'amicably').

\section*{REFERENCES}
/1/D.Crystal, "Prosodic Systems and Intonation in English", London: Cambridge Univer. Press, 1969.
/2/ D.А. Дубовский, "Анализ интонации устного текста и его составляющих", Минск, 1978.
/3/ Longman Dictionary of Contemporary English, Longman Group Ltd., Harlow, 1978.

\title{
ATTITUDINAL AND DIALECTAL VARIATION IN INTONATION High tone displacement and the role of the distortional component in Autosegmental theory
}

ANTONY HIND

\author{
Département de Recherches Linguistiques \\ Université Paris VII \\ Paris, France 75005
}

\section*{ABSTRACT}

In this paper I show how the Autosegmental theory associated with the "distortion as a secondary message" theory of Fonagy [1] can contribute to our understanding of attitudinal variants as significant distortions from expected target realizations (or "phonotypes") of underlying segmental phonological contours (or melodemes) [2], and I discuss the relation between attitudinal and dialectal variation.

\section*{INTRODUCTION}

According to this new theory :
1) the phonological contour is part of an ideophonic coding system : the juxtaposition of tonal segments defined with binary features, allows the speaker to express his attitude in relation to his assertive choices - i.e. modality.
2) modulation of the basic contour is interpreted as a significant distortion from the target contour; which is due either to :
a) non application of the obligatory rules of the intonation component (digital coding) ;
or, b) a difference in utterance structure, introduced by the application of some optional rule i.e. modulation.

Here, I will first concentrate, in I and II, on cases of "abnormal" pitch prominence in variant R.P. contours (i.e. where pitch promininence does not correspond to underlying accent prominence as predicted by the obligatory tone/text association rules).
Finally, in III, I raise the question of whether, a) intonation variants between R.P. and Scottish English (Rise-fall replacing Fall) could be due to a special case of 2 b , (tone displacement, an optional rule of R.P. could be an obligatory rule for Scottish) [4] [5] ; or b) whether, (as for some French speakers of English), different principles of tone text alignment could result in the simple Falling contour being associated twice to the same word, giving a complex Rise-falling contour [3].

\section*{I - Intense variants}

Phonetic and semantic date brought to light during psycho-phonetic tests brought me to distinguish two contrasting phonological contours underlying Falling phonetic contours. These as in (1) are roughly equivalent to the traditional Falling and Rise-falling contours.
(1) \(\mathrm{HL}+\mathrm{L}(F)\), and \(\mathrm{L}^{--*}+\mathrm{L}(\underline{R-F})\),

By postulating an [H L + L ] Falling contour contrasting with the [L H +L] Rise-falling contour, I can explain :
1) the difference of function of these two types of contours as described by Sag and Liberman [6] which can't be accounted for in Liberman [7] - and, more important for our present discussion ;
2) the symmetric mirror image form of the neutral and intense variants of the two contours.
The intense variant of the Falling contour (Leben [8], can now be expressed in terms of a high tone escaping the effects of an obligatory Down-drift process [2].
For example, in (2.a) below, the neutral Falling contour is obtained first by the association of the contour to the text (with the "high nuclear tone" associated, by copy, to all the pre-nuclear accented syllables) ; this is, then, followed by the application of Down-drift, which lowers each successive high tone by one degree, giving a Falling stepping head, as in the following example :
(2a) I followed her to a tiny apartment \# \(\mathrm{H} \quad \mathrm{H}^{-1} \quad \mathrm{H}^{-2} \mathrm{~L} \mathrm{~L}\) According to Leben [8], p. 85 : "In English failure to lower the peak of the nuclear syllable is often a signal of amazement or concern". Now in my theory, Down-drift can be formulated so as to be blocked before a certain type of pause, or rupture, (noted here with a square pause sign) ; when this is placed, optionally, before the nuclear syllable as in (2.b) :
(2b) I \(\stackrel{+}{\text { followed }} \underset{H}{\text { b) her to a tiny }} \underset{\mathrm{H}^{-1}}{\#} \underset{\mathrm{H}^{-0} \mathrm{~L}}{\operatorname{ap} \mathrm{~L}} \mathrm{~L}\) H
The association of this pause before the word containing a nuclear syllable results in an abnormally high nuclear syllable which is very probably judged as a "distortion" in relation to the phonotype of (2.a), (i.e. +2 degrees) which could either express a tense attitude on the part of the speaker (amazement, surprise, etc. via increased vocal tension) or simply be a means for focussing the attention of the addressee on the word containing the nuclear syllable.
In R.P., the Rise-falling contour, however, has a rising stepping head : the low tones associated to the pre-nuclear stressed syllables by copy from the low initial tone of the contour are affected by Up-drift as in (3.a). This process of Up-drift can also be blocked before the nuclear syllable for the purpose of expressiveness or contrast ; but in this case it gives an
abnormally low departure of the nuclear syllable a in (3.b). Only the existence of a low initial tone in the underlying melody, can explain this abnornally low departure ( -2 degrees).
(3a) What a marvellous old steam engine \#

What a marvellous old \# steam engine \# \(L^{+1} \quad L^{+0^{-*}}{ }_{H}\)
The fact of postulating the [ \(\mathrm{L} H+\mathrm{L}\) ] contour, under ying Rise-falling intonation, allows me to derive out by Liberman and Sag [ 9 ] or contours, pointed ideophonic interpretation of its components : the nuclear contour in [LH] would support interpretations, compatible with the notion of increased vocal cord tension: "appeal to the addressee", astonishment, "putting the addressee in question and Falling contours have that the Rise-falling character, and this would be present in ir non-open ours, on the level of the final floating low tone that they have in common.
However, it should be noted, that the negative or positive nature of speaker's judgment (admiring surprise, or reproving astonishment) depends more features etc. rather than the, paralinguistic The same low departure for the nuclear syllabl also heard in ironical realizations of the Risefalling contour as in (4).
(4) She says her husband's name is H Pam e la \(_{+}^{+}\)
\[
\mathrm{L} \mathrm{~L}^{+1} \mathrm{~L}^{+2} \mathrm{~L}^{+0} \stackrel{*}{H}
\]

But, here, there is also a tendency to displace the by High tone displacement, creating a further "surrise" effect. Speaker intrusion is manifested by the disturbed accent/pitch structure.
Roughly then, the more the contour differs from the speaker intrusion in his tory rules, the greater presence of the initial low text. Note that the figh tone can not move to the left. As predicted yis analysis, we also find the mirror image this contour with falling intonation, where the uclear High tone is retracted on to a preceding eak syllable (the presence of post-nuclear low
\({ }^{*}\) the right)
\(\begin{array}{ccc}\text { (5a) } \mathrm{He} \text { has opened the door } \# \\ \mathrm{M} \\ \mathrm{H} & + & \mathrm{H} \\ { }_{\mathrm{L}} & \mathrm{L}\end{array}\)
(5b) He may open the door \# \(M\)
n (5a) the nuclear height of "the" is increased The unexpected high tone on "the" is par syllables apt for expressing the speaker's "shocked surprise". While in (5b), the combination of level prenuclear contour (non-application of Down-drift). giving an "abnormally" stylized contour suitable or stereotyped performative exchange (cf. [2],
[10], (11]) - and, unexpected High tone on "the". speaker intrusion in the text, expressing surprise effect, expressing "mocking authoritative an iron (cf. [2], [8]).
II - STEREOTYPED EXCHANGE, AND PITCL/ACCENT MISALIGNMENT
Some cases of tone prominence of non-accented syl lables even in R.P. do not give rise to "surprised realizations - where the metrical grid imposes strict alternating strong/weak patterns - a weak, or even reduced, vowel can be aligned with a stron metrical position, and have a high or low tone associated to it ; but in this case, the position of the tone is totally predictable from the rhythm rules, and as such, is suitable only for passing a is generally part of a stereotyped exchange. For example, in a highly rhythmic form of the Rise falling contour, an utterance such as "Canada is green" is aligned with a trochaic (alternating strong/weak) grid, and all pre-nuclear strong grid positions receive a low tone,
(6) Cana§ \(\underset{H}{ }\) da is \(\S_{H}\) green \(\#\)
(where "§" is a rhythmic juncture)
even though the Metrical grid does not coincide with the underlying rhythmic structure in which the last syllable of Canada is weak and the vowel reduced.
This realization while being very emphatic, is nevertheless highly predictable in the position of rate repetition "just for the form" ( I've told you before, but I can see I will have to tell you again t can never be used to express alarm or surprise from the very nature of its predictability. he claim is thus that there would be a close rela tion between predictability of contour and the conventional nature of the communication.
that misalignment of pitch, makes the prediction will be used to vehicle attitudinal variations or odulations within the same dialect ([2], [5]), and that the relation between contour and accentual tructure must therefore be rule governed. Further ore, it correctly predicts that speakers of diaure association will their contour accent/strach ther as deviating significanty on the attitudinal evel (i.e. their utterances will seem to continuly vehicle secondary messages of the same type when judged from the standpoint of the speaker of the other dialect). This may well at least partly ne linguistic stereotype characteristics which one linguistic group tends to attribute to another II - dialectal and interlanguage variation
When dealing with dialectal variation, it is not ways easy to know whether we are dealing with ifferences of accentuation structure, phonologica ontour, or surface differences due to "displaced nuclear tones"
speaker. I cecording of a Scottish regional to
be accentuation variants as follows:
(7a) Exciseman, Smugglers
(though the initial syllable in each case sounded heavier than the the syllable on which the rise occurred); whereas normal R.P. pronunciation with

> (7b) Exciseman, Smugglers

However this put me in mind of the way French students tend to repeat certa in stress patterns pro intonation even when they know the stress rules of English.
The facts are as follows : when the student repeats a word such as "development", frequently the intolable peak is on op and not on the stressed syl also due to an error in stress positioning wer when on many occasions the students making the "error" claimed that their intention was to stress the target syllable, I realized it was no doubt a 3] was of contour. My first analysis of the facts associated follows. giving the pattern : (8) \(\stackrel{*}{*}\)
\[
\begin{aligned}
& \text { de vel opment } \\
& H \quad L \quad H \quad L
\end{aligned}
\]
fath er
Roughly, the first contour would be associated to the stressed syllable according to the principles of English (though, the form of the association per syllable the rules of French, i.e. One tone a second contour would then be associa); however end of the word entirely according to the rules for ssociating French contours). The resulting contour yould be due to the application of two different sets of language principles to the same word. The be trying to stil, according to this hypothes is be trying to reproduce a Falling contour, the rather than a phonological fact would be a phonetic hypothesis in a communication in 1984 where I
suggested (very tentatively) that a similar Celtic/ the Rise-falling isme might have been the origin of he Rise-falling contour of Scottish English which of R.P...ems to replace the neutral Falling contour
ince th
erent analysis ind made me aware of a rather diferent analysis in which he suggested that high In his analysis the Rise-falling contour is a vaigh of the falling contour with optional delayed lave nuclear tone, and dialectal variants could nuclear tones ( 4\(]\) ther than optionally delayed High resence of the post-n). With low andy is. Contour, blocks realignment to tone in the Falling his does not necessarily preclude the possibility解 our as folmight be using a simpler Falling conelay follows : [MHL]. In that case High tone theory. ques
rove either remains whether it is possible to ample, on a longer word such as "terrifying" if
the peak is on the post nuclear syllable and not on the prefinal syllable it could be an argument in favour of the hypothesis of delayed high tone I have not as yet been able to follow up this problematic as far as Scottish speakers are conf examples obtained with French stude the number Engl ish.
The results in (9a) (though not those in (9b)) a first examination seem to suggest that delayed righ tone is the valid explanation as the peak is

(9b) economically or economically cy ber net ic However when you point out to a speaker (using a diagram) that the English contour for (9a) goes down on "ter" and "plan" but stays down over the down over the first two syllables, rising however inal syllable as fol
(10)
terr ify ing plan et ar \(\quad y\)
This tends to imply that the initial low tone here can not simply result from High tone displacement ological choice. nogical choice
rom the association of two contours but that the form of the initial contour is at least partly etermined by the rules of French.
n certain emphatic forms of French intonation the nitial syllable of a word is lowered and yet a This complex contour seems to be made of the word associated to the beginning of the word and a fina HL associated to the end of the word (the tones being assigned according to the biunique principle: one tone/one syllable). This contour on the word
(1i)
(11) terr if \(\underset{H}{i}\) ant

This is very close to the realization given above Now, if this is the correct analysis we understand how a French speaker might try to extend the association of the initial low tone over the following sylla as follows
(12) terr í fy ing * terr i fy ing It would be difficult to see how High tone delay would afford an explanation of these cases. Now, dents would have associated a slight deviant from this contour (with the LH associated to the second simply because it is the nearest thing to the En lish contour that French can offer (i.e. With a pitch movement anywhere else than at the end of the word).
More significantly, my recordings also show that French students not only use this contour when the where there is an initial secondary stress as shown
above in (9b). This explains why they tend to neutralize the difference between a word like "cybernetic" /2010/ and a word like "terrifying" /1000/ as follows :
\begin{tabular}{|c|c|}
\hline + * & * \\
\hline cybernetic & terrifyin \\
\hline LHHL & L H HL \\
\hline
\end{tabular}

This fact is easily explained within the present analysis but not within the hypothesis of delayed High tone.
It must be noted however that this result shows that a strong universal gestuel theory (as criticized in Ladd [4]) is quite untenable. In this example, drawn from French student's attempts at reproducing English contours, it is shown that contour form is far more important than contour meaning. Attempts at reproducing the contour shape are more important than the meaning conveyed (motivated or otherwise). An emphatic French contour is substituted for a neutral English contour simply because it is the contour with the closest phonetic shape.

\section*{References}
[1] I. Fonagy, "La vive voix, essais de psychophonétique", Payot, 1983.
[2] A. Hind, "Phonosyntaxe : Place et Fonction de I'Intonation dans une Gramaire". Thèse de Doctorat d'Etat, non-published, Université Paris VII, 1986.
[3] A. Hind, "Research on English intonation in an autosegmental framework", C.E.L.D.A. : le Suprasegmental, Université Paris Nord, Villetaneuse, avril 1984.
[4] D.R. Ladd, "On Intonational Universals", The Cognitive Representation of speech, T. Myers et al. eds., North Holland Publishing Company, 1981.
[5] C. Gussenhoven, "On the grammar and semantics of sentence accents", Dordrecht : Foris, 1984.
[6] I. Sag, and M. Liberman, "The Intonational disambiguation of indirect speech acts", C.L.S. 11, 1975.
[7] M. Liberman, "The intonational system of English", Indiana University Linguistics Club, 1978.
[8] 1.. Leben, "The Tones in English intonation", Linguistic analysis 2, p. 69-107, 1976.
[9] M. Liberman and I. Sag, "Prosodic form and discourse function", C.L.S. \(10: 416-27,1974\). D.R. Ladd, "The Structure of intonation meaning", Indiana University, 1980.
[11] I. Fonagy, § al.., "Clichēs mélodiques", Societas Linguistica Europea, p. 273-303,1983.

\title{
DIE ROLLE DER TONHÖHE IN DER EMPHASE AM BEISPIEL DES KATALANISCHEN
}

\author{
JAUME TIO \\ Laboratori de Fonètica "Pere Barnils" \\ Estudi General de Lleida/Universitat de Barcelona
}

\section*{ZUSAMMENFASSUNG}

Es ist bekannt, daß man sich im Alltagsleben sehr oft von der Emphase bedient, um jene Empfindungen auszudrücken, die ihm am tiefsten Herzen liegen. So wie man im Katalanischen feststellen kann, sind solche emphatische Sätze von den normalen Aussagesätzen syntaktisch gesehen oft nicht zu unterscheiden. Ziel unserer Untersuchung ist es, die Rolle zu enthüllen, die die Tonhöhe bei der Anerkennung emphatischer Sätze seitens des Hörers spielt. Bei diesem Versuch wird man feststellen, daß die Emphase mit bestimmten Tonhöheschwankungen verbunden ist, die alleine imstande sind, uns zu zeigen, wann der Satz eine Emphase enthält und wann nicht. Um dieses \(z u\) veranschaulichen, haben wir verschiedene Sätze von mehreren Informanten aufgenommen, sie nach der Tonhöhe ihrer Elemente klassifiziert und unsere Schlußfolgerungen durch einen Wahmehmungstest bestätigen lassen.

\section*{ENFUUHRUNG}

Die Untersuchung wurde im Laboratori de Fonètica "Pere Barnils" durchgeführt. Grundsätzlich haben wir mit dem Elektroglottograph (F-J Electronics ApS, Modell EG 830), einem oszilloskopischen Schirm (F-J Electronics ApS, Modell CD 1300) und einem X-Y Register (Hewlett-Packard, Modell 7010B) gearbeitet, mit denen wir die Intonationskurven von insgesamt 75 Sätzen ( 15 Sätze x 5 Informanten) gewonnen haben. Sie wurden gleichzeitig auf Tonband aufgenommen (UHER 4400 Report Monitor) und auf Papier gedruckt. Teilweise haben wir auch mit dem Visi-Pitch (KAY Elemetrics, Modell 6087) und dem Digital-Sonagraf (KAY Elemetrics, Modell 7800) gearbeitet, um mangelhafte Information nachzuholen (z.B., um festzustellen, wo oder in welcher Silbe die gesuchte Tonhöhe lag).

Ziel der Untersuchung war, die Rolle zu enthüllen, die die Tonhöhe bei der Produktion der Emphase spielt. Wir sind von der Hypothese ausgegangen, daß die Emphase sich wohl durch verschiedene Tonhöheschwankungen charakterisieren würde, abgesehen von anderen suprasegmentalen Elementen wie Tempo und Intensität.

\section*{CORPUS}

Wir haben fünf verschiedene Satztypen ausgewählt und für jeden Typ drei Sätze zur Untersuchung gestellt:

\footnotetext{
A1 Els llibres, els va dur el pare.(Les llibretes, la mare)
A2 Les pomes, se les va menjar el nen.(Les peres, la nena)
A3 Els arbres, els va matar el fred.(Les plantes, la sequera)
B1 Els llibres va dur el pare.(No pas les llibretes)
B2 Les pomes es va menjar el nen.(No pas les peres)
}

B3 Els arbres va matar el fred.(No pas les plantes)
C1 Els llibres va dur el pare?(Em pensava que les llibretes)
C2 Les pomes es va menjar el nen?(Em pensava que les peres)
C3 Els arbres va matar el fred?(Em pensava que les plantes)
D1 El pare va dur els llibres.(La mare, les llibretes)
D2 El nen es va menjar les pomes.(La nena, les peres)
D3 El fred va matar els arbres.(La sequera, les plantes)
E1 El pare va dur els llibres.(No pas la mare)
E2 El nen es va menjar les pomes.(No pas la nena)
E3 El fred va matar els arbres.(No pas la sequera)
Die A-Sätze sind dadurch charakterisiert, daß die beiden Teile des Satzgefüges eine Gegenüberstellung darstellen, in denen das direkte Objekt thematisiert und infolgedessen vorangestellt wird; das direkte Objekt wird dann durch das jeweilige Pronomen ersetzt. In den B- und E-Sätzen ist auch eine Gegenüberstellung zwischen beiden Satzgefügen zu erkennen; der Unterschied liegt nur daran, daß das direkte Objekt in den B-Sätzen umgestellt wird. Schließlich sind die DSätze Aussagesätze, deren Satzgefüge verschiedene Tatsachen aufzählen, und die C-Sätze Fragesätze, in denen auch eine Gegenüberstellung zwischen dem Gedachten und dem Wirklichen vorliegt.

\section*{INFORMANTEN}

Die Informanten waren fünf Studenten der Philosophischen Fakultät, 17 bis 22 Jahre alt, männlich; sie haben ihr ganzes Leben im westkatalanischen Gebiet verbracht. Geburtsort und Wohnort der Informanten sowie ihrer Eltern liegen wiederum im westkatalanischen Gebiet, bis auf die der Mutter des fünften Informanten, die in Ostkatalonien geboren wurde, seit langem aber im Westen wohnhaft ist.

\section*{WAHRNEHMUNGSTEST}

Der Test enthielt nur zwei Fragen, zu denen es drei Antwortsmöglichkeiten gab.
1. Was für einen Satz ist das?
0. Es ist zweifelhaft/Ich weiß es nicht/...
1. Aussagesatz
2. Fragesatz
2. Wie ist dieser Satz?
0. Es ist zweifelhaft/Ich weiß es nicht/...
1. Neutral
2. Emphatisch

Der Test wurde von 18 Studenten aus der Philosophischen Fakultät beantwortet, die alle zum westkatalanischen Dialekt gehören.

Aus den gewonnenen Intonationskurven kann man Typen fängt die Kurve mit einer kleinen Abnahme der Tonhöhe an，die gleich danach den höchsten Punkt erreicht，abgesehen von den Fragesätzen，wo manchmal der höchste Punkt am lat：

1．Typ．Nach dem ersten Gipfelpunkt nimmt die Tonhöhe ohne bedeutende Schwankungen allmählich ab．
2．Typ．Nach dem ersten Gipfelpunkt nimmt die Tonhöhe aden Kurve festzustellen ist．so daß eine Beugung in

3．Typ．Nach dem ersten Gipfelpunkt nimmt die Tonhöhe auch zuerst mal ab，um dann aber wieder bis zu einem zweite

4．Typ．Nach dem ersten Gipfelpunkt nimmt die Tonhöhe uerst mal ab，bis sie einen Tiefpunkt erreicht，aus dem die Kurve steigend zum Satzende geht．

Aus den elektroglottographischen Aufnahmen haben wir folgende Ergebnisse gewonnen．Die Zahlen entsprechen den Hz － Messungen in folgenden
\(1=\) Anfangspunkt， \(2=\) erster Tiefpunkt，
\(3=\) erster Gipfelpunkt， \(=\) Aneiter Tiefpunkt oder Beugung， \(5=z w e i t e r ~ G i p f e l p u n k t ~ u n d ~\) 6＝Endpunkt．

Satz \(\mathrm{Hz} / 1 \mathrm{~Hz} / 2 \mathrm{~Hz} / 3 \mathrm{~Hz} / 4 \mathrm{~Hz} / 5 \mathrm{~Hz} / 6\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 3－B2 & 110 & 85 & 145 & 70 & －－ & 50 \\
\hline 3－83 & 110 & 95 & 150 & 75 & 95 & 40 \\
\hline 3－C1 & 110 & 100 & 185 & 60 & －－－ & 190 \\
\hline 3．C2 & 105 & 85 & 180 & 85 & －－ & 185 \\
\hline 3 －C3 & 105 & 100 & 185 & 75 & － & 165 \\
\hline 3－D1 & 110 & 90 & 160 & －－－ & & 40 \\
\hline 3－D2 & 140 & 100 & 180 & & & 55 \\
\hline 3－D3 & 100 & 80 & 165 & & & 65 \\
\hline 3－E1 & 115 & 75 & 170 & －－ & －－－ & 65 \\
\hline 3－E2 & 95 & 80 & 165 & & & 50 \\
\hline 3－E3 & 100 & 75 & 155 & & & 40 \\
\hline A1 & 145 & 110 & 185 & 25 & 165 & 120 \\
\hline 4 －A2 & 130 & 120 & 195 & 145 & & S \\
\hline 4 －A3 & 135 & 125 & 180 & & & 40 \\
\hline 4－B1 & 140 & 115 & 180 & 115 & －－ & 80 \\
\hline 4－B2 & 140 & 120 & 180 & 110 & －－ & 75 \\
\hline 4－B3 & 135 & 110 & 190 & & & 25 \\
\hline 4－C1 & 155 & 120 & 165 & 75 & －－－ & 200 \\
\hline \(4-\mathrm{C} 2\) & 135 & 100 & 165 & 65 & －－ & 205 \\
\hline \(4 . \mathrm{C3}\) & 150 & 115 & 155 & 100 & & 35 \\
\hline 4－D1 & 130 & 110 & 180 & 150 & 160 & 85 \\
\hline 4－D2 & 165 & 150 & 190 & 150 & 165 & 15 \\
\hline 4－D3 & 130 & 110 & 190 & 140 & 150 & 25 \\
\hline 4－E1 & 140 & 115 & 185 & 145 & 160 & 05 \\
\hline 4－E2 & 125 & 100 & 160 & 115 & 155 & 110 \\
\hline 4－E3 & 150 & 110 & 185 & 135 & 150 & 75 \\
\hline 5－A1 & 180 & 155 & 255 & 170 & 200 & 30 \\
\hline 5－A2 & 190 & 145 & 295 & 190 & 220 & 35 \\
\hline \(5-\mathrm{A} 3\) & 180 & 170 & 275 & 170 & 215 & 130 \\
\hline 5 －B1 & 215 & 175 & 280 & 155 & 180 & \％ \\
\hline 5－B2 & 190 & 155 & 255 & 160 & 175 & 35 \\
\hline 5－B3 & 170 & 150 & 215 & 155 & & 20 \\
\hline 5－C1 & 200 & 175 & 260 & 165 & －－ & 260 \\
\hline \(5-\mathrm{C} 2\) & 185 & 155 & 275 & 155 & －－ & 300 \\
\hline \(5-\mathrm{C} 3\) & 205 & 165 & 285 & 165 & － & \\
\hline 5－D1 & 185 & 135 & 250 & －－ & －－ & 135 \\
\hline 5 －D2 & 210 & 200 & 245 & 190 & 230 & 260 \\
\hline 5－D3 & 175 & 145 & 235 & 165 & 195 & 115 \\
\hline 5－E1 & 185 & 150 & 255 & 185 & 220 & \\
\hline 5 －E2 & 200 & 180 & 245 & 170 & 215 & 120 \\
\hline E3 & 190 & 160 & 255 & & & \\
\hline
\end{tabular}

Aus der Lektüre des Wahmehmungstests und der elektroglottographischen Aufnahmen haben sich folgende Zahlen ergeben．In der ersten Spatte geben w，ob die Äußenng nach dem Wahmehmungstest als ein Aussage－（A）oder als ein Fragesatz（F）bewertet wurde und der erreichte Prozentsau，de dritte Spalte zeigt，wie hoch der Prozentsatz liegt，der Hz ． Äußerung als emphatisch erklärt．Schließlich sind die 1 r Schwankungen zu lesen

Tiefpunkt Schankung zwischen Anfangspunkt und erstem
b）Schwankung zwischen erstem Tiefpunkt und erstem Gipfelpunkt．
c）Schwankung zwischen erstem Gipfelpunkt und zweitem Tiefpunkt oder Beugung，falls sie vorhanden sind．
d）Schwankung zwischen zweitem Tiefpunkt oder Beugung und Endpunkt，oder zwischen erstem Gipfelpunkt und Endpunkt，falls weder zweiter Tiefpunkt noch Beugu vorliegen．

Gleichzeitig haben wir die Sätze in drei Gruppen verteilh，jo
nach den Ergebnissen des Wahmehmungstests．Zuerst kommen die nicht emphatische，dann die emphatische Aussagesätze und schließlich die Fragesatze．Wir haben darin Aide berücksichtigen zu können．
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \(\bigcirc\) &  &  & 8ヵヶ & ชชำสำสทำำ &  &  &  & 육 8 익 &  \\
\hline \[
\begin{aligned}
& \text { 듬 } \\
& \text { 皆 } 0
\end{aligned}
\] &  &  & ถ\％ & 单11111：1 &  & 8888111：1 &  & 꾸ㅇㅜㅜ &  \\
\hline 第 & 208nnob & 80¢ & 이으으ํ &  & そニํำ읔 &  & 38 n & めんめ & nnnotgor8n \\
\hline H &  & 유윢ำ & nopor &  & ㅇ্ᅲ우ㄲㅜㅜㅜㅜㅜ &  & 운 & 운 &  \\
\hline  &  & ¢n¢ &  &  &  & Enin000000 & －\({ }_{\text {ajom }}^{\infty}\) & तี่ & \(\stackrel{\sim}{\text { ajo }}\) \\
\hline  & \[
\frac{8}{4} \frac{8}{4} \frac{8}{4} \frac{8}{4} \frac{8}{4} \frac{8}{4} \frac{8}{4}
\] &  & \[
\stackrel{\infty}{\infty} \dot{\infty} \dot{\sim}
\] &  & 山山山必山山屾 &  &  &  &  \\
\hline 定易 &  &  & ฐ్ర్ర &  &  &  & －¢్mm & ర్రిల్ల &  \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Info－ & Aussage／ & Emphase & \multicolumn{4}{|c|}{Hz －Schwankungen} \\
\hline Satz & Fragesatz & & a & b & c & d \\
\hline 4－B1 & A－94．4 & 82.4 & －25 & 65 & －65 & －35 \\
\hline 4－B2 & A－94．4 & 52.9 & －20 & 60 & －70 & －35 \\
\hline \(4-\mathrm{Cl}\) & F－100 & 83.3 & －35 & 45 & －90 & 125 \\
\hline 4－C2 & F－88．9 & 93.7 & －35 & 65 & －100 & 140 \\
\hline \(4 . \mathrm{C3}\) & F－100 & 66.7 & －35 & 40 & －55 & 35 \\
\hline 5－A1 & A－100 & 27.8 & －25 & 100 & －85 & 40 \\
\hline 5－A2 & A－100 & 38.9 & 45 & 150 & －105 & －55 \\
\hline 5 －A3 & A－100 & 11.1 & －10 & 105 & －105 & －40 \\
\hline 5－B3 & A－94．4 & 29.4 & －20 & 65 & －60 & －35 \\
\hline 5－D1 & A－94．4 & 5.9 & －50 & 115 & －－－ & －115 \\
\hline 5－D2 & A－100 & 0 & －10 & 45 & －55 & 70 \\
\hline 5－D3 & A－100 & 5.6 & －30 & 90 & －70 & －50 \\
\hline 5－E1 & A－100 & 0 & －35 & 105 & －70 & －10 \\
\hline 5－E2 & A－100 & 5.6 & －20 & 65 & －75 & －50 \\
\hline 5－E3 & A－100 & 27.8 & －30 & 95 & －－ & －125 \\
\hline 5－B1 & A－94．4 & 52.9 & 40 & 105 & －125 & －15 \\
\hline 5－B2 & A－100 & 83.3 & －35 & 100 & －95 & －25 \\
\hline \(5-\mathrm{Cl}\) & F－100 & 61.1 & ． 25 & 85 & －95 & 95 \\
\hline 5－C2 & F－100 & 72.2 & －30 & 120 & －120 & 145 \\
\hline \(5-\mathrm{C3}\) & F－100 & 66.7 & 40 & 120 & －120 & 120 \\
\hline
\end{tabular}

\section*{BESPRECHUNG}

Es ist bemerkenswert，daß alle Sätze，die als Fragesätze bewertet，ebenfalls als emphatisch empfunden wurden，bis au der 1－C1－Satz，dicht emphatische Beispiel erlaubt uns jedoch nicht，irgendeinen Schluß zu ziehen，denn seine absoluten Hz Werte genauso wie seine Hz －Schwankungen weisen keinen Unterschied auf in Vergleich mit den übrigen emphatischen Fragesätzen．

Dagegen ist der Unterschied zwischen Frage－und Aussagesatz eindeutig festzustellen，wenn man die \(\mathrm{d}-\mathrm{Hz}\) Schwankungen beobachtet．In den ragesatz 35 Hz im 4 － \(\mathrm{C} 3-\) Satz，während sie in den Aussagesätzen immer negativ sind（ ab 5 Hz in den 4－A1－und 4－E2－Sätzen）．Es ist nur eine Ausnahme zu verzeichnen：in dem 5－D2－Aussagesatz ist diese Schwankung um 70 Hz positiv；wenn man diesen Salz mit den Fragesatz vergleicht，kommt es vor，dableichbar mit der des 4－C3 Fragesatzes ist．Der Unterschied liegt hier wahrscheinlich in der Akzentstellung，denn，während der letzte Tiefton im 4－C3 Fragesatz mit demletzten Wortakzent zusammenalit，fan cicser im 5－D2－Aussagesatz schon mit dem letzten Hoch im was ein weiterweisendes Signal darstellen mag

Bei den emphatischen Aussagesätzen ist immer eine \(\mathrm{c}-\mathrm{Hz}\) Schwankung zu beobachten，was nicht immer bei den nich emphatischen Aussagesatzen der Fanl ist．Man konnte also sagen，daß der Satz keine Emphase enthat，wenn um Endpunk vom

Die emphatischen und die übrigen nicht emphatischen Aussagesätze unterscheiden sich dadurch，daß diese c －Hz Schwankung in den emphatischen wesentlich groser ist als A den nicht empher Untersuchung ausklammern，sind die Schwankungen in den emphatischen Sätzen im Vergleich mit denjenigen der nicht emphatischen Sätzen die folgenden．
emphatisch nicht emphatischUnterschied
\begin{tabular}{llll} 
1. Informant: & \(a b-85 \mathrm{~Hz}\) & bis -55 Hz & 30 Hz \\
2. Informant: & --- & -- & --- \\
3. Informant: & ab -75 Hz & -- & -5 Hz \\
4. Informant: & ab -65 Hz & bis -50 Hz & 15 Hz \\
5. Informant: & \(a b-95 \mathrm{~Hz}\) & bis -75 Hz & 20 Hz
\end{tabular}

Es ist zu bemerken, daß die nicht emphatischen A-Sätze mehrmals einen nicht ganz eindeutigen Prozentsatz nach dem Wahrnehmungstest erweisen: \(38,9 \%\) (5-A 2 ), \(33,3 \%\) (1-A1, 1A 3 ), \(27,8 \%\) (4-A1, \(5-\mathrm{A} 1\) ), \(16,7 \%\) (2-A2). Die Hz-Werte ihrer cSchwankungen sind hier mehrmals auch ähnlich wie diejenigen der emphatischen Sätzen. Man kann auch dasselbe sagen vom einzigen emphatischen A-Satz (1-A2), der auch keinen sehr eindeutigen Prozentsatz erweist ( \(55,6 \%\) ) und einen niedrigeren Hz -Fall ( -65 Hz ) als die anderen emphatischen Sätze hat. Schließlich sind noch einige nicht emphatische A-Sätze (3-A1,3A2, 3-A3, 5-A3), die einen eindeutigeren Prozentsatz erweisen ( \(11,1 \%, 5,6 \%\) ) und auch einen starken Hz -Fall haben, und andere (4-A2, 4-A3), in denen keinen Unterschied im Vergleich mit den übrigen nicht emphatischen Sätzen zu erkennen ist. Der Unterschied zwischen den nicht emphatischen A-Sätzen und den übrigen emphatischen Sätzen scheint darin zu liegen, daß die Tonhöhe nach dem ersten Gipfelpunkt aufrechterhalten wird, um dann wieder von neuem die Intonation zu beginnen, nach einer mehr oder weniger kurzen Pause.

\section*{SCHLUSS}

Nachdem wir gesehen haben, wo die Ähnlichkeiten und die Unterschiede liegen, können aus unserer Untersuchung folgende Schlüsse gezogen werden:
1. Die Fragesätze unterscheiden sich von den Aussagesätzen dadurch, daß die Hz -Schwankung zwischen dem zweiten Tiefpunkt oder der Beugung und dem Endpunkt aufsteigt; in den Aussagesätzen steigt sie immer ab, ob der Tiefpunkt oder die Beugung vorhanden sind oder nicht.


Fragesatz 5-C2: Les pomes es va menjar el nen?
2. Die nicht emphatischen Aussagesätze charakterisieren sich dadurch, daß die Tonhöhe nach dem ersten Gipfelpunkt allmählich bis zum Endpunkt absteigt, ohne daß es sich keine besondere oder nur eine geringere Schwankung gibt.


Aussagesatz 3-D2: El nen es va menjar les pomes.


Aussagesatz 5-D3: El fred va matar els arbres.
3. Einige nicht emphatische Aussagesätze, die ja syntaktisch genau charakterisiert werden können, erweisen trotzdem eine größere Schwankung nach dem ersten Gipfelpunkt. Diese Schwankung findet aber normalerweise nach einer kurzen Pause statt, und erfolgt nur bei thematisierten Sätzen.


Aussagesatz 5-A3: Els arbres, els va matar el fred.
4. Die emphatischen Aussagesätze charakterisieren sich dadurch, daß die Tonhöhe einer großen Hz -Schwankung nach dem ersten Gipfelpunkt unterliegt, ohne daß eine Pause dazwischen liegt.


Aussagesatz 3-B3: Els arbres va matar el fred.

Schließlich ist es auch hinzuzufügen, daß diese Beobachtungen wahrscheinlich nicht von den anderen suprasegmentalen Elementen (Tempo und Intensität) getrennt werden können. Während der ganzen Untersuchung haben wir die Vermutung gehabt, daß Intensität und Tonhöhe sich ergänzen: wo die Tonhöhe in einer emphatischen Satz nicht so charakteristisch wirkt, ist die Intensität stärker, oder umgekehrt. Tempo und Tonhöhe mögen sich auch wohl ergänzen: den Tiefpunkt oder die Beugung vor dem Satzende wird um so schneller erreicht, desto größere die Hz-Schwankung ist. Diese Verhältnisse müssen aber noch weiter untersucht werden.

Vergleichung am Beispiel einiger Sätze des 1. Informanten


\section*{PERCEPTUAL ASPECTS OF EMOTIONAL SPEECH}

\author{
MALL LAUR \\ Information and Computer Centre \\ State Committee of TV and Broadcasting Centre of the ESSR Tallinn, Estonia, USSR 200100
}

\section*{ABSTRACT}

The verbal aspect of short utterances can affect the perceptual process of emotional speech. The affect is observed on the basis of three different stimuli, a short greeting among them. The investigation is cross-cultural.

\section*{INTRODUCTION}

The perception of emotions by vocal cues has been examined by several authors. Among the factors which might affect the perception appear to be sex of listener /8/, age of liatener / 4/./5/./7/, cultural distance between speaker and listener/10/, \(/ 1 /, / 2 /, / 3 /\). The verbal aspect of speech stimuli has often been eliminated \(/ 6 /\). How ever, aiming to investigate emotion perception in the process of speech communi cation, the verbal aspect of stimuli may not be neglected.

The goal of the present research was to examine emotion perception on the basis of short utterances (mono- and disyllabic sentences, \(260-360 \mathrm{~ms}\) in neutral speech). Short duration of a signal may cause deficiency of vocal cues and subsequently listener's perception can be affected by the verbal aspect.

METHOD
Stimuli
Three stimuli in Estonian were selected. To check the insufficiency of a short utterance for emotion perception, a four word utterance was chosen for one stimulus (1)"Taavi aaatis Saarale kaardikese." -
"David sent a card to Sarah", later referred as 'long sentence' or LS.
Short utterances differed in their meaning and poaition in a dialogue:
(2)"Tere" - "Hello", a most common greet Ing In Estonian; later referred as igreeting' \(^{\prime}\) or \(G\).
(3)"Saab" - 3rd p. sing. pres. indicative of the verb 'saama' meaning 'to get, obtain or receive sth; to become sth, sb; used both as a personal and an impersonal pre -
dicate; later as 'short sentence' or SS. Emotions from Izard's atudy /9/ - surp rise, interest, joy, fear, sadness, shame anger, contempt, diagust - and in addi -
tion love and neutral were chosen for emotional categories.(Disgust was not used for greeting).

Recordings were made in a soundproof booth using a microphone connected to a tape recorder outside the booth.

\section*{Subjects and the Procedure}

The stimuli, set in a random order, were rendered twice. During the first session listeners had to label the emotions. At the second session they had to choose a response out of the 10 or 11 categories. The first test will be referred as ifree choice teat', the second as 'forced choice teat'. Pauses for responding lasted ten seconds, the sequence number of a stimulus was checked after every 5 stimuli. When the primary group had accomplished both tests, the stimuli were presented in a rearranged order to a control group.

A part of the stimuli ( 28 long sentences, 27 short sentences and 40 greetings) were rendered 28 Russians from Moscow State University (students and the staff, no knowledge of Estonian) to accomplish the forced choice teat.

The sizes of Estonian listener groups: for long and short sentence 65 subjects in the primary group and 21 subjects in the control group; for greeting 48 sub jects in the primary and 28 subjects in the control group; the division between genders was roughiy half in all subject groups.

\section*{RESULTS AND DISCUSSION}

The results of forced choice test form the basis of the following discussion. overall mean of identification scorea of Estonian subjects for the three groups of stimuli, long sentence, short sentence and greeting, did not differ ( \(\bar{x}=49,2 ; 49,4 ;\) 42,7 accordingly, see Table 1). Still, the comparison by categories revealed some
differences (see Table 2).
TABLE 1. Mean percentage of correct identifications of emotional categories by Estonian subjects.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{6}{|l|}{\multirow[t]{2}{*}{LONG SENT. SHORT SENT. GREETING \(\mathrm{N}=65+21 \quad \mathrm{~N}=65+21 \quad \mathrm{~N}=48+28\)}} \\
\hline & N & +21 & & 6+21 & & \\
\hline utr. & 6 & 88.7 & 4 & 75.0 & 4 & 61.1 \\
\hline surprise & 6 & 58.4 & 4 & 40.4 & 4 & 58.9 \\
\hline interest & 3 & 27.1 & & 55.5 & 4 & 34.2 \\
\hline joy & 6 & 61.0 & 4 & 61.2 & 4 & 45.6 \\
\hline love & 6 & 63.4 & 4 & 62.6 & 4 & 53.5 \\
\hline sadness & 6 & 59.4 & 4 & 47.8 & 4 & 47.4 \\
\hline fear & 6 & 52.3 & 2 & 44.7 & 4 & 30.9 \\
\hline shame & 3 & 23.1 & 3 & 14.6 & 4 & 20.7 \\
\hline anger & 6 & 40,8 & 4 & 59.6 & 4 & 36.9 \\
\hline contempt & 6 & 50.0 & 2 & 56.3 & 4 & 38.9 \\
\hline disgust & 3 & 17.1 & 3 & 25.7 & & \\
\hline overall & 57 & 49.2 & 35 & 49.4 & 40 & 42.7 \\
\hline
\end{tabular} \(\frac{\text { overall }}{1-\text { number of }} \frac{49.2}{} \quad 35 \quad 49.4 \quad 40\)
\(2-\%\) of correct identifications

TABLE 2. Analysis of variance by means of cation scores of emotional categories of different stimuli.
\begin{tabular}{|c|c|c|c|c|}
\hline & \[
\underset{T}{L S} \times \underset{d s}{S S}
\] & \[
\underset{T}{L S} \times \underset{d f}{G}
\] & \[
{\underset{T}{S S} \times}
\] & Gf \\
\hline neutr. & 3.60211 & 4.32188 & 1.901 & 12 \\
\hline surprise & 1.89315 & 0.01315 & 1.666 & 16 \\
\hline interest & \(5.90112^{x}\) & 0.89311 & 2.758 & \(10^{x}\) \\
\hline joy & 0.03316 & 1.32611 & 1.260 & 13 \\
\hline love & 0.99718 & 0.87518 & 0.763 & 16 \\
\hline sadness & 1.49819 & 1.35216 & 0.073 & 15 \\
\hline fear & 0.6695 & 3.557 20x & 1.190 & 5 \\
\hline shame & 1.61015 & 0.8475 & 1.330 & 14 \\
\hline anger & \(2.90320{ }^{2}\) & 0.49118 & 3.229 & \(14^{x}\) \\
\hline contempt & 0.80911 & 1.48119 & 2.219 & 10 x \\
\hline disgust & 0.2077 & & & \\
\hline overall & 0.04143 & 1.19137 & 0.996 & 20 \\
\hline
\end{tabular}

\author{
\begin{tabular}{lllllll}
\(\frac{0 v e r a l l}{x_{p<0.05}}\) & 0.041 & 43 & 1.191 & 37 & 0.996 & 20 \\
\hline
\end{tabular}
} TABLE 3. Mean percentage of correct identipy Russian and Estonian subjects \({ }^{2}\)

LONG SENT. SHORT SENT. GREETING

\begin{tabular}{|c|c|c|c|}
\hline neutr. & 83.385 .7 & 70.276 .0 & 49.161 .5 \\
\hline surprise & 35.368 .3 & 54.758 .7 & 41.166 .2 \\
\hline interest & 17.961 .9 & 10.763 .6 & 20.635 .8 \\
\hline joy & 59.569 .8 & 71.461 .9 & 20.541 \\
\hline love & 63.677 .8 & 80.9 82.2 & 44.651 \\
\hline sadness & 71.468 .3 & 44.656 .0 & 50.941 .2 \\
\hline fear & 57.152 .4 & 62.554 .7 & 20.631. \\
\hline shame & 33.621 .4 & 21.421 .6 & 8.120 .9 \\
\hline anger & 66.241 .3 & 48.861 .9 & 48.238 .9 \\
\hline contempt & 66.265 .6 & 65.561 .9 & 49.136 .5 \\
\hline overall & 55.461 .3 & 52.759 .9 & 35.342 .5 \\
\hline
\end{tabular}
\(x_{\text {Responses }}\) of these Estonian groups have been considered who accomplished the test in equal conditions (sequence of stimuli Was the same): control group for LS and The atimuli in Table 3 do not entirely 00 incide with those reported in Table 1. The comparison of identification scores of Estonian listeners did not reveal the short utterances on emotion perception the overall mean scores were similar and the differences on category level did not Jield any regularity;
Cluster analysis \(/ 11 \%\), carried out on the confusion matrices demonstrated that on ception had proceeded from the conceptual, positive - negative dimension. That holds true for both groups of listeners, Estonians and Russians,i.e. the verbal aspect of a longer utterance did not have any affect on emotion perception (see Fig. 1 and Fig. 4). of Estonian listeners to in the responses \(S S\) and \(G\), revealed a discrepancy - the regular confusion of surprise with interest was missing in the responses to greeting, interest had been included into the clussurprise had been confused with jov. The conpusion clusters of \(G\) can easily be explained if the verbal aspect of this stimulus is taken into consideration. A lis. tener, hearing a greeting, is foremost in terested in the probability of conversa to be pleasantion surprised (surprise \(+j 0 \mathrm{y}\) ), conversation will most likely follow. If the greeting is purely formal (neutral, contemptuous, angry), no conversation is expected. If the greeting expresses spesker's pasaiveness (passive emotions), the continuation of conversation will depend The de listener
be confirmed if the responses of Russian listeners reflected a different attitude, in fact they did. The responses of Russial insteners to short sentence and greeting revealed rather unity than discrepancy (see Fig. 5 and 6) - in both samples activ confused; the confusion of surprise and interest is present in both dendrograms. The comparison of the identification parcentages of Russian and Estonian listenariat the category level yielded another dence in favour of the affect of verbal aspect on emotion perception on the bas:
of short utterances. Namely, quiteuner pectedly an association between a meaning of the stimulua (short sentence) and \(\frac{8 n}{8 n}\) emotional category (interest) had occurre - "saab" could be interpreted as "Interegt in whether sth_can_be_obtained"•A

sult, interest had been well identified on the basis of short sentence by Esto nian listeners whereas Russian listeners had not distinguished interest at all rating all these stimuli to express surp rise.
The evidence supporting the hypothesis about the affect of verbal aspect on emotion perception is not strong - the emotional category of interest the perception of which forms the basis for this evidence is too ambiguous and the present argument may turn to be wrong. Thua further research in this direction - inveatigation of verbal aspect on emotion perception in different conditions, different speech signala - is necessary either to confirm the hypothesis under discussion or to disprove it.

\section*{CONCLUSIONS}

Long utterances used in this research as stimuli (a sentence of four words: 2 disyllabic, 1 trisyllabic and 1 four-syllabic word) favoured emotion perception. The effect became evident in both groups of listeners - Who understood the stimuli (Estonians) and who did not understand (Russians).

The presumable affeat of verbal aspect of short utterances(mono- and disyllabic sentences) on emotion perception became manifest mostly through different perception of interest.

\section*{PEFERENCES}

\footnotetext{
/1/ Albas,D. C., McCluskey, K.W., Albas, C. A. "Perception of the emotional content of speech: a comparison of two Canadian groups."- Journal of Crosscultural Psjchology,1976,7,481-490.
}
/2/ Beier, E. G., Zautra, A. J., "Identification of vocal communication of emotion across cultures." - Journal of Consulting and Clinical Psychology, 1972,39,166.
/3/ Bezooijen, R. ven. "Recognition of Dutch expressions of emotions in Taiwan.". Proceedings of the Institute of Phonetics, Nijmegen, 1982,6,1-8.
/4/ Bezooijen, R. van. "Recognition of vocal expressions of emotion by toddlers." - Proceedings of the Institute of Phonetics, Nijmegen, 1983,1,-8.
/5/ Davitz,J.R. "Auditory correlates of vocal expressions of emotional meaning." - In Davitz,J.R. (Ed.) "The communication of emotional meaning." Wesport (Ct.) : Greenwood Press, 1964,101-113.
/6/ Davitz, J. R., Davitz, I. J. "The communication of feelings by content-free speech."-Journal of Communication, 1959,9,6-13.
/7/ Dimitrovsky, Ius "The ability to identify the emotional meaning of vocal expressions at successive age levels" - In Davitz,J.R. (Ed.) "The communication of emotional meaning." Westport (Ct.):Greenwood Press, 1964,69-87.
/8/ Hall, J. "Gender effects in decoding nonverbal cues." -Psychol. Bulletin, 1978,85,845-857.
/9/ Izard,C.E. "The face of emotion" New York; Appleton Century Crofts, 1971.
\(110 \mathrm{Kramer}, \mathrm{E}\). "Elimination of verbal cues in judgments of emotion from voice." Journal of Abnormal and Social Psychology, 1964,68, 390-396.
\(/ 1\) T/Orloci, I. "An agglomerative method for classification of plant oommunities." Journal of Ecology, 1967,55,193-205.

\title{
COMPUTER ASSISTED DIAGNOSIS OF PERCEPTUAL ERRORS
}

\author{
RUDOLF WEISS
}

\author{
Department of Foreign Languages \\ Western Washington University \\ Bellingham, Washington USA 98225
}

\section*{ABSTRACT}

A computer program has been developed for the scoring and analysis of perceptual errors in classifying German vowels. The program, written in "BASIC" for MS-DOS system computers, plots out specific errors and provides an accuracy index and length agreement correlate. A second part of the program provides the learner with a ranking list of specific vowel difficulty and an explanation of the likely nature of the perceptual error. The results may either be printed or viewed on the screen.

\section*{INTRODUCTION}

The author has for some time been concerned with studies of perception, in particular its application to corrective procedures with the ultimate goal of correcting and improving pronunciation of learners of German. It has long been the author's belief that errors of pronunciation and errors of perception go hand in hand and that correction of both perception and production must be addressed. This has been the subject of several earlier papers ([1, 2]) and is the underlying premise of a book co-athored by H.-H. Wängler which has recently been published by Western Washington University Press [3] and is now used as a text by a number of German departments in the USA.
The contrastive phonetic approach used in the book is ideally suited for computer application. Each sound is treated individually with a number of pedagogically oriented steps provided to facilitate mastery of the sound in context based on potential perception and articulation difficulties. A perceptual or listening frame with accompanying listening tests in each case precedes actual production exercises. The listening exercises set a framework for contrastive problems both between potentially conflicting native ( \(L_{1}=\) English) as well as target ( \(\mathrm{L}_{2}=\) German) sounds and contexts. The predetermining factors as the potential of likely problems for each sound are based upon contrastive phonetic principles and upon data gathered in the past administration of a perception test developed for native German speakers and then modified for non-native learners [4].
The test which has been modified numerous times has
served in the past as an accurate indicator of degree of nativeness in perception. It is comprised of minimal pairs containing variations of German vowels which are then classified as one of fifteen phonemic categories in German. The test has in the past yielded valuable data about ranking order of vowel difficulty for students at various levels of study and has provided numerical indexes corresponding to performance standards for levels from first year college to advanced graduate student status [5].
However in its specific application here, the test is seen as an invaluable aid as part of a basic program aimed at improving individual language skills. This is done by administration of the test at varied intervals noting specific progress at elimination or improvement of certain perceptual errors. The computer program is designed to indicate specific perceptual errors, provide a priority listing of most frequently made errors and the likely nature of both errors affecting the general classification (or misperception) of vowel categories as well as specific vowel errors. As such the program has proved to be a valuable learning tool facilitating more automatic and accurate assessment of difficulties and has applications which greatly facilitate computer-dependent learner acquisition of sound perception/production.

\section*{EXPERIMENTAL PROCEDURES}

The test was administered individually via a Tandberg Model 812 cassette recorder and headphones linked to an IBM-PC by a serial connection. The test material is displayed for the subject on a Teknika MJ-22 RGB Monitor or may be printed on an Epson LQ-1500 or FX-80 printer. The equipment is housed in the Foreign Language Learning Center at Western Washington University.
The student must classify each of 100 items on tape as one of fifteen phonemic choices. These choices appear as orthographic representations. The choices are indicated as letters A through \(O\). At the conclusion of the test the student is provided with a display of all errors made along with a general assessment of major perceptual errors (6). The student may review the errors on the screen or receive a printed hard copy via printer as shown in Figures 1 and 2.
Figure 1
Minitize

Figure 2


\section*{COMPUTER PROGRAM}

The computer program written for this application is in wo parts. The first part generates on-screen direction or taking the test and generates data files through a sub onverted from letters A through 0 onses themselves are board to numerical values 1 through 15 . oard to numerical values
77]. It is written in BASIC for MS-DOS with sub-routine compiled in machine language to increase response ime. It comprises two major sections. The results of he first section are illustrated as Figure 1. The program irst performs a matching function comparing the data fie generated by the student with the data file of the key correct responses. Sub-routines perform the statistical functions of calculating the errors made. The initial nalysis compiles an error index for each vowel based total percentege for the with the individual vowel. A tal percentage for the test is calculated. A second sub-
routine in the program classifies each vowel as a subset of either a short vowel group or long vowel group and calculates errors on the basis of whether they are in extent of this agreement is calculated as the LAF (length agreement factor). Further sub-routines classify the errors and create a hierarchical arrangement of the errors for individual vowels along with the percentage of the frequency of that error for the specific vowel.
The display of errors as indicated in Figure 1 are in phonetic symbols and may be displayed either on the screen or printed. The screen program is accomplished through a screen sprite routine using an IBM character generator. The printer routine utilizes graphies characters generated through Printworks [8] graphics program and downloaded to the internal buffer of the printer.
The basic display of errors and statistical analysis is followed by a second section which provides more directed diagnostic help to the learner based on further analysis of the errors. The results of the second phase of analysis are indicated as Figure 2. The types of errors are reclassified to provide more specific diagnostic help aimed at assisting the student to improve his/her perception. First a listing of vowels is provided, arranged in terms of perceptual difficulty for the student. The specific vowel contained to the total number of that specife vowel contained on the test is indicated alon With a percentage of misclassification of that vowe. tions" and is again comprised of a number of sib-routines comparing errors to specific arrays of character strings. The first statement provides an analysis of the LAF mentioned previously. Since the test items were intended to exhibit deliberate manipulation of both the quality and length axis, the errors should have been roughly divided evenly between length and quality, an LAF of \(50 \% \pm 10 \%\) would thus be considered within the norm. If the LAF is less than \(40 \%\), the LAF percent factor is indicated along with the statement "Wrong length substituted-Not attentive enough to length differentiation among vowels." If on the other hand the LAF is greater than \(60 \%\), a statement such as that in Figure 2 appears indicating that too much dependence was placed upon length in classifying vowels and not enough upon qualitative distinctions. Further routines in this part of the program compare errors as character strings to distinguish between umlauted vs. non-umlauted sounds (indicating possible orthographic interference), lip-rounded vs. non lip-rounded and umlauted vs. other umlauted vowels. These categorie usually account for approximately \(50 \%\) of all studen perception errors.
The following would serve as an example of the nature of a small segment of the analysis routine. A statement intending to express the substitution factor of lip-rounded basis the mutual vowels and vice versa would use as basis the mutual substitutions of \(\mathrm{y}: / \mathrm{Y} / \mathrm{b}: / \mathrm{oe}\) for
\(\mathrm{i}: / / / \mathrm{e}: / \mathrm{\varepsilon}\) and vice versa i: \(/ / / \mathrm{e}: / \mathrm{\varepsilon}\) and vice versa. The letter codes would analyze
substitutions of ABCD for the routine would identify them as numbers \(1,2,3,4\) for 12, 13, 14, 15 and vice versa. The complete statement for this routine is given below as lines 6540 through 6570 as it actually occurs in the program.

\section*{REFERENCES}

6540 IF ER \(>0\) then if \(0 \$=" p\) " OR \(0 \$=" P\) " THEN LPRINT
 Al\$:PRINT A2 \(\$:\) PRINT A \(3 \$: P R I N T\)

6550 ER \(=\) CRII 1,12\()+\) CRI(1,13) + CRII (1,14) + CRI(1,15)
\(+\operatorname{CRI}(2,12)+\operatorname{CRI}(2,13)+\operatorname{CRI}(2,14)+\operatorname{CRI}(2,15)+\operatorname{CRI}(3,12)\) \(+\operatorname{CRI}(4,14)+\operatorname{CRI}(4,15)+\operatorname{CRI}(3,15)+\operatorname{CRI}(4,12)+\operatorname{CRI}(4,13)\)

6555 ER=ER+CRI(12,1) + CRI(12,2) + CRI(I2,3) + CRI(I2,4) \(+C R I(13,1)+C R I(13,2)+C R I(13,3)+C R I(13,4)+C R I(14,1)\)
\(+C R I(14,2)+C R I(14,3)+C R I(14,4)+C R I(1,1)+C R I(15,2)\) CRI(14,2) + CRI(14,3) + CRI(14,4) + CRI(15,1) + CRI(15,2)
(

560 Al\$=STR \(\$(E R)+"\) ERRORS OR" + STR\$(INT (ER/NW*100)) +"\% ARE DUE TO THE INABILITY OUNDED A DISTINGUISH": A2S="BE NBENT VOWEL S. BE ATTENTIVE"

6570 A3\$ \(=\) "OF THE DIFFERENCE BETWEEN [ \(\mathrm{i}: 1 /[\mathrm{y}:\) ] e: \(/ / / 4+\) CHR \(\$(S C R(14))+\) " \(]\) ETC \("\)

The program has been further developed to provide more detailed diagriostic analysis of individual vowels. A student can choose to review the errors for individua owels. The most common errors indicated as substitutions in Figure 1 are then diagnosed in detail along with he severity of that error. For example if [ i: ] were erceived as [I] a statement indicating that the long owel (bieten was perceived as short (bitten) would epear; if i:] were perceived as [e:] a statement would uality (bicating that the perception was one of the wrong uality (beten instead of bieten); or if [ i: ] were perlived as \([\varepsilon\) ] a statement would follow indicating that a uality (botten was perceived as a short vowel of lower eflecting all instead of bieten). In this fashion errors rief explanations as to the nature of the errar are RESULTS

This analysis program has provided a useful tool in attempts to correct perception errors. It affords the possibility of self-administration of the test and repeated attempts at frequent intervals to monitor progress towards the elimination of errors. It furthermore allows the opportunity to concentrate efforts in goal-directed nature on specific perceptual problem areas. Since the nature of the errors are by and large predictable based and contrastive phonetic distinctions between English providing , this program could be further enhanced by correlative moving graphic illustrations on the screen yielding the to specific physiological activity produced in coupled to a error. The program also has the potential precursor to digitizing/synthesizing package to serve as a correction of pronunciation errors interactive video display the errors. Together with an "computerized phonetician," at least within a limited context where errors are relatively predictable.
[1] Weiss, R. "The Role of Perception in Teaching the German Vowels to American Students," Proceedings of the IVth International Congress of Applied Linguistics, Vol. 3, Stuttgart: Hochschul Verlag 1976, pp. 513-524.
[2] Weiss, R. and H.-H. Wängler, "Über das Unterrich ten deutscher Vokalwerte auf der Grundlage perzeptorischer Normen," Forum Phoneticum, Vol. 5 Hamburg: Hêmut Buske Verlag, 1978, pp. 63-78. Weiss, R. and H.-H. Wängler. German Pronunciation: A Phonetics Manual, Bellingham: Western Washington University Press, \(1985,386 \mathrm{pp}\).
[4] Weiss, R. "Perception as an Aid in Teaching Pronunciation," Proceedings of the IXth Internationa Congress of Phonetic Sciences, Vol. 1, Copenhagen: Institute of Phonetics, University of Copenhagen 1979, p. 426.
[5] Weiss, R. "A Perception Test as a Diagnostic Too in Teaching German Pronunciation," Current Issues in the Phonetic Sciences II, (ed. by H. and P. Hollien), Amsterdam: John Benjamin, B.V., 1979, pp. 905-916.
[6] A second version of the test is now almost complete which allows specific vowels to be isolated and provides immediate feedback of errors. It is expected that this version will be particularly goal-directed practice of to determine whether cant effect upon changing perception has a signifi-
[7] The analysis routines and sub-routines were devel oped according to the aubor's specifice Scott Honaker, a computer prors specifications by at Western Washington University.
[8] Printworks is a registered tradity.
Inc., 7192 Kalanianaole Hwy., Suite 205, Honolulu, Hawaii 96825 . For this application Version 1.0 (Copyright 1984) was used.

\section*{TEACHING PHONETICS USING THE PHONETIC DATA BASE ON MICROCOMPUTER}

\section*{JOHN H. ESLING}

Department of Linguistics
University of Victoria
ictoria, B.C. V8W 2 Y2 Canad

\section*{ABSTRACT}

Development of a microcomputer-based speech processing, Development of a microcomputer-based speech processing incorporation of revised techniques in the teaching of basic phonetics. The Micro Speech Lab and related speech editing software permit acquisition, storage, random-acces retrieval, variable-order selection, marking, concatena tion, and auditory and visual comparison of phonetic data. erse languages illustrating a variety of phonetic contrast have been collected for research and instructional applications in a Phonetic Data Base. Tasks are described which give phonetics students the opportunity to collect speech sound data, hear and evaluate linguistic and indexical contrasts, and extract short samples for illustration, compari

THE MICRO SPEECH LAB SYSTEM
The procedures for phonetics instruction described here are the direct result of the development of a Micro Speech Lab microcomputer-based system for capture, playbac and analysis of speech and other acoustic signals. Micr age for use with IBM (PC, XT, AT) microcomputers, designed and developed in the Centre for Speech Technology Research/ Phonetics Laboratory at the University of Victoria. MSL contains a software diskette and internally mounted data acquisition hardware including anti-aliasing filters, A/D and D/A circuitry, and a user's use and applications [1]. The software includes user control of signal input, several waveform displays, audio out put, analysis (amplitude, pitch, spectrum) and file management. Phonetic instruction using MSL applies this rapid random-access speech input/output capability to the recording, storage, recall, comparison, visual waveform able auditory presentation of speech sound materis, and lected in a Phonetic Data Base
In addition, a program written to supplement MSL's speech-capturing, storage and processing capabilities, MSL Drm, allows students to access and display graphic wave orms of sampled data files in order to listen to words o vary listening sequences, edit existing files, and combin elements of old files into new files. "Designed as a supplementary package to accompany the Micro Speech Lab, the purpose of the program is to provide a highly flexible nethod for auditory examination and manipulation of digi tally stored signals" [2]. Up to five sampled data files can
be displayed and monitored individually, in reverse, or in continue
any file.

THE PHONETIC DATA BASE
To provide a core of linguistically organized speech data for instructional and research purposes, a Phonetic Data Base of speech samples has been assembled using MSLi. guistic and dialect survey sources, represent a wide range of speech sounds of languages of the world. Samples are digitally encoded using the MSL capturing routine on the IBM-PC microcomputer. Files are stored by language on diskette or hard disk and documented on paper by number for reference to phonetic, phonemic and orhog Examples of phonetic sounds that are normally difficult to obtain, and phonemic inventories of a range of languages not usually encountered or available during the course of most phonetics classes have been included. Languages collected thus far include: Egyptian Arabic, Inuktitut, Korean, Miriam, Nitinaht, Nyangumarta, Rutooro, Scots Gaelic, Skagit (Coast Salish), Spokane, Turkish, Umpila, text files for each language have been stored in the current library.
This system has been made available to students in phonetics classes, including those in Applied Linguistic (Teaching English as a Second Language) teacher preparation programs. Individual words and short texts are accessed from diskette or hard disk directories and by the instructor to focus on particular auditory categories. Most tasks are carried out with MSL EDIT, and most are per formed outside of class time.
REVISING METHODS OF INSTRUCTION
The Phonetic Data Base (PDB) is intended to provide a practical, accessible and realistic mechanism for experiencing, comparing and evaluating the range of the mult dimensional acoustic space reflected in the phonetic chart. [3], and illustrates to prospective teachers how students 3, and illustrates to prospective teachers how sems in a can be enabled to collect and store language
The goal is to enhance phonetics instruction by incorporat ing the PDB and MSL delivery system with a number or recent developments in second language acquisition tech into the structure of the phonetics course. Revised setniques emphasize the role of prosody, including voice set
ing, in the initial stages of phonetic exposure rather than ocusing attention immediately on segmental analysis. of phonolog to the interpretseech, for listeners first encountering a new language.
Auditory recognition and assignment of written symbols to epresent categories of sounds are the central skills to be distening/speaking tasks that emphasize aural discrimination rather than production [6] [7]. Many current, popular 2 teaching approaches omit explicit teaching of pronunciation [8] [9] and may leave language teachers with no lear model of how to present L2 speech sounds other than their recollection of how they themselves were taught phonetics. This decrease in overt attention given to the alarm [10], and it is hoped that this discrepancy can be partially reduced by introducing a modified approach into e course where language teachers originally learn phoetics.
The emphasis in L2 teaching is shifting away from the tatic model approach based on the ideal phonemic inven lory of the target language taught in a dedicated pronun-task-based activities designed to provide larger amounts of 22 for manipulation by students [11]. Where pronunciation is taught explicitly in L2 programs, the focus has shifted to ord-level meaning contrasts rather than phoneme drills, and to the early introduction of prosodic features [12] [13] (14] [15]. Specific conditions found to benefit L2 acquisition and teaching include: (1) diversity of language and practice in perception before production is required, (3) clear identification and association of concrete referents, assimilated at the student's own pace, (4) presence of significant target language models, especially of peers
\([16]\)
The benefit for phonetics teaching is the range of access capability of MSL. and memorization in production of segmental units, MSL allows students to satisfy perceptual criteria by obtaining derstandable "input" of sounds in their natural contex core having to produce "output" [17]. Students can having recorded examend sequence using MSL, rather than The criterion of identification with in uncontrolled order students use MSL to choose specific individuals' voice listen to and arrange spoken material into phonetic build ication schemes [18]. In this way, students gradually phonetic inventory of sounds and symbols, to complete the and classified, based on "input" which they have collected les they fird themselves according to the phonetic princithey are learning.
TASK-ORIENTED INSTRUCTION IN BASIC PHONETICS
To use the PDB, groups of 2-4 students sit at a "work-
station" to station \({ }^{n}\) table around one computer with external speake and texts are writing and reference materials. All words number, to be typed in when calling up an item. Lists orthoge phonetic and phonemic transcriptions of each item available phic representations in the native language i types of sound English glosses. The instructor first assigns containing thos for students to listen for, with lists of files at the long-term level, on features of phonation type voice setting, and dynamics [19]. Some features which can
be identified from PDB text samples in this long-term lis tening exercise include tongue fronting, breathiness, close nent manners or secondary articulations such as retroflex ion, clicks, approximants, frication, affrication, glottalization. Figure 1 illustrates an MSL EDIT displa contrasting recurring clicks of Xhosa (screen A, top) with the acoustic waveform and articulatory characteristics of an Inuktitut text (screen B). The set-up indicates tha intervals.

Figure 1.
MSL EDIT display of Xhosa (top) and Inuktitut text.


 Pitch, amplitude and spectral characteristics can also be calculated and displayed by MSL, adding recognition of visual correlates to the task of becoming familiar with a where the Inuktitut text has This is illustrated in figure tude (middle screen) and pitch (bottom screen) over time. Read-outs represent values at the position of the left curor. In figure 2, left and right cursors have been placed to the entire waveform, can be monitored using D/A by pressing the function keys indicated in the menu scroll. This capability is also present in MSL EDIT.

Figure 2.
MSL amplitude and pitch display of Inuktitut text.


HIE: 0.88368 SECS FRAME: 36 ENERGY: 4884 HICH TREQ: 128 H2

Students locate new sounds, manipulate elements of stored tems, arrange them in categories, and create new sets of iles that represent the inventory of speech sounds from
he phonetic chart to meet the instructional objective of
the course. Evaluation of the task considers: (a) number and range of representation of sounds collected, (b) adequacy of each item extracted from surrounding speech to into phonetic categories for presentation. The goal is for students to become active agents in their own learning process while, at the same time, learning the use of instrumental techniques.
tems are collected with task-based instructions: "Find all words from the following languages that have sound \(X\) in them," and then "Find the sounds that the following words have in common" and "Group the following words ogether according to sounds that they share in common." Once collected, the sounds are studied in detail and gradually assigned phonetic symbols. Sounds isolated in this process are then grouped together in new files representing guage. Isolated sounds can also be combined in new files epresented by the same phonetic symbol, but which have been taken from different languages. Figure 3 illustrates how short samples can be collected, marked and displayed. The cursor in each screen is aligned at 0.021 sec to high ight initial consonant differences.

Figure 3.
ASL EDIT display of similar CV sequences.
Xhosa [t'a] Korean [ \(t+a]\) Nitinaht [t'e] Skagit [t'e]

\section*{}

4hnkuxth


\section*{}

HIDTH: 0.213 sec
 If pharyngeal sounds need to be demonstrated, for example, the pharyngealized series of stops, affricates or nasal from Salishan and Wakashan languages, or the pharyngeal ized series from Arabic, are loaded for auditory contrast and transcription and visual observation of acoustic correlates. Extensive exposure is achieved by having students on the phonetic chart, especially for sounds or symbols they find difficult and want to practice. In another activity format, as a testing or "challenge" pro cedure, five items are displayed for visual identification. The instructor or a student specifies a sound by phonetic symbol or articulatory label, for a group of students to
locate. Cursors can be positioned on the screens to isolat the sound and examine its transitions. If the indicated sound is not present, the item(s) closest to it in articula tory features must be identified.
CONCLUSION
With the development of a Phonetic Data Base, the pres entation of speech sound material for phonetic study is
facilitated, allowing expedient access to greater amounts
of data, and manipulation and organization of speech items in an active learning format. The system also permits the training of language teachers in the use of technological aids for the delivery of speech sound information, in a manner consistent with the precepts of communicative, holistic language learning theory. Research on second language acquisith Micro Speech Lab hardware and software for delivery and analysis of speech signals to provide an expedient system for presenting phonetic material for pedagogical purposes. Additional applications of this system include the transmission and sharing of speech data for collaboration in phonetic research.

\section*{REFERENCES}
[1] C. Dickson, User's manual for Micro Speech Lab, Software Research Corporation, 1985.
[2] C. Dickson, User's manual for the MSL comparison and editing program: MSL EDA, Centre for Speech Technology Research Society, 1981. [3] F. Smith, Reading without nonsense, Teacher
[4] E. Stevick, Me
[4] E. Stevick, Memory, meaning and method,
[5] S. Savignon, Communicative competence theory and classroom practice Addison-Wesley, 1983.
[6] J. Morley, Improving aural comprehension, University of Michigan Press, 1972.
[7] P. Dunkel, Developing listening fluency in L2: Theoretical principles and pedagogical considerations, Modern Language Journal, 70, 99-106, 1986.
[8] S. Krashen, T. Terrell, The natural approach, [9] Pergamon, 1983.
[9] E. Purcell, R. Suter, Predictors of pronunciation accuracy: A reexamination, Language Learning, 110) R W,
[10] R. Wong, Does pronunciation teaching have a place in the communicative classroom? Georgetown University [11] G. Brown, G. Yule, Teaching the spoken language, Cambridge, 1983.
[12] H. Woods, Syllable stress and unstress,
Canadian Government Publishing Centre, 1978.
13] J. Esling, R. Wong, Voice quality settings and the
teaching of pronunciation, TESOL Ouarterly, 17 , teaching of
\(89-95,1983\).
[14] J. Gilbert, Clear speech, Cambridge, 1984.
[15] B. Harmegnies, A. Landercy, Language features in the long-term average spectrum, Revue de Phonetiqu Appliquée, 73-74-75, 69-79, 1985.
[16] H. Dulay, M. Burt, S. Krashen, Language two,
Oxford, 1982. second language learning, Pergamon, 1981. [18] T. Terrell, Acquisition in the natural approach: binding/access framework, Modern Langug
Journal, 70, 213-227, 1986. Journal, 70, 213-227, 1986.
19] D. Abercrombie, Elements of general phonet
ics, Edinburgh University Press, 1967 .
Acknowledgements. I am indebted to my co
researchers, Geoff O'Grady, Thom Hess, Barry Carison, researchers, Geoff O'Grady, Thom Hess, Barry Cars are and numerous colleagues and graduate students who Phonetic Data Base. The indispensable cooperation and collaboration of Craig Dickson and Roy Snell of the Centre for Speech Technology Research at the University or

Victoria in conceiving and developing microcomputerbased speech processing systems is gratefully acknowlSocial Sciences and Humanities Research Council of Canada.

\section*{GRAFISCHE MODELIIERUNG DER SPRECHBEWEGUNGEN
MIT HILFE EINES KLEINCOMPUTERS}

GERHART LINTNER

Sektion Rehabilitationspädagogik und Kommunikationswissenschaft, Humboldt-Universität Berlin (DDR) 1040

ZUSAMMENFASSUNG
Die Entwicklung der Computertechnik macht s möglich, die artikulatorischen Bewegungen beim Sprechen auf einem Monitor zu Hochschulunterricht eingesetzt werden \(k\) nen, ist ein Programm, das sich mit Hilfe ines Kleincomputers darbieten läßt, von vorteil. Zu einem Grundmuster des Kopfes werden die Bewegungen der Artikulationsor gane (Iippen, Unterkiefer, Gaumensegel) sen. Bei Eingabe der rogrammen ausgewiezusammengefigt. Die Zungenlinie wird dura einen besonderen Algorithmus ermittelt, in em die Laute fixierte Hơhepunkte darstelen. Um den Bewegungsablauf auch in den wischenphasen wirkiichkeitsgetreu abbilaufnahmen notwendig Fur vergleich mit Real che wird das Ergebnis der Modelliche Spra Röntgen-Zeitlupen-Aufnahmen verglichen, ie bereits ausgewertet sind und an denen elnige Gesetzmäßigkeiten des koartikulatolischen Bewegungsablaufs ermittelt wurden. genlinie erfolgt in drogramms fur die Zunneare Interpolation, 2. Beriicksichtioing des differenzierten Bewegungstempos der ikulationsorgane, 3. Berücksichtigung der autubergreifenden Koartikulation.
1. NOTMENDIGKEIT DER MODELIIERUNG ARTIKUSCHER BENEGUNGEN
Das Sprechen ist ein weitgehend automatiserter Prozeß, bei dem eine Vielzahl vo rganen hisiert im Organismus gelegenen nbildung oder der Korrmektur des. Bei der ist es notwendig, in diesen automatisieren Prozer gehen zu können ist es. Um rationell vorjenigen Artikulationsbewegungenlich, dieten und zu nutzen, die richtig ausgerturrt werden, und gleichzeitig diejenigen Bewe gungen zu korrigieren, die fehlerhaft sind. Dazu muß der Pädagoge uber differenierte Vorstellungen und detaillierte Einolochtenen Bewegrozeß der miteinander ververfügen. MENZERATH hat dieses komgane Geschehen anschaulich als Sprechbewegungs-

Den Sprechbewegungsablauf darzustellen und zu lehren ist deshalb besonders schwierig weil
- nur Hohepunkte des als Gesamtablauf ube das akustische Klangprodukt kontrollierte - die Umsetzung der Lautsprache in die

Schrift nur diese Höhepunkte nutzt und da mit die Orientierung des Kenntniserwerbs in bezug auf Ausschnitte aus dem Gesamtkomplex unterstatzt
- sich die Organe nicht, den isolierten Lauten entsprechend, plötzlich und ruckarmonischen Bewegungsgeschehens die Positionen durchlaufen, die den Lauten entsprechen,
- sich gerade zwischen den als Lauten gekennzeichneten Höhepunkten wichtige Bewegungen einzelner Organe vollziehen,
Organe unterschi Bewegungen der einzelnen in den akustisch wirksamen Gesamtprozeß eingeht,
- sich die innere Anschauung uber das Bewegungsgefuge nicht aus der Selbstbeobach tung gewinnen läßt, da wesentliche Bewegungen der unmittelbaren Beobachtung ent-
Zum Zweak

Zum Zweck der Korrektur und der systemati schen Anbildung muß der Pädagoge in der Lage sein, den komplexen Bewegungsablauf in seine Einzelheiten aufzulðsen. Die Ver mittlung dieser Vorstellungen ist ebenfalls schwierig, weil
ne auf die Bewegungentung der Sprechorga kiefer und Zungenspitze beschränkt ist, - sich nur wenige Organe taktil kontrol lieren lassen,
- die auditive zeitliche Differenzierung wohl zur Erkennung der Laute, nicht abe der Lautilibergänge ausreicht, stimmlosen Perioden des Sprechens vollziehen, weder auditiv noch meßtechnisch ber das akustische Signal erfassen lassen wie sien phonetischen Anschaungsmitteln, wie sie sich in Lehrbuichern finden, las son sich zwar Kenntnisse tiber die lautbeDiese Kenntnisse betref vermitteln.
punkte des miteinander verflochtenen Bewegungsablaufs und nehmen auf die Veränderungen bei der Koartikulation keinen Bezug. Fur die effektive Korrektur des zusammenhängenden und die Anbildung des dig, daß der Pädaro ist es aber notwenBewegungen der Sprechorgane wie sich die Ausschnitten vollziehen, damit er betm Schiller die notwendigen Bewegungen stimu 1eren, entwickeln und kontrollieren kann. denn der schuler muß beim Sprechen Bewesungen vollziehen, und der Lehrer muß diese bewerten.
ein anschauliches es deshalb notwendig mit dem sich die Bewegungen der Artikulationsorgane beim Sprechen demonstrieren lassen. Dadurch wird der Lernprozeß, der zu anwendungsreifen Vorstellungen funrt, abgekurzt und gleichzeitig über das Niveau schauungsmitteln erreichbar ist.
2. VORAUSSETZUNGIN FUR DEN IÖSUNGSANSATZ Jamit die Aufgabe,die mit Hilfe der Compu tergrafik losbar geworden ist, realisiert werden kann, mussen eine Reine von verein-- den Verzior - die Darstellung der Beweruan in zweidimensionaler Abbildung
- die Beschränkung auf die deutsche Stanten auf Sprache, wobei spätere brweiterungen auf Sprechfehler, Dialekte oder Fremdsprachen vorgesehen werden,
- dung Kontinuität der zeitlichen Auflö-
sung, da die Bewegungen ohnehin auf einem Damit eine computercrafisch
vollzogen werden kann, werden heiten des Kopflängsschnittes nach bewährtem Muster in unbewegliche und bewegliche Trgane unterteilt. /5/ Die unbeweglichen werungen und ten. Sie sind der ronstante Teil des fischen Programms:
- Oberkiefer mit Zähnen, Ansatz zum Nas raum, hintere Rachenwand, Kehlkopf mit Die artipen in einer Mittelstellung. des Sprechlatorischen Bewegungen während hen darechens werden von folgenden Orga-- Unterkiefer
oberlippe, Unterlippe, Gaumensegel und dungenlinie.
Stimmliptellungen und Bewegungen der Darstelppen sind in der zweidimensionalen darstellung des Kopflängsschnittes nicht st replant, sie in einer anderen Abbildungsebene (Draufsicht) in einer Ecke des lides einzublenden. Die aktuelle Lautfole der modellierten Bewegungen wird in honetischer Umschrift dargestellt.
3. PRINZIPIELLE•SCHMIERIGKEITEN EINER

Die Modellierung artikulatorischer Abläue ist deshalb schwierig, weil es sich um die von der phonetik bisher nicht oder kum erarbeitet worden sind nich oder tisch nicht gebraucht wurden. Sowohl bei der Anbildung und Korrektur des Sprechens is auch im rremdsprachenunterricht können sich Lehrer und Schiler auf voll eingeubte Bewegungsautomatismen stutzen. Auch bei e der Organe, die zum Sprechen notmend sind, fur den rein emotionalen Ausdruck und zur Nahrungsaufnahme in einer bestimmen weise eingespielt. Diese Bewegungen ussen im Verlauf des Lernprozesses umgeit der und anders koordiniert werden. vegungen der Sprechorgane sind die einzelnen Teile, die im Modell separat dargestellt werden müssen, zwangsläufig miteinander verbunden und in ihrem BewegungsinFentar aufeinander abgestimmt.
ur die Modellierung der Bewegungen fallen inventar einschränken, Außerdem entfalilt ie Möglichkeit, das auf dem Monitor Modellierte durch den akustischen Effekt zu kontrollieren. Fur die Modellierung gibt es bisher keine Vorgaben für Grenzbedingungen der Rinstellungen oder Bewegungen wirken; denn den Unterrichtsproze \(B\) nicht gebraucht Deshalb steht die Modellierung von artikulatorischen Bewegungen heute vor Schwierigkeiten, die denen gleichen, die die akustische Sprachsynthese zu Beginn ihrer Arbeiten uiberwinden mußte. Das System fur die Sprechbewegungssynthese ist ein offebildichen Darstellungen der Sprechorgane realisierbar, auch solche, die auf den ersten Blick ais unsinnig erkannt werden ( \(z\). B.wenn die Zunge aus zwei Teilen besteht). Die Schwierigkeit besteht darin, dab die Darstellung exakt der Wirklichkeit entgetreue und anwendbare Vorstellungen von Bewegungsvolizugen vermittelt werden. 4. VERPAHREN DES LÖSUNGSTEGES

Damit ein Gesamtbild modelliert werden kann, muß es nach bewaihrten Grundsätzen, gewendet werden, in einzelne Teile zerlegt werden. Als Teilbilder werden benutzt: - Das Grundmuster des Kopflängsschnittes. Es wurde nach anatomischer Vorgabe entworfen. /6/
terkiefers. Zwischen maximaler wien des Unterhiefers. Zwischen maximaler Weite und vorgesehen. Als 10. Position ist eine retrahierte Stellung geplant, um die labiaien Ingelaute darzusteilen,

Die aktiven Einstellungen von Ober- und Unterlippe. Dabei setzt die Oberlippe an eststehenden Punkten des Grundmusters an. ie Bewegungen der Unterlippe sind von der Position des Unterkiefers abhängig. Obwohl bekannt ist, daß in bestimmten artikulatoischen Abläufen die aktiven Bewegungen
timmen, wurden sie auf der Grundlage einer gemeinsamen Aktivität modelliert.
Die verschiedenen Stellungen des Gaumensegels, dessen Darstellung an Festpunkten Fur dindmusters ansetzt.
Fur die Erweiterung des gegenwärtigen Programms ist auch die Modelilerung der zu beriucksichtigen daß neben der Stimmtellung auch die Einatmungs-, Hauch-,Flu-ter- und Ruhestellung zu sehen sind. Die Bewegungen von Unterkiefer, Ober- und Unterlippe, Gaumensegel und auch der Glotis lassen sich mit Hilfe eines relativ se Bewegungen immer in der gleichen Weise wiederholen und die Variationsmoglichkeien gering sind.
ribere Schwierigkeiten bereitet die Moellierung der Zungenlinie, da sie einerbhan vis den bewegungen des unterkieler stens zwei Hauptabschnitte (Zungenspitze und -rücken) aufgeteilt werden muß. m diese komplizierte Bewegung mit vielen bergangsmöglichkeiten modellieren zu konnen, wurde ein spezielles Koordinatensy-
s hat sich als
ungentinie mit ausreichend erwiesen, die ie Zwischenräume durch gerade Strecken miteinander zu verbinden. Diese Punkte liegen an den Stellen maximaler Krimmung. a bei den Vokalen der gesamte Hohlraum des Ansatzrohres an der Klangbildung beter Zungenlinie we entschieden, alle Werte onsonanten wurde eine pipecrenzierun den orgenommen, indem jene Gebiete der Zun genlinie, die unbedingt eingenommen weren müssen, von solchen unterschieden werden, die bei der Lautbildung koartikulam orisch veränderlich sind.
as Programm wurde von Anfang an so konzizungsfähig ist und daß es in einem späte en Stadium mit dem Sprachsynthesator OSY \(4201 / 7 /\) zusammengeschaltet werden ann, so daß dann die Möglichkeit gegeben st, die Visuelle Synthese mit der akustius den Teilbewegunce
Ifppen, Gaumensegel und Zungenlinie läßt sich die beim Sprechen einer beliebigen Lautfolge notwendige Bewegung der Artiku lationsorgane als Ganzes modellieren. Dam bei reicht es aus, die Bewegungen, die hen, zu einem Bild zusammen ms vollziefeinere Unterteilung ist weder nötis noch
möglich, da auf dem Monitor pro Sekunde nur 50 Halbbilder gezeigt werden. fur den Zeittakt wurden die Polgenden Vorgaben konzipiert, um die Wirklichkeitstreue der Modellierung zu aberprüfen. Die Vorgaben fur den Zeittakt wurden aus der facht. Die Zeittakteinheit (ZTE) vurde als 20 ms festgelegt. Es beträgt die Dauer - eines kurzen Vokals

ZTE
- eines langen Vokals
- eines Diphthongs
- des Murmelvokals
- eines Konsonanten 52 ZTE keit von der Akzentuierung modifiziert - Zuschlag zu einer betonten Silbe 3 ZTE - Kiirzung bei einer unbetonten Silbe 2 zN Der Vergleich mit dem real produzierten Sprachmaterial wurde an dem gleichen Testsatz vollzogen, der röntgenkinematografisch aufgenommen und au sgewertet worden war. /9/ Dieser Testsatz, der die häufig"Vie denn, ist das einer der Steine, die ich im Winter anderwärts gefunden habe?" Die Zeit fur die Modellierung ergibt nach den oben angegebenen Zeittaktwerten eine Dauer von 5,36 s und liegt damit inner5. STANDORTBESTIMIUNG FUR DIE REALISIE-

Venn man davon ausgeht, daß die Laute Hohepunkte des artikulatorischen Geschehens sind, dann ist es möglich, die fir die Lave te entwickelten Gesamtbilder als die fusm gänge zu nutzen. Es wird zunächst davon abgesehen, daß auch die Lautpositionen ill zusammenhängenden Sprechen veränderlich sind.
Es ist bekannt, daß vor allem die Konsonanten, aber auch die Vokale, koartikula torischen und akzentabhängigen Verändeder Realisiemung unbetonter Silben der Rede ausdruckt. Sie sind fir das Russische besser aufgearbeitet als fir das Deutsche. \(/ 10 /\)
Fir das Deutsche liegen sie weder in algorithmisch nutzbarer Form noch in verwertbaren Abbildungsunterlagen vor. Deshalb wira bei der modellierung zunachst anten. Sie stellen im Modell die Phasen dar, di die Artikulationsorgane bei der Aussprache einnehmen oder wenigstens durchlauren Bei den langen Anteilen eines Lautes dann die fur den Laut vorgegebene Positen. Bei den kurzen Phasen gied diese pha se zwar als Zielposition fur die Modelse zwar als dielposition fur aie nach deren Breichen sofort als Ausgangs position fur die Ansteuerung zum naichsan die verwendet.Der Betrachter erter nur
als Durchgangspnase
Als einfachste Möglichkeit, die Übergänge ich die den Lauten zu realisieren, biete erfahre lineare Interpolation an. Diese Damit die Veränderungen, die sich inner. halb einer Lautfolge vollziehen, gut perzi pierbar sind, werden, ehe sich das Bild zu änderungen als Vektoren abgebildet. (Abb.1)


Abb. 1: Cornputerausdruck eines Fositions bildes mit den Bewezungsvektoren zum
orelaut.
Die zweite Moglichkeit ist, die unterriedliche Bewegungsgeschwindigkeit der und Iippen sind schnelizen. Zungenspitze aumensegel sind langsambewegiche Organe it diesem Algorithmus, der vor allem die hohe Beweglichkeit der Zungenspitze beolge "htigt, wurde zeichnerisch die Lautin urer steine modelliert. Dies ist als rönt erschiedenen Versuchspersonen vor ergleich zwischen Modelilerung und Real/49anmen erfolgte mittels des Motogramms. Der Vergleich zeigt gute bereinstim-
ung zwischen Modellierung und Realaufnah nd Die Modellierung liegt innerhalb der e dritte
irklichkeit Stufe der Annäherung an die
esteht in der Berücirsichtiguns der koarkulatorischen Bedingungen, wobei beriicken stigt werden muß, daß die Konsonanten men
rungen ausgesetzt sind
6 MIT DIM PROGRAMM ERZIELTE BRGEBNISSE
Jas Programm wurde mit dem Ziel ausgeareitet, daß es als Lehr- und Unterrichtsdittel verwendet werden kann. Deshalb wurHochsfur den an allen Universitaten und puter KC \(85 / 2\) ausgr vorhandenen In eincom-
wiesen, daß ein so umfangreiches und komplizier Programm, wie es tur die BeweGleincomputer notwendic wird, mit einem Teil der Studenten wurde dadurch das das Programm in den planmäßigen Lehrprozeß des Phonetikunterrichts einbezogen wurde, die insicht in die Dynamik der Physiologie to sprens are Beschan mit artikulatorische Beweguncsvorazingen wesentlich sti muliert.
noch aufe, die das Programm heute nonsive weist, zeigen, daß noch in rerden mússen, um unsere Kenntniss liber die Physiologie artikulatoricher Bewegungsvollzuge zu erhotzen uir eine in allen Belangen wirkichkeitsgetreue Modellierung. Es ist anzunehmen, daß die prinzipille Moglichkeit, Sprechbewegungen computergrafisch zu modellieren, ijr diesbezifgliche rorschung verleiht.
7. LITERATUR
/1/ MENZRRATH, P. u. A. DE IACERDA: Koartikulation, Steuerung und Lautabgrenzung. Bonn 1934
/2/ WANGLER, H. H.: Atlas deutscher Sprach laute. Berlin, 7. Aufl. 1981
tung: H. STÖTprache. Leipzig 1982 der deutschen Aus14/ FANT, G.: Phonetik und Sprachforschung. In: Handbuch der Stimm- und Sprachheilkun de (IUCHSINGER/APNOLD). Wien/New York
1570, S. SNINER, G.: Grundlagen und Anwendung d 6 / RAUBRRIK. Berlin 1981 BCH: S. 89 fehrbuch und Atlas der Anatomie des Menschen. Bd. II, Leipzig 1955, S. 66
/7/ MPHNRRT, D. Analyse und Synthese suBeitras zur Optimierung technischer Sprachlommunikationssysteme. Diss. (B), rechn. Univ. Dresden, 1985, S. 98 f土. 8/ IAZICIUS, J.: Lehrbuch der Phonetik. Berlin 1961, S. 120 ff.
19/ IINDNER, G.: Der Sprechbewegungsablauf. ine phonetische Studie des Deutschen. 10/ GABKA, K.: Einfuhrung in das Studium der russischen Sprache. Bd. I Phonetik und Phonologie (ㄹ. WIEDE). Leipzig 1 974, S. 85 - 95 /11/ LININER, G.: Das Motocramm - ein Mittel zur Verasschaulichung artikulatori-

Raymond THOMAS, Laboratoire de Langues, Fac.Sciences de Luminy, 13288 MARSEILLE Cedex9, France Jacques GENIN, DAII-SEIences St-Charles, U. d'Aix-Marseille I, 13331 MARSEILLE Cede F, F Robert H. GREEN, Dpt of Psychology, Ann Arbor University, Michigan 48100, USA
Hubert GREVEN, Fac. de Lettres et Sc. H., Université de Rouen, 76130 MONT SAINT AIGNAN, France Nils-0lof JøNSSON, Sprakkpedagogisca Forsknings AB, Box 63, S-230 10 SKANøR, Sweden
Antony MCKENNA, Laboratoire de Langues, Fac.Sciences de Luminy, 13288 MARSEILLE Cedex 9, France
William WEISS, Dpt of Theatre, University of Ottawa, OTTAWA Ontario, CENADA K1N \(6 N 5\)

\section*{Esume}

Une meilleure information sur les connaissances acquisesen acoustique de la parole pourrait être immédiatement disponible pour tous grace aux techniforme qu'elle pourrait adopter et prions membres et organisateurs du Congrès de préparer l'établissement d'un organisme représentatif qui poursuivrait la ré lisation d'une image visuelle, probablement syllaique, de la parole, hnformant ainsi dune façon saisfaisante de l'acquis scientifique en ce domaine.

\section*{AIMS}

At recent meetings of acousticians, I have pointed to the predicament in which we, who teach foreign labits the student should change in order to speeak another language well, but the scientific information about pronunciation that we need for that purpose, is too of ten lacking, or practically unavailable, or uncertain. At the 1986 International Congress on Acoustics at Toronto, I was asked to give ed, that question can be answered only in part, and that's why the drawings we'll show to give a clear answer, will be somewhat like dreams, made of both true and doubtful elements. Nevertheless, as will be seen, they should help in stating more precisely knowledge of speech, and suggest steps to be taken in order that better information on this subject ben made readily available to all.

\section*{what parts are best described?}

Though speech statements are unpredictable, their arts are limited in diversity, and thus susceptible scientific description. The most obvious elementary parts in speech chains are the syllables, but ants, and lately these smaller parts, in their turn, were analysed into smaller elements variously described as phonemes, features, indices, etc. The first roblem therefore is: what elementary parts of prounciation should be selected for a practical, real stic, and up-tu-date visual description of speech?
hree Reasons for Choosing Syllables.
entatively in these drawings, we have chosen syllables as basic units, and for a long time past, the three following reasons could have been given fre this inmediately perceptible to econd, we may therefore say that syllables are the basic units used by our minds to process speech if, for the sake of brevity, you forgive us for using such simple terms. Thirdly, the finer divisions vary according to the syllables in which they are to be found, and, for a scientific description, these var smaller elements, i.e. that of being less numerous than syllables.

Why Finer Divisions Are Unsatisfactory:
If vowels and consonants, and all the more, phonemes, eatures, etc., vary according to the other componmay be adopted.First, if we want to give a realistic visual representation of speech with vowels and consonants, we must distinguish between the various sounds that each of these may represent, This recent Iy led to the International Phonetic Alphabet, and we know that such notations cannot be satisfactory because too many diacritic signs make them mpariatons are noted.
A second attitude is to forgo writing as an unequivocal system of signs; this is what we generally do and, particularly for the study of our Western languages, it is one of the basic obstacles students have to overcome. But, more fundamentally, such an satisfactory basis for a scientific description of language sounds sinće what is then spoken of, in one instance, may not be the same object as what is dhis cribed in another, without our being aware of day hange in the object. Many problems of present acoustical researc

The Decisive Reason for Choosing the Syllables. But the practical reason which motivated our choice of the syllables as the basic units to be described n the speech chain, is pedagogical. For over tently y years now,
rather than to the individual vowels and consonants, soeakers to use the other tongue without and French epressible defects that mark our two communities as particularly unsuccessful among European students of foreign languages. This pedagogical advantage of restricted to French and English, but to seem to be other languages requires special studies for each of hese, and this was why we first asked acousticians for an improved general description of language ounds. The benefits for the millions of language tudents the world ovar, suggest the importance edagogy.

New Reason for this Choice.
shown that sounds have recentsarated in the time sequence as we formerly tha and as is recorded in our spellings. On the contrary syllables follow strictly the sequential character speech. At bottom, this may be but another aspect ost comolling reasons wa mentioned, but it is considering visual

\section*{HOW COULD SUCH DESCRIPTIONS BE ACCOMPLISHED?}

\section*{This question requires two different answers. As we} ret mited to do, we must give a precise view of his we shall find in such new descriptions, and
cal answer is also needed: showing what should pract could, be doneis in itself ineffectual; we must sol say how the necessary work can be accomplished his need for a better description of languages is just theoretical; congresses such as this are ization for a proces leading to some organenlighten us in their various fields.
first step we mentioned: switching more scientattention to syllables, is too heavy a task anyone, and therefore it requires the action of description of ative body. And in the course of our of speech, the a desirable new visual representatio will again be found in several convincing ways.

\section*{A FEASIBLE SYLLABIC VISUAL REPRESENTATION}

Though it cannot be done in this black and white of color would take advantage of the widening use three separate drawings for production, transmission and decoding of syllables. In these drawings, the common parameter of duration will be shown on the models wor "x" axes of our two-dimensional of the We have assigned different colors to each coresponding tings by specifying the lengths of the fourth view that black and white, the superposition of lines and areas would be confusing.

Lrbigs may mark the range been 7200 and 5600 Angstroms may mark the range of colors to be used in ited ( 5500 to 5000 A .) since the diversity in the airwaves pressures is not so large as for the phen omena described in Fig. 1 and 3. For this third fig5000 the corresponding lengthe would extend from 5000 to the end of the specter.
Using light-wave lengths as practical units may be interpreted with the help of computer the specifications of colors that computers manufacturers provide, could be more conveniently used. Hopefully, our research organization could work for standardization of these color specifications.
Further Notes on the Proposed Representation of
The various intensities, or degrees, in the recorded phenomena, could be shown by the intensity of the recorded phenomena, related facts or events could be pictured in the same colors. Some type of color correspondance could also be specified for related parts in the three drawings, whenever such relations are generally recognized.
Our drawings show individual production of pre general models of syllables, and not more or les "averages" are not yet established for a suffici classification among them. Only an important research organization could usefully set standards or verages" to obtin such classifications.
"Model" or "average" syllables could thus be determined, but several types of occurrences must be separately represented. To give just one instance accented syllables that of unaccented syllables. In our use of this complex information, a limited number of properly selected syllables would be sufficient for an efficent study bf the sound characteristics of a given oreign language. On the other hand, storing the arge volume of the pertinent information on all the for computers. Similarly, the calculations needed to obtain "average" or "normal" models from a suffic ent number of individual performances does not seem be unusually large either
Since such "models" are not available now, our resent drawings show the performances by a "normal" speaker or hearer in a given language for what we eem a repr syllables
e must also note that, similarly to the establish ent of "norms" of syllable occurrences, the decisons on many points in our drawings require a know ledge and an authority that can rest only with a representative research organization.
In our drawings, we have purposely included some obviously unusual opinions in order to underline one possible kind of up-ta-date visual representation and that our generally accepted opinions may have to be modified, for instance as a result of a wider study of speech in the various communities.
R. THOMAS

FIGURE 1 : SPEECH PRODUCTION


In this, and in the third pictures, we should imagphenomena, or groups of phenomena, indicated in the left margins. In these drawings, intensities or degrees are often marked by curves, and therefore various intensities of colors are not needed here; so these could be used for information that is not now available about these phenomena. Though we have be forgiven for insisting that these drawings are not meant to be complete, but merely to show how knowledge about language sounds may be accurately recorded in visual representations.
Perhaps we should have grouped together muscular actions in the higher or lower part, and the positions the figure. The aspect of the picture would change much according to such options. There are at least two often conflicting rules to be followed in all our drawings: \(1 /\) in the conventions we adopt, we should try to keep as near to actual facts as we can; In this, and still be as expressive as possible. picture, various factors will be nixed thatizing readily be isolated by an untrained user. However, though in a different way, this is also true for the sounds of real speech. So long as the same conventions are strictly adhered to for all representations, their artificial character is not to be unduly regretted.


Since reither the voice, nor the language, and not even the syllable are specified, this drawing is most arbitrary, and the sounds of speech it partly figure. In the cause more surprisyt, we purpasely marked a variation which is unusual in our European languages, in order to stress the fact that most of the five thousand, or so, languages have not yet been scientifically studied, not even briefly. Therefore, what we consideras basic and gef the production, transmission, and decoding of speech, could be less universal and necessary than we hold.

Fig. 3 decoding the nature of the total sound. Picture on top of next column. For a long time, this third vien shald remain the least complete of the three. Recognition of pitch is not achieved in one way only, as could be inferred from our drawing; but that is not the only point for which more know could already be noted. Still, in our picture we to have shown our opinion that it is not realinful speed without due caution. agree that, meaning being essential to speech, an enalysis that unguardedly excludes the meaningful aspect of language, runs a risk of being pointies or wrong. Perhaps will it still take many years before this opinion is examined by influential per-

\section*{Fig. 3 Aurral necartion and samantic(1) decoding Fig. 3 \\ }
to show that such representations of speech could be used to other ends than mere information. To defend the validity of this opinion however, perhaps we might note that, even in a language like
French, in which French, in which syllables are relatively uraffected ant variations due to their there are still importence, For instance, the syllable "in" which of ten means "negation" in some way or other, sounds quite differently in words such as "inexact", "innombrable" "innovation" impossible"; and still more unexpectedly in keeping with and "innové". Even more directly in may be more easily identified as a part of a word like "matériel" than if it is pronounced separately, as in contrast with "pa" or "ba", "fa", etc.
withountic decoding cannot be overlooked therefore, without unpredictable connot be overlooked therefore study of speech. We have even noted that, for the speaker speech fact, contexts generally differ for the speaker and the hearer. We have suggested only minor point cannot
int cannot be overlooked.
the need for a representative body
There facts are not usually taken into account, and ion are gerally speaking, points that require discuss on thesany. Only a representative body can decide should be controversial issues. Realistic drawings representative institution is most desirable to achieve this. And perhaps, for the third drawing should we have stressed even more than we did, that
our attitude about semantics was marked, not with view to have it accepted, but especially to show presentations of speech could have. A limited organ ization, not to speek of an isolated individual cannat be responsible for such a vast endeavor.

\section*{CONCLUSION}

Especially in their totalising pictures, which cannot be given without colors, our successors may bring a measure of beauty that must now remain a prints, perhaps our conventions will be modified in the future with this preoccupation in mind. or now, let's limit ourselves to voicing a wish that is probably in each of us: to have an easy and accurate means of access to all the findings which our colleagues will have gathered on our subject. now is to beg you, members and organizers of this meeting, not to leave it to a hypothetical future to take steps towards establishing a representative authority that can change our present dream into a not too far distant reality.

\section*{bibliograph}

BEANARD J. Comprendre et organiser 1 e traitement auCHOMSKY N. Language and Mind Harcourt NY 1968 DELATTRE P. "De la hiérarchie des indices acoustiques pour la perception de la parole" proc. 5th II Phon. Sciences 1962 244-251
Principes de Phonétique française, Middlebury College, Middlebury Vermont 2è éd. 1951
EIMAS P.D. "The Perception of Speech in Early InfanFOUCHE P. Traité de prononciation francaise Paris,
Kl'incksieck 1956
GENIN J. Contribution à I'étude des systèmes de prothèse auditive sensorielle Ms thèse Bu Grenoble' 87 GREVEN H. Elements of English Phonology Paris Puf ' 72 LAVER \(J\). The Phonetic Description of Voice Quality Cambridge UP 1980
LENAT D. B. "Computer Software for Intelligent systems" Scientific American September 1964
POLANYI M. "Sense-Giving and Sense-feading" Philosophy Macmillan Oct. 1967
SAUSSUAR (de) Cours de linguistique générale 1916 . " \(\frac{\text { turelles }}{\text { "Teaching }}\) Manusc. Thèse BU Rouen 1983
JASA
" "Recmerches pour 1'enseignement des prononciations étrangères" JEP ENST Paris 1985
"Pour décrire efficacement les phonétismes" 12 ICA Toronto 1986.
Time-Life Les images électroniques coll. Le Monde
des ordinateurs, Amsterdam Déc. 1986
WINOGRAD T. "Computer Software for working with
language" Scientific American September 1984.

\section*{PERCEPTION OF PHONETIC FEATURES IN SPEECH CODERS FOR} mobile communications

Maurizio COPPERI and Franco PEROSINO

\section*{CSELT - Centro Studi e Laboratori Telecomunicazioni -}

\section*{ABSTRACT}

This paper deals with the simulation in real time and the formal subjective evaluation of two mobile satellite system.
The effects of channel impairments, such as multipath fading and shadowing, on intelligibility scores is evaluated by means of the Diagnostic Rhyme Test. The subjective data have been examined
to pinpoint the fidelity with which distinctive features and specific phonetic cues are transmitted. Results show that a RELP coder at \(9.6 \mathrm{kbit} / \mathrm{s}\) incorporating an error protection scheme, provides a moderately good quality, while the \(2.4 \mathrm{kbit} / \mathrm{s}\) LPC vocoder yields a quality that is not felt to be commercially acceptable.

\section*{1. INTRODUCTION}

In our society, mobile communications have become a need for people and a major objective o real-worid (noisy) transmission conditions is a important aspect of this area, with several implications into the reliability and quality of existing and/or new services (e.g. mobile satellite and into coding systems.
In this work, two speech digitizers, that is Residual Excited Linear Predictive (RELP) coder a \(7.2 / 9.6 \mathrm{kbit} / \mathrm{s}\) [1], and a Linear Predictive Coder (LPC) at \(2.4 \mathrm{kbit} / \mathrm{s}\) [2], have been simulated and [3]. Useful diagnostic information Test (DRT) quality degradations can also be obtained using phonetically constrained sentences [4], instead of rhyming word pairs. Both RELP and LPC algorithms have been used in mobile communications. systems \([5,6]\)
Our major objective was the determination of trade-off relationships between speech intelligibi satellite systems. In this context, the main constraints to be faced are due to the available bandwidth and transmitter power of satellite and terminals. The bit rate reduction offered by effi incentive in speech digitizers represents an economic but the attainable subjective quality is of concer if the service should be extended from professional users to the general public.

More specifically, the coders must be capable providing acceptable quality also in the pre sence of multipath propagation and inherent signal fading. This degradation, which typically causes burst errors on the transmission link, can be miti gated by the use of error control techniques. The ing four channel models of increasing complexity to choose the optimal method. Results presented throughout this paper have been obtained using the McCullough model [7], which is characterized by 4 independent parameters and can be used to generate sequences that are similar to real-life erro sequences. In particular, in this study we cons, the
two examples of bursty channel environments, then former (channel No. 1) typical of land mobile com munications for open area into rural, the latter (channel No. 2) including multipath fading. A brief description of the coders is given in section The ORT structure is described in section 3, and the diagnostic scores are discussed in section 4.

\section*{2. CODING TECHNIQUES}

Both speech compression algorithms and channe models were simulated in real time on an array pros cessor FPS-120 B connected to a VAX 11/785. The coding systems run in half duplex and use a specific audio processing front end with 14-bit A/D \(200-3400 \mathrm{~Hz}\) and sampled at 8 kHz . An automatic gain control circuit permits a suitable reduction of the input dynamic range.

The \(2.4 \mathrm{kbit} / \mathrm{s}\) LPC is based on a 10 th order autocorrelation analysis performed every 22.5 ms , an AMDF pitch extractor with median smoother, atio between high and low frequency regions.

The \(7.2 / 9.6 \mathrm{kbit} / \mathrm{s}\) RELP coder used in this study performs an 8th order autocorrelation analy sis over frames of 25 ms in duration, with Hamming windowing of 37.5 ms . After inverse filtering, 1000 Hz low-frequency portion (baseband) of the regeneration of the full band excitation signal is performed at the receiver using the spectral folding method [8]. The \(9.6 \mathrm{kbit} / \mathrm{s}\) RELP incorporates an error protection scheme based upon the combinatror of bit interleaving and bit protection with ened at correcting codes. The former mechanism is a moter splitting a long error burst into several shallow
ing, through a sort of "divide-and-conquer" stra tegy, easier protection of the most important para meters in the data frame. The latter mechanism proects the reflection coefficients \(k\) (1) through \(k(4)\) f each frame using a \((12,4)\) code. The first code can correct up to 3 errors, whereas the second can correct 1 or 2 errors. Residual samples are left to the channel mercy. Overall, the frame format of the \(9.6 \mathrm{kbit} / \mathrm{s}\) RELP consists of 190 bits of speech information, 48 bits of error protection and 2 bits for synchronza do. Both the LPC vocoder and

\section*{3. PROCEDURE}

A set of four DRT lists was selected for the experiment. Each list contains 116 pairs of English isolated words, read by native American speakers (2 lists were recorded in a quiet environment using an Altec 659A dynamic microphone without a puff creen.

Six different circuit conditions have been ex mined, combining the three coding bit-rates with tion. the been recorded on analog tapes and then used for the subjective test. Eight listeners took part in th RT sessions, that were conducted at the Dynasta inc. (Austin, Texas) in-house speech evaluation acility.

\subsection*{3.1 Structure of the DRT}

The ORT of Voiers [3] is based on discrimina between two rhyming monosyllabic words that iffer for the initial consonant. The listener' ask is simply to indicate which word has been pre sented. Word pairs are chosen so that initial con according to for only one distinctive featur which the sign + means positive (present) state of the feature, the sign means negative (absent state, and the circle means "doesn't apply". Table shows an example of stimulus words used in DRT. cording data can be scored in different ways, work, ing to the investigator's interest. In our fork, we want to focus not only on the six major lation, graveness and compactness, which are rec ognized as essential to phonemic distinction for English, but also on scores for the apprehensibili y of a given feature, e.g. sustention, in voiced and unvoiced phonemes, or voicing in frictional and xaminational phonemes. That is because a fine lies of the speech processor. However the tota core is obtained by averaging the six main diagnostic scores.

\section*{4. RESULTS AND INTERPRETATIONS}

The gross scores of the six critical phonemic eatures considered in the ORT are plotted in Fig ighted differences over subcategories are high state or specific oneme cues are shown in Table 3.

Noteworthy are the consistent depressions on the voicing, graveness and sustention components
for the conditions No. 5 and 6. In fact, these for the conditions No. 5 and 6. In fact, these three features separate the RELP coders from the vocoder.
The vo

The voicing feature distinguishes the voiced consonants from their unvoiced counterparts: /b/ from /p/./d/from /t/, /v/from /f/, etc. For the vocoder conditions, there is a small but consistent bias towards the voicing absent state (i.e., voiced is more frequently perceived as unvoiced). This is due to a significant bias towards the friction sent state
The graveness feature distinguishes \(/ \mathrm{p} /\) from The graveness scores are the smallest for almos all conditions, and this wide gap is primarily due to the inherent difficulty in distinguishing the unvoiced consonant pairs \(/ \mathrm{f} /-/ \theta /\) and \(/ \mathrm{p} /-/ \mathrm{t} /\). The graveness scores exhibit a bias favoring the absent sub-categories (see Table 3). This bias is by far larger for female than for male speakers.
We know that degradations on higher frequency components of voice signals affect the graveness and sibilation features most. Therefore, we can conclude that
due to the inadequacy of the excitation signal fed into the synthesiser. This is more evident in the LPC algorithm, where the excitation signal is modeled in a rigid and poor way. Also in the RELP, however, the frequency components greater than kHz in the excitation are regenerated in a synthetic manner using the baseband, and this approach is
not efficient for certain phonemes and for speakers with high frequency energy concentration. This impairment may be mitigated by a better representation of the true full-band residual signal Indeed, recent algorithms, such as Multi-pulse [9] or Regular-pulse LPC [10] and Vector Excited Coders \([11,12,13]\), aim at improving the subjective quality cient excitation coding method.
The most significant difference between the three pairs of conditions (1-2, 3-4 and 5-6), is given by the sustention feature, which distin guishes the abrupt weak consonants from thei sustained counterparts (/p/ from \(/ \mathrm{f} / \mathrm{l}, \mathrm{b} /\) from \(/ \mathrm{V} /\). t/ from \(/ \theta /\). The largest drop is observed
REI. to LPC conditions, and in fact sustention suffers the greatest impairment in vocoded speech. We note that for conditions 2,3 and 4 , the unvoiced sustention feature is affected by a bias toward the absent state, i.e., unvoiced sustained consonants become more like stops. For vocoder con ditions 5 and 6 , there is also a strong bias
towards the voiced present state. This bias is primarily a result of pitch and gain coding, which made most voiced stop consonants (e.g. /b/) sound like continuants (e.g. /v/). Improvements on thi effect can be obtained with faster frame update for unvoiced speech and better gain quantization.

The nasality feature, which distinguishes \(/ \mathrm{n}\) / /b/, is the best perceived Compactness relate to compact-diffuse attribute that serves to distinguish \(/ \mathrm{y} /\) from \(/ \mathrm{w} / . / \mathrm{g} /\) from \(/ \mathrm{d} / \mathrm{s} / \mathrm{k} /\) from \(/ \mathrm{t} /\). / / / from \(/ \mathrm{s} /\), etct. There are no significant
of the cences between the voiced and unvoiced states the compactness feature.
The sibilation
s/ from sibilation feature, which distinguishes towards the absent from /k/. etc., shows a bias consonants cansent state, indicating that strident ffect is due to deficiencies of the cues. This signal, as discussed for the graveness feature The maximum degradation in going from the channel No. 1 to the channel No. 2 is about 5 points or the sustention feature. In particular, comparing the performance of RELP coders, we note that the error protection implemented on the RELP coder this feature along with sibilation (for the preserve o.1) and graveness (for the channel No. 2). In fact, large amounts of consonant feature information are carried in the duration and spectral characteristics of adjacent vowels, as well as in the coustical manifestations of the consonarits. Therefore, the error protection of spectral parameters ls, gives benefits also to certain consonants. course, loss of information in the upper frequency formants may cause significant degradations. The robustness of nasality for all the conditions, and f voicing for RELP configurations, is clearly evident. Also compactness, which depends on, among ther things, the higher second-formant frequenitions. ov

Overall, the DRT scores show the remarkable號 \(9.6 \mathrm{kbit} / \mathrm{s}\) RELP system, even in The performance of degradation.
paired on the voicing the LPC system is mainly features, which are generally quite and sustention vocoders and sensitive to various forms of speech degradation.

\section*{5. CONCLUSIONS}

We have simulated in real time two speech codng systems at low bit-rates, suitable for mobile robustness against typical channel degradations using the DRT facility, and got useful information to trade-off between important issues such as power, bandwidth, quality, complexity and delay. It turns out that a \(9.6 \mathrm{kbit} / \mathrm{s}\) RELP coder is capable that the most important intelligibility, provided information be protected parameters of the sideinterleaving and error-correcting codes of bit codes must be used. In fact, in addition to being impler to decode, short codes are more adequate than long ones when the error probability of the and a \((12,4)\) large. In particular, a \((15,5)\) BCH code our purposes. compar i
subjective categorid scores, it results that two RELP over the \(2.4 \mathrm{kbit} / \mathrm{s}\) LPC system. Indeed, the ability to yield fair quality at \(2.4 \mathrm{kbit} / \mathrm{s}\) using conventional vocoders remains to be seen. Should reduction of 4 in power could allow an additional Recent speech compression algo
provide high quality speech somewhere between 4 -13]
\(8 \mathrm{kbit} / \mathrm{s}\), under ideal transmission conditions. Therefore, future problems to be addressed are in presence of environmental noise, channel errors and multipath fading.

\section*{acknowledgments}

This study has been supported in part by ESA under ESTEC Contract No. \(6098 / 84 / \mathrm{NL}\). The authors would like to thank W. Kriedte, Agency's representative, for his co-operation. Thanks also go to E . Biglieri and G. Albertengo, from Politecnico of orino, for the simulation of channel models and

\section*{REFERENCES}
[1] M.Copperi et al., "Medium-rate speech coding simulator for mobile satellite systems", Final Report, ESTEC/Contract No.6098/84/NL, Jan. 1986 [2] N.Dal Degan and V.Di Lago, "Design and test of real-time floating point LPC vocoder", Proc
[3] W.D.Voiers, "Evaluating proces the Diagnostic Rhyme Test", Speech Technology the. 30gnostic Rhyme rest Speech lechnology,
[4] A.Huggins and R.Nickerson, "Speech quality evaluation using 'phoneme specific' sentences", J.A.S.A. Vol.77, pp. 1896-1906, May [5] F.Ya F.Yato et al., "Performance evaluation of voice coding schemes applicable to INMARSA Satellite System", IEE 3rd Int. Conf. on
 pp. 162-166, June 1983, London
[6] M.McLaughl in, D.Linder and S. Carney, "Design and test of spectrally efficient land mobile communications systems using LPC speech", IEE \(611-620\), July 1984 Areas Commun., Vol. 2 ,
71 R.H.McCullough channel", B.S.T.J., Vol. 47, pp. 1713-1735 1968
[8] R.Viswanathan, A.Higgins and W.Russel, "Design of a robust baseband LPC coder for speech transmission over \(9.6 \mathrm{kbit} / \mathrm{s}\) noisy channels Aper. 1982 . on Commun., Vol. 30, pp. 663-673
9] B.Atal
tation for producing natural-sounding speec at low bit rates", Proc. ICASSP, pp. 614-617 May 1982, Paris
[10] P. Kroon, E. Deprettere and R. Sluyter, "Reg-ular-pulse excitation: a novel approach to speech", IEEE Trans. ASSP, Vol. 34, pp. 1054 1063, Oct. 1986
11] M.Copperi and D.Sereno, "Vector quantization and perceptual criteria for low-rate coding
speech" Proc. ICASSP, pp.252-255, Mar. 1985, speech", Proc. ICASSP, pp.252-255, Mar. 1985 2] M. Schroeder
[12] M.Schroeder and B.Atal, "Code-Excited Linear Prediction (CELP): high-quality speech at very Mar. 1985, Tampa (FL)
[13] M. Copperi and D.Sereno, "CELP coding for hig quality speech at \(8 \mathrm{kbit} / \mathrm{s}^{\prime \prime}\), Proc. ICASSP, PR 1685-1688, Apr. 1986, Tokyo


CONDITION
1) RELP \(9.6 \&\) channel 2) RELP 9.6 \& channel 4) RELP 7.2 \& channel 4) RELP \(7.2 \&\) channel
5) LPC \(2.4 \&\) channel 6) LPC \(2.4 \&\) channel 2
\begin{tabular}{|c|c|}
\hline FEATURES & \begin{tabular}{l}
PHONEMES \\

\end{tabular} \\
\hline Voicing & + + + + + + + + + + + + + + - - - - - - \\
\hline Nasality & + + - - - - - - - - - - . . - \\
\hline Sustention & + + - \\
\hline Sibilation & ---++ + - - - - - + + + \\
\hline Graveness &  \\
\hline Compactness & 0+ - + + + \\
\hline
\end{tabular}

Tab. 1 - Consonant taxonomy used in DRT [3]
\begin{tabular}{|c|c|c|}
\hline Voicing voiced-unvoiced & NASALITY nasal-oral & SUSTENTION sustained-interrupted \\
\hline \begin{tabular}{l}
veal-feel \\
bean-peen gin-chin dint-tint 200-Sue dune-tune goat-coat dense-tense jock-chock
\end{tabular} & meat-bear need-deed nip-dip moot-boot news-dues moan-bone neck-deck mad-bad knock-dock & vee-bee sheet-cheat vill-bill thick-tick foo-pooh shoes-choose those-doze shaw-chaw fence-pence \\
\hline Sibilation sibil.-unsibil. & GRAVENESS grave-acute & COMPACTNESS compact-diffuse \\
\hline \begin{tabular}{l}
cheep-keep \\
jilt-gilt \\
sing-thing \\
juice-goose \\
sole-thole \\
chair-care
jab-dab \\
zee-thee
\end{tabular} & \begin{tabular}{l}
weed-reed \\
peak-teak \\
bid-did \\
fin-thin \\
moon-noon \\
pool-tool \\
fore-thor \\
bond-dong \\
wad-rod
\end{tabular} & \begin{tabular}{l}
yield-wield \\
key-tea \\
hit-fit \\
you-rue \\
ghost-boast \\
coop-poop \\
yawl-wall \\
got-dot \\
shag-sag
\end{tabular} \\
\hline
\end{tabular}

Tab. 2 - Sample of DRT stimulus words [3]
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{FEATURES} & \multicolumn{6}{|c|}{CONDITIONS} \\
\hline & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline voicing & 95.1 & 93.0 & 94.7 & 93.4 & 86.9 & 85.0 \\
\hline frictional & 91.8 & 89.1 & 91.0 & 89.1 & 82.0 & 79.7 \\
\hline nonfrictional & 98.4 & 96.9 & 98.4 & 97.7 & 91.8 & 90.2 \\
\hline NASALITY & 98.4 & 97.3 & 98.0 & 95.9 & 96.1 & 95.1 \\
\hline grave & 98.8 & 96.9 & 98.0 & 94.5 & 95.7 & 97.7 \\
\hline acute & 98.0 & 97.7 & 98.0 & 97.3 & 96.5 & 92.6 \\
\hline sustention & 89.5 & 84.4 & 86.3 & 80.5 & 69.7 & 63.9 \\
\hline voiced & 86.3 & 80.1 & 85.9 & 77.0 & 70.3 & 57.0 \\
\hline unvoiced & 92.6 & 88.7 & 86.7 & 84.0 & 69.1 & 70.7 \\
\hline Sibilation & 85.5 & 81.1 & 81.3 & 80.1 & 82.4 & 80.7 \\
\hline voiced & 91.4 & 88.3 & 86.7 & 83.6 & 85.9 & 87.9 \\
\hline unvoiced & 79.7 & 73.8 & 75.8 & 76.6 & 78.9 & 73.4 \\
\hline GRAVENESS & 80.5 & 80.5 & 80.1 & 75.8 & 74.0 & 72.9 \\
\hline voiced & 94.5 & 96.1 & 93.0 & 87.1 & 87.1 & 83.2 \\
\hline unvoiced & 66.4 & 64.8 & 67.2 & 64.5 & 60.9 & 62.5 \\
\hline plosive & 84.0 & 86.3 & 84.4 & 80.9 & 74.2 & 76.2 \\
\hline nonplosive & 77.0 & 74.6 & 75.8 & 70.7 & 73.8 & 69.5 \\
\hline compactness & 95.7 & 92.8 & 94.5 & 90.0 & 89.1 & 93.0 \\
\hline voiced & 95.7 & 90.2 & 95.3 & 92.6 & 93.0 & 96.1 \\
\hline unvoiced & 95.7 & 95.3 & 93.8 & 87.5 & 85.2 & 89.8 \\
\hline total score & 90.8 & 88.2 & 89.2 & 85.9 & 83.0 & 81.7 \\
\hline STD. ERROR & . 86 & . 94 & . 65 & 1.03 & . 72 & . 77 \\
\hline
\end{tabular}

Tab. 3 - DRT scores of main features and sub-cate-

\title{
A RELATIONSHIP BETWEEN THE QUALITY OF VOCODED SPEECH AND ITS COMPRESSION RATIO
}

\section*{KASTYTIS RATKEVIČIUS}

ALGIMANTAS RUDŽIONIS

Speech Research Laboratory

Kaunas, Lithuania, USSR 233028

\section*{ABSTRACT}

A 24-channel vocoder was used to study the quality of vocoded speech under the effects of its compression variablesthe number of spectral parameters \(n\), sampling period \(T\) and bit number \(m\) in vocoder spectral parameters. Syllable intelligibility \(S\) and speaker recognition \(J\) (identification) were used as measures of the quality. To reduce the number of spectral parameters the method of averaging over subsequent amplitude spectrum samples (AS) is suggested.

\section*{introduction}

Major variables of the compression ratio in a channel vocoder are: the number of spectral parameters \(n\) (the number of channel signals, which represents the envelope of the short-time spectrum of the speech signals), sampling period \(T\) ( the sampling interval of any spectral parameter), bit number \(m\) (the number of quantization bits per one spectral parameter). Design of vocoders with pre-given properties demands a proper knowledge of relations between the quality of vocoded speech and the above variables. We are not aware of any efficient and reliable method of evaluating vocoded speech quality. Most reseachers rely on intelligibility and speaker recognition in their
judgements over processed speech. There is a number of publications on intelligibility, but none of them reflects properly relations between vocoded speech intelligibility and variables \(n, m, T\). As to speaker recognition, we can mention just one study dealing with the evaluation of recognition accuracy of LPC speech /1/. Tape recordings of 24 speakers conversing over an unprocessed channel and over an LPC voice processing system with the rate \(2400 \mathrm{bit} / \mathrm{s}\) were subjected to listening tests. The listeners were 24 co-workers who attempted to identify each speaker from a group of about 40 people working in the same branch. The average duration of the speech samples was \(29,8 \mathrm{~s}\). Recognition accuracy was \(88 \%\) for unprocessed speech, and \(69 \%\) for LPC speech. No evaluation of the effect of compression ratio on the speaker recognition accuracy was made.
Note, that most of industrial vocoders use differential pulse code modulation (DPCM), in which the reference parametric signal is coded with a 3-bit logarithmic code, other signals-by 2-bit DPCM /2, \(3 /\). This type of coding is very popular, yet, the relation between intelligibility of vocoded speech, as its main quality measure, and the number of quantization bits per one spectral parameter is interesting from the point of view of the relative information of variable \(m\) in comparison with n and T .

We also attempted to find a simple and reliable method of reducing the number of spectral parameters. This may be done by averaging subsequent samples of the amplitude spectrum (AS).

\section*{ACCURACY OF SPECTRUM REPRODUCTION}

To evaluate the efficiency of the sugges ted averaging approach, we performed a comparative analysis of spectrum reproduction by the two methods of reducing the number of spectral parameters. A samples of amplitude spectrum of the vocoder analyser output signal were subjected to harmonic approximation (approximate representation of the spectral envelope by means of a Fourier series) by the first method, and a certain number of subsequent components was averaged by the second method, that is several subsequent samples of the amplitude spectrum from
the vocoder synthesizer output signal were replaced by the average value of the anayser output samples. The test was performed on a micro-computer-aided 24 -channel vocoder with a high ayllable intelligibility of the vocoded speech (average score \(94,3 \%\) at data rate 4800 bit/s). Its freguency range was from 100 Hz to 8 kHz . The analyser was equiped with 6 -th order Sessel bend-pass filters having 3 dB attenuation at 25 Hz . In the synthesizer 20 arrow-band \(2-\) nd order filters with outputs combined in an antiphase summation were used to cover the speech bend to 5 kHz and 4 wideband filters were used in the upper freguency range. Modulation was done by digital-analogous converters.From identical speech samples, the absolute average error of one spectral componenterror of spectrum reproduction - was found by
where \(F_{A k}(i), F_{S k}(i)\) - the \(i-t h\) sample of the \(k\)-th spectrum frame on the analyser output, and on the synthesizer input, respectively. Fig. 1 presents the dependence of \(\delta\) on the number of spectral parameters \(n\) for the two methods of reducing this number.


Fig.1. Accuracy of spectrum reproduction for long utterance (a), long vowels /a,i/ (b) and fricative consonant \(/ \mathrm{S} /\) (c).
- - averaging
\(x\) - harmonic approximation
Approximation by harmonic functions is only preferable for vowel phonemes, and long utterances (sentences) are more accurately reproduced by averaging subsequent spectrum samples. Human perception tests on the two methods suggest their comparative effects of spectrum reproduction. Further we restrict ourselves by the more simple method of averaging.

\section*{INTELLIGIBILITY OF VOCODED SPEECH}

To evaluate the quality of vocoded speech its syllable intelligibility \(S\) was evaluated as a more objective factor, as compared to intelligibility of phrases and words. For each test, five tables of phonetically kalanced syllables of Russian words (total 250 syllables) were recorded by one male reader and processed in the vocoder. Samples of spectrum cutoffs on the output of the analyzer were
microcomputer-processed to reduce the number of quantization bits per one spectral parameter and the number of spectral parameters. The necessary sampling period was controlled manually by the switch. Samples of compressed spectrum cut-offs were fed to the synthesizer, as samples of the following spectrum cut-offs from the output of the analyser were fed to the computer. Processed syllables were recorded on a magnetic tape and played before three listeners. Syllable intelligibility for separate listeners and average intelligibility of vocoded speech were then determined. Two more simple ways of reducing bit number \(m\) were tested: a) transfer of amplitude spectrum samples (TS), when several subsequent amplitude spectrum samples on the synthesizer input \(F_{S}(i)\) are replaced by a single amplitude spectrum sample on the analyser output, \(F_{A}(i)\) and \(b\) ) deletion of samples (DS), when separate values \(\mathrm{F}_{\mathrm{S}}=0\). The determined relations between syllable intelligibility \(S\) and the number of spectral parameters \(n\) for \(T S\), DS and AS methods are shown in Fig.2.


Fig.2. Dependence of syllable intelligibility \(S\) on the number of spectral parameters \(n\)

Deviation from the natursl speech was observed at \(n<I 2\). The undoubtful advantage of the averaging method was stated and further it was used in the evaluations
of intelligibility.
A relations between syllable intelligibi\(S\) of vocoded speech and the number of quantization bits per one spectral parameter \(m\) for given numbers of spectral parameters \(n\) are shown in Fig. 3 a .A distinct deviation from natural speech occurs at
m<3.

a)

b)

Fig.3. Dependences of syllable intelligi bility \(S\) on variables \(m(a), T(b)\).

For the same number of spectral parameters \(n\), relations between syllable intelligibility \(S\) and sampling period \(T\) were measured (Fig.3b). Deviation from natural speech at \(T=40\) s is mainly due to the failure in the synthesis of short sounds.

\section*{SPEAKER RECOGNITION}

The evaluation of speaker recognition I comes from two tests. First an attempt was made to find a relation between spesker recognition from unprocessed speech and rocoder-processed speech and the durstion of speech sample. Speech aamples were collected from 11 known speakers and 4 unknown speakers. 5 monosyllabic words aach of 0.5 a average duration, 5 polyayllabic words - 2.5 s and 5 phrases - 4 s were used. Each sequence of samples was chosen at random, recorded on a magnetic tape and played before 11 listeners.

A warning concerning the unknown speakers was made. The listeners were carefully instructed not to chek off names or to use any process of elimination because some speakers were sampled more than once Unprocessed speech, vocoded speech and monotonous vocoded speech were tested. The values of compression variables were: \(n=\) \(=24, \mathrm{~m}=8, \mathrm{~T}=40 \mathrm{~ms}\). The relations of speaker recognition \(J\) and the duration of speech sample \(t\) are shown in Fig. 4 a.

a)

b)
ig.4. Speaker recognition \(\sigma\) in relation to the duration of speech sample \(t\) (a) (l-unprocessed, 2-vocoded, 3-monotonous rocoded speech) and to the number of apectral parametera \(n\) (b).

The absence of fundamental frequency of the voice results in a \(20 \%\) decrease in the recognition accuracy. For a successful identification and verification of a speaker from vocoded speech, just a phrese or a polysyllabic word may be used without appreclable loss of accuracy.
The second test was done by 11 known speakers. Only phrases were read, and only rocoded speech with different numbers of spectral parameters \(n\), was evaluated. The resultant relations of speaker recognition \(I\) and the number of spectral parameters \(n\) for two methods of reducing this number re thown in Fig.4b. The recognition accubecomes significantly lower at \(n<12\). The comparison supports the advantages of
the averaging method.

\section*{CONCLUSIONS}

The presented relations of vocoded speech syllable intelligibility \(S\) to the number of spectral parameters \(n\), sampling period \(T\) and the number of quantization bits per one spectral parameter \(m\), as well as the relations of speaker recognition \(J\) to the number of spectral parameters \(n\) open the ways towards designing vocoders for pregiven properties of the processed speech, which can be achieved by choosing proper design parameters. Teat evaluations of the quality of vocoded speech may be described by the limiting values of variables \(\mathrm{n}, \mathrm{m}, \mathrm{T}\), which are: \(\mathrm{n} \geqslant 12, \mathrm{~m} \geqslant 3, \mathrm{~T} \leqslant 40 \mathrm{~ms}\). Vocoded speech becomes significantly unnatural whenever one of the variables exceeds it limiting value. We underline the advantages of the method of reducing the number of spectral parameters by averaging subsequent samples of speech amplitude spectrum. Problems of speaker recognition and verification from vocoded speech may be solved on single utterunce from 2 to 4 s .

\section*{REFERENCES}
/1/ A. Schmidt-Nielsen, K. Stern, "Identification of known voices as a function of familiarity and narrow-band coding.", JASA, Vol.77, pp.658-663, 1985.
/2/ B. Gold, P.E. Blankenship, R.J.
McAulay," New applications of channel vocoders", IEEE Trans. ASSP, Vol.29, No.1, pp.13-32, 1981.
13 / J.N. Holmes, "The JSRU channel vocoder", IEE Proc. Communicationg, Radar and Signal Procesaing, 127, Pt.F, pp.53-60, 1980.

КОДИРОВАНИЕ РЕЧЕВЫХ СИННАЛОВ ДЛЯ ІІЛЕИ ЭЛЕКТРОДНОГО ПРОТЕЗИРОВАНИЯ СЛУХА

\section*{Л.В. ЛЕСОГОР}

Институт физпологии им.И.П.Павлова АН СССР, Денинград.

\section*{PEBOME}

Описаны психоакустические эксперименты с восприятием кодированных речевых сигналов нормально стышапими испытуемыми. Кодирование осуществлялось таким образом, что исходнын сигнал преобразовывался в посдедовательность норотких биполярннх импрльсов, модулированннх по амплитуде огибающей речевого сигнала.

Исследовалось влинние раз личных параметров кодирования на словесную разборчивость.

\section*{BBETEHUE}

Электродное протезирование слуха или кохлеарная имппантация является одним из новедших направлений реабилиташии сдуха при полной гпухоте. Основная задача, которая стоит перед исследователями, занимающимися электродным протезированием состоит в том, чтобы осуществить такое преобразование речевого сигнала в электрические стимулы, которое с одной стороны сохраняло бы как можно больше информации о речевом сигнале, с другой - удовлетворяло тем усповиям, которие возникают в связи со специџ̆икой электрического возбуждения слухового нерва.

Все имеюшиеся в настоящее вреия системн электродного протезирования разделнот на одноканальные и многожанальные. Принпипиальное отличие многоканальнои системы от одноканальной состоит в том, что многоканальные системы протезирования, имешт

несколько параллельных канадов, разделярщих акустический сигнал на спектралвнме подосн посредством фпльтров, и таким образом могут обеспечить изображение речевых сигналов, более близкое к естественному. При одноканальном же стимд лировании необходимо произвести такое кодирование акустического сигнала, которое позволит выделиғь из него признаки, содермашиеся во временно картине [I]. Одноканалынке системы обладают рядом существеннах достоинств, и именно поэтому, в настоямее время они получили наиболышее распространение. Основнне препмущества закпочавтся в следующем: I. Наличие одного нанала и, следовательно, одного электрода, значдтельно упрощает нонструксио и, что особенно важно, имплантацию кохдеарных протезов. 2. Только одноканальная стимулящия имеел смысл в тех сдучаях, когда у больного остается небольшое копичество сохранившихся (непораженних) волокон стухового нерва. 3. Временная структура стиму лирумпего сигнала явдяется гораздо информативнее, чем это предполагалось до посдеднего времени; с её помомьь может передаваться не тольно просодическая инфоршапия, но и информапия о фонемах, а тантв можно достичь удовлетворительного распознавания как отдельних согдасных п односдожных слов, так и слитно⿱ речи [4] Более эффективными являртся такие одіо канальные системы электродного протезирования, в которых преобразование осуществ ляется таким образом, что информапия 0

частотном составе речевого сигнала, кодируется величиной межимпульсных интервалов, а информация об интенсивности - либо длительностью, либо амплитудой импульсов [5] .

настоящее время разработано и истытивается много типов речевых преобразоватенеи, проводятся их сравнительные иссдедования, однако до сих пор еще нет четких данных, насаюпихся внбора наиболее оптиматьных параметров кодирования: частоты среза фильтра, длительности биполярных импульсов и т. Д. Это можно объяснить тем, что иссдедования, проводимые на папиентах с ммп пантируемыми элентродами условннются целвм рядом практических трудностей: а) число возможннх пациентов мало ( I или 2); б) имплантируемое устроиство налагает ограничения на сигнал стимудяции; в) результаты зависят от таклх неконтролируемьх факторов, связанных с патодогией улитки, как число и характеристическая частота уде еевших слуховых нейронов. Поэтому намии овла предпринята попытка решить эту задачу с помощью испытуемых, обладаюших нормальным сдухом, исходя из того, что оптимальность параметров выбранная испытуемыми © нормальным слухом будет танже действительна и для гдухих пациентов. Известно, что использование нормальноствшаших испытуемых для сравнительного анализа схем речевого кодирования в работе [2] дало хорошие результаты.

\section*{ОІІСАНИЕ КОДМРУКI®TO УCTPOİCTBA \(И\) IPOLE-} ITPA ИЗ: ПеРЕНИI

На основании вышеиз ложенного нами било разработано устройство, позволяощее кодирозать как речевой, так и побой акустический или электрическин сигнал одним, как наи кажетсл, из наиболее оптимальных способов, при котором исходныи сигнал преобразуетсл в последовательность коротких бипопярных импульсов, моду лированных по амплитуде огибающей речевого сигнала.

Преобразователь выполнен в виде отдельного устройства, на вход которого сигналы могут подаваться либо с микрофона, либо от побого источника электрических сигналов. В устройстве имеетоя фпльтр пропускания низних частот (бНІ), частоты среза которого устанавливаются перекпочателем и принимают значения от \(0.5 \mathrm{kTц}\) до 3.0 кГц ступенями через \(0.5 \mathrm{k} \mathrm{\Gamma ц}. \mathrm{Динами-}\) ческий диапазон амплитудн выходных импыльов определяется амплитудной характеристикой входящего в него догарифмического усилителя, который обладает компрессиеи I:IO. Амп питудная огибаюшая переменного сигнала выделяетоя детектором и затем сгладивается с помощьі интегратора. Формирование импульсов осуществляется посредством триггера Шкиитта п одностабильных мультивибраторов. На выходе, таким образом, получаются амплитудно-моду лированные биполярные пмпрльсы заданной длительности, моменты появления которих соответствуют моментам пересечения нуля (в положитетнои фазе) сигнада с выхода фНप.

Процедура измерения состояла в стедурщем: записанные на грампластинк слова с речевого аудиометра АР-03 поступали на кодируоцее устройство, телефонн. Прослушивание производилось в звукоизолированной намере, моноурально, испытуемыми с нормальным сдухом. Использовались специально составленные табтиды слов Г.И.Гринберга, Л. Р. Зиндера и Ј. В. Нейан. Были проведены 4 серии экспериментов по определению наибопее оптпмальных значении следуюших параметров электрических стиму лов: частоты среза ФНч, \(f_{C}\); длительности биполярных импу дьсов, \(t_{n}\); постоянной времени интегрирования, \(\tau\); интенсивности подаваемвх стьмдов, \(L\) : С этой целью онии сняты зависимости разборчивости речевых тесттаблиц от значения этих параметров. Разборчивость определялась по количеству правильно воспринятых и записанных испытуемымии слов (из 60 предъявленних) и выражалась в процентах.


где \(P_{i k}\)－процент правильно приннтых слов \(i_{\text {－вм аудитором в } \quad K \text {－ой табли－}}\) де，\(m\)－чисдо испытуемах，\(n\)－чисдо просдушанных таблиц．

\section*{РЕЗУЛЬТАТЫ И ОБСЈХДЕНИЕ}

Данные，полученние в экспериментах по определенио разборчивости речевого теста в зависпммости от частоты среза фильтра нижних частот，（припостоянной времени сгдашивания 5 мсек и длителнности бипо－ дярных импульсов 100 и 500 мпсек），приве－ дены на рис．I．
\(0 . \%\)


Рис．I．Зависимость сповесной разборчи－ вости от частоты среза фнч。

По оси ординат－разборчивость в про－ центах；по оси абсцисс－частота в кГи （усредненные даннне длл 5 испытуемых）． \(x-\tau \quad t_{n}=100\) мксек； \(0-\quad t_{n}=500\) мксек \(\tau=5\) мсек。
Можно видеть，что разборчивость резко воз－ растает с расширением полоси пропускания сигнала до I．O кГц；при дальнеиееи увели чении частоты среза разборчивость менлет－ Ся незначительно．Исследования нешронннх

ответов при электрической стимулядии так－ ме уназывают на ограниченный частотннй диапазон，не преввшаюший \(\operatorname{I} к Г ц\) ，при ко－ тором сохраняется информация о периоде колебаний стимулов．Это позволяет предпо－ ложить，что если нормальнослышаший испы－ туемын способен различать речевые стимлы， протедшие нч фильтрацио с частотой среза I． 0 －I． \(5 \mathrm{KCム} ,\mathrm{то} \mathrm{и} \mathrm{пациент} \mathrm{с} \mathrm{одноканаль-}\) нои стимуляцией внутреннего уха，диапазон воспринимаемых частот которого ограничен такой же частотной областью сможет распоз－ навать речевые стииулв，используя такие параметрн，нак частоту основного тона и частоту I－\＆й 2 －й формант，пежаших в пре－ делах этой обдасти．

Во второй серии энспериментов исстедо－ валось влияние постоянно\％времени сглаши－ вания амплитудной огибающей，которая при－ нижала значения，равнне 5,20 и 50 мсек， на разборчивость речевого теста при пос－ тоянных значениях частоты среза（ 1.5 KLII ） и длительности импульсов（ 500 мисек）．Ре－ зультаты эксперимента показали，что пос－ тоянная времени сгдаживания очень незна－ чительно влинет на разборчивость．Анализ ошибок ответов указывает на то，что уве－ личение постояннои времени сгдаштвания влияет на воспржятие липь начальной фоне－ мы в слове．Поэтому при \(\tau=50\) мсек увеличивается число ошибок в распознании начальнои фонемы．При значениях \(\tau=5\) мсех качестзо звучания ухудшается за счет вос－ пр：нтдя щедчка．

На основании ввшесказанного можно сде－ лать вивод о том，что наиболее оптшмаль－ ными с точки зрения правильного распозна－ вания，являются значения постоянной вре－ мени сглаживания \(10-20\) мсек．

В третьеи серии этспераментов опреде－ лялась зависимость сповесной разборчивос－ ти от длительности биполярных импу льсов． Длитедьность импульсов менялась в предепая от 100 мксек до 1000 мисек．Данные били подучены для трех испытуемых．Исходя пз результатов предыдуших серий экспермменフ0і

частота среза бнч была выбрана равной I． 5 кГц，постолнная времени сглаживанил ампитудно огибашен исходного сигнала І0 мс．Из эксперимента следует，что с уве－ пичение длительности биподярных импиу дьсов до 500 мксек，процент правильного восприя－ тин монотонно возрастает，а затем остает－ ся постоянным，равным \(\approx 70 \%\) ．Наши резулы－ таты хорошо согласуются с данными，поду－ ченными у тациентов с имплантированными электродами［3］．
Из вышесказанного следует，что спти－ мальная длительность биполярннх иипульсов составляет окодо 500 мксек．
В четвертой серии экспериментов изме－ рядась зависимость словеснои разборчивос－ ти от уровня подаваемых речевых стимулов． T．е．опредедядось，существует пи накой－то наиболее оптимальннй уровень интенсивнос－ ти речевых стимулов，при котором разбор－ чивость подучается наибольшей．Уровень звукового давления измерялся в дБ дад по－ рогом сыыиимости отдельно для каждого ис－ дытуемого．Как можно видеть из рисунка 2 даве при низком уровне интенсивности сти－ wнов（IO дВ ）разборчивость доста－ точно высока；для \(2-x\) истытуемых она пре－ випает \(50 \%\) и намного выше начального уров－ ня раборчивости（20\％）длл третьего испы－ туемого．


Рис．2．Зависимость словесной разборчи－ вости от уровня подаваемых речевых стипу－

дов для трех испнтуемых．
\(\Delta\)－поп．А；x－исп．Б；•－исп．В при \(f_{c}=I .5\) кГц и \(\tau=I 0\) мсек． Наиболее оптиматьным уровнем，прй котором разборчивость достигает \(82 \%\)（исп．А и Б）， оказался уровень 70 дБ．При дальнентем увеличении интенсивности сигнала происхо－ дит некоторое ухудмение разборчивости， вызванное слишком високим уровнем интен－ сивности стимулов，близким к болевому по－ рогу．Такгм образом，результаты даннок ра－ боты позволили посредством психоакустт－ ческих экспериментов произвести предвари－ тельннй выбор оптимальных параметров элект рическах сигналов，что является необхо－ димым шагом на данном этапе исследовании в области электродного протезирования， т．к．позволит более обоснованно подходить к созданио апшаратуры для подировани ре－ чи и сократить время постоперапионного тестирования больннх с имплантируемыми э лектродами．

\section*{תITRPATYPA}

I．Лॉбдинскан В．В．Сдуховое восприятие у человека при электрическом раздражении сдухово системд．Раздражение перифе－ рических отделом спуховой системы．В кн．：Электродное протезированде спуха． J．，：＂Наука＂，I984，стр．I47－I7I．
2．Blamey P．Y．，Martin L．F．A．，Clark G．M． A comparison of three speech coding strategies using an acoustic model of a cochlear implant．－J．Acoust．Soc． Amer．，1985，v． 77 （1），p．209－217．
3．Burian K．，Hochmair E．，Hochmair－Deso－ yer I．J．，Lessel M．B．Designing of the experience with multichannel cochlear implants．－Acta otolaryngol．，1979， v．86，p．190－195．
4．Hochmair－Decoyer I．J．，Hochmair E．S．， Fischer R．E．，Burian K．Cochlear pros－ thesis in use：Recent speech compre－ hension results．－Arch．Oto－Rhino－La－ ryngol．，1980，v．229，p．81－98．

\section*{} PEYEBOTO ООВПIIНИЯ КАЧЕСТВА ЗВУЧАНИЯ СИНТЕЗИРОВАННОГО
СИГНАЛА В ІИФРОВОМ ВОКАДЕРЕ С ПРЕЛСКАЗАНИЕМ

С．Ф．Лихачев，М．В．Назаров，Ю．Н．Прохоров

Московский электротехнический
инСтитут связи

Ре币ерат

Предложен новый метод оценивания парамет－ ров речевых сигналов на основе метода обновляюцего процесса（ОП）．По сравнению с традииионннм методом наименьних квад－ ратов（MHK），разработанный метод позво－ ляет повысить качество звучания синтези－ рованного речевого сигнала в цифровом вокодере，работакщем при действии шумов умеренной интенсивности．

\section*{I．Введени}

Препметом настоящего доклада является исследование и разработка методов повнше－ ния эффективности рекуррентных алгоритмов оценивания параметров，обеспечивакиих по－ выпение качества цифровой передачи речи при низких скоростях 2400．．． 4800 оит／с и наличти входннх шумов умеренной интен－ сивности．

B настолмее время наиболее перспектив－ ными в этом направлении являотся системы передачи с предсказанием \([\mathrm{I}, 2,3]\) ．

Известно，что в вокодерах с линейным предсказанием не учитывавтся особенности слухового восприятия в частотнои области．

В работах \([\mathrm{I}, 2,4,5]\) и других доказано，

что область низких частот наиболее важна для слуха．В тоже время методы линейного предсказания，построеннье в рамках метода наименьпих квадратов，обеспечивают малуо ошибку в описании высокочастотной областд спектра，к которой ухо менее чувствитель－ но．Исходя из этого，отличие спектров ис－ ходного и синтезированного речевых сигна－ лов оказывается доволжно значительным． Низкое качество восстановленного сигнала в низкоскоростных системах с линейным предсназанием обусловлено тем，что пог－ решность предсказания содержит информапио о спектре，которую не может извлечь ана－ лизатор системы передачи，построенный на методе наименымих квадратов．Поэтому бо－ лыпой научны啳 т технический интерес пред－ ставляет разработка метода такого пзмене－ ния сдектрального состава восстановленно－ го речевого сигнала，при нотором учитыва－ ются особенности слухового восприятил．

\section*{2．Метод оценивания параметров предсказания}

Введем авторегрессионную модель ситна－ ла
\[
x_{t}=\vec{a}^{r} \vec{\varphi}\left(x_{t-1}\right)+\xi_{t},
\]

где \(\vec{a}^{r}=\left(Q^{(\prime)}, \ldots, Q^{(\rho)}\right)\)－вектор параметров авторегрессии：；\(\vec{\varphi}\left(x_{t \cdot 1}\right)\)－уннкция регрес－ сии；\(\xi_{t}\)－порождахиий процесс；\(\quad \rho\)－ размерность модели．

Если ситнал и модель стохастически

әквивалентни，то обновляюиий процесс \(\nu_{t}\) оказивается последовательсностью некорре－ лироввнных случайных величин，обладашии теми же характеристинами，что и процесс
\(\xi_{t}\) ．Поәтому синтез сигнала на приемной стороне системы передачи можно предста－ зить как прохождение обновляюшего процес－ са \(\nu_{t}\) через линейное звено с переда－ точной Функцией \(K(\omega)\) ．Отклонение Фор－ мантних максимумов в спектре речевого си－ тнала заметно на слух，если оно превншает + ＋ІБ．Таким образом，из фии зических сооб－ ражений следует，что показатель качества， отражаюиии спектральные свойства синтези－ рованного аналогового речевого сигнала， должен представлять собой меру отклонения спектров исходного（ \(G_{x}(\omega)\) ）и синтезиро－ ванного（ \(G_{*}(\omega)\) ）речевых сигналов．Такую меру можно представить в виде：
\(\rho=\int\left(\left[G_{x=}(\omega)-K(\omega) \cdot G_{\nu j}(\omega)\right] \cdot M(\omega) / d \omega\right.\) ，（2） где \(\quad M(\omega)\)－фуннция веса．

Функция потерь（2）не позволяет полу－ иить аналитически простне алгоритмв оце－ иивания параметров речевого сигнала Іусть \(M=0\) ，еслй \(G_{x}(\omega)\)－ \(-K(\omega) \cdot G_{\nu v}(\omega)<0\) тогда мокно записать \(\rho=/ \int\left[G_{x x}(\omega)-K(\omega) \cdot G_{y y}(\omega)\right] \cdot M(\omega) \cdot d \omega /\).
Используя преобразование винера－Хин－ пина меру \(\rho\)（3）теперь можно предс－ тавить в виде：
\(\rho=\left|\int\left[B_{-}\left(r_{1}\right)-q\left(r_{1}\right) B_{y}\left(r_{1}\right)\right] \cdot \mu\left(r_{1}\right) d t_{1}\right|\)
где \(\mu\left(\tau_{5}\right)\) и и \(M(\omega)\) связаны преобразова－
 разование Фурье от \({ }^{\text {（ }}\) ）\(K(\omega) \cdot M(\omega)\) ．

Заменяя интеграл интегральной суммой п подставляя в нее вместо \(B_{x x}(\tau)\) ее оценку，получим показатель качества в ди－ охретном времени：
\(y_{i v}(\vec{a})=\left(\sum_{i=0}^{n} w_{i}(\tau) \sum_{t=1}^{N}\left[x_{i}-\vec{a}^{\top} \vec{\varphi}\left(x_{i-v}\right)\right]\left(x_{t+\bar{\tau}}-\vec{\alpha} \vec{\varphi}\left(x_{t+r}\right)\right)\right\}(5)\)
где \(w(\tau)\)－весовая последовательность

Задача оценивания параметров может быть сформулирована следуюшим образом：по наблюдаемой последовательности \(x_{t}\) или \(z_{t}=x_{t}+V_{t} \quad, \quad t=1,2, \ldots N\) и априо－ ри заданной модели сигнала（I）определить наилучпую \(\overrightarrow{m_{N}}\) из условия：
\[
\begin{equation*}
\vec{m}_{N}=\operatorname{argmin}_{\vec{a}} y_{\nu \nu}(\vec{a}) \tag{6}
\end{equation*}
\]

где \(V_{t}\)－щумовая последовательность； \(\vec{m}_{N}\)－оценка вектора \(\vec{a}\)
Метод отыскания оценок параметров мо－ дели авторегрессии минимизашией целевой фунниии \(\mathscr{\nu}_{\nu \nu}(\vec{a})\) является развитием метода обновлякцего процесса［I］．

Из（5）можно получить оптимальную в смысле（6）оценку
\(\left.\vec{m}_{N}=\left[\sum_{i=0}^{N} \psi(\pi) \sum_{t=1}^{N} \vec{\varphi}^{\left(x_{t+1}\right.}\right) \cdot \vec{\varphi}^{T}\left(x_{t+\tau-1}\right)\right] \sum_{i=0}^{-1 n} w(\pi) \sum_{t=1}^{N} x_{t+i} \vec{\varphi}\left(x_{t+1}+7\right)\)
Используя лемму об обращении матриц получим рекуррентнье виражения для оце－ ноK：
\(\vec{m}_{t}=\vec{m}_{t-1}+\vec{\gamma}_{t-1} \vec{\varphi}\left(x_{t-1}\right) \sum_{i=0}^{n} w(t)\left[x_{t+5}-\vec{m}_{t-1}^{T} \vec{\varphi}\left(x_{t+2-1}\right)\right] ;\)

－\(\sum_{t=1}^{\infty} w(\tau) \cdot \vec{\varphi}\left(x_{+, \tau-1}\right) \cdot \vec{\gamma}_{t-1}\) ， c начальниии условиями

\section*{\(\vec{m}_{0}=E \vec{Q} ; \gamma_{0}=\varepsilon^{-1} \vec{I}, \varepsilon \rightarrow 0, \forall t \in \infty, \gamma_{t}(p \times p)\)}

При стохастической эквивалентности сигнала и модели оценна（7），（8）совпадает при \(N \rightarrow \infty\) с асимптотической оценной WसК，но в отличии от нее в линейном слу－ чае оказывается несмещенной при стапио－ нарных шумах с равномерным спектром，так так，например，при \(p=I, w(\tau)=\delta_{\tau \varepsilon_{0}}\) ， имеем из（7）：
\(\lim _{N \rightarrow \infty} m_{N}=\frac{B_{x x}\left(\tau_{0}+1\right)+B_{x x}\left(\tau_{0}+1\right)}{B_{x x}\left(\tau_{0}\right)+B_{w v}\left(\varepsilon_{0}\right)}=\frac{B_{x=x}\left(\varepsilon_{0}+1\right)}{B_{x x}\left(\varepsilon_{0}\right)} \cdot(9)\)
Свойство асшмттотической несмещеннос－ ти сохраняется для линейнои модели авто－ регрессии при любом \(\boldsymbol{\tau}\) \(\qquad\) ，но может нарупаться в нелинейном случае．

Сложность техничесно⿺ реализации ал－ горитма（8）обусловлена необходимостьд вычисления матрицы \(\overrightarrow{\gamma_{t}}\) －Для упро－

щения вычисленлй был предложен приближенный алгоритм оценивания:

\section*{\(\vec{m}_{t}=\vec{m}_{t-1}+\vec{\Gamma}_{t} \cdot \sum_{\tau=0}^{\infty} w(\varepsilon) \vec{\varphi}\left(x_{t-1}\right)\left[x_{t+\varepsilon}-\vec{\varphi}^{\top}\left(x_{t+\tau-1}\right) \vec{m}_{t-1}\right]_{1}\) (IO)} где \(\vec{C}_{t} \Gamma_{0} / t\) - матрица коэфиициентов. Можно

3. Экспериментальное исследование.

Экспериментальная проверка алгоритма оценивания параметров провожилась для линейной и нелинейной моделей предсказанжл. В случае линейной модели показано, что разработаннне алгоритмы до сравнениш с алгоритмами МНК обеспечивают меньшее смещение допредельних ощенок параметров в щумах с равномернвм спектром. На рис.I показано смещение оценки \(\vec{m}_{t}\) параметра

Q в пумах (при истинном значении \(a=-0,8\) ) , илк линейнол модели авторегрессии первого поряпка, при различных отношениях ситнал-пाум.


Рис.I Смещение оценок параметров.
Из рисунка видно, что при \(S N R=5 \ldots\) IO дБ, смещение оценок в \(2 \ldots 3\) раза меньше, чем при MHK.

В качестве нелинейной модели рассмотрена модель предсказания, в которой регрессии \(\overrightarrow{\mathscr{P}}\left(x_{t-1}\right)\) представлена в виде ряда по фуннктиям Уолпа:
rде \(\left\{a_{k}^{(i)}\right\}, k=1, \ldots, m ; i=0, \ldots, N-1\)
- параметри нелинейного предсказания;
waf \(^{(i)}(x)\) - функция Уолпа \(i\)-го порядка. Такое представление позваляет учесть негауссовское распределение вероятностен сигнала.

Алгоритми оденивания параметров в случае нелинейной модели обеспечиварт "обеление" погрешности предсказания. В частности, в ней подавляртся пмпульсн основного тона. На рис. 2 представлена корреляционная функтия погрешности предсказания речевого сигнала получения по МसK МОП. Отрезком показан \(95 \%\)-нй доверительныћ интервал; Tor - период основного това.


4. Разработка вокодера.

На основе алгоритма (8) на ЭВМ проведено моделирование цифрового вокодера с улучшенным качеством звучания восстановленного речевого сигнала в акустических пумах умеренной интенсивности \(S N R=(+5 \ldots\) + ІОдБ). Скорость передачд 2400 бит/с.

В качестве исходного материала был пспальзован речевои сигнал с полосо華 уастот до \(4 ; 7\) кГи при частотах дискретизатй 8; I6 кГи соответственно й числе уровне» нвантования \(2^{\text {I2 }}\).

Блок-схема передахщеи части (анализатора) вокодера представлена на рис.3.


Рис. 3 Блок-схема анализатора вокодера.
Передатчик состоит из:
блоков предварительной обработки (внделитель основного тона (ВОТ), классификатор тон-пум (КТШ), анализатор максимума корреляции (АМК), осуществлякцих оценку периода основного тона, признака вокаливованности, а также поиска точки взвени вания оценки коррелнцдонной функции текуघего сегмента сигнала;

Пfти ветвей анализа (блок оценивания параметров оП), блок предсказания (П), боок вычисления коэффициентов успления (БRV) с различными значениями функции ве\(\cos \boldsymbol{x}(\tau)\);
блока памяти, в который записнваштся реализауии погрешности предсказания й Rохфидиенты усиления;
боока анализа погрешности предсказаіия (AIII), который осуществляет выбор номера ветви по минимальнопу расстоянию "екду оценкой ӑункпии корреляции погретности предсказания для данной ветви и
фуницие корреляпции поромдаюацего процесса;
блока квантования (К).
Экспериментальнне исследования воко-
дера показали следупиее:
I) При \(S N R=5 \ldots\) Іо дБ разборчивость GIOB равна \(97 \%\).
2) Улучшение качества синтезирован-

ного сигнала по сравнению с МНК достигается за счет уточнения спектров сигнала на переходннх участках речи, которне плохо воспроизводятся в традицпонных вокодерах. Елизость спектров или коррелянионных ч̆ункций исходного и синтезированного сигналов в разработанном вокодере улучшается на \(15 . . .20 \%\).
В. таблице I приведены каличестввнние соотношения для квадратичннх отклонений фуннций псходного и синте зированного сигналов при различных SNR . Опибка \(\varepsilon_{R}^{2}\) равна нормированному квадрату норин разности корреляционных функцшй исходного и синтезщрованного сигналов на периоде основного тона.

Таблица I.
\begin{tabular}{|l|c|c|c|}
\hline SNR (J5) & \(\infty\) & \(I 2\) & 8 \\
\hline\(\varepsilon_{R}^{2}\) (MHK) & \(0,4 \mathrm{I} \pm 0,04\) & \(0,45 \pm 0,03\) & \(0,53 \pm 0,0 \mathrm{I}\) \\
\hline\(\varepsilon_{R}^{2}\) (MOח) & \(0,307 \pm 0,03\) & \(0,37 \pm 0,04\) & \(0,48 \pm 0,0 \mathrm{I}\) \\
\hline
\end{tabular}
3) Методом парних сравнении установлено, что число действительных суждений, внсказанннх аудиторами в пользу разработанного вокодера составило \(80 . . .85 \%\).

\section*{литература}
I. Прохоров К.Н. Статистические модели и рекурентное предсказание речевнх сигналов. -М. :Радио пи связь, І984.-240с.
2. Јихачев С.Ф. Нелинейное предсказание речевнх сигналов. Натериаль Всесоюзн. семинара АРСО-I2.-Киев, I982, с. II2-II4.
3. Назаров М.В., Прохоров 1.Н. Методн ишфровой обработки и передачи речевнх сигналов.-М.: Рвдио и связь, 1985.-I76с.
4. Jain V.K. Speech signal analysis by error-weighted LPC-GIOBECOM"82: IEEE Global Telecommun. conf. Miami Beach, Fla, 29 Nov-2 Dec, 1982, Conf.Rec.Vol 3,

New York, 1982, pp 1321-1324.
5. Un C.K., Lee J.R. On spectral flattening techniques in residual - exited linear precliction vocoding - ICASSP \({ }^{\prime}\) 82, Proc. IEEE; Tht, Conf.Acoust. Speech and Signal Proc, Paria, May 3-5, 1982,NY, pp 216-219.

\title{
ON UNIVERSAL AND SPECIFIC FEATURES IN VOWEL PERCEPTION
}

\section*{K.S. OGORODNİKOVA}

Dept.of Phonetios
Leningrad State Univ.
Leningrad, USSR, I99I64

\section*{ABSTRAC T}

The results of a cross-language study of the perception of a set of synthetic steady-state vocalic stimuli using mimicking and identification methods are reported. The subjeots were native speakers of Russian, French and Georgian. The results show the influence of the vocalic system of the mother tongue on vowel perception. A close correlate to the given stimulus occuring in the native vowel system induces significant changes in mimicking and identification responses. This influence may be manifest even in cases where this correlate is a con-text-bound allophone. A superficial aquaintance with the vocalic system of a sec ond language changes the identification results, which has implications for the analysis of experimental perceptual data.

\section*{Introduction}

The present paper attempts to establish, to what extent vowel perception of different language speakers is determined by the vowel system of their mother tongue, and to what extent - by the universal perceptual abilities of human listeners.
A number of researchers have maintained that speakers of different languages are able to identify more vowels than the number of vowel phonemes in the language they are speaking. However, neither a finite inventory of such perceptual vowel units, nor their relation to linguistic phonemes has as yet been established for any language.
Tro possible solutions have been suggested for native speakers of Russian: I) this set of internal vowel representations might correspond to context-bound allophones in Russian vowels \(/ 3,2 /\); 2) it might conform to cardinal vowels \(/ I /\). But these solutions are not fully supported by the actual experimental data in different perceptual tests.
A combination of mimicking and identifi--ation was used. There is evidenoe to
believe that the transformations of the initial signal in mimicking and identifioation coincide up to the phonetic feature level. In mimicking, transformation of the phonetic representation into motor commands then takes place. Identification requires the phonetic labelling step. Mimicking does not seem to imply a necessary phonemic classification, and when it is difficult, no deoision in terms of phonological categories is made. The comparison of mimicking and identification results makes it possible to isolate motor and labelling factors.
It is important to realize that in analysing mimicking data purely in terms of FI and F2 values we lose a great deal of information about the phonetio quality of vowel responses.

\section*{PROCEDURE}

Three groups of IO male adult subjects, native speakers of Russian, French and Georgian, took part in the experiments. A set of 8 synthetic steady-state vocalic stimuli with Fo increasing from 100 Fz to I25 Hz was used (phonetic symbols with a letter \(n^{n}\) are assigned to each stimulus).

Pormant frequencies of synthetic vooalic stimuli
\begin{tabular}{|c|c|c|c|c|}
\hline Stimuli & FI & F2 & P3 & P4 \\
\hline Stis & 260 & 2760 & 2930 & 3500 \\
\hline \(y_{s}\) & 240 & 1880 & 2660 & 3500 \\
\hline \({ }_{\phi}{ }_{\text {S }}\) & 350 & 1560 & 2200 & 3250 \\
\hline \(2 s_{s}\) & 840 & I7IO & 2200 & 3250 \\
\hline \({ }_{u s}\) & 240 & 660 & 2420 & 3250 \\
\hline \({ }_{0}{ }_{5}{ }^{*}\) & 290 & 600 & 2420 & 3250 \\
\hline Qs & 570 & 800 & 2420 & 3250 \\
\hline \(a_{s}\) & 760 & 1060 & 3220 & 4000 \\
\hline
\end{tabular}

The stimuli were recorded in random order at 5 ms interval, each stimulus was repeated 5 times.
There are eleven oral vowels in French: \(l i, e, \varepsilon, a, y, \phi, \infty, u, o, v, a / ; \operatorname{six}\)
in Russian \(/ i, e, \Delta, u, o, a / ;\) five in in Russian \(/ \iota, e, b, u, o, a / ;\) five in
Georgian: \(/ i, e, a, u, o /\). The Russian and the Georgian vowel systems are considerably poorer than the French one. On

\footnotetext{
* O-closer quality, 设-more open quality.
}
he other hand, large allophonic variations occur in Russian, unlike French and eorgian. Vowels differ in quality accordng to stress position and to the phonoloiaal palatalization of adjacent conso-
iculation). \(a_{s} u_{s}\) have correlates in 311 three languages; \(y_{s}\) and \(\phi_{S}\) - front labial vowels - ocour only in French. The timuli \(\varkappa_{s}\), \(\} s\), ates in any of the three languages. How ever, \(x_{S}\) is phonetically nearer to the French than to Russian or Georgian vowels.

\section*{MIMIC KING TEST}

All the subjects were instruoted to reeat as closely as possible the stimu ubject went through the mimicking test wice and gave IO responses to each stiulus, which were recorded onto tape Before mimicking, subjects pr
The FI and F2 values of the response owels were measured from spectrograms and plotted as dots on the FI/F2 plane. The accumulations of such dots formed the response areas for each stimulus by eac group (see Fig. I a,b,o).
ing phonetic symbols and finer phonetic symbols and signs for netician (see Table I for the results). The response areas to different vocalic Stimuli partly overlap, less in the case case of Georgian speakers.
All the subjects responded to \(i_{s}, a_{s}, u_{s}\) stimuli with their own corresponding vowels.
niy French subjects were successful in mimicking \({ }^{\text {showed much poorer results and those of }}\) Georgian subjects were on the whole inadequate.
French and Russian subjects gave similar responses to oes; the Georgians r
Russian and Georgian subjects tended to substitute their own vowels for 9 s and stimuli. French subjects responses wer sometimes phonetically rather close to \(Q_{S}\) and \(0_{S}\).
Thas, mimicking results were strongly determined by the linguistic experience of when the stimulus has a correlate in the vocalic system of the mother tongue. It was therefore to be expected that the mimicking of French subjects would be most accurate.
But a vowe without correlates in the accurately responded to. The better micomparison with of Russian subjects in comparison with Georgian ones seem to b


Fig. I a, b, c. Mimicking response areas in he FI/F2'plane of French (a), Russian (b) and Georgian (c) subjects. Dots with symbols. \(a_{F}, a_{F}\) etc. show the locations and \(a_{6}, i G-G e o r g i a n ' v o w e l s\) (the mean f2 values are also shown).

Russian / \(u, o, a /\) ad jacent to the palatalized consonants. The peroeptual independence of such allophones is reinforced ber in the pussion alphabet
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & & \(L_{S}\) & \(y_{3}\) & \(\phi_{s}\) & \(\mathscr{L}_{s}\) & \(a_{s}\) & Ps & P, & \(u_{s}\) \\
\hline \(i\) & \[
\begin{array}{|l|}
\hline \frac{1}{2} \\
3 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
100 \\
60 \\
67 \\
\hline
\end{array}
\] & 36 & 15 & & & & I & 2 \\
\hline \(1 / 1\) & \[
\begin{array}{|l|}
\hline I \\
2 \\
3 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
34 \\
29 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
9 \\
3 \mathrm{I} \\
\hline
\end{array}
\] & 20 & & & & & \\
\hline 1 & \[
\begin{array}{|l|}
\hline 1 \\
2 \\
3 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 5 \\
& 3 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
\mathrm{I} \\
\mathrm{I} 6 \\
8 \\
\hline
\end{array}
\] & 25
26 & & & & & I \\
\hline 61 & \[
\begin{aligned}
& 1 \\
& 2 \\
& 3 \\
& \hline
\end{aligned}
\] & & \[
\begin{aligned}
& 35 \\
& 12
\end{aligned}
\] & \begin{tabular}{l}
24 \\
16 \\
\hline
\end{tabular} & & & & & \\
\hline \(y\) & \[
\begin{array}{|l|}
\hline 1 \\
2 \\
3 \\
\hline
\end{array}
\] & I & \(\begin{array}{r}97 \\ 28 \\ 13 \\ \hline 1\end{array}\) & \(\begin{array}{r}5 \\ \hline 2 \\ \hline\end{array}\) & & & & & I \\
\hline \(\phi\) & \[
\begin{array}{|l|}
\hline I \\
2 \\
3 \\
\hline
\end{array}
\] & & \[
\begin{aligned}
& 2 \\
& 7
\end{aligned}
\] & \[
\begin{array}{r}
100 \\
7 \\
7
\end{array}
\] & & & & & I \\
\hline \(\propto\) & \[
\begin{array}{|l|}
\hline 1 \\
2 \\
3
\end{array}
\] & I & 4 & 22 & & & \[
\begin{aligned}
& 2 \\
& 7 \\
& \hline
\end{aligned}
\] & & \\
\hline \(\partial\) & \[
\begin{array}{|l|}
\hline \mathrm{I} \\
2 \\
\hline
\end{array}
\] & & & \(\begin{array}{r}17 \\ \hline\end{array}\) & I & & & I & I \\
\hline \(\varepsilon\) & \[
\begin{array}{|l|}
\hline \mathrm{I} \\
3 \\
\hline
\end{array}
\] & & & 3 & \(\begin{array}{r}29 \\ 37 \\ 6 \\ \hline\end{array}\) & I & & & \\
\hline æ & \[
\begin{array}{|l}
\hline 1 \\
2 \\
3 \\
\hline
\end{array}
\] & & & & \[
\begin{aligned}
& \text { I9 } \\
& \text { I4 }
\end{aligned}
\] & & & & \\
\hline 2 & \[
\begin{array}{|l|}
\hline 1 \\
2 \\
3 \\
\hline
\end{array}
\] & & & & 47
33
41 & \[
\begin{array}{r}
8 \\
28 \\
14
\end{array}
\] & & & \\
\hline \(2 / a\) & \[
\begin{aligned}
& I \\
& 2 \\
& 3 \\
& \hline
\end{aligned}
\] & & & & IO & \begin{tabular}{l}
\(2 I\) \\
26 \\
24 \\
\hline
\end{tabular} & I & & \\
\hline \(a\) & \[
\begin{aligned}
& 1 \\
& 2 \\
& 3 \\
& 3
\end{aligned}
\] & & & & 5
5
40 & 71
46
61 & 28 & & \\
\hline b & \[
\begin{aligned}
& 1 \\
& 2 \\
& 2 \\
& 3 \\
& \hline
\end{aligned}
\] & & & & & & \[
149
\] & & \\
\hline 0 & \[
\begin{array}{r}
T \\
2 \\
3 \\
\hline
\end{array}
\] & & & & & & \[
\begin{aligned}
& 2 I \\
& 36 \\
& 12
\end{aligned}
\] & & \\
\hline 0 & \[
\begin{aligned}
& 1 \\
& 2 \\
& 3 \\
& 3
\end{aligned}
\] & & & & & & \[
\begin{array}{r}
34 \\
88 \\
\hline
\end{array}
\] & 8 & \\
\hline 0/4 & \[
\begin{aligned}
& 1 \\
& 2 \\
& 3 \\
& \hline
\end{aligned}
\] & & I & & & & & \begin{tabular}{l}
36 \\
31 \\
32 \\
\hline 5
\end{tabular} & \begin{tabular}{|l|}
\hline 19 \\
22 \\
20 \\
\hline 78
\end{tabular} \\
\hline \(u\) & \[
\begin{aligned}
& \mathrm{I} \\
& 2 \\
& 3
\end{aligned}
\] & & & & & & & \[
\begin{aligned}
& 55 \\
& 69 \\
& 67 \\
& \hline
\end{aligned}
\] & \begin{tabular}{|l|}
78 \\
75 \\
80 \\
\hline
\end{tabular} \\
\hline
\end{tabular}

Table I. Mimicking responses to synthetio vowels by groups of French /I/, Russian Vowels by groups of French \(/ 2\) and Georgian \(/ 3\) / speakers.

Russian, and only rarely Georgian peakers responded to \(y s\) and \(\phi\) with the racted \(/ 1 /\), reailizing the same low values of F2 owing to vowel retraction and not to vowel rounding

\section*{IDENTIFICATION TEST}

The same subjeots after a delay of sepossibly exact graphical representation of the same set of stimuli as in the mi micking test. See the results of the lassificati In Table \({ }^{2}\).
to each stimin and mimicking responses subjects have much in common: the best results in the three groups were for is \(a_{s}, u_{s}\) vowels; the most adequate reswere better responses from Russian than from Georgian subjeots to \(y_{s}, \phi_{S}, \mathscr{C}_{S}\) stimuli eto. It should be specially noted, that a Russian subject identified \(e_{s}\) /a/ - after a palatalized consonant, while a Georgian one-as \(h /\), that is, dered it to be the most prominent feature. A supplementary test was conceived to verify our assumption that even a superficial aquaintance with the vocalic system of a sec ond language may influeno the perception free allophones. The identification of the same set of vocalio stimuli was tested with a group of native speakers of Georgian, all - first year students in physics at Tbilisi University - I6 had studied total of 38 subjects language at school and 22 - French and German. It was found that those who had studied English did not respond to \(y_{s}\) with rounded vowels a all and gave almost no responses to \(\phi_{S}\) with a front rounded vowel identified 4 g studied French and German identified \({ }^{\text {as }}\) a as a rounded vowel in \(I / 3\) of their responses. Thus, the results of mimicking and of identification of vocalic stimuli proved to be similar, but mimicking was stid more accurate: the subjects responded With similar vowe types in both each In general, subjeot. Sometimes, however, subjects answered with different vowels from test to test: for example, mimioking responses to s as a and 1 , responses as / / / of a French subject. If mimicking responses were influenced individual artion responses even in a freechoice experimental situation were to a great extent determined by the subjects resourcefulness in choosing an appropriate symble as "fi" - the consonant
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \(i_{s}\) & \(y_{s}\) & \(\phi_{S}\) & \(æ_{S}\) & \(a_{s}\) & \(\mathrm{O}_{8}\) & \(\varphi_{S}\) & \(u_{s}\) \\
\hline i & \[
\begin{array}{r}
100 \\
98 \\
92 \\
\hline
\end{array}
\] & \(7 \begin{array}{r}4 \\ 7\end{array}\) & 56 & & & & & \\
\hline \(i / \square \square\) & & IO & \[
\begin{array}{r}
\text { I2 } \\
6
\end{array}
\] & & & & & \\
\hline \(\square\) & 2 & \[
\begin{array}{r}
30 \\
10
\end{array}
\] & \[
\begin{aligned}
& 28 \\
& 18
\end{aligned}
\] & & & & & \\
\hline \(y\) & & 100
50
10 & I0 & & & & & \\
\hline \(\phi\) & & & \[
\begin{aligned}
& 78 \\
& 48
\end{aligned}
\] & & & & & \\
\hline œ & & & 22 & & & & & \\
\hline \(\partial\) & 6 & 8 & 4 & 2 & & & & \\
\hline \(\mathrm{e} / \varepsilon\) & & & \[
\begin{array}{r}
10 \\
\hline
\end{array}
\] & \begin{tabular}{l}
30 \\
14 \\
20 \\
\hline
\end{tabular} & & & & \\
\hline \(a / \varepsilon\) & & & & 28
40
2 & & & & \\
\hline \(h\) & & & 2 & 10 & & & & \\
\hline 'a & & & & 8 & & & & \\
\hline a & & & & 36 & 60 & & & \\
\hline a/a & & & & \[
\begin{array}{r}
6 \\
34 \\
68 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
6 \\
100 \\
1000 \\
\hline
\end{array}
\] & & & \\
\hline \(a\) & & & & & 34 & IO & & \\
\hline \%/a & & & & & & 18 & & \\
\hline \(0 / 2\) & & & & 2 & & 72
16
10 & & \\
\hline 0 & & & & & & 84
90 & 8 & \\
\hline u/o & & & & & & & 18
8 & 2 \\
\hline \(u\) & 2 & 6 & & & & & 74
92
100 & 98
100
100 \\
\hline
\end{tabular}

Table 2. Identification responses to symthetic vowels by groups of French (top figure for each classification unit), Russian (middle figure) and Georgian (bottom figure) speakers.
seemingly carried the feature of "lip articulation", i.e. "rounded").

\section*{C ONC LUSION}

The results reported above suggest the influence of the vooalic system of the mother tongue on vowel perception. The set of synthetic vowels was most compatible with the linguistic experience of the French subjects, and they had the best results in identification.
But this influence is more complex than the presenoe of a close corresponding vowel to the stimulus in the vocalio system. We may assume a certain role of acoustical properties of the native vowels involved as references in the perceptual process.
Furthermore, we may speculate that not only the phonetic properties of the context-free allophones, but also of the most perceptually distinct context-bound allophones of the native vowels exert a certain influence on vowel perception. The better results in mimicking and identification of \(y_{s}, \phi_{s}, x_{S}\) achieved by native speakers of Russian than by the Georgians seem to be due to the actual advancement of the Russian / \(u\), o, a / allophones adjacent to palatalized consonants.
on the contrary, large allophonic variations do not occur in the Georgian language and Georgian subjects tend to give more "categorical" responses. The obtained results cannot be explained only by the influence of the phonological system of the mother tongue, but also reflect the universal perceptual abilities of different language users.
And finally, it is suggested that even a superficial aquaintance with the vowel system of a second language has an effect on vowel perception which should be borne in mind when interpreting the results of perceptual experiments.

\section*{REFERENCES}
/I/ Chernova E.I., Beliakova G.A., Dialinnikova T.G. A Study in Peroeption of Cardinal Vowels by Native Speakers of Russian. - Z. Phon.Sprachwiss.Kommunik. forsch., 39(4), Berlin, I986, 472-483 /in Russian/.
/2/ Chistovich L., Fant G., Serpa-Leitão A., Tjernlund P. Mimicking of Synthetio Vowels. - Speech Transm. Iab.Quart. Progr. and Status Report, Stockholm, I966, II 2, I-I8.
\(13 /\) Verbitskaya L.A. On Perceptual vowe 1 Units in Russian Speech. - Ucheniye Zapisky Ieningradskogo Universiteta, 325(69), Ieningrad, 1964, 55-7I/in Russian/.

\title{
CATEGORICAL PITCH PERCEPTION
}

KLAUS J. KOHLER

\author{
Institut für Phonetik und digitale Sprachverarbeitung \\ Universität Kiel 2300 Kiel, FRG
}

\begin{abstract}
This paper shows that the paradigm of categorical perception also applies to pitch contours. In LPC-synthesized stimuli, an \(F 0\) peak is shifted through an utterance in \(30-\mathrm{ms}\) steps. The stimuli of this physical continuum are identified in a contextualization experiment. The response function shows an abrupt change when the F0 peak is moved into the vowel of the stressed syllable. When stimuli from the continuum are paired with 0,1 or 2 steps between them, the differentiation functions show maxima at the category boundary established by the identification test. The ordering in each pair has an influence on the differentiation function.
\end{abstract}

\section*{INTRODUCTION}

The paradigm of categorical perception is well-known in the area of sound segments \(/ 1 /\). It means that a physical continuum of a sound property is partitioned into sections inside which the same category is identified and between which category identification changes. The corollary of this is that differentiation along the physical continuum is sharpest across the category boundaries and weakest inside the categories. The evidence for this phenomenon in the perception of prosodic features, e.g. word tones in tone languages, is contradictory \(/ 1,2 /\), and it certainly has not been demonstrated for utterance pitch contours. To show its relevance in the field of intonation the following experiments were carried out.

\section*{PROCEDURE}

In the German sentence "Sie hat ja gelogen." ("She's been lying."), with focus stress on the syllable "-10-" /lo:/, the FO peak can be on the syllable "ge-", preceding the stress, or at the centre of the stressed syllable, or at its end (cf. /3/). This shift in the \(F 0\) peak position is correlated with a change in meaning from 'established' to 'new' to 'emphatic'. A token of this sentence was pronounced by a male speaker, LPC-analyzed, and resyn-
thesized with 11 F0 contours, in which the peak was shifted in \(30-\mathrm{ms}\) steps from "ge-" to "-en" (for further details cf. /3/).

\section*{Experiment 1.}

The first 8 stimuli out of this series of '11. (counting from left to right) were each paired with the preceding context "Jetzt versteh ich das erst." ("Now I understand."; spoken by the same speaker, and LPC-resynthesized). This precursor sets a semantic frame of reference for something new to follow in the test utterance. Since the 8 test stimuli span the continuum of \(F 0\) peak positions from "ge-" to the centre of the stressed syllable "-lo-", they either contain the same semantic component as suggested by the context frame, i.e. 'new', or the different meaning feature 'established', which would be appropriate as a summing-up at the end of a chain of arguments, for instance after "Once a lyer, always a lyer; this also applies to Anne: ...". Thus the chosen context and each of the 8 test stimuli either form a semantic match or they do not. A test tape was prepared with a randomization of 80 pairings of context and test stimuli (8 stimuli \(x\) 10 repetions) and presented to 19 listeners who had to indicate on prepared answer sheets whether context and test sentence were semantically congruous.

\section*{Experiment 2.}

Stimuli from the series of 11 were paired in such a way that they differed by 0,1 , or 2 steps of \(F 0\) peak position. All 1- and 2-step combinations were formed in both orders ( \(2 \times 10\) and \(2 \times 9\), respectively), and supplemented by identical stimulus pairings at the uneven rank numbers in the series (6). Two test tapes were prepared: (I) for the ascending rank order in stimulus pairs (i.e. left-to-right shift of the FO peak), and (II) for the descending rank order (i.e. right-to-left shift). For each test tape, the 6 identical stimulus pairs were added; the resulting 25 pairs were then repeated once and randomized.

A group of 39 subjects listened to test tape (I), a different group of 34 subjects indicate on prepared answer sheets whether they perceived a difference between the members of a pair.

\section*{RESULTS AND DISCUSSION}

Figure 1 gives the identification function for Experiment 1 : it shows an abrupt change from "matching" to radual change along the physical continuum, and is thus clearly categorical. The answers matching or non-matching dentification of two sentence meanings: summing-up conclusion' (A) versus 'new point of argumentation' (B). Stimuli 1-4 represent semantic category (A), stimuli \(6-8\) category (B); stimulus 5 is on the border between the two. The latter is first stimulus in the whole series (from left to right) that has the FO peak in the stressed vowel /o:/: approximately 30 ms after vowel onset. In the stimuli 1-4, the o peak precedes the stressed vowel, and there is thus only an FO fall in it; in stressed vowel is prefixed by a rise the increasing extent, which at a peak position of 60 ms into the vowel has become prominent enough to signal a different category in an identification task. e thus have a time span of about 60 ms into the vowel where the \(F 0\) peak is in a therefore has an equivocal meaning ttached to it.

Figures \(2 a-c\) provide the discrimination functions for Experiment 2. The pairs of alarms at the category boundary found in identification, i.e. for stimulus 5. This is what one would expect if the associated meaning is equivocal: listeners overdifferentiate at the perceptual level when the pairs of different stimuli in the ascending order, the maximum of discrimination occurs at the category boundary of the identification function, as long as one member lies outside the transition span, i.e. for the pairings 4/5, 5/6; 3/5, pairs with descending order; the maximum is generally shifted to the next higher rank in the stimulus series: \(6 / 5,7 / 6\); /4, \(7 / 5,8 / 6\). This finding may be related to an upward shift of the transition span, the uncertain boundary area now being can be explained by perceptual hysteresis under the special conditions of the discrimination test paradigm.

If in a sequence of two segmentall dentical utterances, i.e. a repetition of peak pase word string, two dilferent the category transition as established by the identification test, the listene expects a descending \(F 0\) peak order, linked to a semantic shift from the category new to the category established as order constitutes the marked case in this test frame because the repetition of the sentence suggests the progression from 'new' to 'established'. In this situation, perception becomes less acute to a decrease in the extent of a rising FO (preceding the fall in the stressed vowel) is raised in a right-to-left sequence of peaks, compared to its position determined by identification. Thus, stimulus 5, which lies between the two categories in the identification test, and which seems to stay there in left-to-right discriminacategory in the reversed-order discrimination.

The maximum of differentiation betwee stimuli from an. F0 peak position continum is thus at the transition between identfication categories. Therefore, the applies to the field of prosody, in particular to global utterance intonation. At the same time, however, a strong order effect which results from the perceptua testing procedures and which disturbs differentiation functions has to be taken into account. It is found in segment passed unnoticed because it has not been factored out.

\section*{REFERENCES}
/1/ B.H. Repp, "Categorical perception: issues, methods, findings". In: N. J. Lass (ed.), Speech and Lanquage: Ad vances in Basic Research and Practice: Orlando, 1984.

12/ A.s. Abramson "The noncategorical perception of tone categories in Thai," In: B. Lindblom \& S. öhman (eds.), Frontiers of Speech Communica ion Research, pp. 127-134. Press: New York, 1979
/3/ K.J. Kohler, "Computer synthesis of intonation" Pro. 12 th intern. Congr. Acoustics, A6-6. Toronto, 1986

\(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}\)
Fig. 1. Identification function in Experiment 1, showing percentage of "matching" judgements for 8 stimuli "Sie hat ja gelogen." with F0 peak shift from left to das erst." 19 subjects; for each stimulus \(\mathrm{N}=190\).

\%"different"

 Fig. 2. Discrimination functions in Experiment 2 , showing percentage of "different" judgements for utterance pars
 positions, in the ordering left-to-right (continuous line) or right-to-left (broken line). The stimulus numbers refer to the second stimulus in the ascending and to \begin{tabular}{ll} 
the first in the descending order. & 73 \\
\hline
\end{tabular} sbs.. \(N=146\) at each data point \((a) ; \quad 39\) sbs., \(N=78\) in the left-to-right
in the right-to-left ordering of (b) and (c).

\section*{A FUZZY LOGICAL MODEL OF SPEECH PERCEPTION}

\section*{DOMINIC W. MASSARO}

\section*{Program in Experimental Psycholgy, University of California \\ Santa Cruz, California 95064 U.S.A.}

ABSTRACT
Speech perception is viewed as having available multiple sources of information supporting the identification and interpretation of the language input. The results from a wide varicty of expcriments can be described within a framework of fuzzy logical model of percepin. The assumpors to tive the degree to which that source specifics various alternatives, 2) the sources of information are evaluated independently of one another 3) the sources are integrated to provide an overall degree of support for each alternative, and 4) perceptual identification and interpretation follows the relative degree of support among the alternatives. A formalization of these assumptions is applied to results of an experiment manipulating audible and visible characteristics of the syllables / \(\mathrm{ba} /\) and \(/ \mathrm{da} /\). In addition, the results are used to test an altemative categorical model of speech perception. The good description of the results by the fuzzy logical models indicate that the sources of support provide continuous rather than categorical information. The integration of the multiple sources results in the least ambiguous sources having the most mpact on processing. Tesh resuls provids major constaints

\section*{INTRODUCTION}

Specch perecption is a human skill that rivals our other mpressive achievements. Even after decades of intense effort pecch recognition by machine remains far inferior to human performance. The central thesis of the present proposal is that here are multiple sources of information supporting speech perception, and the perceiver evaluates and integrates all of thes ources to achieve perceptual recognition. Consider recognition of he word performance in the spoken sentence
The actress was praised for her outstanding performance.
Recognition of the critical word is achieved via a variety of bollom-up and top-down sources of information. Top-down ources include scmantic, syntactic, and phonological constraints and bothom-up sources include audible and visible featurcs of the poken word

A TIIEORETICAL FRAMEWORK FOR PATTERN accognition

According to the present framework, well-learned pattems are ccogni/ed in accordance with a general algorithm, regardless of model has received support in a wide varicty \([1,2,3]\). The consists of three opcrations in percepual (primary) recognition: feature evaluation, feature integration, and pattern classification Continuously-valued features are cvaluated, integrated and
matched against prototype descriptions in memory, and an identification decision is made on the basis of the relative goodness of match of the stimulus information with the relevant prototype descriptions. The model is cald
crccption (abbreviated FLMP)
Central to the FLMP are summary descriptions of the preceptual units of the language. These summary descriptions are called prototypes and they contain a conjunction of various feapures of the prototype correspond to the ideal values that an exemplar should have if it is a member of that category. The exact form of the representation of these properties is not known and may never be known. However, the memory representation must be compatible with the sensory representation resulung from the ransduction of the audible and visible speech. Compatibility necessary because the two representations must be related to on another. To recognize the syllable \(/ \mathrm{ba} /\), the perceiver must be abb relate the information provided by the syllable itself to memory of the category /ba/

Prototypcs are generated for the task at hand. In speceth perception, for example, we might envision activation of al prototypes corresponding to the perceptual units of the language being spoken. For ease of exposition, consider a specch signa representing a single perceptual unit, such as the syllable foal. Thle sensory systems transduce the physical event and make avaiabie various sources of information called fcates. Duthe the of the peratonis in memory. For each fcature and for each prototype prototypcs in memory. For each fcature and for eacge pre which the feature in the specch signal matches the featural value of the prototype.

Given the necessarily large variety of features, it is necessary to have a common metric representing the degree of match of cach feature. The syllable /ba/, for example, might have visible feaural information related to the closing of the lips and auam information corresponding to the second and third ransitions. These two features must share a common me serve thi
eventually are going to be related to one another. To sel purpose, fuzzy truth values [4] are used because they provide a natural representation of the degree of match. Fuzzy truth values lic between zero and one, corresponding to a proposition bds to completely false and completely truc. The value .5 corresponds a completely ambiguous situation whereas .7 would be more tree than false and so on. Fuzzy truth valucs, therefore, not only can represent continuous rather than just categorical informaion, Anoher also can represent different kinds of information. Anan in advantage of fuzzy truth valucs is that they couch informis allows the noural devclope of a
phenomenon of interest.
Feature evaluation provides the degree to which each feature in the syllable matches the corresponding feature in each prototype in memory. The goal, of course, is to determine the overal goodness of match of each prototype with the syllable. All of the taures are capable of contributing to this process and the second pperation of the model is called feature integration. That is, the taures (actually the degrees of matches) corresponding to each roitype are combined (or conjoined in logical terms). The outcome of feature integration consists of the degree to which each prototype matches the syllable. In the model, all features contribute to the final value, but with the property that the least ambiguous taures have the most impact on the outcome.
The third operation during recognition processing is patter lassificauion. During this slage, the ment of each relevan rototype is evaluated relative to the sum of the merits of the other elevant prototypes. This relative goodness of match gives the roportion of umes the syllable is identified as an instance of the prototype. The relative goodness of math could also be the syllable \(m\) a raing jugoment indicaing the degree to whic poration is modeled fice Luce's [5] choice rule. In pandemonium-like terms [6] we might say that it is not how lou some demon is shouting but rather the relative loudness of that demon in the crowd of relevant demons. An imporiant prediction of the model is that one feature has its greatest effect when scond feature is at its most ambiguous level. Thus, the mos informative feature has the greatest impact on the judgment.


Figure 1. Schematic representation of the three operations
involved in perceptual recognition.
Figure 1 illustrates the three stages involved in patter reognition. Auditory and visual sources of information ars represented by uppercase letters. The evaluation proces ransforms these into psychological values (indicated by lowercase klters) that are then integrated to give an overall value. Th dassilication operation maps this value into some response, such discrete decision or a rating. The model confronts sever mporant issues in describing specch perception. One issue has to with whether multiple sources of information are evaluated in of the sources in. Two other issues have to do with the evaluatio available from in that we ask whether continuous informur one source is contaminated by the oher source The issue of categorical versus continuous preeption can also be asked with lespect to the output of the incers. Qustions abou integration assess whether the components passed on by evaluatio are integrated into some higher-order representaion and how two sources of information are integrated.

The theoretical framework of the FLMP has proven to be valuable framework for the study of speech perception formation designed in this framework have provided importan erception, concerning the sources of information in spect apport specech perception. The experiments have studied a broad ange of information sources, including bottom-up sources such a adible and visible characteristics of speech and top-down sources icluding phonological, lexical, syntactic, and semantic constraints.

As examples, experiments have assessed the contributions of romant structure and duration of vowels in vowel identificatio 7], the role of vowel duration and consonant duration in the dentification of post-vocalic stop consonants \([8,9]\) and fricative 10], the integration of voice onset time and formant structure of egment-initial stop consonants [11, 12] and fricatives [13]. Thes esults are not limited to western languages; experiments have hown that both pitch hicight. and pitch confor contribute to th have also revealed the integration of tone 14]. Experimen formation, such as pointing gestures, with auditory sources [15]. Several experiments have also addressed the relative contributions of acoustic information and higher-order constraints in the pattern. These expcriments have included formant structure and phonological constraints in the identification of glides [16], the formant structure and lexical constraints in the identification of op consonants [17], segmental information and syntactic onstraints in the idenuifcation of words [18], semantic constrain word identification [19], and word order, animacy, and noun verb agrecment in sentence interpretation [20].

\section*{EXPANDED FACTORIAL DESIGN}

An expanded factorial design with open-ended response alternatives offers the potential of addressing important issues in peech perception. I will describe an experiment manipulating aditory and visual information in a specch perception task. The orense altematives, has not gur 2 , along wid open-endec erception research and it provides a unique method to add sss th sues of evaluation and integration of audible and visible nformation in speech perception

Eight college students from the University of Califormia Santa Cruz, participated for one hour in the experiment. All tes stimuli were recorded on videotape. On each trial the speaker sai computer control. When the speaker was cued to say nothing, a


Figure 2.
Expansion of a typical factorial design to include auditory and visual conditions presented alone. The nine levels along the auditory continuum represcnt spect.
sounds varying in equal steps between foa/ and /da/.
computer-controlled tone was recorded on the audio channel of the videotape 400 msec after the onset of the neutral cue. The original audio track of the videotape was replaced with synthetic speech. A ninc-step /ba/ to /da/ auditory continuum was used to replace the original audio. By altering the parametric information specifyin the first 80 msec of the consonant-vowel syllable, a sel of nine 400 msce syllables covering the range from \(/ \mathrm{ba} / 10 / \mathrm{d} /\) was created. The experimental videotapcs werc made by copying the origina tape and replacing the original sound track with the synthetic specch. The presentation of the synthetic specch was synchronized with the original audio track on the videotape.

The 29 speech events illustrated in Figure 2 were presented to each subject in a randomized order. Each subject made about 600 with each of the eight altematives. Figure 3 presents the observed probability of each of the eight responses for the 29 unique speech events.

\section*{FUZZY LOGICAL MODEL OF PERCEPTION (FLMP)}

Applying the model to the present task using auditory and visual speech, both sources are assumed to provide continuous and independent evidence for the altenatives \(/ \mathrm{ba} /\) and \(/ \mathrm{da} /\). Defining the onsets of the second (F2) and third (F3) formants as the imporant auditory feature and the degrec of initial opcning of the lips as the important visual feature, the prototype for/da/ would be:
/da/ : Slighly falling F2-F3 \& Open lips.
The prototype for/ba/would be defined in an analogous fashion,

\section*{foal : Rising F2-F3 \& Closed lips,}
and so on for the other response alternatives. Given a prototype's independent specifications for the auditory and visual sources, the value of one source cannot change the value of the other source at defining each prototype is evaluated according to the product of the feature values. If \(a D_{i}\) represents the degree to which the auditory stimulus \(A_{i}\) supports the altemative / da/, that is, has Slightly falling F2-F3; and \(v D_{j}\) represents the degree to which the visual stimulus \(V_{j}\) supports the altemative bal, that is, has Open lips, then the outcome of prototype matching for/da/would be:
/da/ : \(a D_{i} \nu D_{j}\)
where the subscripts \(i\) and \(j\) index the levels of the auditory and visual modalitics, respectively. Analogously, if \(a B_{i}\) represents the cgree to which the auditory stimulus \(A_{i}\) has Rising \(\mathrm{F} 2-\mathrm{F} 3\) and \(V B_{j}\) epresents the degree to wich he visual 1 Ring \(V_{j}\) has Closed ips, the
foal : \(a B_{i} \nu B j\)
and so on for the other allernatives.
The pattern classification operation would determine their relative merit leading to the prediction that
\[
\begin{equation*}
P\left(/ d a / \mid A_{i} V_{j}\right)=\frac{a D_{i} \nu D_{j}}{\sum} \tag{1}
\end{equation*}
\]
where \(\sum\) is equal to the sum of the merit of all eight alternatives. derived in the manner illustrated for \(/ \mathrm{da} /\) and \(/ \mathrm{ba} /\).

The important assumption of the FLMP is that the auditory source supports cach alternative to some degree and analogously for the visual source. Each alternative is defined by ideal values of he auditory and visual information. Each level of a source supports each altemative to diffcring degrecs represented by feature the auditory and visual inforenion for degrec of support from integrated following the multiplicative ric given by the FLMP The model requires 2 parameters for the visual fcature values and 9 parameters for the auditory feature values, for each of the 8 response altematives, for a total of 88 parameters.

\section*{CATEGORICAL MODEL OF PERCEPTION (CMP)}

It is essential to contrast one model with other models that ake altemative assumptions. One alternative is a categorical model of perception (CMP). It assumes that only categorical

information is available from the auditory and visual sources and that the identification judgment is based on separate decisions to the auditory and visual sources. Given eight response altematives, here are eight possible outcomes for a particular combination of audiory and visual information. Considering be fal/pal, ba/-not ma/ not bol-ha/ or not by/-not bal. If the two decisions the and spech event agree, the identification response can follow either source. When the two decisions disagree, it is assumed that the subject will respond with the decision to the auditory source on some proportion \(p\) of the trials, and with the decision to the visual source on the remainder ( \(1-p\) ) of the trials. The weight \(p\) reflects the relative dominance of the audito source.

The probability of a /ba/ identification response, \(\mathrm{P}(\mathrm{ba})\) given a particular auditory/visual speech event, \(A_{i} V_{j}\), would be.
\(P\left(/ b a / \mid A_{i} V_{j}\right)=(1) a B_{i} v B_{j}+(p) a B_{i}\left(1-v B_{j}\right)\)
\[
+(1-p)\left(1-a B_{i}\right) \nu B_{j}+(0)\left(1-a B_{i}\right)\left(1-v B_{j}\right)
\]
where \(i\) and \(j\) index the levels of the auditory and visual where \(i\) and \(j\) index the levels of the auditory and of a \(\mathrm{ba} /\) decision given the auditory level \(i\), and \(\nu B_{j}\) is the probability of a bal decision given the visual level \(j\). The value \(p\) reflects the bias to follow the auditory source. Each of the four terms in the equation represents the likelihood of one of the four possible outcomes multiplicd by the probability of a 102 idenification response given that outcome. To fit this modec io te results, each unique level of the auditory stimulus requires a mina parameter \(a B_{i}\), and analogously for \(v B_{j}\). The modcling 0 visual
 parameters. Each of the other seven response altemaives arameters analogous equation to Equation 2 and an additional 11 paramelers hus requiring a total of 88 visual and auditory parametcrs. For ay particular auditory-visual combination, the sum of the eight decision probabilities to a given source also has to be cons given o be less than or equal to one; the assumption is that a
source is categorized as only a single category on any give presentation. An additional \(p\) value would be fixed across a conditions for a total of 89 parameters. Thus, we have a far comparison to the FLMP which requires 88 parameters.

\section*{MODEL TESTS}

Figures 3 and 4 give the average observed results and the average predicted results of the FLMP and CMP. As can be seen in the Figure 4, the CMP gave a poor description of the observe results. The predictions of the FLMP shown in Figure 3, on the other hand, provide a very good description. The FLMP gave mean root mean square deviation (RMSD) of .030 averaged acros the individual subject fits of the 8 subjects compared to an average RMSD of 148 for the CMP.

nuoliopr
Fligure 4. Probability of responding with each of the eight
aliematives as a function of the audiory and visual sources under the bimodal and unimodal conditions. The nine levels belween B and D along the auditory continuum represen The level \(N\) refyrs so in cqual steps becwecn foal and /da/ parameler corresponds to visual fal/ a visual /dal, and no visual information. The lines give the predictions for the CMP.

CONCluSION
The present framework provides a valuable approach to the study of speech perception. We have leamed about some of the andamental stages of processing involved in speech perception by speceh cye, and how multiple sources of information are used imegraing perception. Given the potential for evaluaung and and understanding sources or inormaion in spech pensidered necessary. There is now good evidence that perceivers hav Continuous information each source is evaluated, and all sources are integrated in speech perception. Future work should address the nature of the varicty of sources of information, and how they function in recovering the speaker's message.

\section*{References}
\({ }^{11}\) Massaro, D. W. (1979). Reading and listening (Tutorial paper) In P. A. Kolers, M. Wrolstad, \& H. Bouma (Eds.), Processin of visible language: Vol. 1 (pp. 331-354). New York Plenum.
[2] Massaro, D. W., \& Oden, G. C. (1980b). Speech perception: A framework for research and theory. In N. J. Lass (Ed.) Speech and language: Advances in basic research and practice: Vol. 3 (pp. 129-165). New York: Academic Press.
[3] Massaro, D. W. (in press). Speech perception by ear and eye: A paradigm for psychological inquiry. Hillsdale, NJ: Lawrence Erlbaum Associates.
[4] Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338-353.
[5] Luce, R. D. (1959). Individual choice behavior. New York: Wiley.
[6] Selfridge, O. G. (1959). Pandemonium: A paradigm for eaming. In Mechanization of thought processes (pp. 511 526). London: Her Majesty's Stationery Office.
[7] Massaro, D. W. (1984). Time's role for information, processing, and normalization. Annals of the New York Academy of Sciences, Timing and Time Perception, 423,
372-384.
[8] Dencs, P. (1955). Effects of duration on the perception of voicing. Journal of the Acoustical Society of America, 27, 761-764.
[9] Massaro, D. W., \& Cohen, M. M. (1983). Consonant/vowel ratio: An improbable cue in specch. Perception \& Psychophysics, 33, 502-505.
[10] Massaro, D. W., \& Cohen, M. M. (1977). The contribution of voice-onset time and fundamental frequency as cues to the /zii/-si/ distinction. Perception \& Psychophysics, 22, 373382.
[11] Massaro, D. W., \& Oden, G. C. (1980). Evaluation and integration of acoustic features in specch perception. Journal of the Acoustical Society of America, 67, 996-1013
[12] Oden, G. C., \& Massaro, D. W. (1978). Integration of featural information in spcech perception. Psychological Review, 85 , 172-191.
[13] Massaro, D. W., \& Cohen, M. M. (1976). The contribution of fundamental frequency and voice onsct time to the \(/ z \mathrm{i} /-/ \mathrm{si} /\) distinction, Journal of the Acoustical Society of America, 60. 704-717.
[14] Massaro, D. W., Cohen, M. M., \& Tseng, C-Y. (1985). The evaluation and integration of pitch hcight and pitch contour in exical tone perception in Mandarin Chincse. Journal of Chinese Linguistics 13, 267-289.
[15] Thompson, L. A., \& Massaro, D. W. (1986). Evaluation and integration of speech and pointing gestures during referential understanding. Journal of Experim 42, 144-168.
[16] Massaro, D. W., \& Cohen, M. M. (1983). Phonological context in specch perception. Perception \& Psychophysics. 34, 338-348.
[17] Ganong, W. F. III. (1980) Phonctic categorization in auditory word recognition. Journal of Experimental Psychology:
[18] Tyler, L. K., \& Wcsscls, J. (1983). Quantifying contextual contributions to word-recognition processes. Perception \& Psychophysics, 34, 409-420.
[19] Oden, G. C. (1978). Semantic constraints and judged preference for interpretations of ambiguous sentences. Memory \& Cognition, 6, 26-37.

\section*{в．С．ШУпляков}

\section*{Институт фиэиологии им．И．П．Павлова АН СССР}

Ленинград

\section*{PERDOUL}

Работа посвящена вняснению вопроса о природе нелинейности эффекта маснировки． Показано，что с помощь экспериментов с маскировкой может онть выявдена только частотно－зависимая составдяющая амплитуд－ ной характеристики сдуховой системы．Пред－ лагается гипотеза，что нелинейность мас－ кировки обусловлена нелинейностьь колеба－ ний базилярнон мембраны улиткл внутренне－ го уха．Подученн зависимости，позво лнюиие перейти от кривых маскировки к кривым возбуддения。

При исследовании механизмов восприятия сложных вжустических сигналов，в том чис－ де и речевых，значительное место занимают психоакустические эксперименты с маскиров－ ко\％．Данные，полученнне в этих эксперимен－ тах исподьзуштся при оценке разрешаюмей способности органа сдуха по частоте［I］， при определении помехоустойчивости и раз－ борчивости речи，в измерениях громности ［6］．Достоверность предлагаемых моделей обработки сигнадов слуховой системой при восприятии в бопьтой степени зависит от интерпретации тех кривых，ноторые измерл－ втся в экспериментах с маскировкой и адек－ ватности наших представдений относительно механизмов этого явдения。

Одна из важней ихх проблем，свлзанных с явлением маскировки заключается в том，что линейная зависимость между уровнем маске－ ра и уровнем маскируемого тона сохраняет－

ся лишв при условии совпадения частот маскера и тест－тона；на всех других час－ тотах тест－тона зависимость нелинейная рис．I ．


Рис．I．Кривые маскировки тона узкопо－ лосным пумом со средней частотож I кГД。

По оси абсписс－частота тест－тона в кГц；по оси ординат－уровень звукового давления тест－тона в дБ．

Шифры у кривых－уровень маскера в пБ， штриховая линия－абсопотныи порог спуха． Начиная с классических опытов Вегедя и Лейна［5］возникновение нелинеиных эффек－ тов на высоких частотах объяснялось влия－ нием гармоник маскера，предпо оожительно появлнюшихся вследствие нелинейности отде－ дов слуха，предпествуюших спектральному анализатору．В дальнейпем оказапось，что система наружного и среднего уха линейна в очень большом диапазоне уровней звуковнх давлении，и таким образом，причины непл－

нейности маскировки остаются не внясненны－ м до настолщего времени．Нелинейность кри－ вых маскировки на частотах выше．частоты маскера наблюдаетсл и в экспериментах с задержанной маскировкой，а также при ис－ пользовании в качестве паскера не только тональных，но и шумовых，речевых и других сигналов．

Длн обълснения вышеупомннутого явдения автор настолщего сообщения предлагает ги－ потезу，согласно которой нелинейность эф－ фекта мескиовки авляется отобрамением не－ شнейнх свойств гиродынамической части упитки внутреннего уха и пытается опреде－ щить вид этой нелинейности из эксперимен－ тов с паскировной．Необходімо отметить， что представление о том，что кривые шаски－ ровки，в основном，описывают процессы， происходящие в периферическом отдеде орга－ на сдуха，существует，начиная с самых пер－ вих экспериментоз с маскировкой и широко принято в настолщее время．Считается，что кривые наскировки отобранают характер рас－ пределения возбуждения，возникатоего вдоль базилярной мембраны улитки внутреннего уха под воздействием входного сигнала．Такое представление дежит в основе современных расчетов громкости сигнадов［6］．

В данной работе будем рассматривать стчай остаточной маскировки，чтобы упрос－ тить ситуацию и избекать необходииости учета не выясненного до настоящего времени механизма двухтонового подавления．При этом будем исходить из того，что картина распределения возбуждения，возникшая вдоль координаты Х системы под действием маскера сохраннетсля в течение некоторого времени после выключения маскера．Естественно пред－ подожить，что для восприятия в этих успо－ видх тест－тона необходимо，чтобы амплитуда возбуядения，вызванного им на шекоторой координате \(X_{\text {т }}\) была равна ашпдитуде возбуж－ дения，вызванного маскерои на этой коорди－ нате，или отличалась от нее на некоторую

небольпую величину \(\xi\) ，представлнюшур собой，по существу，дифференииальный по－ рог по интенсивности，т．е．
\(W_{M}\left(X_{1} D_{M}\right)=W_{T}\left(X_{1} D_{T}\right)+\xi\left(X_{1} p_{M}\right)\)
Если велйчиной \(\xi\) пренебречь，поскольку она по крайней мере на порядок меньше точности самого метода маскировки，то по－ дучается，что какую бы форму амплитудной характеристики \(W=W(P)\) не имела ната система，вынвить её в экспериментах с маскировкой мы не сможем，поскольку и тест－тон и маскер подвергаются одному и тому же，в общем сдучае，нелинейному пре－ образованию．В результате әкспериментов с маскировкой мы всегда будем подучать линейную зависимость между уровнями мас－ кера и тест－тона на всех частотах．

Поскольку，как уже было сказано выше， это противоречит экспериментальным данным， остается предположить，что аиплитудные характеристики преооразования уровнеи звукового давления маскера и тест－тона в уровень возбумдендя различны для маскера и тест－тона。 Учитывая，что тест－тон отли－ чаетсл от маскера только частотой，остает－ ся принять，что амплитудная характеристи－ на преобразования уровня звукового давле－ нил в уровень возбуядения частотно－зави－ сима，т．е．каждая＂координата＂описнвает－ ся не одной，а семейством амплитудных ха－ рактеристик，зависящих от воздействующей частоты и спешифичных для данной ноордина－ ты．

Попытаемся теперь установить связь меж－ ду кривыми，представленными на рис．I и амплитудными характеристинами системы． Пусть на рис． 2 схематичесии изображенн две аппитудные характеристикй \(W_{M}(P)\) и
\(W_{T}(P)\) некоторой координаты \(X_{I}\) системы， соответствуюиие частотам маскера и тест－ тона．Приращение уровнл паскера на величи－ ну \(\Delta P_{M}\) вызовет увеличение уровня воз－ буждения системы на некоторую величину \(\lambda\) ． Длл того，чтобы тест－тон был еоспринлт，

необходимо увеличить его уровень на тапую величину \(\Delta P_{T}\) ，которая приведет к уве－ пичению уровня возбуддения на ту же вели－ чйн．


Рис．2．Схематическое изображение двух амплитудных характеристик（для тест－тона и маскера）одной и той ще координаты \(X_{T}\) базилярной мембраны．

По оси абсцисс－уровень звукового давления в дБ；по оси．ординат－уровень возбувдения в дБ．Остальнне полснения в тексте．

Другими сповами，можно записать：


где \(\gamma^{\gamma}\)－угол наклона характеристики \(P_{T}\left(P_{M}\right)\) в точке \(X_{I}\) ，а \(\alpha\) и \(\beta\)－угпы нак－ донов характеристик \(W_{M}\left(P_{M}\right)\) и \(W_{T}\left(P_{T}\right)\) 。 отсвда видно，что если，например，харак－ теристики \(W_{M}\left(P_{M}\right)\) и \(W_{T}\left(P_{T}\right)\) совпадают， или просто одвинуты по горизонтапи， \(\operatorname{tg} \gamma\) всегда будет равен I，т．е．мы подучим прямые под углом \(45^{\circ}\) ，что мы и набтодаем в сдучае，если частоты маскера пу тест－то－ на совпадарт ОРис．3）．

Из выражения（3）также следует，что на основаныи экспериментов с маскировноу оп－ ределить вид амплитудной характеристики системы на частоте тест－тона можно линь

при условии，если пзвестна амплитудная характеристика системы на частоте маскера и наоборот．


Рис．3．Зависимость уровня звукового давдения тест－тона от уровня звукового давления маскера，представляющего узкопо－ лосный пум со среднен частотои I кГп．

По осі абсцисс－уровень звукового дав－ дения маскера в дБ；по осп ординат－уро－ вень звукового давления тест－тона в дБ。

Нифры у кривнх－частота тест－тона в kTL.

В настоящее время имеется достаточное число фактов，говоряших о том，что спухо－ вая система уже на уровне механических колебании базилярнои мембраны улитки внуреннего уха колеблется нелиненио，при－ чем эта нелинейность частотно－завпстиа
［4］，［2］．Нелине甘ность это立 амплитуд－ но характеристики наиболее выражена на координатах мембраны，колеблопихся с ре－ зонанснои частотои；на удаленных от резо－ нанса частотах система линеинна．

Естественно использовать этот факт для анализа амплитудных характеристик эффекта маскировки．В придожении к нашему случав это означает，что если частота тест－тона достаточно удалена от частоты маскера，то амплитудная характеристика \(W_{M}\left(P_{M}\right)\) на этой частоте линейна，т．е． \(\operatorname{tg} \alpha=I\) во всем диапазоне уровнеп маскера，а нелиней－ нисть кривых маскировки объясняетоя непи－

неиностьы амплитудной характеристики на частоте тест－тона，т．е．\(W_{T}^{\left(P_{T}\right)}\) ．Тогда новно записать：
\[
\operatorname{tg} \gamma=\frac{1}{\operatorname{tg} \beta}
\]

Зависимость \(\mathrm{P}_{\mathrm{T}}\left(\mathrm{P}_{\mathrm{M}}\right)\) может быть дегко из－ щерена（ Рис．3）；зная эту характеристику， ва основании（4）можно по дучить кривую завдсимости \(W_{T}\left(P_{T}\right)\)（Рис．4）．


Рис．4．Зависимость уровня возбуждения （кривые I и 3）и субъективнон громности това I кГц（кривая 2）от уровня звунового давпения тест－тона．

Iо оси абсписс－уровень звукового давления тест－тона；по оси ординат－уро－ вень возбувдения и субъективная громкость （по：I）в логарифмическом масштабе．
Кривая 3 подучена путем сдвига кривои I；криван 4 －прямая под угдом \(45^{\circ}\) ． （Зарактеристина \(W_{T}\left(P_{T}\right)\) подучєется путем поворота на \(90^{\circ}\) зеркального изображения гарактеристики \(P_{T}\left(P_{M}\right)\) ）．
Нак вддно，эта мривая инеет три участ－ ka с характерными особенностями：при ма－ mild уровннх с ростом входного сигнала набдодатеся непропорционально быстрое возрастание，＂усиление＂уровня возбужде－ ния，что хорошо согласуется с современны－ й представлениями об активном механизме фориирования частотной избирательности перидерического отдела слуха［3］．В об－ ласти средних уровней набподается＂насы－

щение＂характеристики，это происходит за счет уменьшения избирательности（точнее， коэффициента неравномерности）частотно－ избирательных кривых．При этом интересно отметить большое сходство этой кривой с кривой субъективно有 громкости（кривая 2 на рис．4）．Наконец，в области высоких уровней система становится все более ли－ нейно哲，что также хорошо согласуется с из－ вестныии физиологическими экспериментами．

С учетом полученных результатов，харак－ теристики распределения возбуждения вдоль базилярной мембраны приобретают совсем другой вид，чем это подучается непосред－ ственно из эксперилентов по маскировке．

\section*{JUTEPATJPA}

І．Цвикер Э．，Р．Фельдкелдер．Ухо как при－ емник информации．Изд．＂Связь＂，Л．，I97I。
2．Шуплнков B．C．Колебательные своиства структур улитки внутреннего уха．В сб． ＂Анализ сигналов на периферии слуховой системы＂，I98I．Изд。＂Наука＂，J．，с。5－35．
3．收пляков B．C．іатематичесжие модели гцдродинамики улитки внутреннего уха． В сб．＂Сенсорные системь．Сдух＂，I982． Изд．＂Наужа＂，I．，с．3－I7．
4．Rhode W．S．，Robles L．Evidence from Mössbauer experiments for nonlinear vibration in the cochlea．－J．Acoust． Soc．Amer．，1974，v．55，p．588－596．
5．Wegel R．L．，Lane C．E．The Additory Masking of One Pure Tone by Another and its Probable Relation to the Dyna－ mics of the Inner Ear．－Phys．Rev．， 1924，v．23，p． 266.
6．Zwicker E．，Scharf B．A model of Loud－ ness Summation．－Psychological Review， 1965，v．72，N० 1，p．3－26．

PERCEPTUAL AND ACDUSTICAL ANALYSES OF VELAR STOP CONSONANTS

\section*{SARAH HAWKINS}

Department of Linguistics
University of Cambridge
Cambridge CB3 9DA UK

\section*{Abstract}

An acoustic property that distinguishes velar consonants from labial, alveolar, and dental consonants is a prominent midfrequency "compact" spectral peak, usually in the frequency range \(800-4000 \mathrm{~Hz}\). In a series of perceptual experiments, synthetic syllables with initial voiced and voiceless stop consonants were generated, and the spectral characteristics of the consonant burst were systematically manipulated to yield various degrees of prominence of a midfrequency spectral peak. From listener responses to these stimulii, we have determined that the property to compactness depends in part on the amplitude of the prominent spectral peak in relation to a peak at about the prominent spectral peak in relation to a peak at about the
same frequency in the following vowel. Spectral analyses same Irequency in the following vowel. Spectral analyses
of a number of naturally spoken stop consonants in English of a number of naturally spoken stop consonants in English
have shown that the amplitude characteristics of the midhave shown that the amplitude characteristics of the mid-
frequency spectral prominence of the burst are consistent with the perceptual data. However, the degree of prominence often shows fluctuations throughout the region encompassed by the burst and voicing onset in the following vowel.

\section*{1. Introduction}

The most distinctive acoustic characteristic of velar stops is usually said to be a compact spectral prominence, in the midfrequency range of \(800-4000 \mathrm{~Hz}\). In Fig. 1 we see smoothed spectra of the burst and vowel onset of a naturally-spoken \(/ \mathrm{ga} /\), together with the waveform. The burst spectrum has the classical compact midfrequency prominence. Another attribute of the pattern in Fig. 1 is that the amplitude of the spectral peak in the burst is comparable (within about 5 dB ) to the amplitude of the corresponding spectral peak in the vowel. This characteristic of the burst in relation to the vowel is consistent with data reported by several investigators \([1,2]\). Velar stops also have a number of secondary characteristics, such as bursts that are longer, and first-formant transitions that lend to be slower than those for bilabials and alveolars. Nevertheless, spectra of velar stops vary a great deal, and the concept of "compactness" is poorly understood.

\section*{KENNETH N. STEVENS}

Research Laboratory of Electronics and
Dept. of Electrical Engineering and Computer Science Massachusetts Institute of Technology Cambridge MA 02139 USA


Fig. 1 Waveform (bottom) and spectra (top) sampled near the reease of the syllable \(/ \mathrm{ga} /\). Spectra are smoothed Fourier transforms sampled
line).

This paper describes some preliminary work in a planued series of studies of the acoustic characteristics of velar stops. We asked two questions, both of which focus on spectral rather than on temporal properties. First, can we synthesize an acceptable velar stop simply by manipulating the spectrum of the burst alone, and if so, what are ing the spectrum of the burst alone, and ical acoustic characteristics of such bursts? And second, to what extent are compact characteristics observsecond, to what extent are compact characteristics obser
able in naturally-spoken syllables? The focus of interest able in naturally-spoken syllables? The focus of interest
is the release burst and the first few milliseconds of the following vowel in syllable-initial stops.

\section*{2. Perceptual experiment}

The stimuli for a perceptual experiment consisted of a series of synthetic consonant-vowelsyllables. We constructed acoustic continua of bursts such that, when these bursts are followed by minial vowels, we hear velar stops at one are followed by minual ands, we hear velar stilabials at the other end, depending on the continuum. The various
bursts were synthesized manipulating the amplitudes of noise-excited formants in parallel synthesis.

Figure 2 shows short-time smoothed spectra of bursts at the extremes of the two continua-the velar-bilabial in the apper panel, and the velar-alveolar in the lower panel. in the velar-alveolar set of bursts, the classically compact shape of the spectrum labelled \(/ \mathrm{g} /\) contrasts with the diffuse, rising spectrum, /d/, that is typical of alveolars. The variations in spectrum shape were achieved by changing the amplitude of excitation of \(\boldsymbol{F 2}\). For the velar-bilabial set, formant amplitudes were altered so that the compact \(/ \mathrm{g} /\) spectrum was made flatter and slightly falling, as for a bilabial.


Flg. 2 Spectra of the bursts in the synthetic velar-bilabial continat the velar end of each continuum is shown as the solid line and the spectrum at the bilabial or alveolar end is the dashed line.

Stimuli intermediate between these extreme pairs were mad by changing the particular formant amplitudes in equal dB steps, resulting in two continua of 10 stimuli each. Listeners heard the bursts either in isolation, or with short, ransitionless yowels following them, with or without aspiration. Sinse vowels following them, with or without asquencies Since there were no transitions, the formant frequencies in the vowels were the same as those in the bursts
(except eft from 250 to 500 Hz ) \(F 2\) was a \(F 3\) were lower in the velarom 250 to 500 Hz ). F2 and \(F 3\) were lower in the velar-bilabial than in the velar-alveolar stimuli. For the Velar-alveolar continuum, the burst duration was constant is ms , whereas the burst duration decreased from 15 ms in one-ms steps for stimulh on velar-bilabial Wanuum. We report here examples of results for the asked to idnonant-vowel stimuli, in which isteners were asked to identify the initial consonants.

Figure 3 shows the results for the CV stimuli of the velarbilabial continuum and the velar-alveolar continuum for nine subjects. Forced-choice categorization functions for each continuum had a reasonably sharp crossover between \(100 \%\) velar and \(100 \%\) bilabial or alveolar responses, indicating that most listeners could classify sounds in terms of place of articulation using only the burst spectrum, perhaps relative to certain characteristics of the vowel spectrum. There are some differences between the responses for the velar-alveolar continua with and without aspiration, presumably a consequence of the closer proximity of voicing onset to the burst for the voiced continuum.


Fig. 3 Responses of nine subjects to stimuli on the velar-bilabial continuum (top panel) and the velar-alveolar continuum (bottom panel). The two functions represent the voiced (filled circles) and voiceless (crosses) continua.

In the upper part of Fig. 4 we show, for the velar-bilabial continuum, the spectrum of the vowel at the vowel onset (light solid line), together with burst spectra for two stimuli: the burst for the most extreme velar (heavy solid line) and the burst for the stimulus at which responses were closest to and not greater than \(75 \%\) velar (dashed line). A similar display is given at the bottom for the velar-alveolar continuum. In both cases, velar responses for these synthetic stimuli are weakened when the midfrequency prominence drops \(3-5 \mathrm{~dB}\) below the level of the second formant at the vowel onset. In some sense, the onset of the vowel might function as an anchor, or reference, against which the burst is evaluated.
velar-bilabial


Fig. 4 The three spectra in each panel are the spectrum of the burst at the velar end of the continuum (heavy solid lines), the spectrum
of the burst in the stimulus that elicited about \(75 \%\) velar responses (dashed lines), and the spectrum near the onset of the vowel (light solid lines). The continuum corresponding to each panel is indicated.

Basically this experiment shows that when the midfrequency peak of the burst is sufficiently prominent in relation to the following vowel, listeners identify the consonant as velar even in the absence of transitions. But there are some puzzling aspects of these data, and of previous data obtained by others. First, four of our 13 subjects did not hear any velars at all on the velar-alveolar continuum, although their responses to the velar-bilabial continuum were basically the same as those of the other nine subjects. In fact, in presenting the results in Figs. 3 and 4 we have omitted data from the few subjects who heard no velars on the velar-alveolar continuum. These subjects may have focussed on the relation between the spectra of the burst and the vowel at high frequencies, presumably because the midfrequency spectral prominence was not sufficiently salient for them. (In subsequent experiments we increased the amplitude of the midfrequency spectral prominence by about 9 dB at the velar cnd of the continuum, and all subjects heard velars in this new continuum.) Second, several investigators have shown that velar responses can be obtained when the burst is completely absent, provided that a pair of adjacent formants (usually the second and third formants) are close together at the beginning of the transition into the vowel \([3,4]\).

These findings, together with published data on the analysis of velar consonants in real speech, have suggested to us that it is an oversimplification to describe a velar consonant as a burst of noise with uniform-amplitude over
time, followed by a vowel with suitable transitions. Consequently, we have reexamined the acoustic properties of spoken velar consonants, particularly the fine structure of the short-time spectrum through the burst and into the onset of voicing.

\section*{3. Acoustic analysis of natural speech}

We have looked at CV syllables spoken by several talkers of British or American English saying /gi/, /ge/, /ga/, \(/ \mathrm{gu} /\). Several types of spectra were made of the burst and at least the first two periods of the vowel, including Fourier transforms, lpc spectra, and the output of certain auditory models. Spectra were made in successive 5 ms steps and additionally, for some syllables, in smaller steps.

Many of the spectra conform closely to the classical [compact] description for the burst. But as other investigators have also found [2], a substantial minority deviate from the classical picture. However, almost all of these so-called deviant or atypical utterances, have compact properties during at least some part of the burst or vocalic onset. Two of the most common types will be shown here.


Fig. 5 Sequence of lpe spectra sampled at \(5-\mathrm{ms}\) intervals near the release of the syllable/gi/produced by a male speaker. The amplitude scale is linear. Voicing onset occurs at about the 6th spectrum from the front. This sequence is an example in which spectral prominences appear intermittently in the burst.

Figure 5 shows lpe spectra at successive 5 ms intervals of a male talker's \(/ \mathrm{gi} /\). Neither the burst nor the vowel onset appear particularly compact, but the peaks and valleys during the burst fluctuate somewhat in amplitude so that a more classical compact spectrum appears intermittently. Such fluctuating spectra will occur when there is a succession of transients at the release, although they can succession of transients at the release, although be seen in occur even when individual transients cannot be seed
the waveform. These fluctuations in compactness are more the waveform. These fluctuations in compactness are more common in velars than other stops, presumably because
the longer constriction and slower release, and they may the longer constriction and slower release, and they
themselves contribute to the perception of velarity.


Fig. 6 These are examples of sequences of lpe spectra in which the burt does not show a compact spectral prominence, but a prominence appears following the onset of voicing.

Figure 6 illustrates a second type of nonclassical compactness in which the burst is not compact but there is a very sharp, narrow-bandwidth formant in the midfrequencies at the onset of the vowel. This sharply prominent peak appears abruptly and in relative isolation from surrounding peaks, and presumably arises because two formants are very close in frequency. This strongly compact vowel onset appears to be associated more with velars before front vowels, and possibly with weak bursts.

These two phenomena together-a spectrum that fluctuates in degree of compactness during the burst and a strongly compact midfrequency peak at the onset of the vowelmay each serve to enhance the compact percept. Rapid actuations in a spectrum may compensate for an otherwise weakly compact burst by somehow focussing attention virtue of the fluctuating spectrum. And compactneses In the vowel onset may override any ambiguities of the burst. It is worth noting that we often found different types of compactness in different tokens of the same \(g\). vowel syllable, or from the same talker. We are assessing he extent to which these "alternative forms of compacthess" can strengthen the perception of velarity in synthetic consonant-vowel syllables.
4. Conclusions

In summary, we have seen in the perception experiments that velar stops in a CV syllable with steady-state formants are heard if the burst has a midfrequency spectral prominence with an amplitude at least as great as that of the corresponding peak at vowel onset. The analyses of natural speech show that the compact prominence is typically present in the burst spectrum, or it may be only intermittent, or it may be more evident in the vowel onset than in the burst. These data suggest that compactness should be defined not in terms of the prominence of a peak in the average burst spectrum, but rather in terms of the occurrence of prominence in the short-time spectrum in at least some region of the syllable onset, whether it be in the burst or in the onset of voicing. One possibility is that the perception of velarity in the consonantal release is enhanced if there are regions in the release phase where a compact spectral prominence is embedded in a context that has reduced compactness or prominence.

If these preliminary observations are confirmed on a larger dataset, then the next task is to begin to describe compactness more precisely through further preception experiments. If we can express compactness in terms of the amplitude, bandwidth, frequency range and time-course of a midfrequency peak relative to adjacent spectra, then we may be on the way to coming up with a description that subsumes burst and transition information under one umbrella.

\section*{5. Acknowledgements}

This work was supported in part by grants from the National Institute of Neurological and Communicative Disorders and Stroke and from the National Science Foundation.

\section*{6. References}
1. V.W. Zue. Acoustic characteristics of stop conV.W. Zue. Acoustic characteristics of stop con-
sonants: A controlled study. Ph.D. thesis, MIT, Cambridge MA USA (1976).
2. D. Kewley-Port. Time-varying features as correlates of place of articulation in stop consonants. J. Acoust. Soc. Am., 73, 322-335 (1983).
3. M.F. Dorman, M. Studdert-Kennedy, and L.J. Raphael. Stop consonant recognition: Release bursts and formant transitions as functionally equivalent, contextdependent cues. Perception and Psychophysics, 22, 109-122 (1977).
4. S.E. Blumstein and K.N. Stevens. Perceptual invariance and onset spectra for stop consonants in different vowel environments. J. Acoust. Soc. Am., 67, 648-662 (1980).

THE PERCEPTION OF VOICING IN DUTCH TWO-OBSTRUENT SEQUENCES

\section*{R.J.H. van den Berg}

Institute of Phonetics, University of Nijmegen
P.O. Box \(9103,6500 \mathrm{HD}\) Nijmegen, The Netherlands

\section*{0. Abstract}

Perceived voicing in Dutch two-obstruent sequences \(\left(C_{1} C_{2}\right)\), tested in synthetic VCCV nonwords, was shown to depend not only on the amount of periodicity present in the sequence (VOT and VTT), but also on
the intensity of frication noise, and on the durations of the second consonant and the preceding vowel. The duration of the first consonant and the peed and range of formant transitions showed no

. Introduction
Because of obligatory final devoicing in Dutch no voiced obstruents occur word-finally, e.g. goed
oct (good): /xud/ \(->/ x u t /\). Therefore, no phonological
voicing opposition exists word-finally, and words as voicing opposition exists word-finally, and words as
bod (bid) and bot (bone) are phonetically equivalent. As a consequence assimilation in two-obstruent equences ( \(C_{1} C_{2}\) ) with respect to the feature 'voice' can only take place in sequences of which the first consonant ( \(C_{2}\) ) is voiceless and the second ( \(C_{2}\) ) is place) voicing status of the obstruents is the one ccurring in an environment in which assimilation good). (this book ssimilat.
non [4]. Thereforentially an articulatory phenomially) voiceless \(C_{1}\) and voiced sequence of an (iniespect to 'voice' did take place, both consonants ory feature 'voice', that is both of the articulaither vibrating or non-vibrating vocal folds.
ver the years, assimilation of 'voice' in Dutch, well as across word boundaries, has received a good deal of attention. So far, the aim of the research has been to discover linguistic (and extralinguision. Two phonological assimilation rules assimilaformulated.
that is \(C_{1}\) a takes on the voicing status of \(C_{2}\). The
result is a sequence of two voiced consonants e.g. Wit boek (white book): /wit buk/ \(\rightarrow\) /wId buk/ If \(^{\text {I }} \mathrm{C}_{2}\) is a fricative, assimilation is progres
sine, that is \(C_{2}\). sive, that is \(C_{2}\) adapts to \(C_{1}\). The result is a zand (white sand):/wit zant/ \(\rightarrow\) /wit sant/. These rules were formulated on the basis of dat often only to one occurrence as in radio brterances, r lectures, and noted down cases of assimilation. The decisions about the voicing status of the obstrthey were more often than not of what one heard and only, the researcher. Moreover, these researchers implicitly assumed that if a voiced (or voiceless)
consonant was perceived, a voiced (or voiceless) consonant was produced. However, it is a well-known affected by the acoustic correlate of presence or absence of vocal fold vibrations, but also by a num ber of other acoustic cues [6]. In view of this and process, the data obtained by means an articulatory tual method can at best be considered as only indirect evidence of assimilation.
A more direct method of establishing whether assimilation did occur would be to measure vocal fold sequence. Slis [8] took this methodological conse quence and performed articulatory/acoustic voice measurements of two-obstruent sequences in which
assimilation could occur. The voicing status of the obstruents was established by relating the measurements to those obtained for single voiced and voice less consonants. In the light of the data thus obtained rule (1) above in particular became con
Slis [9] also made a direct comparison of articulatory/acoustic voice measurements and percep tual voicing judgements of the same natural speech one-to-one relationship exists between the two types of data: the voicing status assigned on the basis o the presence or absence of vocal fold vibrations wa not an adequate predictor of the voicing judgement
obtained. However, it is possible that the two con sonants did become more alike in some other articu latory feature(s), the acoustic correlates of which may have triggered the perception of two voiced As stat
are based on perceptual data. The researchers who formulated them may have been able to distinguish the acoustic correlate of presence or absence of
vocal fold vibration from other acoustic cues relevant to the perception of voicing. But these other cues may also have (mis) guided their voicing judge ments. Therefore, the study of the relation between acoustic cues and
obstruent soicing judgements
sequences is of importance for the description of assimilation with respect to the fea Ture 'voice' in Dutch.
The question of what acoustic parameters affect the perception of voicing in two-obstruent sequences was thetic speech stimuli of experiments employing syn since it allowed for anthetic speech was chosen parameter(s) under investigation and for a strict control on the other parameters. In order not to complicate matters, only one parameter at a time was somed knowledge was gained about the effects on persome knowledge was gained about the effects on per in
ception of the various parameters an experiment which they were covaried was performed. The results of all these experiments are presented below. Investigated were the effects of voice onset time
(VOT), voice termination
intensity, and duration and range of formant tran itions [1] as well as duration of \(C_{1}\) and \(C_{2}\), and eding vowe 1 [2]
2. Hethod

The stimuli were generated by a 'speech-synthesis y-rules' system. In this system a string of phoeme labels and a string of labels indicating successive egments. Parameter values for each segment are read from a table containing target values and timing
data for each parameter (a phoneme' representadata for each parameter (a 'phoneme' representation). These values are adapted for context and pro-
sodic conditions by a set of rules (into an 'allohone' representation). Subsequently, these parameter values for allophone-sized segments are converted into parameter values for segments of pitch period size. These are used as input for the
calculation of the synthetic speech signal. The funlanental frequency depended on the intrinsic \(F_{0}\) tress, and declination, and varied around a mean of out 150 Hz . At the allophone-size level the prochosen values.
1. Speech material

To preclude effects due to phonetic context [3] the \(C_{1} C_{2}\) sequences were part of VCCV nonwords with a strict control on the vowels. The obstruents includ-
ed in the research were the labial and alveolar ploves and fricatives. Velar consonants were excluded fecause in Dutch the phoneme \(/ 8\) / occurs only in loan wrds, and the voicing opposition in the velar friatives is of a doubtful status.
The sequences are described as a voiceless plus
oiced consonant, because these were the labels used in the input string for the synthesis system.
acause informal listening showed that synthesizing \(C_{1}\) plosives with the release burst counteracted the coustic signal to be ambiguous with regard to cues hat were not under investigation, all \(C_{1}\) plosives sare synthesized without a release burst. For the the stimuli in the VOT and VTT experiments) were ynthesized without periodicity but for the first 10 us of the \(C_{1}\) segment in which the periodic source
2.2. Subjects

In each experiment 12 subjects participated. In the experiment on the durations of \(\mathrm{C}_{1}\) and \(\mathrm{C}_{2}\), and in the
covariation 20. All subjects were university students (ages 3) and were paid for their services
2.3. Procedure
fter the stimuli were synthesized they were recordonto audiotape in random order. Each stimulus was recorded three times in successsion, with a one-
fecond
interval between repetitions and an htertrial interval of five seconds, in which the subjects made their response. The subjects task lus, to isten to all three repetitions of a stimusequence, identify the consonantal sounds in the
to indicate in a forced choice task hat sequence they had heard. To this purpose the response alternatives were orthographically repre-
sented on ented on a score sheet, for example abda, appa,
epta, and abta, standing for /abda/, /apda/, /apta/, nd /abta/. The last response category, the voicedsible less sequence, which is phonologically inadmis
cation noise intensity experiments. Subjects wer
ested individually in a sound-treated booth. The stimuli were presented over headphones at a comfortable listening level. Experimental trials
were preceded by ten practice trials to allow the subjects to get used to the synthetic speech and to the task. Informal interviews after the tests showed that none of the subjects had experienced difficulin performing the task, and that all
4. Data analysis

The response categories were labelled ( ++ ) for voiced-voiced responses, ( -+ ) for voiceless-voiced (--) for voiceless-voiceless and ( +- ) for voiced oiceless responses. For each stimulus the frequen cies of the response categories were assessed. The ing to Goodman's loglinear model [5]. This model was specifically developed for frequency data with re than one independent variable. The statist
. Voice Onset Time (VOT)
The effect of VOT was tested in 16 sequences, all Combinations of \(/ \mathrm{p}, \mathrm{t}, \mathrm{s}, \mathrm{f} /+1 \mathrm{l}, \mathrm{d}, \mathrm{z}, \mathrm{v} /\). A uniform VOT
cont inuum was opted for, and therefore the durations f the consonantal segments were set at a constant the plosives and the noise portion of the fricatives. The durations of the preceding and following vowe were set at 90 and 170 ms respectively. Five
voT. values were employed: \(-150,-75,-30,0\) and +20 VOT. values were employed: \(-150,-75,-30,0\), and +20 ent representing \(C_{2}\), that is the end of the silent nterval for plosives and the moment of frication The effect of VOT was significant: \(x^{2}=246.23, \mathrm{df}=8\), p<0.001. VOT did not interact with sequence type the same general pattern was observed for al equences. From the data in Table 1 it is clear that ate VOT's (that is with no periodicity present in ould be expected. With earlier vot's the responses hift via \((-+)\) towards ( ++ )

Table 1: Response frequencies for five VOT's (in \%)
\begin{tabular}{|c|rcc|}
\hline vot & \((++)\) & \((-+)\) & \((--)\) \\
\hline-150 & 55.7 & 33.9 & 10.4 \\
-75 & 39.6 & 46.4 & 14.1 \\
-30 & 21.4 & 52.6 & 26.0 \\
0 & 13.5 & 29.7 & 56.8 \\
+20 & 9.9 & 26.6 & 63.5 \\
\hline
\end{tabular}

Comparison of the -30 and 0 ms Vor conditions shows that the 30 ms stretch of periodicity at the end of the \(C_{2}\) segment is a strong cue to \(C_{2}\) perception: it
raises the number of [tvoice] \(C_{2}\) percepts by \(30.8 \%\) raises the number of [ + voice] \(C_{2}\) percepts by \(30.8 \%\)
But the number of But although to a lesser extent (7.9\%). Apparently, es, astretch of periodicity is also taken as a voicing cue to \(C_{1}\). This seems to indicate that cues fro be integrated into a perceptual unit. However, th be integrated into a perceptual unit. however, the increasing distance.
4. Voice Termination Time (VTT)

In testing the effect of VTT the same 16 sequences were used. The durations of the segments were as in
\(0,40,75,110\), and 150 ms . These values are rela-
tive to the beginning of the \(C\) segment. As can be seen from Table 2 VTT affect As can be seen from Table \({ }^{2}\) VTT affects perception
significantly: \(x^{2}=451.16, \mathrm{df}=8\), p<0.001. Again there was no interaction with sequence type: the the
same pattern was found for all sequen same pattern was found for all sequences. The responses were in line with what was expected: short
\(V T T ' s ~ l e d ~ t o ~(--) ~ a n d ~ l o n g ~ V T T ' s ~ t o ~(++) ~ r e s p o n s e s, ~\) whereas for the intermediate VTT's ( 40 and 75 ms ) the highest frequencies for \((+-)\) were observed, although the frequencies for \((++)\) and ( \((+)\) also
increased in comparison with a VTT of 0 ms. This is most likely due to the fact that a voiced-voiceless sequence is phonologically inadmissible in Dutch. Probably, phonological restrictions affected perceptiont \({ }^{7] \text {, and the subjects (having perceived period }}\) icity) resorted to the ( ++ ) and ( -+ ) categories.
Table 2: Response frequencies for five VTT's (in \%)
\begin{tabular}{|r|rrrr|}
\hline VTT & \((++)\) & \((-+)\) & \((--)\) & \((+-)\) \\
\hline 0 & 3.1 & 16.7 & 66.1 & 14.1 \\
40 & 6.8 & 24.5 & 37.5 & 31.3 \\
75 & 28.6 & 32.3 & 14.1 & 25.0 \\
110 & 55.7 & 32.3 & 4.2 & 7.8 \\
150 & 62.5 & 31.8 & 2.6 & 3.1 \\
\hline
\end{tabular}

These data, too, show indications that cues from integrated into \(\underset{a}{ }\) perceptual unit acousic signal are stretch of periodicity at the beginning of the ms segment not only raised the number of \(\left[+\right.\) voice \({ }^{2} \mathrm{C}_{1}\)
percepts by 20.9\%, but also the number of [+voice] percepts by \(20.9 \%\), bu
\(\mathrm{C}_{2}\) percepts by \(11.5 \%\).
5. Frication Noise Intensity

Again the same 16 sequences were tested. The durations of all segments were controlled by the timing
rules of the synthesis system. Since \(\mathrm{C}_{1}\) plosives rules of the synthesis system. Since \(C_{1}\) plosives
contained no release burst, the variation of the nontained no release burst, the variation of the tion of the fricatives and the release burst of the plosives). The six amplitude values used were chosen so as to cover the voiced-voiceless continuum without exceeding naturalness limits. This resulted in a
3 dB step size for fricatives and 6 dB steps for plosives.
Table 3: Response frequencies for six noise level
values (in \%). Obstruent-plos
\begin{tabular}{|c|rrr|}
\hline noise & \((++)\) & \((-+)\) & \((--)\) \\
\hline low & 21.9 & 35.4 & 42.7 \\
& 19.8 & 36.5 & 43.8 \\
\(V\) & 11.5 & 38.5 & 50.0 \\
\(V\) & 6.3 & 36.5 & 57.3 \\
high & 12.5 & 22.9 & 64.6 \\
\hline
\end{tabular}

The overall effect of noise intensity was signifi-
cant: \(x^{2}=30.74, d f=10, p<0.01\). However, the interaction with sequence type was also significant: noise intensity did show an effect for obstruentplesives, but not for obstruent-fricatives. The dif-
ference is most likely due to the different step sizes involved. The direction of the effect is as Was expected: with increasingly higher noise levels more \((--)\) responses were given at the cost of ( ++ )
and \((-+)\). As may be clear from the data in table the effect was rather weak, which may have been due to the fact that other parameters were not set at adequate values. Most likely the segmental dura-
tions, controlled by the built-in synthesis rules
were too long and biased the responses to ( -- ) and
6. Formant transitions

Range and duration of the F1, F2, and F3 transitions into and out of the \(\mathrm{C}_{1} \mathrm{C}_{2}\) sequence were tested in
\(/ \mathrm{pd} /, / \mathrm{tb} /, / \mathrm{fd} /\), and \(/ \mathrm{sb} /\). The consonantal durations were set at \(60+65 \mathrm{~ms}\) for \(/ \mathrm{pd} /\) and \(/ \mathrm{tb} /\), and at \(70+70 \mathrm{~ms}\) for \(/ \mathrm{fd} /\) and \(/ \mathrm{sb} /\). Speed and range of the transition onset and the time within which the shift takes place. For \(\mathrm{VC}_{1}\) transitions moment of onset was relative to the beginning of the \(C_{1}\) segment, for \(C_{2} V\) transitions it was relative to the boundary between Only a limited range of values could be because in informal listening it appeared be used, transitions led to the perception of glides and short transitions to the loss of the principal perCeptual cue to the place of articulation. Three
ypes of \(\mathrm{VC}_{2}\) transitions: \(-40 ; 40,-40 ; 60\) and \(-20 ; 40\) (moment of onset and transition time respec. ively) were combined with four types of \(C_{2} \nabla\) ransitions: \(-10 ; 95,-10 ; 75,0 ; 75\), and \(0 ; 55\). o overall effect on perception was observed: \(\chi^{2}=\)
\(31.10, d f=33\), ns. Also, the interaction between \(V C=\) and \(C_{2} V\) transitions and the main effect of \(C_{2} V\) transitions were not significant. A small effect of \(V C_{1}\) sequence only (/pd/), the responses to which showed no coherent pattern.
7. Durat ions of \(C_{2}\) and \(C_{2}\) Since the durations of both \(C_{1}\) and \(C_{2}\) were varied it
seemed advisable to have a clear acoustic boundary between the two consonants. So, only combinations
f a fricative (noise) with a plosive (silent interval) were used: \(/ \mathrm{fd}, \mathrm{sb}, \mathrm{pz}, \mathrm{tv} /\). The durations of the preceding and following vowel were set at 90 and 160 ms respectively. While limiting the total duration of the sequence to 150 ms , both the durations of \(C_{1}\) and \(C_{2}\). Were varied in 5 steps of 15 ms starting at
45 ms . This resulted in 15 combinations of durations ( \(\mathrm{C}_{1}\) and \(\mathrm{C}_{2}\) respectively): 45-45, 45-60, \(\quad\) 45-105,
\(60-45, \ldots 0-90\), \(60-45, \ldots 60-90, \ldots 105-45\). A11 stimuli were syn-
thesized under two stress conditions: stress on the first or on the second syllable. Stress was synthesized by means of a prominence lending rise and fall of \(\mathrm{F}_{\mathrm{o}}\).
The interactions of sequence type and stress pattern with duration were not significant. This signifies hat duration had a similar effect for the various sequences and both stress patterns, so for the duration results the data were pooled over these condiand \(C_{2}\) duration, the effect of \(C_{1}\) duration could only be tested for the various levels of \(C_{2}\) duration separately, and the effect of \(C_{2}\) duration only for For none of the levels of the \(C_{2}\) duration variable did the factor of \(\mathrm{C}_{1}\) duration affect the frequency distribution of the four response categories. Even fonly the responses to \(C_{1}\) were considered, no sig were not affected by \(C_{2}\) duration.
On the other hand, for a \(C_{1}\) of 45 ms ( \(C_{2}\) ranging rom 45 to 105 ms ), for a \(\mathrm{C}_{2}\) of 60 ms ( \(C_{2}: 45-90\) \(\mathrm{ms}) \dot{C}_{\text {and }}\) and a \(\mathrm{C}_{2}\) of \(75 \mathrm{~ms}\left(\mathrm{C}_{2}: 45-75 \mathrm{~ms}\right)\) the effect
of \(\mathrm{C}_{2}\) duration was significant. Longer \(\mathrm{C}_{2}\) durations \((-+)\) led to more ( \((-)\) and ( +-\()\), and less \((++)\) and \((-+)\) responses. The picture becomes even clearer if \(C_{2}\) responses only are considered: longer \(C_{2}\) durations
led to more [-voice] \(C_{2}\) percepts. No effect of \(C_{2}\) duration on \(C_{1}\) perception was observed. So, what the effect of this manipulation seems to be
boiling down to is that \(\mathrm{C}_{2}\) duration affects \(\mathrm{C}_{2}\) perception, longer durations giving rise to more l-voice \(]\) percepts. This effect is strong enough to
affect the frequency distribution of the four affect the frequency distribution of the four
response categories, wheras \(C_{2}\) duration does not response categories, wheras \(\mathrm{C}_{1}\) duration does no
have any effect at all. The significant effect of stress pattern manifested
itself in that more ( ++ ) and less ( --\()\) responses itself in that more ( ++ ) and less ( \((-)\) responses
were given if stress was on the first than if it was were given if stress was on the first than if it was on the second syllable.
8. Preceding Vowel Duration

This effect was tested in the sequences / \(\mathrm{pd}, \mathrm{tb}, \mathrm{fd}\), were either a phonologically long /a:/ or a phonolosically short \(/ \varepsilon /\), to test a possibly differential effect of preceding vowe 1 duration for vowels of different phonological length. The durations of \(/ \mathrm{pd} /\)
and /tb/ were \(60+65 \mathrm{~ms}\), of the other sequences \(70+70\) ms. The following vowel had a duration of 160 ms . Stress was either on the first or on the second sylby a prominence lending rise respectively), realized by a prominence lending rise and fall. To avoid a
clash between stress and duration longer preceding vowel durations were used in the stress-1 condition (55, 80 , and 180 ms ). than in the stress- 2 condition ( 55,80 , and 120 ms ).
vowel duration, so the data were not interact with conditions. Preceding vowel duration significantly ( \(\mathrm{X}^{2}=21.25\), \(\mathrm{d} \mathrm{f}=6, \mathrm{p}<0.001\) ) affected the response the stress-2 in the stress-1 condition, but not in
condion. Under stress-1 longer durations led to more \((++)\) and \((+-)\), and to less \((-+)\)
and \((-)\) les. and ( -- ) responses (see Table 4),
Table 4: Response frequencies for three preceding
vowel durations (in
\begin{tabular}{|l|llllll|}
\hline stress -1 & \((++)\) & \((-+)\) & \((--)\) & \((+-)\) & \(\mathrm{C}_{1}=(+)\) & \(\mathrm{C}_{2}=(+)\) \\
\hline 80 & 10.4 & 31.8 & 38.0 & 19.8 & 30.2 & 42.2 \\
120 & 17.7 & 30.2 & 31.3 & 20.8 & 38.5 & 47.9 \\
180 & 26.6 & 22.4 & 27.6 & 23.4 & 50.0 & 49.0 \\
\hline stress -2 & \((++)\). & \((-+)\) & \((--)\) & \((+-)\) & \(\mathrm{C}_{1}=(+)\) & \(\mathrm{C}_{2}=(+)\) \\
\hline 55 & 12.5 & 27.6 & 45.3 & 14.6 & 27.1 & 40.1 \\
80 & 10.4 & 28.6 & 42.2 & 18.8 & 29.2 & 39.1 \\
120 & 15.6 & 29.2 & 31.3 & 24.0 & 39.6 & 44.8 \\
\hline
\end{tabular} From a comparison of the 80 and 120 ms conditions
under stress-1 with the same conditions under
stress-2, it appeared that the non-significant
effect effect for stress-2 is not due to the difference in
stress, but rather to the smaller absolute range in durations. However, if only \(C_{1}\) responses are considered, the effect of vowel duration is significant
for stress -1 ( \(x^{2}=15\) vel for stress-1 \(\left(x^{2}=15.82, \mathrm{df}=2, \mathrm{p}<0.001\right)\) as we 11 as
effess \(\left(x^{2}=7.76, \mathrm{df}=2, \mathrm{p}<0.05\right)\), although the effect is still larger for stress-1. Perception of \(C_{2}\) was not affected significantly in both stress So, \(^{\text {, preceding }}\) vowel duration affects \(C_{2}\) perception, with longer durations leading to more [+voice] \(\mathrm{C}_{1}\) percepts. In stress-1 this effect is large enough to
influes. egories.
The distribution of the four res The interaction vowel type x duration was not sig.
nificant. However, since vowel duration mainly affected \(C_{1}\) However, since vowel responses, the interaction was also
tested For stress-1 responses as the dependent variable. 6.78, \(\mathrm{df}=2, \mathrm{p}<0.05\). With increasing vowel duration the number of [+voice] percepts increased more rap-
idy for \(\varepsilon /\) than for
s perceived as longer than an /a:/ of the sam
duration. From this it may be inferred that a internal representation of a vowel's intrinsic dura tion might play a role in its perceived duration.

\section*{Covariation of parameters}

To study possible interactions between parameters an experiment was run in which those parameters that sequences were used: /fd,sb, pz,tv/. The duration o the \(C_{1}\) segment was 50 ms , that of the second vowe 60 ms . The six parameters that were varied were VOT in three steps of \(0,-25\), and -50 ms ), VIT (in two ives (two levels with a difference of approximately 10 dB ), duration of \(\mathrm{C}_{2}\) (in three steps of 50,75 teps of 80 and 120 ms ), and stress pattern (stress on the first or on the second syllable).
ome parameters interacted with sequence type due to fact that for some sequences the effect of som parameters was more powerful, rather than to a
totally different response pattern. Therefore, the ata were analyzed for all four sequences separate \(y\). It appeared that for each sequence all six facperception and that the response patterns were in line with the earlier findings. The few significant interactions that were obtained seemed to be inci ental, since, if an interaction was observ
10. Conclusion

These results show that perception of voicing in butch two-obstruent sequences does not depend solely on the presence/absence of periodicity. Further ors that affect the perception of voicing in two obstruent sequences (viz. VOT, VTT, frication nois intensity, stress pattern, \(\mathrm{C}_{2}\) duration,
ing vowel duration) do so independently.

References [1] R.van den Berg, "The effect of varying voice and noise parameters on the perception of voicing in Dutch two-obstruent sequenc.
[2] R.van den Berg, "Effects of duration on the perception of voicing in Dutch two-obstruen (3) R.van den Berg, I.slis, "Phonetic context effects in the perception of voicing in \(\mathrm{C}_{2} \mathrm{C}_{2}\) A.Crystal,' "A first dictionary of linguistics and phonet ics", Andre Deutsch, London, 1980.
[5] L.Goodman, "The analysis of multidimensional contingency tables when some variables are pos
terior to others: a modified path analysis terior to others: a modified path
approach", Biometrika \(60: 179-192,1973\).
[6] L.Lisker, "Rapid vs Rabid: a catalogue of acous kins Lab.Stat.Rep.Speech Res. SR-54: 127-132, kins Lab.Stat.Rep.Spe
1978 . D.Massaro, M.Cohen, "Phonological context
speech perception", Perception and Psychophysics 34(4): \(338-348\), 1983. van stem in het Neder
[8] I.Slis, "Assimilatie van stem in het Neder "Rules' for assimilation of voice in Dutch", in: R.Channon \& L. Shockey (eds) In honour of Mse lications, Dordrecht, 225-240, 1986.
[9] I.Slis, "Assimilation of voice in Dutch as a function of stress, word boundaries, and sex 0
spaker and listener", J.Phonetics 14: \(311-326\), speaker
1986.

\section*{ASSIMILATION OF VOICE AND PERCEPTION OF VOICING: EFFECTS OF PHONETIC CONTEXT}
I.H. Slis \& R.J.H. van den Berg

Institute of Phonetics, University of Nijmegen
P.O. Box \(9103,6500 \mathrm{HD}\) Ni jmegen, The Netherlands

\section*{. Abstract}
he results of an earlier experiment contained indi cations that the degree of voicing in the phonetic two-obstruent sequences. This was confirmed in separate perception experiment. The articulatory/ acoustic measurements obtained in a production experiment refute an explanation in terms of a per-
ception mechanism in which regularities in speech production are embodied. The phonetic context effect appears to be a purely perceptual phenomenon.
1. Introduction

Up to only a few decades ago, assimilation of voice in Dutch two-obstruent sequences was investigated by linguists who scored instances of assimilation by considerably, leading to a great variation of opin ons upon the subject [12]. In this contribution we this lack of agreement may be found in the phonetic Antext of the two-obstruent sequences.
scording to Crystal s [7] definition, assimilation is the influence of one sound segment upon the
articulation of another so that the two sound become more alike, or identical'. In line with this efinition, we too consider assimilation to be an essentially articulatory phenomenon. If in a two
obstruent sequence assimilation of voice takes place, both consonants will be produced with the This vocal fold setting: vibrating or non-vibrating his point of view was the basis for a number of fold behaviour during the production of the obstruThe sequence [12]
The consonantal sequence in which assimilation of voice has taken place may be perceived as a sequence
of two voiced (or two voiceless) consonants. However, one may perceive two consonants as having the same voicing status in spite of the fact that assi case it is obvious that vake place [14]. In that cues to the voicing status of the consonants in question) other than the auditory result of the presence or absence of vocal fold vibration are use Nijmegen (IFN) the effect of voicing cuestics 1 perception of voicing in two-obstruent sequences is being investigated in a series of experiments. As struents in Dutch [13], a number of cues were found to affect the perception of voicing in such \(\mathrm{C}_{1} \mathrm{C}_{2}\) sequences \([1,2,3]\).
One of the factors
One of the factors that may affect the perception of
voicing in \(\mathrm{C}_{1} \mathrm{C}_{2}\) sequences appears to of voicing in the consonants in the context. Indica [4] set up to investigate the wos in an earlier study
timuli for a large series of experiments on the perception of voicing in \(\mathrm{C}_{2} \mathrm{C}_{2}\) sequences. In this
paper we will briefly discuss this study (section paper we will briefly discuss this study (section Cally designed to investigate such phonetic context ffects on the perception of voicing in \(\mathrm{C}_{1} \mathrm{C}_{2}\) sequences [5]. This experiment is presented in sec tion 3 of this paper. In section 4, several hypotheses will be forwarded that may explain the result hypotheses a production experiment was run, which is iscussed in section 5 .
All experiments employed heterorganic two-obstruent use of (homorganic) geminates. Because of restric tions inherent in Dutch [6] the sequences consisted \(f\) a phonologically voiceless obstruent ( \(C_{1}\) ) fol owed ay phonologically voiced one ( \(\mathrm{C}_{2}\) )
2. Investigation of optimal stimulus form

In this first experiment [4] we investigated the perception of voicing in two-obstruent
that were part of two successive syllables ( \(\mathrm{C}_{\mathrm{i}} V \mathrm{VC}_{1}-\mathrm{C}_{2} \mathrm{VC} \mathrm{C}_{\mathrm{f}}\) ). One of the aims of this study was to investigate whether the linguistic status of the cimuli would affect the perception of voicing ere embedded in three types of 1 inguistic context: a) a word pair that was part of a meaningful sen (b) the sam
(c) an utterance made up of two meaningless sylla bles; these nonwords were obtained by changin the initial consonant ( \(C_{i}\) ) of the first word and
the final consonant ( \(\mathrm{Cf}_{\mathrm{f}}\) ) of the second word and
the same pairs as used in conditions (a) and
(b).
stimuli
were generated by means of a speech-ynthesis-by-rules system available at the Institut icipated, who identified the consonants and indi cated what sequence they had heard in a force hoice task with four response alternatives: voiced oiced,
\((-+)\) notation ( ++ ); voiceless-voiced,
noiceless-voiceless, notation ( --\()\); and oiced-voiceless, notation ( +- ). This last sequence irregular in Dutch according to the genteles accepted phonological rules, but it was neverthed
ncluded, because the subjects felt the need this response category.
No differences in the perception of voicing in \(C_{1} C_{2}\) equences were observed between the sentence and word pair conditions. However, a significant ( \(x^{2}=\) word pairs and nonwords. hree possible nonwords
offer themselves:
1) A lexical explanation: the listener is inclined to interpret the perceived sounds so that they make up an existing word. We may expect, there-
fore, that the responses show a bias towards the porception of meaningful words, and consequently towards the perception of a voiceless consonant followed by a voiced one, which yields a string of unaltered words. In those cases where a non-
word can be changed into a word by a shift in the voicing status of one of the members of the \(\mathrm{C}_{1} \mathrm{C}_{2}\) sequence, the meaningful word is expected to pre-responses can then be expected. Nothing of the responses can the is observed; on the contrary, nonwords show more voiceless-voiced responses than word pairs. 2) A phonological explanation: the listener's perception is subject to his knowledge of phonologi-
cal rules, particularly in a language-mode of listening. Therefore, we expect that the subjects will perceive more 'regular' sequences in word pairs than in nonwords. So, we expect a higher with obstruent-stop sequences, and a higher number of voiceless-voiceless responses in word pairs with obstruent-fricative sequences [6]. The results are to the contrary: we observed more than in nonwords. A phonetic explanation: a change in the sound
structure of the context might have affected perstructure of the context
ception. Since the linguistic and phonological observed response patterns, we were left with the phonetic explanation. The nonwords were derived from the word pairs by altering the initia
and the final ( \(C_{f}\) ) consonant. Therefore, the only phonetic difference between the word pairs and the nonwords was in the \(\mathrm{C}_{\mathrm{i}}\) and the \(\mathrm{C}_{\mathrm{f}}\). So, if a difference in the phonetic context affects the is obvious that the alterations in \(C_{i}\) and \(C_{f}\) must be the cause for the perceptual differences observed.

An analysis of the results showed that in those cases where \(\mathrm{C}_{i}\) and/or \(\mathrm{C}_{f}\) was changed into a voiceless consonant, the number of responses containing voiceless \(C_{1}\) 's and \(C_{2}\) 's increased. A more detailed analy-
sis suggested that changes in the voicing status of \(c_{i}\) were related to changes in \(C_{1}\) responses, and
\(c_{1}\) to changes in the voicing status of \(\mathrm{C}_{1}\) to changes, in \(\mathrm{C}_{2}\) responses. Since this phonetic context effect was
not expected not expected, we had not controlled for the voicing
status of the phonetic context when generating the stimulus material. In order to investigate the effect more systematically, a new experiment, spe-
cifically designed for this purpose, was carried out.
3. The effect of voiced/voiceless contexts on the perception of voicing in \(C_{1} C_{2}\) sequences
The effect of voicing in the phonetic context on the Perception of voicing in two-obstruent sequences was
 the type \(\mathrm{C}_{\mathrm{i}} \mathrm{VC}_{1} \mathrm{C}_{2} \mathrm{VCCf}_{f}\). Both syllables were stressed,
the first by a rise, the second by a fall in the fundamental frequency contour [8]. The vowe 1 in independlables was an \(/ a /\). The phonetic context, the could be either an was formed by \(C_{i}\) and \({ }_{f}\). or an all (voiced context). The \(C_{1} C_{2}\) sequences used were all possible heterorganic combinations of labial and svtal obstruents, viz. /pd, tb, fd, sb, pz, tv, fz,
the bas of the results of previous experiments the bynthesis of the results of previous experiyield stimuli that were ambiguous with respect to
the perceptual voicing status of \(\mathrm{C}_{1}\) and \(\mathrm{C}_{2}\). This interval that the stop-stop sequences had a closur 140 ms . The stimuli were synthesized without periodicity during the closure interval. Procedure and esponse categories were as described above.

Table 1: Frequencies of perceived voicing in \(C_{1} C\) sequences as al
context (in \({ }^{2}\) ).
\begin{tabular}{|c|rrrr|}
\hline context & \((++)\) & \((-+)\) & \((--)\) & \((+-)\) \\
\hline \(\mathrm{n}--\mathrm{n}\) & 33.6 & 44.8 & 10.3 & 11.4 \\
\(\mathrm{~s}--\mathrm{n}\) & 19.5 & 61.6 & 12.2 & 6.7 \\
\(\mathrm{~s}-\mathrm{s}\) & 14.5 & 50.3 & 27.2 & 8.0 \\
\(\mathrm{n}--\mathrm{s}\) & 26.3 & 35.2 & 22.0 & 16.6 \\
\hline
\end{tabular}

The results (see Tables 1 and 2) showed a highly significant effect of voicing status of the phonetic context. With a voiced \(\mathrm{C}_{i}\), viz. /n/, a significantly
\(\left(\mathrm{x}^{2}=107.77, \mathrm{df}=1, \mathrm{p}<.001\right.\) ) higher number of voiced \(\mathrm{C}_{1}\) percepts was observed than with a voiceless \(C_{i}\), viz /s/. With a voiced \(\mathrm{C}_{\mathrm{f}}(/ n /)\) significantly \(\left(\mathrm{x}^{2}=86.87\right.\),
\(\mathrm{df}=1, \mathrm{p}<.001)\) more voiced \(\mathrm{C}_{2}\) 's were perceived than with a voiceless \(C_{f}(1 / s /)\)
The voicing status
The voicing status of \(C_{i}\) was found to have no significant effect on the perception of \(\mathrm{C}_{2}\), nor did the voicing status of \(\mathrm{C}_{f}\) affect \(\mathrm{C}_{1}\) perception. There-
fore, it would seem that effects of voicing in the context are restricted to the syllable. Howover, it remains possible that such effects can oss syllable boundaries.
Table 2: Frequencies of \(C_{1}\) and \(C_{2}\) responses as function of the voic
final context (in \%
\begin{tabular}{|c|cc|cc|}
\hline context & \multicolumn{5}{c|}{\(\mathrm{C}_{1}=(+)\)} & \(\mathrm{C}_{2}=(-)\) & \(\mathrm{C}_{2}=(+)\) & \(\mathrm{C}_{2}=(-)\) \\
\hline \(\mathrm{n}--\) & 43.8 & 56.2 & 69.9 & 30.1 \\
\(\mathrm{~s}--\) & 24.4 & 75.6 & 73.0 & 27.0 \\
\hline--n & 35.5 & 64.5 & 79.8 & 20.2 \\
-s & 32.7 & 67.3 & 63.1 & 36.9 \\
\hline
\end{tabular}

\section*{4. Discussion}

In this section we will discuss four different hypotheses that may explain the results obtained The first two are based on the assumption that the perceptual mechanism uses its awareness of regulhes ties in speech predual in nature.

Perceptual compensation of coarticulatory dif ferences
Let us assume that a difference in the degree of Let us assume that a leads to a different produc\(t\) tion of the \(\mathrm{C}_{1} \mathrm{C}_{2}\) sequence. In that case, there is a ground for a mechanism like perceptual perform perceptual corrections for differences in the proxual \(t\) tion of natural speech that arise from contextual influences [10]. The result of the no differences are perceive. In synthetic speech stimuli in which these articulatory/acoustic differences are absent, the same compensation mechanism will lead to poicing in the context, we come to the following argument.
following argument.
in order to explain our present results, we would
,
produced with stronger voicing if \(\mathrm{C}_{i}\) (or \(\mathrm{C}_{\mathrm{f}}\) ) is
voiceless as compared to the condition where \(\mathrm{C}_{\mathrm{i}}\) (or f) is voiced. This may be seen as a kind, of emphasized articulatory contrast. The listener's compenthe perception of the same sequence in all contexts. f, however, the stimulus is ambiguous, as was the case in the present experiment, the same mechanism sequence in a voiceless context, and a more voiced equence in a voiced context
A2) Perceptual expectation of coarticulatory effects The listener may be inclined to perceive the things he expects, in other words he may be the victim of
selective perception. In order to explain our results we must assume that the listener expects to hear a voiceless \(\mathrm{C}_{1}\) (or \(\mathrm{C}_{2}\) ) in combination with a voiceless \(C_{i}\) (or Cf). This expectation must be
based on facts in natural speech. Therefore, we have to assume that voiceless consonants in the context ead to devoicing of (some of) the nearby consonants. From a coarticulatory viewpoint this is a

The hypotheses A1 and A2 are mutually exclusive,
since they assume opposite effects in production. ince they assume opposite effects in production. choice between the two, or, in case no differences are found, refute them both.
B1) A perceptual-phonological explanation
In this purely perceptual hypothesis we assume that a sequence of speech sounds is recognized in terms of a sequence of bundles of phonological features \({ }^{\text {' }}\)
to which phoneme labels are attached. Context effects as the one found in Experiment 2 may occur when a correctly identified feature of \(C_{i}\) or ( \(C_{f}\) ) is erroneously attributed to \(C_{1}\) or ( \(C_{2}\) ). If this type
of erroneous attributions in fact occur at the phonological level, it is likely that the acoustic duration of the intervening phoneme (the vowel) is of no consequence. In that case no effect of
(intervening) vowel length is expected A second factor that can be expected to induce this type of attribution errors is the resemblance between the two 'phonological feature bundles'. In a way similar tongue, we may expect an increase in the number of attribution errors if the two phonemes (context and
2) \(A\) pereptul feres
2) A perceptual-phonetic explanation

In this hypothesis we assume that the error occurs ae more peripheral level, viz. that of acoustic cues are held in a preperceptual auditory storage
(PAS)
So if 9 . The \(t\) ime span of PAS is about \(200-250 \mathrm{~ms}\). nd target phoneme is less than this time span, the cues for the two phonemes are simultaneously present may occur, resulting in a cue being erroneously tak en as a voicing cue to the wrong sound segment. In on the perception of voicing in the phonetic context be the perception of voicing in \(C_{1} C_{2}\) sequences may
be explained. Assuming that the 'strength' of ces plays a role, we expect that such errors are likely o be more frequent with an increase in 'cue text phonemes. So, the frequency of erroneous cue attibution may be expected to be dependent on the degree of voicedness or voicelessness. The notion
alized as the position of \(\mathrm{C}_{\mathbf{i}}\) (or \(\mathrm{C}_{\mathrm{f}}\) ) on a 'voicin scale' depending on e.g. VOT (or VTT). Furthermore a greater temporal proximity of the context phoneme
and target phoneme may also promote misattribution of voicing cues. So, the (phonological) duration the vowels intervening the context phoneme and the target phoneme, that is the \(V^{\prime}\) s in a \(C_{i} V C_{1} C_{2} V C\) sequence, is expected to interact with the effect of voicing in the phonetic context on the perception
voicing in \(\mathrm{C}_{2} \mathrm{C}_{2}\) sequences.

The hypotheses B1 and B2 make different predictions
with respect to the effect of vowel duration and with respect to the effect of vowel duration and \(\mathrm{C}_{\mathrm{i}}\) (or \(\mathrm{C}_{f}\) ) on the voicing scale.
In order to decide which of the four hypotheses out be carried out. The first one, eproduction experi ment, will enable us to find out whether the context affects articulation of the \(C_{1} C_{2}\) sequence. If artic ulatory effects are found, we may decide on hypothe-
sis A1 (perceptual compensation) if a voiceless context ( \(C_{i}\) and/or \(C_{f}\) ) leads to more voicing in \(C_{2} C_{2}\) or on hypothesis A2 (perceptual expectation) if it leads to less voicing in \(\mathrm{C}_{1} \mathrm{C}_{2}\).
If no context effects are found in articulation there is no ground to maintain hypotheses A1 and A2, and a purely perceptual explanation would seem appropriate. The crucial experiment for the choice
between hypotheses B1 and B2 would be one in which the degree of voicing in the context and the duration of the intervening vowels are varied. If per ceptual errors result from an erroneous attribution
of already recognized phonological features, neither gradations of voicing in the contex \({ }^{-}\), nor the durations of the vowel phonemes are expected to affect the perception of voicing in the \(\mathrm{C}_{1} \mathrm{C}_{2}\) sequence. If,
on the other hand, the errors are located in the cue integration stage, we expect to find effects of gradation of voicing and of vowel length.
The production experiment will be discussed in the not been carried out perception experiment has as ye
5. The effect of voicing in the context on the pro-
duction of \(C_{1} C_{2}\) sequences

The production experiment did in fact consist of three parts, referred to a part (a), (b), and (c),
respectively. In each of the three, five male speakers participated, who were asked to read the stimulus materials. The acoustic signal was recorded via electrolaryngograph. Both these signals were registered on photographic paper with a UV-recorder (SE oscillograph 6008). In the oscillograms we related
the moment of voice termination (VTT) to that of oral closure, and the moment of voice onset (VOT) to that of oral release. According to criteria derived voicing status of \(C_{1}\) and \(C_{2}\) was assessed, and thus whether assimilation of voice had occurred or not. whether assimilation of voice had occurred or not.
For a detailed description of the proced"re and cri-
teria, see [12]. In part (a) the stimuli were the same as in the
previous experiment, embedded in a short carrier
phrase, viz. doe die \(\mathrm{C}_{1} \mathrm{VC}_{1} \mathrm{C}_{2} \mathrm{VCf}\) om, Employing this phrase, viz. 'doe die \(C_{1} V C_{1} C_{2} V C_{f}\) om'. Employing this
type of stimuli resulted in a very iow frequency of produced assimilation in obstruent-stop sequences all obstruent-fricative sequences were progressively assimilated). This was probably due to the fact hat the speakers were aware of the central role of
the nonword (the only element to vary in the sentences) and may therefore have been inclined to pro-
peakers read two additional series (parts (b) and \(C_{2}\) consisting of meaningful sentences in which the ( \(\left.C_{i} V_{2}-C_{2} V V_{f}\right)\). In these sentences \(C_{i}\) adjacent \(C_{f}\) words ither voiceless (single consonants or consonan
clusters) or voiced (single nasals). The \(C_{1} C_{2}\) equences used in these two series were all heteror sanic obstruent-stop sequences. In part (b) the \(\mathrm{c}_{1} \mathrm{C}_{2}\) sequence followed a stressed syllable, in part
(c) it preceded a stressed syllable. On the text c)
heet syllables that had to be stressed were under ined. The speakers were instructed to read the sen-
inces as spontaneously as possible.

Table 3: Frequencies of assimilation of voice as a
function of voicing in the context (in g ).
\begin{tabular}{|c|ccc|}
\hline context & \((++)\) & \((-+)\) & \((--)\) \\
\hline\(+\ldots+\) & 31.7 & 41.7 & 26.7 \\
\(\ldots \ldots+\) & 30.0 & 50.0 & 20.0 \\
\(-\ldots-\) & 31.7 & 38.3 & 30.0 \\
\(+\ldots-\) & 26.7 & 33.3 & 40.0 \\
\hline
\end{tabular}

In contrast with part (a) assimilation of voice, progressively (i.e. two voiceless consonants) ccurred rather frequently. In line with earlie measurements [14] stress on the syllable precedin
the \(C_{1} C_{2}\) sequence (part (b)) favoured progressive he \(\mathrm{C}_{1} \mathrm{C}_{2}\) sequence (part (b)) favoured progressive
ssimilation, and stress on the following syllable (part (c)) favoured regressive assimilation. How in none of the three parts of this experimen
id we observe a significant effect of voicing in the context on the production of the \(\mathrm{c}_{1} \mathrm{C}_{2}\) vequences hat is on assimilation of voice in those sequences. For this reason, and because the number of speaker
vas rather low, we pooled the obstruent-stop dat as rather low, we pooled the obstruent-stop date
rom the three parts of the experiment. These pooled from the three parts of the experiment. These pooled found. the figures no significant context effect was

Table 4: Frequencies of produced voiced and voiceless \(C_{1}\) and \(C_{2}\) as a funct
and final context (in 6 ).
\begin{tabular}{|c|cc|cc|}
\hline context & \(\mathrm{C}_{1}=(+)\) & \(\mathrm{C}_{2}=(-)\) & \(\mathrm{C}_{2}=(+)\) & \(\mathrm{C}_{2}=(-)\) \\
\hline\(+\ldots\) & 29.2 & 70.8 & 66.7 & 33.3 \\
\(\cdots\) & 30.8 & 69.2 & 75.0 & 25.0 \\
\hline\(\ldots+\) & 30.8 & 69.2 & 76.7 & 23.3 \\
\(\cdots-\) & 29.2 & 70.8 & 65.0 & 35.0 \\
\hline
\end{tabular}
. Conclusion
Since we did not find any effects of voicing in the phonetic context ( \(C_{i}\) and/or \(C_{f}\) ) on the production of these results rant sequence \(\mathrm{C}_{1} \mathrm{C}_{2}\), we conclude that perceptual compensation (A1) and perceptual expectation (A2) of articulatory differences. Thus we are left with the two purely perceptual hypotheses (BI and B2). The question of whether we have to look for
an explanation in terms of an erroneous attribution an explanation in terms of an erroneous attribution
of a phonological feature (that is to the wrong pho neme), or or whether the error occurs at the cue inte-
gration gration stage, cannot be settled by the presen be run in which the do address this issue an experiment needs \(t\)

 tinuum. Besides, by varying the time interval
assess whether the domain over which phonetic
context effects do take place is determined in duraional terms or in terms of number of phonemes, and thus whether the effect originates in PAS, or fr

References
[1] R.van den Berg, "The effect of varying voice and noise parameters on the perception of voicing in Dutch two-obstruent seque
Communication \(5(4), 355-367,1986\)
[2] R.van den Berg, "Effects of duration on the sequences", J. Phonet ics, subm.
3] R.van den Berg, The perception of voicing in 1987. two-obstruent sequences, this 1ssue, R.van den Berg, I.Slis, "Perception of assimi-
lation of voice as a function of segmental lation of voice as a a function of of
duramental \(42(1), 25-38,1985\). I Slis, "Phonetic context R.van den Berg, I.Slis, "Phonetic context
effects in the perception of voicing in \(C_{2} \mathrm{C}_{2}\) sequences", J.Phonet ics 15(1), 39-46, 1987 .
G. Booi 1 , Generat ieve fonologie van het Neder-
6) G. Booij, "Generatieve fonologie van het Neder

7] A.Crystal, "A first dictionary of linguistics
8) and phonet ics", Andre Deutsch, London, 1980 .
 Amsterdam/Assen, 1974.
D.Massaro, "Experimental Psychology and Infor-
[9] D.Massaro, "Experimental Psychology and Infor-
mation Processes", Rand McNa1ly, Chicago, 1975.
[10] B.Repp, "Perceptual integration and differenti ation of spectral cues for intervocalic stop 24(5), \(471-485,1978\).
I.Slis, "Some remarks on speech synthes is by rule", Proceedings Inst itute of Phonet ics, Uni
versity of Nijmegen 2, 83-99, 1978 . versity of Nijmegen 2, 83-99, 1978 . I.Slis, Assimilatie van stem In het Nedis,
lands", Glot 5 : \(235-261,1982\). Also as: I I slis,
"R "Rules' for assimilation of voice in Dutch", in:
R.Channon and L.Shockey (eds.) In honour oof R1se Lehiste/Ilse Lehiste Pühentusteots, Foris
Publications. Dordrecht/Cinnaminson, 225-240, 1986.
I.Slis, "The voiced-voiceless distinction and assimilation of voice in Dutch", Unpublished DR-54: 127-132, 1985.
[14] I.Slis, "Assimilation of voice in Dutch as a function of stress, word boundaries, and sex of
speaker and listener", J.Phonet ics 14: 311-326, speaker
1986.

CUE-TRADING RELATIONS FOR INITIAL STOP VOICINe CONTRAST AT DIFFEPENT LINGUISTIC IEVETS

\section*{U THEIN-TUN}

School of Communication Disorders
Melbourne, Australia 3053

\section*{ABSTRAC}

The speech mode of processing is a special ode of information processing in the sense ues sionifying one phonemic contrast is most ffective in the speech mode but not in the sense hat cue-trading does not exist at non-linquistic levels.

\section*{introductian}
itch, Halwes, Erickson and Liberman [8] claimed that virtually every phonetic contrast is cued by several distinct acoustic properties of relative perceptual weights and by the ranges of effectiveness of these cues, a change in the etting of one cue can be offset by an orposed maintain ohonetic proept. This phenomenon of of percention is generally known as phonetic cue-trading relation. Using the results of new works by Bailey, Surmerfield and Dorman [1] Rest, Morrongiello and Robson [2] and Repp [12], perates only in the phonemic mode of perception but not in the auditory mode of perception. on the basis of this point, he claims that speech perception is a special mode of perception ifferent from the mode of perceiving non-speech ounds.
Best et al. [2] investiaated the cue-trading remuency for the "say" "Stay" cont onset test stimuli. They found that the cue-trading relation was evident only in the group which as instructed to treat the sinewave analocues was speech sounds but not in the droup whic computer soumds. Hower, the ir fispeech further muestions about the nature of cue-tradind and its relevance to the nature of speech percention. All their test stimuli were confined to the word level. Thus it is necessary phenomenon behaves at non-liading relation as a inquistic levels other than words ic syllable, phonetic and auditory levels, so that the finding may shed more light on the
controversy of "speech specificity". The present study was conducted in order to answer the
following research questions:
along the five linouistic levels mentioned above, do individuals' (both nomal hearing and hearina impaired) cuetrading relations at one linouistic level differ from those contrast as an example?
(ii) if the cue-tradind relations differ from one level to another, what is the interlinguistic level pattern of cue-trading?
iii) how do the answers to the above questions fit into the present controversy of special v . non-special mode of speech perception?

\section*{METHOD}

Selection of Seaments and Creation of Linouistic Levels
The stop consonant type selected for initial voicing contrast was alveolar because alveolar
stops have the most confined ranae of initial F 2 and F3 fremencies (see [7]:123). The vawel /a/ was chosen for the syllable level continuum. The diphthona /ai/ (formina the words "dve"/"tie" was chosen for the word level continuum. The same /dai/-/tai/ continuum was chosen for the sentence level necesin the to creat stens of the /dai/-/tai/ continuum were nlaced at the end of PL carrier sentences. The phonetic and auditory level stimuli were the sinewave anelocues of the syllable level/da/-/ta/ ten VOF steps.
Syllable Level Stimuli
Using the 12 paraméter serial analoque speer \(h\) synthesiser desiqned by Clark [3] and [4], step one of the syllable level continuum, one with 0 Vor i.e. the qood / da/ of the /da/-/ta/ continuum, was created first. The fremency value were three formant natterns of the cood /af five/da/spectrocrams of five aeneral to broad Australian male native speakers of Enclish. The duration was 300 msec . The fundamental fremuencr was constant at 125 Hz over the first 85 msec an fell linearly to 90 Hz . The initial formant transitions were sterwise linear and 45 msec . in
duration. F1 rose from 285 to \(770 \mathrm{~Hz}, F 2\) fell from 1540 to 1233 Hz and 33 fell from 3019 to 2520 Hz . The duration of the sunthesis time
frane was 5 msec i.e. the synthesis data was updated at every 5 msec . Then the Vor continuum for the remaining nine \(5-\mathrm{msec}\) steps was created by replacing the periodic voiced ( \(V\) ) excitation
with noise and simultaneously increasing the bandwidth of F1 transition to its maximum and hence virtually eliminating the existence of Fl transition. . The first /da/-/ta/ continuum created in such a way produced a good/da/ on one end and a good \(/ \mathrm{ta}\) / on the other. The amplitude levels of the noise and vowel portions (though different in actual measurements) in this continuum were given
the noninal 0 dB each. Therefore the first /da//ta/ continuum can be described as bearing the nominal amplitude pattern of 0 dB A (aspiration noise) and \(0 d B V\) (vowel portion). Eight more (daa/-/ta/ continua were created by increasing and decreasing both the \(0 d B A\) and \(0 d B\)
V amplitudes by 6 dB as described below. V amplitude
\begin{tabular}{c} 
+6ditude \\
+6dB
\end{tabular} orthogonally +6 dB
+6 dB orthogonally cambined
+6 dB
0 dB
\(-6 d B\)
The formulation of these syllable level continua was alnost the replica of Repp t11]. Through such arrangement it was expected that the stimuli with the \(A=+6 d B\) and \(V=-6 d B\) patterm would prod
/ \(/\) responses and those with \(A=-6 d B\) and
\(V=+6 \mathrm{CB}\) would produce more / \(\mathrm{d} /\) responses. For normal hearing listeners, an increase or decrease in amplitude by 6 dB is appropriate to make the stimulus noticeably louder and fainter respect ively. Every step from each continuum served WI steps of the On the test tape all the ten mene randomised four times with an interstimulus interval of 3.5 msec and these four sets of randomisation served as four blocks of tes stimuli for the syllable level.
Phonetic and Auditory Level Stimuli
The phonetic and auditory level stimuli were same four blocks of 90 stimuli each from the syllable level. The only difference was that the wave and auditory level stimuli were the

\section*{Word Level Stimuli}

The word level stimuli were in principle the same as the four blocks of 90 stimuli each from the syllable Ievel. The difference was that the word level stimuli were from the nine/dai/-/tai/ continua instead of the nine/da/-/ta/ continua of the syllable level. With the exception of the fritial transition duration, the durations and the /dai-tai/ues of the formant trajectories in onding averaped values of the five/dai/spectrograns of five (general to broad) Australian male native speakers of English. As with the good/da/ stimulus at the syllable level, the 45 msec of the initial formant transitions was an arrangement was nooessary in order to maintain the uniformity of VOT steps along the the different inguistic levels. It was the duration of the
initial formant transitions which was proaressively replaced by noise in order to create VOT steps in this experiment.

\section*{Sentence Level Stimuli}

The sentence level stimuli were the same four blocks of the word level/dai/-/tai/ ("dye"-"tie" as words) stimuli. In order to create the sentence level processing for the subjects, the "dye"-"tie" test stimuli were presented in the context of sentences whosetic variations were controlled. Every carrier sentence consisted of seven syllables including the stimulus word at the end. On the sentence level test tape, the 90 sentences used were synthesised according to the synthesis by rule system of Australiande of the carrier sentences was maintained 'at the same value of the nomina 0 dB of the V amplitude in the stimulus word. Fourteen spectrograms of the seven basic sentences (each carrying a good "dye" and a qood "tie") spoken by Professor Clark were used as norms synthesising the sentences.

Subjects
Thirteen male and 15 female normal hearing listeners and 7 male and 2 female (sensorineura tests. They were all native speakers of Australian Enalis and naive listeners of synthesised speech, between 20 and 40 years of aqe.
Test Procedure
The listening test was conducted in the acoustically treated speech perception laboratory of the Macquarie Speech, Hearing and Language Resea centre (Sics 49p audiometric headphones with circumaural seals and each listener sat at a test booth. The test tapes were played on a Revox B7 MKII stereo tape recorder. The output level the tape was controlled by an h palibration control ower amplifier ipA level was adjusted in such a way that the amplitude of the loudest sound on the tape was approximately 80 dB SPL. The stimuli with the best / \(\mathrm{d} /\) and the best \(/ \mathrm{t} /\) (i.e the \(\mathrm{A}=-6 \mathrm{~dB} /\), \(=+6 \mathrm{~dB}\) and \(A=+6 / \mathrm{N}=-6\) amplitude patterns resp velv) were used in the anchoring pre level the for all the was conducted with the origisal seven basic carrier sentences. For the anchoring at the auditory level the subjects were told to at one sound (the best/da/ analogue) as ound one and the other (the best/ta/ analooue) as sound two. At the phonetic level, the subjects of the / da/ and /ta/ speech sounds. There was time lapse of at least two weeks between the tests f different levels.
\(t\) the four lower levels the task of the subjects as to identify every stimulus (sound one \(v\). sound was to identify every stimulus / \(\mathrm{da} / \mathrm{v}\). whistled /ta/, /da/v. provided. At the sentecisions on the sheets subjects was to write down the whe task of the as they heard it.

MEIHOD OF ANALYSIS
The / \(/\) / (sound one) responses were counted at ever level. The initial data consisted of ten /d/ nine continua at every level. Since the of the the +6 dB A and V amplitudes as traded cues along the five linguistic levels was more important than the role of the VOT duration, the data were reorganised for every subject in two frameworks i.e. the framework of the role of \(A\) and \(V\) amplitude levels and the framework of categoricality reorganise the data for the first framework:
\(\Sigma / d /\) (or sound one) at each continurm
number of trials for each stimulus (4)
If the cue-trading relation was operating as could expected from the data of previous works e.g. Repp 1979, Pisoni 1977, Miller et al. 1976 hould at cont more \(a /\) he \(A=6 d B / N=+6 d B\) and those with \(A=+6 d B / N=-6 d B\) should attract /d/ responses. For the second framework, the ramework of categoricality distance, the follow ing formula of data reorganisation was followed.
\(4-\Sigma / d /\) of the first five steps \(+\Sigma / d /\) of the last five steps
total number of VOT steps (10)

If the responses were strictly categorical the number of /d/ (sound one) responses for each that for each of the last five steps would be 0 . the cue-trading is operating, the responses can be expected to be less categorical when the \(V\) The strength of the first framework of increases organisation lies in the comparison of the of A and V amplitude levels. The strength of the latter lies in the interlinguistic level comparison of the roles of \(A\) and \(V\) amplitudes. The former were not tis that the variations in the all the levels whereas those in thalue common to tied to the idealised categoricality of rere

The analysis of variance with planned contrasts was conducted. The contrasts was planned to levels \(v\). levels, c. syllable í b. auditory \(v\). phonetic d. word \(v\). sentence levels). two upper levels and


\section*{Figure 1 NH Pooled means}

SUMMARY RESULTS AND DISCUSSION
In the first analysis the normal hearing (NH) and ficant at alpha (HI) group difference was sign8.57). In the second analysis the NH and HI group difference was significant at alpha level \(=0.5\) ( 1,33 F. 05=4.14 4.88).
In the first analysis, over the grand total of 37 subjects, none of the four contrasts ("a" to "d") wot significant. However, interlevel contrast was not the strength of the first analysis. In the jects, contrast " b " was not significant but " a ", \(c^{\prime \prime}\) and "d" were (all at alpha level=.025). This implies that there was no difference in cuetrading relation between auditory and phonetic levels while the cue-trading relations across the pper three levels were different. The pooled group across the five levels in both the analyses are summarised in figure l. In the \(y\) graphs of the second analysis, the higher the means move way from the zero line the less categorical are the identifications. In addition, in the \(y\) graphs of the second analysis, the steeper the unbroken more effective is the cue-trading along the \(v\) factor and the reverse (left to right downward is the case with the broken line for the A factor. In the x graphs of the first analysis, the further the means move away from the bar of value 5 (up or down) the stronger is the cue-trading while the Steepness of the unbroken and broken lines re-
presents the effect of V and A respectively. I both the analyses, from the syllable level onward, the higher the level, the more linear is the \(V\) factor and less linear and more quadratic is the A factor. This suggests that the va factor axerted a stronger influence than the A factor at the higher linguistic levels. In the overall relationship at the two lowest levels. However, there was some evidence of cue-trading at the two lowest levels in the \(H N\) male group though the extent of such lower level non-linguistic dueat the linguistic insignificant compared with that 1. the linguistic levels. See \(z\) graphs in figure

The results of the experiment indicate that from
the syllable level onward, the higher the inguistic level the stronger the cue-trading or both the categorical were the identification certain degree of cue-trading at the auditory and honetic levels though it is not as strong as that the linguistic levels. The speech mode of pereption is special and speech specific in e sense that cue-trading in the speech mode is speech mode, but not in the sense that cue-trading does not exist in the non-speech mode of processing. *

\section*{references}
(1) BAILEY, J.P., SUMMERFIELD,Q.\& DORMAN,M. (1977) "On the identification of sinewave analogues of certain speech sounds", Haskins Lab. Status Reports on Speech Research. SR-

BEST, C.T., MORRONGIELIO,B., \& ROBSON, R. (1981) "Perceptual equivalence of acoustic cues in speech and non-speech perception", Percept.

CTARK, J.E. (1075) "A 12 parameter serial formant speech synthesiser", Working Papers Macquarie University, January 51-71.
[4]
CIARK,J.E., (1976) "Specifications for a 12 parameter formant speech synthesiser" Res. Centre, Macquarie University, April
(5] CIARK, J.E. (1979) "Sjenthesis-by-rule syste for Australian English speech", hesis, Macquarie
[6] CLARK, J.E, (1981) "A low-level speech-synthesis-by-rule system", Jour. of Phon. synthesis-by
\(9,541-497\).
[7] FANT, C.G.M., (1973) "Speech sounds and features", (MTT).
[8] FTICH,H.L. , HALWES,T. , ERICKSON,D.M. \& ITBERMAN,A.M. (1980) perceptual equivalence of two acoustic cues for stop consonant manner",
MTIR J.D.
MILLER, J.D., WIER,C.C., PASTORE,R., KELLY,W.
J. \& DOOINNG R labelling of noise-buzz sequences with varying noise lead times: An example of catergorical perception" , Jour. Acoust. Soc. Amer. 60, 410-417.
PISGNT, D.B. (1977) "Identificaiton and on two component tones: Implications for the perception of voicing in stops", Jour Acoust. Soc. Amer. , 61, 1352-1361.
\([11]\) REPP, B.H. (1979) "Relative amplitude of aspiration noise as voicing cue for syllable initial stop consonants", Lang. \& Speech
[12] REPP, B.H. (1981a) "Auditory and phanetic trading relations between acoustic cues in speech peroeption: Preliminary results", Haskins Lab. Status Reports on Speech

031
REPP, B.H. (1981b) "Phanetic trading relations and context effects: New experimental evidence for a speech model pf perception", Haskins Lab. Status Reports
on Speech Research, SR-67/68, 1-40

This research was conducted under the supervision of Professor John Clark, School of English and Linguistics, Macquarie University Syctney

The preliminary version of this paper was circulated at the first Australian Conference of Speech Science held at the Australian

PERCEPTION OF cues to a stop voicing contrast by
normal-hearing children and adulis
valerie hazan lisa holden-pitt sally revoile donna edward
\(\begin{array}{ll}\text { Dept, of Phonetics } & \text { Sensory Communication Research Lab. } \\ \text { and Linguistics } & \text { Gallaudet University }\end{array}\)
Univ. College London Washington, DC 20002, USA

ABSTRACT
The contribution of two acoustic cues, Voice Onset Time, (VOT) and vowel onset transitions, to
the perception of a \(/ t æ d /-/ d æ d /\) contrast was the perception of a controls.

INTRODUCTION
The important speech acoustic cues effecting voicing identification of initial stops are voice subsequent to the stop burst [1]. The subsequent to the stop burst [1]. The
contribution of these cues for initial consonant voicing perception by adults and children, both normal-hearing and hearing-impaired, has been investigated in various studies \([2,3,4,5,6]\). However, because these cues have been co-varied in
most studies, the relative importance of VOT versus vowel onset transitions for initial stop voicing distinctions remains equivocal. Differences in the stimuli used among these studies may also be a factor in the variations

This paper describes an experiment that examined further the use of vor versus vowel onset transitions for cueing initial stop voicing
distinctions by normal-hearing children and distinctions by normal-hearing children and adults. Both synthetic and spoken stimuli were
tested.

METHOD

\section*{Stimuli}

Three continua of spoken /dred/-/ted/stimuli and two of synthetic \(/ \mathrm{dxd} /-/ \mathrm{t}_{æ d} /\) were used as the test syllables. Each continuum comprised eight stimuli
among which VOT varied nominally from 18 to 60 ms in 6 ms steps.
Vowel onset transitions were also present in three of the five continua's stimuli. The three continua utterances - a /tad/ and a /dxd/ -that had been selected for their average acoustic
characteristics from a larger pool of syllables
In one continuum, \(T A D / V O T, a / t æ d /\) utterance served as a base stimulus; the \(/ t /\) burst was appropriately shortened to yield the desired VOT durations for the constituent stimuli of the continuum. The resultant/t/burst were copied for use in another condition, DAD/VOT. The base which the \(/ d /\) burst had been removed and replaced by the \(/ t /\) bursts of different durations. These same stimuli were used in a third continuum of spoken syllables, DAD/VOT/vowel cutback, but here, the vowel was progressively cut back within most cue relationship found in natural speech

The two remaining continua contained stimuli developed via software synthesizer. [7]. These were copy syntheses generated to resemble perceptually and acoustically the utterances of
\(/ \mathrm{t} æ \mathrm{~d} /\) and \(/ \mathrm{d} æ \mathrm{~d} /\) from which the natural continua were developed. The synthetic stimuli contained an initial burst, with major energy peaks at 1620 \(\mathrm{Hz}, 2600 \mathrm{~Hz}\) and 4000 Hz . Vowel formant values were not steady state but constituted a best fit to the natural vowel. Fl varied from 500 Hz to \(288 \mathrm{~Hz}, \mathrm{~F} 2\) from 1850 Hz to \(1535 \mathrm{~Hz}, F 3\) from 2650 Hz to 2433 Hz and F 4 from 3700 Hz to 3450 Hz . In those used in the natural continua. In the "Synthetic TAD/VOT" natural continua. in in the Hz throughout the stimulus range and contained no initial transition; the Fl onset cue was therefore neutralized. In the "Synthetic DAD/VOT/F1
cutback" continuum, the F1 transition was systematically varied in frequency extent throughout the continuum, with a starting frequency of 400 Hz at the voiced extreme of the stimulus range. The transition duration of Fl was 36 ms .

\section*{Subjects}

Ten normal-hearing children 7-9 years of age and five normal-hearing adults served as paid listeners. The younger subjects were children of employees at Gallaudet University. All children
and adults had pure tone thresholds (3FA mean of and adults had pure tone thresholds
\(.5,1\) and 2 kHz ) better than 15 dB HL .

\section*{Procedure}

The stimuli were presented in single-interval identification trials with "TAD", "DAD" response alternatives. Pictorial sketches and orthogr and touch-sensitive screen used as a response terminal.

The order of stimulus presentation followed a simple adaptive tracking procedure developed for [8]. The average length of test for the children was of 48 trials.

The children were tested during five 30-minute sessions that occurred within a three-week period.
The tests were administered to the adults in two sessions of about one hour each. The listeners were tested in IAC audiometric rooms, with the stimuli presented monaurally through a TDH-39 earphone (MX 41/AR cushion) in a headset. Stimuli were presented at 15 dB SPL. were under computer control (DEC PDP-11/23 and 11/34).

\section*{RESULTS AND DISCUSSION}

For each listener, mean results were computed over the four repetitions
of each continuum (three repetitions for the DAD/VOT continuum). A Maximum Likelihood technique [9] was used to fit a cumulative normal function to each set of data. Two measures of performance point of the fitted curve) and the gradient of the identification function (slope). The results are summarised in Table I for the two groups of listeners individually and combined. For each performance measure, analyses of variance were children) using factors: groups (adults versus continua) treated as repeated measures.

\section*{Phoneme Boundaries}

The listener groups did not differ for the phoneme boundaries measured. The group of adults and of children obtained similar \(/ \mathrm{d} /-/ \mathrm{t} / \mathrm{phoneme}\)
boundaries \([F(1,13)=.02, \quad \mathrm{p}=0.9]\), and showed no interaction with the test conditions \([F(4,52)=.9\), \(p=0.5]\). This outcome would suggest that the general age difference between the two listener groups was insignificant with respect to their use \(/ \mathrm{d} /-/ \mathrm{t} / \mathrm{phoneme}\) boundaries. The statistical similarity
phoneme boundary enables their results to be combined for testing differences among conditions. An additional analysis of variance carried out for effect of total condition was significant \([F(4,56)=7.8, p=0.0]\). To determine which conditions contributed to this effect, Tukey's test of
honestly significant differences (hsd) was applied. For the natural stimuli, the phoneme boundary of the TAD/VOT continuum was significantly shorter than that for other conditions of natural and synthetic stimuli
[hsd, \(\mathrm{p}<.05\). The phoneme boundary obtained for the hsd,p<.05]. The phoneme boundary obtained for the that found for the synthetic cont inuum with FI onset cues, DAD/VQT/Fl cutback. However, this result fell just short of statistical significance. These findings indicate that the continua lacking spectral cues to the voicin to be perceived as /dæd/ than stimuli which contained these cues. Others have reported similar results with normal-hearing [2] and some hearing-impaired children [5]. Overall, however, VOT appears to prevail over cues in the
vowel onset for effect on initial stop voicing perception. Indeed, categorisation of the stimuli was achieved despite conflicting spectral cues in the TAD/VOT and DAD/VOT conditions. In a recent study, Revoile et al. [6] found that the insertion of aspiration between voiced stop transients and complete reversal in perception from voiced to voiceless.

Note that between the natural and synthetic stimuli, conditions with analogous cues (i.e. TAD/VOT, and also DAD/VOT/cutback) yielded similar \(\begin{array}{ll}\text { results. } & \text { However, Table I reveals } \\ \text { synthetic } \\ \text { stimuli }\end{array}\) deviations for phoneme boundary means than those found for the natural stimuli. Also, among the continua for natural stimuli, one of the condition with conflicting voicing cues (Fl transition in the presence of long vors), DAD/Nor, produce other two conditions. We may speculate that the greater variability in results for the synthetic condition and natural with conflicting cues was due to a more artificial quality inherent to these stimuli. Statistically, however, generated to resemble the spoken stimuli produced similar perceptual effects for distinction of the voicing contrast in initial alveolar stops, at least fo these normal-hearing listeners

\section*{Identification function gradients}

A significant difference in identification function gradient was obtained between the two listener groups \([F(1,13)=15.32, p=.002]\). Table I reveals that the gradients for the adult group are steeper than those for the were more tentative in their phoneme distinctions were more tentative inere the adults. This effect is also reported by Simon and Fourcin [2] who found that age-related development in the ability to label voicing contrasts was mirrored by an increase in identification function gradient. An
interaction was found between listener group and test condition \([F(4,52)=3.22, p=0.2]\). Examination of the means shows that this tendency is largely due to the considerably steeper slope observed for
effect is not found for the children's group where very little difference is observed with respect to the function gradient among the five conditions.

When the two listener groups are examined eparately for condition effects, neither show a significant difference in function gradient among conditions. However, for the adult group, among conditions [ \(\mathrm{F}(4,16)=2.37, \mathrm{p}=.1\) ] than is seen for the children's group \([F(4,36)=.69, p=.6]\). Large standard error measures were obtained for identification function gradients for the natural and synthetic TAD/VOT and natural DAD/VOT showing ith conflicting spectral cues.
CONCLUSION

Results confirm the primary importance of the emporal VOT cue over the spectral vowel onset cue onset characteristics were however shown to have lear secondary effect, as shown by a shift in boundary, when the cue is absent, in both children and adults. Although children gave very similar abeling to edited natural stimuli than adults they seemed less affected by a removal of vowe High
igh quality synthetic speech did provide a good match to results obtained with natural edited stimuli, for both adults and children. However greater inter-individual variations in labeling were found both for adults and children. As a result, the shift in boundary between the TAD/VOI strongly significant in the natural edited stimuli was found to be short of statistical significance sing synthetic stimuli. This would suggest that edited natural stimuli, by providing more omogeneous results, may be more reliable than yowever, there are limitations in experiments. ues which may be altered through cypes processing of natural speech, so that synthetic peech does still provide the greatest flexibility hen constructing stimulus continus in whic spectral rather than temporal patterns are varied

\section*{REFERENCES}
[1] Lisker,L. \& Abramson,A.S. A cross-language tudy of voicing in initial stops: acoustic easurements. Word, 20, 384-422, 1964

2] Simon,C. \& Fourcin,A.J. Cross-language stud of speech pattern learning. J.Acoust.Soc.Am., 63,
\(25-935,1978\)

3] Parady,S., Dorman,M., Whaley,P. \& Raphael,E dentification and discrimination of a synthesise voicing contrast by normal and sensorineural 783-789, 1981 children. J.Acoust.Soc.Am., 69

4] Johnson,D., Whaley,P. \& Dorman,M.F. Processin of cues for stop consonant voicing by young of cues for stop consonant voicing by young 27, 112-118, 1984

5] Hazan, V. \& Fourcin, A. Microprocessor controlled speech pattern audiometry: preliminary
resuts. Audialoy, 24, \(325-335,1985\)

6] Revoile S., Pickett, J.M., Holden-Pitt,L.D. alkin,D., Brandt,F.D. Burst and transition cues o voicing perception for spoken initial stops by impaired and normal-hearing listeners. J.Speech hear.Res, 30, 3-12, 1987

7] Klatt,D.H. Software for a cascade/paralle formant synthesizer. J.Acoust.Soc.Am., 67,

8] Hazan, V. Speech pattern audiometric assessment \(\begin{array}{lll}\text { hearing-impaired children. } & \text { Doctora } \\ \text { Dissertation. University College London, } & 1986\end{array}\)
[9] Bock,K.D. \& Jones,L.V. "The Measurement and rediction of Judgment and Choice". Holden-Day, San Francisco, 1968

TESTCONDITIONS
Natural stimuli
Synthetic Stimuli

\section*{TAD/VDT}

\section*{Phoneme}

DAD/VOT/
DAD/VOT
DAD/VOT/
1 Cutback
Vowel Cutback
(5.2)
31.9
\((3.4)\)
\(n=10\)
28.7
\((2.2)\)
32.4
\((1.3)\)
32.3
\((3.2)\)
30.1
\((4.5)\)
33.3
\((5.6)\)

Adults
26.1
\((1.7)\)
31.5
\((3.1)\)
32.7
\((3.1)\)

Total
27.8
\((2.3)\)
2.3)

Table
32.1
\((2.0)\)
32.4
\((3.1)\)
29.8
\((4.9)\)
32.3
\((4.1)\)

Table I : Mean phoneme boundary values (in milliseconds)
\begin{tabular}{|c|c|c|c|c|c|}
\hline ID Function Gradient (Slope) & & & & & \\
\hline Children
\[
n=10
\] & \[
\begin{aligned}
& -.92 \\
& (.52)
\end{aligned}
\] & \[
\begin{aligned}
& -.82 \\
& (.23)
\end{aligned}
\] & \[
\begin{gathered}
-1.03 \\
(.50)
\end{gathered}
\] & \[
\begin{aligned}
& -.88 \\
& (.36)
\end{aligned}
\] & \[
\begin{gathered}
-1.04 \\
(.60)
\end{gathered}
\] \\
\hline Adults \(n=5\) & \[
\begin{gathered}
-2.34 \\
(.74)
\end{gathered}
\] & \[
\begin{gathered}
-1.52 \\
(.33)
\end{gathered}
\] & \[
\begin{gathered}
-1.53 \\
(.68)
\end{gathered}
\] & \[
\begin{gathered}
-1.28 \\
(.53)
\end{gathered}
\] & \[
\begin{gathered}
-1.31 \\
(.74)
\end{gathered}
\] \\
\hline \[
\begin{gathered}
\text { Total } \\
N=15
\end{gathered}
\] & \[
\begin{array}{r}
-1.40 \\
(.90)
\end{array}
\] & \[
\begin{gathered}
-1.05 \\
(.43)
\end{gathered}
\] & \[
\begin{gathered}
-1.20 \\
(.59)
\end{gathered}
\] & \[
\begin{gathered}
-1.01 \\
(.45)
\end{gathered}
\] & \[
\begin{gathered}
-1.13 \\
(.63)
\end{gathered}
\] \\
\hline
\end{tabular}

\title{
the role of Intensity in breathy voiced stops: a close link
}

\section*{IESELOTTE SChIEFER}

Institut fur Phonetik und Sprachliche Kommunikation
Ler Ludwig-Maximilians Universität München, FRG

material and Informants
For the acoustic analysis a list of words stops /bh dh ghich contained the breathy tion. Each stop was followed by the
phonemi-
cally long vowels /a e i ou/ and occurre either one, two, or three syllables. The material was not controlled for the consonant following the initial CV syllable. Twenty lists were prepared, each containing The lists were read by three informants (i female, 2 males, aged 23 to 40 ), all native speakers of Hindi, originating from New Delhi or Uttar Pradesh. The recordings were the Centre of German Studies, School Languages of the Jawaharlal Nehru Univer sity using a Uher Report and a Senheiser
MD421N microphone. The distance to the microphone was set at about 50 cm . The same word list was recorded from. another informant ( 35 years, female) in Munich in the soundproofed room of the Institute using a Telefunken M15 tape recorder and a
Neumann
U87 microphone. This recording served as font for the manipulation and generation of the stimuli employed in the perception tests.
procedure
The material was digitized on a PDP1/1/50 with a sample was digitized of 20 kHz , filitered wit a cut off frequency of 8 kHz , and store for further analysis. The material was segmentation routine (for further information cf. (5]). Four different parts in the lead, burst + voiceless aspiration, breathy part of the vowel, and steady part of the vowel. All periodic portions were segmented into single pitch periods [5]. For the acoustic analysis the intensity was calcuover all periods of the breathy and steady vowel portion, respectively, for each speaker. Separate analyses of variance were applied to all comparisons of means for all checked by a chi-square procedure, while homogeneity of variance was controlled for by applying the chi-square statistics for independent measurements. The level of sig-
nificance was set to p 05 . Multiple comparisons of means were calculated by the
use of an a
of

For the perception tests dhe where selected for mani-
ldha dho dhu dhi \(/\) were
pulation in order to test the interaction bulation intensity and the vowel. A set of programs was used to generate the stimuli. The procedure has been described in detail elsewhere \([4,5]\) The first CV syllable was
separated from the rest of the words and
the breathy portion of the vowel was eliminated totally. The resulting syllable consisted of voicing lead and burst (which of the vowel. The fundamental frequency of the vowel was adjusted to 210 Hz for all CV combinations, with a rise over the first five pitch periods and a fall over the last
five periods. The first stimulus of each five periods. The first stimulus of each
continuum was generated by superimposing a quasi-linear intensity curve on the first 21 pitch periods, the first period being
adjusted to 25 dB , the 24 st to 55 dB . The adjusted to 25 dB , the 21 st to 55 dB . The
intensity was kept constant for the rest of the vowel, with a decrease over 5 periods at the end of the contour. The other 6 stimuli of each continuum were derived from
the first stimulus by increasing the intenthe first stimulus by increasing the inten-
sity onset in the 1 st period by 5 dB . For each cv condition identification and discrimination tapes were prepared. In the identification test each stimulus occurred 3.5 sec after each stimulus and a pause of 10 sec after a block of 10 stimuli. For discrimination the AX paradigm was used with the step size \(=2\). Both presentation
orders AB and BA as well as AA occurred. orders AB and BA as well as AA occurred.
The interstimulus interval was 500 ms , pairs were separated by 3.5 sec , blocks of 10 pairs by 10 secs. Each pair occurred 3 limes in randomized order. Answer sheets
were prepared to allow responses for either breathy or voiced stops in a forced-choice paradigm in the identification task, had to in the discrimination task subjects pair sound the "same" or "different". All perception tests were run in the language
lab of the lab of the Centre of German Studies in New With using a Telefunken language trainer comfortable phones. The tests were run at a
listening
level. About
15 subjects participated in the tests. All
were staff or students of the School of languages an
participation

\section*{RESULTS}
dcoustic analysis. Fig. 1 displays the averaged over all stops and vowels. Fig. 2 to 4 display the results for the vowel, separately to \({ }^{7}\) for the stop conditions obvious that the intensity of the breathy Vowel portion differs significantly from on the othe steady portion in all speakers. between both. portions is not the same in all subjects: portions is not the same in in for RPJ (11.1 (7.22 and smaller for PUN ( 7.9 dB ) and MAN the intensity in influence of the vowel on



Fig. 1: Intensity of the breathy and steady stops and vowels; plotted separately for the speakers MAN(F), RPJ(M), and PUN(M)

 But the vowels do not contribute in the
same way to the intensity difference bet ween the breathy and steady portion as ca be seen from the following diagrams, which show the significance between the singl
vowels

(The diagrams should be read as: vowel underlined by a common dotted line do not differ significantly, whereas vowels no underlined by a common line do.) MAN shows more influence of the tongue
position on the intensity difference as it is largest for the back vowels 10 u/ whereas the influence of the tongue height
plays an important role in RPJs
 productions: The results from pun are not clear, as /o/ and /a/ produce the largest,
high vowels the smallest intensit high vowels if the smallest intensit
difference. if summarized over al difference. the following rank order appears:
\[
\begin{array}{lllll}
\text { i } & \mathbf{u} & \text { a } & \text { e } & 0 \\
6 & 7 & 7 & 11 & 14
\end{array}
\]

In other words: the intensity difference between the breathy and steady portion (of
the vowel) is a function of the tonque the vowell is a function of the to The influence of the stop's place of arti culation is less compared with the vowel



Perception tests. The results from the identification task are plotted in Fig. 8 . The number of participants is given in the
figure. It is obvious that subjects did divide the continuum into two parts only in


Fiq. 2 to 4: Intensity of the breathy and
steady vowel portions as a function of the
vowel ploted separately for the three
speakers


FIG, \(8:\)
played forcentage breathy responses dis-
for four vowel conditions dho dhi dhu/ the four vowel conditions/dha



\(\frac{\text { Fid. } 5 \text { to 7: Intensity of the breathy and }}{\text { steady vowel }}\) portionas a function of the steady vowel portion as a function of the speakers

\(\frac{\text { fig. 9: Percentage breathy responses dis- }}{\text { played for the four vowei conditions /dha }}\)
the assumptions of categorical perception. In the other tests only the first stimulus was assigned to the breathy category. He
asked if these results may be due to an asked if these results may be due to an
interaction between intensity and the vowel, or if they reflect a difference in subjects ability to make use of that spe-
cial acoustic cue. Therefore we reanalyzed cial acoustic cue. Therefore we reanalyzed
the results and included only those sub-
jects jects in the analysis who unambigously assigned two categories to the continuum.
These results are given in fig. 9 This These results are given in Fig. 9. This
time, the identification function improoved for all conditions. The boundary between breathy and voiced occurs latest in the /dho/ condition (cf. Table 1), earlier in
/dha/ and /dhi/, earliest in /ghu/ where tha/ and 'ghi/, earliest in /qhu/ where of continua is significant ( \(F(3,26\) ) \(=\) 3.644; \(p<.05\) ), but on the other hand, the continua do not differ significantly from

TABLE 1: Points of intersection between the identification function and the
\begin{tabular}{|c|c|c|c|}
\hline /dho & /dhi/ & /dha/ & / dhu/ \\
\hline 4.06 & 3. 34 & 3.26 & 2.68 \\
\hline
\end{tabular}

The results from the discrimination tasks correspond well with those predicted from formulantification task using the haskins peak or the obtained discrimination func-
tion correspond in location and height with the carculated one. On the other hand, subjects could discriminate slightly better significant.

\section*{discussion}

The results from the acoustic analysis confirm that vowels contribute in difrerent the breathy and steady vowel portions after breathy voiced stops. This difference is
largest for the mid vowel iof inall spealargest for the mid vowel /olin all spea-
kers examined. on the other hand, the per-
in ceptiontests gave best results in the ldhol condition which showed the steepest boundary and the latest intersection bet-
ween the identification function and the
sion 50\% line. This means, that the back vowel
\(10 /\) line \(10 /\) needs less intensity digference in perception than do the high and low vowels. ain these results by a close link between the production and perception: the acoustic cue intensity" is most powerful when it it applied to mid vowels, less powerful with
other vowels. In order to make sure that no other acoustic cue was involved, we reexamined the acoustic structure of the syllab-
les used formanipulation with regard to les used for mani pulation with regard to
the relationship between the amplitude of the relationship between the amplitud
the first and second harmonic in the so
called steady portion of the vowel, where no breathiness could be detected audito
rily. The results are as follows:

This means, that the amplitude of \(H 1\) is higher in the high vowels ii ul, whereas \(H 2\) /a/. These relationsships are undoubtediy due to the formant structure of the vowels, where f1 interacts with \(H 1\) in the high vowels, and with H 2 in lo/ No interaction believe that our results reflect an inter action between the overall intensity, the amplitude of \(H 1\) and \(H 2\) as well as P1. A ther investigations are needed to explain the extent of that interaction.

\section*{REPERENCES}
[1] Bickley, C.: Acoustic analysis and perception of breathy vowels. Horking papers Vol. 1, MIT Speech Communication, pp. 73-83 (1980)
[21 Huffman, M. K.: Measures of phonation types in Hmong. Uni versity of Califor
nia Horking Papers in Phonetics 54:1nia
25 (Morkin
(1985)
[3] Ladefoged, P.: The linguistic use of different phonation types. University of California Horking Papers in Phone tics 54: 28-39 (1982)
[4] Schiefer, L. - Rotten, R.: Amplitude envelope and the perception of breathy stops in Hindi. Proc. 10th Int. Congr Phon. Sci., Utrecht, pp. 459-463,
(Cinnaminson, Dordrecht, 1984)
(5) Schiefer, L.: Fo in the production and perception of breathy stops: evidence
from Hindi. Phonetica 43: 43-69 (1986)

> cknowledgment

This research was supported by German This research was (DFG) grant Schi 181/2-1 I am grateful to Prof. R. P. Jain and Prof P. Talgeri for their helpinser the perception tests and participants for the permission to use the Language Lab, as well as Swaran Thakur-Heifenbach, Manorama, R. P. Jain,
informants.

INHERENT VOWEL DURATION IN RUSSIAN: PRODUCTION
and percertion data

VLADIMIR B. KUZNETSOV
Moscow State Institute Moscow, USSR 119034

ARVO OTT
Dept. of Computer Control Tallinn, Estonia, USSR 200108
anatoly v. Ventsov
Pavlov Institute of Physiology

\section*{ABSTRACT}

In this paper the quantitative data conerning inherent vowel duration in Russian are presented. The established duration of view of their perceptual significance in an experiment on lexical stress location.

\section*{INTRODUCTION}

It is a well established fact that all lse being equal, duration of stressed vowels is determined by the characteristics of the corresponding vowel gesture: he higher the tongue, the shorter the vowel. To be more specific, vowel duration tion of jaw movement on the opening and closing gesture of the lips [1]. Thus, the vowel of a given phonetic identity has its wn characteristic duration - inherent vowel duration (IVD)
though in Russian IVD phenomenon has the question whether researchers \([2,3,4]\) differences have any significan duration at the production or perception level is till opened. This is mainly due to the fact that most results of measurements are qualitative. Among the other reasons, poor interpretation of the data in terms of ifferent phonetic categories (phonemes s. allophones), unjustified averaging ver the speakers and phonetic context have to be mentioned.
The alm of the experiments reported in reliable and valid dather statistically assess the perceptual importance of the etermined IVD differences.

\section*{EXPERIMENT 1:INHERENT VOWEL DURATION (IVD}

Vowel durations were measured in a mono yllable of CVC type, spoken as word in an dentical sentence frame "Say....again".

Palatalized or nonpalatalized fricative [s] was used to form a symmetrical enviones: recorded M1,M2 and two female ones: W1,W2) wels * 33 repetitions). To achive constant speech rate thoughout To achive constant sion the speaker was asked to synchronize the onset of the sentences with a periodic light pulse. The phonetic identity of the test vowels was checked up by 8 listeners during an identification experiment.
rhree segmentation procedures were used to measure IVD. The beginning and end of a vowel were recognized: (1) by the on-
set/offset of voicing; (2) by the offset/onset of high-frequency noise; (3) by sharp minimums on the amplitude curves. There was a good agreement among the three sets of measurements. Taking into consideration the fact that the third segmentaof measurements, only the data obtained by this procedure were subjected to futher analysis.
The amplitude envelope was obtained by processing the tape recordings of the graphic material through a BrteldKjae \(\mathrm{mm} / \mathrm{sec}\) paper - and \(1000 \mathrm{~mm} / \mathrm{sec}\) writingspeeds with a high frequency preemphasis. To increase time resolution the play-back speed of the tape-recordings was reduced twice. Preliminary spectrographic analysis on the amplitude envelope coincided with the onset of the voicing of the vowel, on the one hand, and the rapid energy decrease in the frequency region of the second and higher vowel formants and the onset of the frication noise, on the other. It is provide reproducible and valid boundaries for the measurement of vowel duration [5]. Mean vowel duration is regarded as an estimate of IVD. The four data matrics (10*33) were submitted to the following statistical analysis: (1) to determine the of variance was carried out (to test the null hypothesis that the mean vowel dura-
tion of the 33 consecutive groups of ten different vowels are the same); (2) similar technique was used to assess significance of IVD differences; (3) T-method of multiple comparisons [6] was applied to determine the critical value of IVD diffeproposed classification of vowels according to their IVD the duration data was subjected to S-method of multiple comparisons [6]. All statistical tests were conducted with alpha=0.05 More detailed statistical procedures is presented in [7].
Results of the analysis of varlance have shown that the speaking rates were kept constant and the differences in vowel durations were statistically significant. msec. By iveans of the method of multiple comparisons the vowels were reliably rankordered and subdivided according to their IVD values into the following classes: \{ \(4, a\}\), \(\{8,3,3,0, y\}\) and \(\{y, b, H\}\) (cyrillic characters are used to symbolize the voallophones in the context of palatalized consonants). Typical duration ratio of the IVD means in the classes is 1.00:0.90:0.75. The IVD patterns of the four speakers are presented in Fig. 1


Fig. 1 IVD pattern of the four speakers

EXPRRIMENT 2: RANGE OF IVD VARIABILITY
To estimate the range of IVD variability two types of speech material were used: ment 1 , but spoken in isolation, (2) fivesyllable nonsense word [bist<v'>tfurnaja] embedded in the carrier phrase "I was told that the oldest ... company had gone bankrupt". The immediate consonantal contex of the test vowel was palatalized or nonread the materials at his normal speech rate and not to insert any pauses into the carrier sentence. The arrangement of the speech material, recording conditions and segmentation procedure were similar to those described above. A more detailed n [8]. Mean vowel durations measured in the two contexts are regarded as maximum and minimum IVD estimates respectively. Maximum and minimum IVD along with the normal ones averaged across vowels belonging to the same class are presented for table reveals that our data on minimum IVD support the suggestion put forward in [9] that vowel incompressibility is relative to its inherent duration.

Table 1. Mean IVD for vowel classes (in msec)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{IVD} & \multicolumn{3}{|c|}{classes} & \multirow[b]{2}{*}{IVD ratio} \\
\hline & a, a & 8,3,3, \({ }^{\text {a }}\) & у, \(\mathrm{b}, \mathrm{u}\) & \\
\hline normal & 113 & 101 & 84 & 1.00:0.90:0.75 \\
\hline maximum & 167 & 152 & 142 & 1.00:0.91:0.85 \\
\hline minimum & 90 & 75 & 53 & 1.00:0.84:0.71 \\
\hline
\end{tabular}

Experimental data reported in this paper rovide some evidence against the concep in in Russian the degree of opening is ingle factor determining vowel duration One can hardly explain, for examle, within
the framework of Lindblom's model of lip the framework of Lindblom's model of lip and [ 3 ] that are produced by quite similar articulatory gestures, judging from the corresponding F-patterns [13], differ so much in IVD, and the vowels [y, ©, a] are systematically longer than \([y, 0, a)\), though it is recognized that la] is closer than a]. Futher research is needed to clarify the significance of these findings. Nevertheless, it may be concluded that the coustican as well But is characteristi ossibility that the auditory system o uman being uses quite different segmentaon criteria for the measurement segmenta tion criteria for the measurement of subjective duration and the might be already neutralized at the stage of measurements. Evidently, the

\section*{EXPERIMENT 3: PERCEPTUAL ROLE OF IVD}

The data on the perceptual role of IVD are ather contradictory: on the one hand, there is an evidence that "naturalness" of ynthetic vowels is increased if an approduration parameter [10], but, on the other hand, the results reported in [11] indicate that IVD is not important for the perception of stress.
since in Russian the vowel duration is known to signal the position of word ception has to take into account IVD which must have effect on the results of psychoacoustic experiments with the vowel of ifferent identity.
In the experiment described below natural russian words were used as stimuli. Most of the words were disyllabic with an open
final syllable. The first vowel of the words was etther [ \(u\) ] or [y], the second one was always [a]. It should be noted that the spectral properties of these vowels do not change appreciably in the pre- and post-stressed positions. The ive pairs, differing only in the position stress, for example. "ти'хо-тихо"" "y'xo-yxa'".
The natural vowels were replaced in the words by semi-synthetic ones of required duration. The method of stimulus generacribed in full detail in [14]. Duration of the first vowel was 11 fundamental periods (one period was 8.7 msec ). Duration of the econd vowel varied from 7 to 23 periods. In Fig. 2 and 3 the frequency of response the second vowel is stressed" is plotted vowel pairs \([u-a]\) and \([y-a]\) respectively. The lines designated by opened circles represent the data when the amplitudes of the vowels in the pair were made equal. the lines marked with crosses represent vowels were equalized. For values of the comparison the results of the experiment with words comprising identical vowels are also presented (light lines without special signs).
Let us assume that the vowels having the same subjective duration, are judged as tressed with equal propability, then from the results displayed in Fig. 2 and 3 it longer acoustic duration to be have a as subjectively equal to the vowels [и] and [y]. Since the test vowels were produced by repetition of one fundamental



Fig. 3.
eriod singled out from the steady-stat part of the corresponding natural vowe [14], the established discrepancy between not be ascribed to the segmentation. consequently, this discrepancy may be considered to be a result of the IVD effect of the perception of stress when the judgenent of stress is based on vowel duration. Thus, the reality of IVD in Russian has tion but at the perception level as well.

This raises an interesting problem of establishing formal rules concerning IVD criptions of word stress perception.

\section*{prperences}
[1] B.Lindblom "Vowel duration and a model of lip-mandible coordination"
L.V.Shcherba "Qualitative and quanti tative description of russian vowels (in russian), Peterburg, 1912
(3] L.R.Zinder "Effect of speech rate on production of some sounds" (in rusgrad, 69, p.3-27, 1964
(4] K.Bolla "Some problems of vowel duration ratio in Russian" (in russian) Bulletin of Moscow State University
Philology, Moscow, 3, p.54-62,1968
(5) E.Fisher-Jorgensen, B.Hutters "Aspi vowels, a problem of delimination" Ann.Rep.Inst.Phon.Univ.CPH, Copenha-
Gen, 15, p.77-102, 1981 "Statistical methods in education and psychology". New Jersey, 1970
V.B.Kuznetsov, A.Ott "Inherent vowe duration in Russian" Estonian Papers
[8] V.B.Kuznetsov, Aallinn, p. 67-95, 1981 sis by rule. Algorithm of phonetic transcription and control of segmen tal duration" (in russian), Tallinn 1987 (in print)
factors that influence between two factors that influence vowel dura-
tion"
Journ.Acoust.Soc.Am., p.1102-1104, 1973
[10] R.Petersen "The influence of tongue height on the perception of vowel duration in Danish" Ann. Rep. Re, 10, 1924
[11] E.Rosenvald "The role of intrinsic Fo and duration in the perception of stress" Ann.Rep.Inst.Phon.Univ.CPH. Copenhagen, 15, p.147-166, 1981
[12] N.I.Jinkin "Perception of stress in Russian words" (in russian) sciences. Moscow, 54, p.7-83, 1954
[13] V.B.Kuznetsov, A.Ott "Spectral pro perties of russian stressed vowels in the context of palatalized and nonpalatalized consonants" (contribution to the present congress)
(14) A V
A.V.Ventsov "What is the reference
that sound durations are compared with in speech perception?", Phonetica, 40, p.135-144, 1983

\section*{SECOND SERIES OF EXPERIMENT}

Table I:
Metronome position relative to vowel onset levels of significance for the factors \(S=\) measured syllable, \(C=\)
\(I=\) interaction
for the first series of exeriments
BERND POMPINO-MARSCHALL
hans g. Tillmann
Institut für Phonetik und
Sprachliche Kommunikation
Universität München, FRG

\section*{abstract}

In a series of experiments using the technique of metronome speech it could be shown that the p-center location in production is not solely dependent on the duration of the segments of the uttered within alternating syllable sequences as well.

\section*{INTRODUCTION}

Generally, it is assumed that the location of the p-center - the psychological moment of syllable onset - of monosyllables is solely dependent on the duration of the initial consonant(s) and that of the perception \([2]\) as well as for production (1) As a description of the results his perception experiments Marcus \((21\) gives the following formula
\(\mathrm{P}=.65 * \mathrm{C}+.25 * \mathrm{VC}+\) const.
where \(P\) is the \(p\)-center location measured relative to the acoustical beginning the syllable, \(C\) the duration of the syllable-initial consonant, VC the duration of the syllable rhyme, and const. a run to test the predictions of this were mula in production of systematically varied monosyllabic material
general method
In a series of production experiments in
which subjects had to utter sequences of the same or alternating monosyllables in beat with a computer generated metronome signal we measured the position of the to the onset of the the vowel as indicator of relative p-center location.

\section*{first series of experiments}

The material of the first set of experiments was of the form / C+ak/ (c \(=/ p /\),
 8 also / \(\mathrm{fp} /\) or \(/ \mathrm{fm} /\). The monosyllables
were uttered in sequences composed of two were uttered in sequences composed of two alternating syllables or as homogeneous
sequences of seven repetitions of one single syllable in beat with the metronome presented via headphones. At the same time the utterances of the subject were digitally recorded at a sampling rate of 20 kHz and the beginning of the DA-out put of digitized input for later processing of the data. Measurements of metronome beginning relative to the acoustic signal and of segment durations were made from the oscillogram trace using the speech editing program at the institutes PDP 11/50. The sixth syllable of all sequences. The experiments were run with two experienced male subjects rodd numbered experiments: subject one; even numbered: subject two). For the first two experiments we used a metronome rate of 60 beats per minute with signal, the second set was run with a rate of 90 and the same metronome signal. The third set of experiments was also run at a rate of 90 but with the syllable /vak/ as metronome signal.
The metronome position data were analysed measured syllable and context syllable as factors.

\section*{Results}

The metronome position results are summarized in Table I. It can be seen that in contrast to the general view, the p-center [2] but is not independent of context phonological structure of the second syllable in the same sequence in almost all of the experiments.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{6}{|c|}{number of experiment} \\
\hline & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline s & . 01 & . 05 & . 001 & & . 001 & 001 \\
\hline \(c\) & n.s. & & . 05 & . 001 & . 05 & n.s. \\
\hline I & n.s. & . 05 & n. s. & n.s. & n.s. & . 001 \\
\hline
\end{tabular}

Hith respect to metronome rate (experiments 1 and 2 vs. 3 and 4) only subject one shows a significant effect on metronome position ( \(F(1,4\) ) \(=9.4 ;\) p , . 05): with the slower rate ( 60 ) of the metronome it is on average 8.5 msec less delayed
relative to vowel onset than with a rate of 90 beats per minute.
Experiments 5 and 6 were run to test the influence of the p-center of the metronome signal. Here we used a/vak/-signal with measured metronome delay of 40 msec relative to acoustical syllable onset as me-
tronome. There is a clear effect for both subjects: in this experiment as to be expected the metronome onset is on average 42.1 msec earlier than in experiment 3 for subject one ( \(F(1,6\) ) \(=158.38 ; p\); .001)
 one furthermore there is a significant interaction between the effect of metronome signal and measured syllable ( \(F(6,36\) ) \(=3.64 ; \mathrm{p}\) (.01).
Concerning the predictions of the Marcus formula [2] with respect to the dependency our results in general are clearly negative. No clear correlation between metronome position and segmental durations could be round for single syllable-context combinations as well as for all measurements of one experiment in single item
analysis. A tendency for the predicted depencency can only be found if one considers the pooled data of the single syllable-context combinations. This result seems to suggest that this dependency only holds for phonologically differently comvariants identical syllables.

In a second series of experiments we used German monosyllabic verbs varying either
the initial consonant, or the vowel length and the syllable final consonance or both. Experiments 7 and 8 were run with verb forms of German "backen" and "packen": /bak/, /bakt/, /bakst/, /pak/, /pakt/, and /pakst/ in all Possible ment 9 and 10 we used verb forms of German "spuken" and "spucken": / ppu:k/, / ppu:kt/,
 in all possible combinations. Experiment 11 and 12 both were run with subject one. The material consisted of ten repetions of
the four possible combinations of "back" the four possibind of "pack" and "backst", respectively. The metronome rate was set at 50 beats per minutefor all experiments.

\section*{Resulta}

The metronome position results are summarized in Table II. Again it can be seen that in almost all experiments there is an influence p -center.

Table II
Metronome position relative to vowel onset levels of significance for the factors \(S=\) measured syllable, \(\mathcal{C}=\) context,
for the second series of exeriments
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{6}{|l|}{number of experiment} \\
\hline & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline s & . 001 & . 001 & . 05 & n.s. & . 001 & . 001 \\
\hline c & n. s. & . 001 & . 001 & . 05 & . 01 & . 05 \\
\hline I & n.s. & . 05 & n.s. & . 05 & . 001 & . 001 \\
\hline
\end{tabular}

\footnotetext{
With respect to the predicted dependency
of p-center position on segmental durations our results again are negative: there is no clear correlation to be found n single item analysis.
In experiments 8 and 10 (subject \(t\) wo) arallel to the acoustic recording the glottal opening gesture for the syllable final consonant(s) was registered using an FJ-Photo-Electroglottograph and in experi ments 11 and 12 (subject one) orbicularis oris activity was recorded parallel to th fier. For both physiological recordings no correlations with the position of the \(p\) -
}


Fig. 1: Delay of the metronome beginning relative to the vowel onset Fig. 1: Delay of the metronome beginning relative to the vowel onset
in packst in percent total variation \(100 \%=86.7 \mathrm{msec}\); \(0 \%=6.4\) msec); left: mean; middle: homogeneous sequences; right: alternating sequences


Fig. 2: Delay of the metronome beginning relative to the vowel onset in "backst" in percent total variation (100\% = 91. msec; 0\% = 7.1 msec); left: mean; middle: homogeneous sequences; right: alterna-
center could be found in contrast to the results reported by Tuller \& Fowler [3]. 12 were reanalysed with respect to a 12 were reanalysed with respect to a
possible effect of position of the measured syllable within the sequence on the metronome position. The results are
depicted in Figure 1 and 2 for these items of experiment 11 and 12 that show significant effects of position. Two-factorial analyses of variance with as first factor homogeneous vs alternating sequences, and
as the other factor position within one as the other factor position within one
sequence showed no effects on metronome position for the items "back" and "pack", but a clear effect for "packst" and "backst": For the item "packst" the metronome position relative to vowel onset is affected by the nature of the sequence within the sequence (F(4,89)' =8.22; p< . 001) and an interaction of both factors ( \(\mathrm{F}(4,89\) ) \(=5.69\); \(p\) (001): In homogeneous sequences the metronome delay is longer for the second and third than for the fourth to sixth position, in alternation (i.e. items of sequences beginning with "back") show longer metronome delays than the third and fifth position (i.e. items of sequences beginning with "packst") and the sixth position differing significantly from the fifth. The simple main effect of the nature of the sequence
only is significant for the second, third and fith position: here the metronome delay is longer in the homogeneous sequences.
For the item "backst" the metronome position relative to vowel onset is also
affected by the nature of the sequence affected by the nature of the sequence
\((\mathrm{F}(1,90)=17.86 ; \mathrm{p}\) ( \(\mathrm{P}=001\), the position within the sequence \((F(4,90)=2.71 ; p\); . 05) and an interaction of both factors \(\mathrm{F}(4,90)=4.45 ; \mathrm{p}\) <. 01). The simple main "packst": In homogeneous sequences the metronome delay is longer for the second than. for the fourth to sixth position and onger for the third than for the fourth and sixth position, but in alternating sequences the tendency paralleling the
results of experiment 11 does not reach significance. The simple main effect of the nature of the sequence only is, in parallel to the item "packst", significant for the second, third and fifth position: here the metronome delay is longer in the mogeneous sequences.
cesult from two genereffects: first, metronome delay deceases with position within sequences and iteond, metronome delay is less for the tems with complex sylable
beginning with these items.

\section*{discussion}

The main result of our experiments shows that for articulatory variants of phonoloosition does not show a systematic dependency on segment durations. This dependency can only be seen with regard to the nean values of phonologically differently composed syllables. Moreover, in contrast is not only an effect of single syllables but significantly influenced by context, 1.e. in our experiments by the phonological structure of the second syllable in alternating sequences. It seems therefore
that there cannot be a simple acoustical explanation of p-center location based on segmental durations alone.
Nor do our physiological data support a simple articulatory explanation of the pcenter phenomenon: in our tests we could timing of physiological signals and the position of the metronome onset marked in the acoustical speech signal. The variaion of p-center location found in alternating with simple CVC syllables, i.e dependency of p-center position on whether the sequence started with the complex or the simple syllable can only be interpreted on the basis of rather complex articulatory programming

\section*{REFERENCES}
[1] Fowler, C. A. 1979, "ferceptual centers" in speech production and perception. perception \& Psychophysics
25, 375-388.

〔2] Marcus, S. M. 1981, Acoustic determinants of perceptual center (p-center) location. Perception \& Psychophysics
\(30,247-256\).
(3) Tuller, B., Fowler, C.A. 1980, Some articulatory correlates of perceptual isochrony. Perception \& Psychophysics 27, 277-283.

\section*{THE ROLE OF AUDITORI CONTROL IN SPEECH MONITORING}

\author{
KALERIA A.MICHURINA \\ Dept. of Phonetics \\ Moscow USSR 119034 Foreign Languages \\ Moscow, USSR 119034
}

\section*{ABSTRACT}

Auditory control is functionally gignificant in monitoring unskilled speech performance, while skilled performance is rather independent of the auditory sensorium information and is evidently monitored on a higher level than the level of motor or auditory control.

INTRODUCTION

Present-day work does not profide much data concerning self-monitoring of on-going speech. The present study is an attempt to analyse the functional significance of auditory control in speech.

Experimental observations of the effects of delayed auditory feedback point out the critical role of auditory control in monitoring vocal intensity \(/ 3 /\), rhythm and speaking rate /5/ and articulation accuracy /4/.

A study of the functional significance of auditory control in monitoring unskilled, semi-skilled and skilled speech performance can provide additional information which speech automatisms obscure. The purpose of the study reported herein is to investigate the problem through experiment.

\section*{HETHOD}

64 college undergraduates (aged 18-24) served as subjects. All of them learned English as a foreign language, with language experience varying from one year (32 subjects, hereapter referred to as beginners) to four years ( 32 subjects, hereafter referred to as advanced learners). Each of the subjects was required to describe a series of pictures under three conditions:
1) neutral (absence of experimentally induced disturbances),
2) binaural masking (white noise transmitted through earphones),
3) absolute silence (sound-proof
earplugs fastened on the head of the subject).
Whroughout the session the order of the series within the groups varied and was as follows: 1-2-3, 2-1-3, 2-3-1, 3-2-1,3-1-2. The descriptions were recorded on magnetic tape for later statistical analysis. The samples were analysed for the presence of error performances and the number of selfcorrected errors (statistical units totalling 5702).

\section*{RESULTS AND DISCUSSION}

Our findings support some of the data received under delayed auditory feedback: 1) subjects monitored loudness of speaking (it increased under white noise and decreased under quiet), 2) for both groups speaking rate changed as the result of longer pauses and word or syllable repetitions.

Monitoring of on-going speech proved to be much dependent on the conditions of auditory control. Of the two experimental conditions, absolute silence was more disturbing than white noise.

Beginners were more dramatically affected by auditory disturbances than advanced learners. The interfering influence of their native language (Russian) was felt much stronger under the experimental conditions. First, their articulatory accuracy was seriously impaired. They ended to use Russian substitutes of English sounds, but seemed to be unaware of the fact, as there were no corrections of the errors. Another striking observation is that \(7.4 \%\) of their sentences under white noise and \(5.3 \%\) under silence were meaningless in English, but could be traced tructurally to analogous sentence patterns in Russian. For example, "She tried to keep the room in tide (tidy)", They had to live him in their room (let him live)", "They lived in four (there were four of them). Mistakes of the kind
auditory control in the period of skill acquisition.

These and some other findings have been concerned with the importance of audition in monitoring speech automatisms; the experiments were run with adult subjects speaking their native language. However, some investigators of the effects of delayed auditory feedback on non-speech behaviours take the view that the role of auditory control is functionally changeable and depends on the operator's skill. It has been shown that during music performance /1/ and Morse transmission /7/ complex tasks were more greatly disturbed than easier tasks by the delay. The observation is also supported by the experimental data received by J.E.Waters /6/. His subjects from the age of 10 to 18 read outloud under delayed auditory feedback conditions. The older subjects were less affected by the interference and made fewer mistakes than younger subjects. The results may be interpreted in terms of less (younger readers) or more automatized reading skills (older readers). That calls for a closer investigation of the role of
were also uncorrected by the speakers. Though the subjects were free to use patterms they knew best, they failed to avoid grammar and lexical errors. The most common classes of gramar errors were articles, tenses, verb forms, and those of lexical - prepositions, choice of words and word-blending. The number of those errors grew in the beginners' speech output from \(13 \%\) to \(27 \%\) under white noise and \(15 \%\) under silence \({ }^{x}\) ). In the interpretation of the third figure we have to take into account that the subjects were most reluctant to talk under absolute silence. They tried to escape the situation by making their descriptions very short and by using a limited stock of words and grammar structures. The subjects' ability to detect and correct errors was significantly affected by the experimental conditions. The percentage of self-corrected errors decreased from \(24 \%\) in neutral conditions to \(18 \%\) under white noise and to \(12 \%\) under quiet.
The overall observation is that the speakers much depended on audition in monitoring their speech performance. Advanced learners were less affected by the experimental conditions. There was also an increase of errors in their performance, but it was less significant: \(8 \%\) in neutral conditions, \(11 \%\) under white
noise and \(11.2 \%\) under absolute silence. Articulatory deviations were few and mainly concerned with full devoicing of final roiced consonants (Russian influence). The mistakes were not corrected either. The subjects' grammar and lexical errors fall into the same classes as those of the beginners, but they are of different nature. Thas, there were no article omissions but articles were often inadequately used; tense mistakes occured not in isolated sentences but inside the sequence-of-tenses paradigm. While beginners used forms, like "feeled", "Iucky to got", advanced learners occasionally produced forms that could be taken for blended, e.g. "introduceded", "they got marriaged". The errors of word choice were more numerous in the speech of advanced learners, which is probably due to a higher level of lexical programming. For example: "She was over hair (head) and ears in work", "Ted and Ann were a newly-made (married) couple". Enigmatically, their number decreased under experimental conditions. Unlike beginners, the advanced learners were not at all reluctant to talk under absolute silence. They even tried to make their descriptions more "beautiful" which resulted in quite a number of bookish, unnatural expresaions. For example, "He came into their view with a girl",
x) mhese and other figures are statistically significant.
"He changed his figure into a stout one", "His thought gave result".
Error-correction of advanced learners was less effective under experimental conditions. The corresponding percentage was \(17 \%\) for neutral conditions, \(13.8 \%\) under white noise and \(12 \%\) under absolute sllence.
On the basis of data received we assumed that semi-skilled apeech performance is rather independent of the auditory sensory alterations.
In an attempt to support the assumption we asked 10 college teachers with a perfect command of English to give their descriptions of the pictures under white noise and absolute silence. Neither of the conditions had any consistent effect upon their speech performance. The only alterations were longer pauses and an increased number of word repetitions. The subjects were fully able to monitor their performance without the benefit of auditory control. In fact, there were only two slips, and these were immediately corrected.

\section*{COACLUSIONS}

The results of the study show that the functional significance of auditory control in monitoring unskilled, semiskilled and skilled speech performance is different.
It is the greatest in monitoring unskilled performance, significantly reduced in monitoring semi-skilled performence and is minimal in monitoring skilled speech performance.
This seems to be well related to
N. Bernstein's 1dea of a muiti-level natur of control /2/. In reference to speech it can mean that unskilled speech performance is monitored on the basis of current sensorium information, while skilled performance is monitored on a higher level
(hypothetically, sense-level) which is independent of the afferent information received by the ear.
In the period of deranged speech automatisms restoration auditory control may even become a hindrance. We observed two brain-damaged patients during their rehabilitation period. They showed much better speech performance when talking with the ear plugs than when they were aware of the acoustic effect of their performance.
This may turn out true in cases of stutters.
Altering audition may serve as an effective means of checking the degree of speech habit formation. When formed, they remain intact.
The way we see it, the results of the findings may be applied in language teaching and logopedics.

\section*{References}
1. Ansell, S.D. Delayed auditory feedback and humo skill "Disaertation and human skiliacts", v.26, No. 5554. USA, 1965.
2. Bernstein, N.A. The coordination and regulation of movements, Moscow: Medgiz 1947.
3. Black, J.W. The effect of delayed side-tone upon vocal rate and intensity disorders". 16, 1951.
4. Fairbanks, G., Guttman, N. Effects of delayed auditory feedback upon delayed auditory feediculation. nJournal of speech and articulation. \({ }^{\text {hearing disorders", V.I. No.I. } 1958 . ~}\)
5. Kozhevnikov, V.A. and Chistovich, L.A. (eds.). Speech: Articulation and
Porception, Moscow: Nauka, 1965. Perception, Moscow: Nauka, 1965
6. Waters, J.E. A theoretical and delayed developmental inven feedback. "Genetic psychology monographs". 78 (I), 1968.
7. Yates, A.J. Effects of delayed auditory feedback on Morse transmission \(\left.\begin{array}{l}\text { by skill ed operators. "Journa } \\ \text { experimental psychology". } 69\end{array}\right)_{\text {? }} 1965\).
\[
\begin{equation*}
U(i)>0, i=n-1, n, n+1 . \tag{3}
\end{equation*}
\]

\section*{}

В．Г．РУДАКОВ
B．H．ТРУНИН－ДОНСКОИ

\section*{ВыЧИСЛИТЕльННЙ цЕНТР} AH СССР，МОСКВА

ВыपИСЛИТЕЛЬНЫИ пЕНTP
АН СССР，МОСКВА

В докладе рассматривается возможность исполь зоваяия ппя целей первичной сегмен－ тации речевых сигналон микросегментов． определяемых в виде совокупности локальных длительности определяотся непос и докальные из анализа формы речевой волны во времен вой области．Использование микросегментов позволяет примерно в 2 раза сократить ис－ ходнуп длительность сигнала дпя последур－ указать неноторые параметры уове，а также

Известно／ \(1,2 /\) ，что вся информация ой функции \(D(t)\) ，отра жармей зависимостен－ звукового давления \(口\) на некотором расст янии от горорящего．Успешному решенио ря－ дабпроолет анализа речевых сигналов спо－ их сегментации／3／．С точки зрения поцесса вия максимальной информативности резуль－ татон анализа сегментация должна осупе－ твлятся адаптивным способом к последова дпль первичной сегменте овим явлениям／4／． представлядт в виде посли речевой сигнал вокализованных и ненокализованнности тов／I／．В \(/ 3\)／в качестве основных сегмен－ тов первичнои сегментации речевого сигнала а а а у участки сигнала имуществом такого спосоновного тона．Іре－ микрофонены не связаны со является то，что ным интерғалом в IO．．． 20 мс，а также оо шая уместность миярофонемных и фонемннх арактеристик，относящихся к одному и тому е ииктору и классу звуков речи．Недостат－ ется использование дпя а сегментации явля－ строго преобразования Фурье，обусловленно－ допущением о квазипериодичности и ста－ ционарности сигнала на всём протяжении То сем спрапупение к речевому сигналу не сов－ предложено представлять в речевой сигнал ривой，а для её анализа виде сложной нкя сложных кривнх на компоненты．Этот ме－ тод справедлив для анализа как вокализо－ но он，как и спектральнованных сегментов，

лагает непосредственного анализа формы ре Дпя выяв
характеризурщиия некоторых параметров смотрим на рис．Фориу речевой волны рас－ реобразованного в эпектрический сигнап L（t）изменения звукового дағления \(D(t)\) на нтервале \(\left[t_{0}, t_{*}\right]\) ．
\(u^{u(t)}\)


Рис．I．Фрагмент осциллограммы прообрало ванного в электрический сигнали（t） речевого сигнала \(P(t)\)
Произведем замену вепрерывного вре－ мени \(t\) на дискретное \(n \cdot \Delta t\) ．Принимая \(\Delta t=\) том котороли явпяется номер дискретыпе［пи， Очевидный колебатепьный характер функции U（п）можно описать с помощьр следур－ щих па раметров．На первом уровне описания используртся временнне интерналы между ло－ кальными экстремумами．В номере дискреты выполнено условие
\([u(n-1)>u(n)] \wedge[u(n)<u(n+1)]\),
\(u(i)>0, i=n-1, n, n+1\)
Для обознячения номеров дискрет，в кото рнх выполняется услорие（I）введем индекс определяот \(j\)－е длительности
\[
\begin{equation*}
\tau_{j}=\left(n_{j+1}-n_{j}\right) \cdot \Delta t=\Delta n_{j} \cdot \Delta t \tag{2}
\end{equation*}
\]

Локапьнье максимумы определяртся в
пре делах изменения \(\tau ;\)（2） вкя \([u(n-1)<u(n)] \wedge[u(n)>u(n+1)]\) ，

耳омера дискрет，удовлетроряощие условир （3）обозначим с помощьр индекса \(\downarrow\) ，то－ гда локадьные максимумы оудут иметь ооо ва их принадлежность к соответствурмей \({ }^{\text {з }}\) ； Длительности \(\tau \nu\) находятся аналогично вн－ раженид（г）．Поскольку длительности \(\tau д\) \(\because \tau_{\nu}\) определяртся соответственно смежнн－ ми минимумами и макс имумами с перек рытием ет быть испопьзовано как дпя исклочения лоех，так и для выявления дополнительных сведения о тонкой структуре сигнала． тизя речевой образом на перном уровне ана－ изз реченой сигнал представляется после－ довательностьд чисел，характеризурмих ло－
 сти \(\tau_{\text {на }}\) втором уровне анализа производит яя выделение значимых экстремумов из до－ альных．С цельр наибольшего учёта динами и функции \(P(t)\) необходимо использовать рорых накоольшая．Проведенный анализ пока－ ал，что этому условид удовлетворярт ло－ альные максимун，поскольку их цисперсия римерно в 4 раза превнмает дисперсид ми мй
\(\left[u^{(j-1)}\left(n_{i-1}\right)<u^{(j)}\left(n_{\nu}\right)\right] \wedge\left[u^{(j)}\left(n_{\nu}\right)>u^{(j+1)}\left(n_{\nu+1}\right)\right]\). （4）
Вредём индекс \(\mu\) для переобозпаче日ия таких номеров дискрет \(n_{\nu}\) о́ для кото ох усповие（4）выподняется．Очевидно，что начимнй максимум и（ \(n \mu\) ）всегда совпада


Это позволяет указать временной ин гервап между смежными значениями максиму ов и \(^{(j)}\left(n_{\mu}\right)\) и \(u^{(j+k)}\left(n_{\mu+1}\right)\) ，где \(K\)－количе тно локальных максимумов между номерами иискрет \(n_{\mu}\) и \(n_{\mu+1}\) ．Обозначим его через \(T_{\mu}\) о выражени
\[
\begin{equation*}
T_{\mu}=\left(n_{\mu+1}-n_{\mu}\right) \cdot \Delta t=\sum_{j=1}^{\mu+1} \tau_{j} \tag{5}
\end{equation*}
\]

форма введем раоочур гипотезу о том，что форма речевой волнн в первом приближении может оытв оха рактеризована параметрами
\(u\left(n_{j}\right), u(j)\left(n_{1}\right), \tau_{i}, \tau_{\nu}\) на интервапе \(T_{\mu}\), \(n_{\nu} \in\left[n_{j}, n_{j+k}\right], k \in\left(n_{j \mu}, n_{\mu+1}\right)\) ．

дпя экспериментальной проверки воз кжности описания формы речевой волны с по щьр нведенных параметров оыл исполь зован три，четыре，пять，пиесть，семь，оосемь，де－ вять，действие，сложить，внчесть，умножить еличина，точка，цифра，синус，косинус， ангенс，котангенс，слушай，начало，конец， исли，целое．Этот словарь по－словно 2－мя омещеяии и женщиной разговорным стилем

65 дБ по телефонному каналу с полосои Частот 10 －разряного преобразователя аналогодиф－ ра．В соответствии с ука занной попосой частота дискретизации принята 6,25 кГц что соответствует \(\Delta t=160 \mathrm{mRG}\)
По результатам обработки 8I сдова из гистограммы для значений длительности \(\tau_{j}(\nu)\) и \(\mathrm{T}_{\mu}\) ．


Локапьные длительности \(\tau_{j}(\nu)\) ，мс


Длительности \(T_{\mu}\) ，ме
Рис．2．Гистограммы дпитепьности ；\(^{(\nu)}\) и Tल \(^{\text {．}}\) Даннне получены в результате об－ работки 8I слова，произнесённых

Анализ приведенних гистограми поиази
 нимапт диапазон от 320 мкс до 3 мс с ман－ симумом е раионе 320 мкс，что соответстеу ет частоте 3,125 кГп，то есть герхнему значенид спектра сигнала．диапазон значе－
 Поскольку эти области существеяно перек－ рываптся，то овя могут быть использованы ограниченных целях，например，дпя опре－ деления высоты гопоса по положенид макси－ мума гистограмми длительноститл дпя од

Анализ чередований \(\mathrm{T}_{\mu}\) на протяжении тдельных слор показал，что онк обладарт определенными регулярностями．\(B\) первом приближении эти регулярности могут оыть писаны с помощьо семи прагил（ГI，．II7） кот：
\(\Pi I,\left|T_{\mu}-T_{\mu+1}\right| \leqslant 160\) мKС
II2，\(\left|\left(T_{\mu}+T_{\mu+1}\right)-\left(T_{\mu+2}+T_{\mu+3}\right)\right| \leqslant 160\) мKC（7）
II3，\(\left|\left(T_{\mu}+T_{\mu+2}\right)-\left(T_{\mu+1}+T_{\mu+3}\right)\right| \leqslant 160\) mке（8）
П14，\(\left|T_{\mu}-\left(T_{\mu+1}+T_{\mu}^{\mu+2}\right)\right| \leqslant 160\) мко
\(\Pi 5,\left|\left(T_{\mu}+T_{\mu+1}\right)-T_{\mu+2}\right| \leqslant 160\) MRS
I16，\(\left|\left(T_{\mu}+T_{\mu+2}\right)-T_{\mu+1}\right| \leqslant 160\) mसС
II7，\(\left|\left(T_{\mu}+T_{\mu+1}+T_{\mu+2}\right)-\left(T_{\mu+3}+T_{\mu+4}+T_{\mu+5}\right)\right| \leqslant\)（I2）

\section*{\(\leqslant 160\) mRC}

\section*{где 160 мкс \(=\Delta t\).}

Длитепьности \(T_{\mu}\), удовлетворярщие в сғоей последовательности соответствущему правилу, обвединяртся в группн. В речевых сигналах на этом этапе ваолпдартся чередования как одиваковых, так и разных групп, которые образурт макрогруппн. Между макрогруппами, а иногда и между группами, встречаптся длительности, которые ве ддовлетгорявт приғеденным в выражениях (6)... (I2) правилам объединений. Эти длительности не используртся для анализа на вих распределении \(\tau j(\nu)\). Они могут быть учтенн лишь при решении вопроса о валички либо паузв, либо помехи в слове . Для иллострации отмеченных этапов авализа чередования длительностеи \(T_{\mu}\) на рис. 3 приведена гистограмма обвединения

тл в группы в соответствии с правилами ПІ,..., П7 е слове"число", диктор мумчна. Из рисунка 3 следует, что каждому правилу объединения \(\mathrm{T}_{\mu}\) соответствует определённое число групп.



правила объединений
Рис. 3. Гистограмма объединений длительностей в группн с использованием правил ПІ,..., П7 в слове "чцло."

Анализ гистограмм слов приведенного выпе словаря показал, что для целей сег ментации следует выбирать пибо такие группы, y которых ноличество \(\mathrm{T}_{\mu}\) не менее 7 . либоо макрогруппы с числом однотипннх групп не менее 4 и количеством \(T_{\mu}\) м них бопее 4. Сущес твурмур в слове "число" последовательность обозначим в виде следурщих Групп: П7. І; П7.2; ПІ. 3 ; П7.4; П7.5; П7.6; П2.7; П2.8; П7.9. где вторая цифра после номера правила об́қединения обозначает порядок следования групп.

Авализ этих последовательностей показал, что группы ПІ. \(3, ~ П 2.7\) и П2. 8 соответствурт вокализованным сегментам, твк как у них нет дробления длительностей \(T_{\mu}\). В группе ПІ. 3 они находятся в диапазоне от \(\frac{1}{3}, 32\) до 2,4 мс, в групп \(п 2.7-\) от 2,72 до 3 ,52 мс, в группе п12. 8 - от 2,88 до 3,52 мс. Второй характеристикой этих сегментов являетоя распределение \(\tau_{j}(\nu)\) В группе ПІ. 3 длитепьности \(\tau_{j}(\nu)\) основном находятся в области от 0,32 до 0,96 ме, в П2. \(^{7}-\) от I, I2 Мс до 2,56 мс, а в П2. 8 - \(0 \mathbf{T} \mathrm{I}, 44\) до' 2,08 мс. Распределения \(T_{\mu} и T_{j}(\nu)\) на них в остальных группах ха рактеризурт неғонализованные сегменты. ориентировочно приведенные группи могут бить соотнес ени с фонемами: П7. I, П7. ? "ч"; ПІ. 3 - "И"; П7.4, П7.5- "С"; П7.5-
"Л"; П2.7, П2. 8 - "О" . Следовательно по распредепевиям такого типа можно приолизительно производить сегментацио реченых сигналов на вокализованнне и невокализованные участки, а также выносить определённые суждения о фонемных характеристиках выделенных сегментов.

В закличение рассмотрим таблицу; в таблицу сведены соотношения длительностей приведенннх групп с длительностьо слора.

Из таблицы следует, что общая длительность слора "число" составляет 623.6 mc , а длительность групп - I8I мс, что соответствует \(29 \%\) от длительности слова. सроме того, длительности групп: П7. І, \(\Pi 7.2, \Pi 7.4, ~ \Pi 7.5, ~ \Pi 7.6\) и 17.9 в среднем сорпадарт с общепринятым окном анализя в \(10 . . .20\) мс.
Табпица. Представление длительности слова "число" через длитепьности групп и ивтервалов между ними
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{9}{|c|}{\% лительнооть, мо} \\
\hline Ррулпы & n?. 1 & n?.2 & ก1. 5 & ก?. 4 & ก2. 5 & n7.6 & \(\pi 2.8\) & 12.8 & ก2.9 \\
\hline  & 12,9 & 8.3 & 28 & 15,8 & 18 & 16,6 & 42,8 & 32,8 & 13,9 \\
\hline \[
\left\lvert\, \begin{gathered}
\left.\begin{array}{c}
\text { интервалй } \\
\text { мешдду } \\
\text { группами }
\end{array} \right\rvert\,
\end{gathered}\right.
\] & 70 & 43,6 & 69,1 & 43,3 & 0 & 42,5 & 0 & 166 & \\
\hline
\end{tabular}

Всё это позволяет сделать вывод о целесообразности использо вания в качестве основннх элементов первичной сегментации речевые сигналы с длительностями Тзм \(^{\text {м }}\) которне предлагается называть микросегментами.

\section*{ЛИТЕРАТ У РА:}
I. Фант Г. Акустическая теория речеобразования. Пер. с англ. под ред. В.С. Григорьева. - М.: "Наука", 1964,283 с. 2. Линдсей П., Норман Д.: Переработка информации у человека. Пер. сангл. под ред. А. Р. Лурия. - М.: "Мир", 1974,550 с. 3. Джерниковский А. Миярофонемы как основные сегменты первичной сегментации речевого сигнала. - Автома тическое обнаружение мик рофонем. В Трудах ІУ Мекдуна родной обвединенной конференции по искусственному интеллекту. То́иписи, I975, том 5, с. 68 \(8{ }^{2}\). 4. Соломатин В.Ф. Метод разложения сложных криянх на компонентн. Деп. ВИНиТИ, W. 4967-8I,- M.; I98I; I5 c.

\title{
АВТОМАТИЧЕСКАЯ СЕТМЕНТАІИЯ СОЧЕТАНИИ ЗВУКОВ（ДИАД）
}

\section*{ПЁТР ДОМАГАЛА}

\section*{Лаборатория Акустической Фонетики Институт Основннг Проблем Техники ПАН Познань}

PRBUNE

 и出 өнергй в соседних спектрах．Применё

 сияедьнвх мощностен ЭВМ．Спстема примепе－
 ние сёвих 8 дихторали．Похучено в среднем \(90 \%\) правниьних сегментацпи．

BER ZISH UR

Нсследования，касалддиеся автоматическон се－ гхентадии сигнада речи（АСР），обнино пред－ ставлапт собо共 предварительнын н судествен－
 располнаваная речи（APP）．В обдасті пробде－ цатихи аналдза речевых сигналов чедовехом ии машщой понятие сегмента применяется， вообще говоря，для определения временно́го фрагмента едипиды（обычдо дингвистической）， являденся элементом во маохестве знаков， подвергакихся распознаванио．Таким мдахес－ твом мохет быть спово ий фраза．В тахом спчае сегментом может бнть звук，сочетание двух звуков（диада），дпбо спог．В сдучае модеди распознавания биологическои спстемой сегмент не может выбиратьсп произвоиьно，а далхен соответствовать фактически физиоло－ гически，неврапогическим и психоп огиче схим процессам，пмешим место в восприятни．Дри автоматическои расдознавании не обязатедь－ во копирование отих процессов，и доэтому сегментом может онть фрагмент сигнаиа，ко－ торий не совпадает ни с одементои восприя－ тия，ни с дингвистичесхим энементом，разве 7\％преддолагается，что в рамках проблема－

тики бноникв едециально конструпруются сас－ тем，копируопие бпофпзические функдин．Не－
 вует мого моделей п теории воспритвя ре－ чи／3／，घасто противоречащих одна другон ．
 миееся того，что норнаиьнои процессе zoe－ прияги речи чедовеком в рамках гаких болен крупних дингвдстических өдинй хах предио хение（высказнвание）ипи спово，происходит выдедевве по храннен цере нехоторих сегмен－
 В то хе вреш не лсно，па кахом уровне вос－ приятия пропеходит звуковая сегментадия－ слуховом，фонетвческом ииу выспем．Сегмент явдяется элементои ховечного миохества зна－ читедьно меньмен численности，чем числен－
 данного законченного словари число слев го－ раздо болдне чдсга слогов，хеторое，в свов очередь，балвше числа фонем．
 дествляется с фоветической едииден，пони－ маемо进 как моносегментны авул，дщбо е сег－ ментом полисегментного звука．Представдена \(A C P\) ，опирапданся на анапиз изменөний рас－ предеденпи энергии в спектре，а такхе ре－ зультаты сегментадид чаще всего встречалиих－ ся в попьсхоя язнке днад．

\section*{OПИСАНИЕ МЕТОДА}

Для реализадии метода была псдопьаована аналого－дифровая система，в состав которон входят：60－канальный анализатор спектра，их－ терфе їс，соединипиии аналоговы источник спгнала с микро－ЭВМ и микро－ЭВМ МЕРА－303． Аналоговый анализатор сдектра пмеет 43 по－ досы постопннон пприны，составлдме 80 гд， покрывамиие область частот ог 120 до 3560гд，
 неино or средегеометриеской частоти пи по-
 Выходм отдельных єавапов диклическп подкхро


 ордиватами времені п частогм \(/ 1 /\). Для кахдой пары очередкнх спехтров \(K-1\) п \(K\) создан \(N\) - әлементны ряд ( \(N\) - ұвсло канадов) с эдемептам \(r_{i k}=\mathbf{a}_{i k-1}-\mathbf{a}_{i k}\), rде \(i=\) - 1,....,N обоявачает номер полося, \(K\) - очередой хвант времени. Ряд \(r_{i к}\) бии поделёв на \(c(k)\) составных ридов при прдиенении хритеряя согласованности знака п достаточно внсоком абсолртном зкачевид, то естs направления у схорости нзменения уровия. Через \(z(k)\) обозвачен знак элементов последвего состав ного ряда, приниая 0 дия подожитедьных ве-
 гранида мехду сегментамп будет обозвачена

1) \(\quad \underset{ }{p(k)} \underset{z}{ }(k+1)][c(k+1) \neq 1 v[c(k+1)=1 \wedge z(k) \neq\)
2) \(\quad \begin{aligned} & c(k)=c(k+1)=1 \wedge z(k)=z(k+1) \\ &\neq 1 \vee[c(k+n)=1 \wedge z(k)=z(k+n)]]\end{aligned}[c(k+n) \neq\) rav \(1=1,2, \ldots, n-1\)
3) \(c(k)=2 \wedge c(k-1) \neq 1 \wedge c(k+1) \neq 1 c(k+1) \neq 2\)
4) \(c(k)=2 \wedge c(k-1) \neq 1 \wedge c(k+1) \neq 1 \wedge c(k+1)=\) \(\begin{array}{lll}=2 \wedge z(k)= & z(k+i) \wedge z(k) \neq z(k+n) \wedge c(k+n)= \\ =2 & r x \in 0,1, \ldots, n-1 \quad a\end{array}\) = \({ }^{2} \geqslant 1\)
5) \(\begin{array}{rl}c & c(k)=2 \wedge c(k-1) \neq 1 \wedge c(k+1) \neq 1 \wedge c(k+1)= \\ & =2 \wedge z(k)=z(k+1) \wedge c(k+n) \neq 1 \wedge c(k+n) \neq 2\end{array}\)


 ваны давние, пожучннне Яссемом, Лобач в их работе, хасаненея фонотактвки пальского
 сок чаще всего встречавиихса в дальстом языке диад в \(94 \%\) охватывап 5 аналнзяруемуто там выборку числендостио \(10^{5}\). Этот список бих мспохьзован с исклочением диад тит: "\#Fn, \({ }^{\prime \prime} F_{\sharp}\) " п " \(F_{j} F_{j}\) " (\# ооозначает дауау, \(F\) - ка хуо-дхбо фовему, а " \(F_{j} F_{\text {" " обозначает диалу, }}^{\text {" }}\) состонпур из одинаховых фовех). वто обозначало сокранение списта до 444 пар различаю михся мехду собон фонем.
Для каждой дқады бвло образ овано искусственное сдово (догатом), содердамее двв её реамизапии и отвечапее припипам фонотактики польского язнка. Созданнве логатомы быди сгруппированы в четире списка в очерёдвоств соответствухие порядху полвления ддад в списке частотности. огдедьние списки содер-

хале 112, 109,105 п 118 догатомов хахдын. Кахдыы логатом быи произвесён по 3 раза

 ту. Представленны выде материал бых подвержен автоматиче схон сегментадид. В качестве порогового звачения схоростд изменепия уровнен спгнала в олдединых каналах спектрапвного авапиаатора били принятм примерио 30 дБ/23 мсех (23 мсех - 3 то временное расстопние мехду соседнии спентрамдь Зто значение бнио постоянным дід всех годосов. Бнла проанаиямровена частота п проведена алтоматпие ская сегментацдя кахдого воспровзведёного с магнитной лезты догатома. Спустл иримерно 1,5 сек на окране мониторя
 0бозначеннния границами. Из обрахение оставалось неподвцхним в течение примерио 5 сехупд, т.е. до времени появения следукед
 те фрагменты спехтрограмы, которые относндись к днадам, являопимся основод хонструкдии логатома. Если положение автоматичесхи определённой граници совгадало е середино\# нереходного участка мехду двуки фонемами с точностьь расстолния хехду двуия соседвим спектрами ( 23 мсек), то сегментадия ститалась правилной. Это расстояние (в два раза большее, чем прихенлехое в других методах) превыпает диитедьность самыт короткх артвкудядионных лвденпй. У словием подохитепьнон оденкя сегиентации днад, содерхампи долисегментальнур фонему, было выдедедие основного сегмента, например, смыки в согдасных сличных звуках. Кахднй догатом про износился но три раза одним и тем те дихяо ром и, следоватөльно, каждая диада была произнесена 6 раз. Записнвались резудьтаті 5 первых повторении.


В Табл. 1 представлены средние значения эффектнвности АСР по отдедьны голосам, ддл
 для дело甘 грудшы (ца). Значения, иаходящиеся в кол онках, обозваченных "a", явняится средними арифметичесхими, полученыип в эк сперименте, а данные в кол онках, обозначен-
 распределение частоти встречаемости анализпрованвых диад в польском лзыке. В Табд. препставлин средние значения п длсперсид


одну днаду. Ддады, чаме встречакпиесл в дохьском языке ( Список 1), легче поддаются сегментацих, чем диадм, встречаминися рехе (список 4). Ии рис. 1 вытекает, что дхады, сегментируемие с эффехтивностьы не медее 80\% (в средвек 1 опибка на голос) составня их 75\% всех диад. Принмая во внимаиие ча-
 воз растает на 5\%. Дих всего матөриала (444 диадих8 дикторов \(\times 5\) повторений) попучено \(90 \%\) эфехтивностп сегментадин. В Табл. 3 представлено распределение типов диад из авапиз пруөмого шатервала вместе с данными,
 пй. (C обозначает согдасный, \(V\) - гдасны", \(\vec{v}\) - не образутие сиогов \(j, \omega\) ). Самод болв ио податдивостье ва сегментацию отличаштся двады тиша CV и VC. Причины впзкого уровнд правидвнон сегментация вихе \(60 \%\) ддя вехоторых дхад сдедукиея
- мадан конграствость /eo,nu, un, ли, um,od.
\(u \omega, f f, o \omega, \Delta 0, e a, t i j, x \neq j i, \omega u, i j, f s / ;\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Tamec} & \multicolumn{2}{|l|}{Cuncos 1} & \multicolumn{2}{|l|}{Caycor 2} & \multicolumn{2}{|l|}{Cricos 3} & \multicolumn{2}{|l|}{Crincox 4} & \multicolumn{2}{|l|}{Brecte} \\
\hline & a & 6 & a & 6 & a & 6 & a & 6 & a & \(\sigma\) \\
\hline 14 & 90,8 & 90,4 & 90,6 & 90,0 & 88,3 & 89,6 & 89,3 & 88,6 & 89,8 & 90,1 \\
\hline 2M & 94,0 & 95,8 & 92,1 & 92,4 & 87,4 & 86,5 & 84,6 & 84,2 & 89,5 & 93,6 \\
\hline 34 & 83,6 & 82,8 & 88,4 & 88,4 & 80,4 & 79,2 & 81,7 & 82,4 & 83,5 & 83,5 \\
\hline 4M & 96,6 & 96,0 & 94,1 & 94,4 & 90,6 & 90,0 & 93,9 & 94,0 & 93,8 & 95,0 \\
\hline 5M & 96,1 & 96,5 & 81,5 & 82,1 & 89,3 & 89,4 & 80,2 & 79,8 & 86,7 & 91,9 \\
\hline \(6 \times\) & 89,3 & 88,6 & 87,2 & 87.2 & 85,7 & 84,1 & 82,8 & 83,5 & 86,2 & 87.7 \\
\hline \(7 \times\) & 91,1 & 90,2 & 83,7 & 83,6 & 70,0 & 71,1 & 84,0 & 83,7 & 82,4 & 86,6 \\
\hline 8 8 & 92,1 & 92,1 & 87,7 & 87,7 & 80,0 & 79,8 & 77,4 & 78,9 & 84,4 & 89,2 \\
\hline \(\underline{1}\) & 92,2 & 92,3 & 89,3 & 89,5 & 87,2 & 86,9 & 85,9 & 85,8 & 88, 6 & 90,8 \\
\hline \% & 90,8 & 90,3 & 86,3 & 86,2 & 78,6 & 78,4 & 81,4 & 82,0 & 84,3 & 87,8 \\
\hline M0x & 91,7 & 91,5 & 88,2 & 88,2 & 84,0 & 83.7 & 84,2 & 84,4 & 87,0 & 89,7 \\
\hline
\end{tabular}

табл. 1 Эффективность автоматическон сегментадмх в \%
\begin{tabular}{|c|c|c|c|c|}
\hline Cmacox & Чисто дпап &  сегментад竞 & Cpeniee звачение & Дисдерсия \\
\hline 1 & 112 & 382 & 3,41 & 20.33 \\
\hline 2 & 109 & 516 & 4.61 & 47.19 \\
\hline 3 & 105 & 671 & 6.39 & 47.23 \\
\hline 4 & 118 & 753 & 6.38 & 52.64 \\
\hline
\end{tabular}

табд. 2 отсутствуоине сегментацди в списках догатомов
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline TEII (Eant & CV & VC & CC & VV & V̆C & CV゙ & \(\stackrel{\rightharpoonup}{V}\) & \(\checkmark \stackrel{\rightharpoonup}{V}\) & \(\bar{V} \stackrel{\rightharpoonup}{V}\) \\
\hline Чпсло дпад & 118 & 148 & 118 & 7 & 13 & 18 & 11 & 11 & 0 \\
\hline \% orcyтств. сегментадй & 6.2 & 9.9 & 17.1 & 44.0 & 23.3 & 16.3 & 29.8 & 34.1 & - \\
\hline
\end{tabular}

Табд. 3 Сегжентадия типов дмад

1 - без принятия во виимание п2-с принявем
во вн"manie qactotioctir дпад

\section*{Д UTEPATYPA}
/1/ Домагаха, П., Автоматизация продесса сегмептапии спгнапа речп в аналогоцифровой спстеме, Работы Ин-та Основньх Пробдем Технихи, R \(5 / 1984\), Вармава.
/2/ Яccex, В., Добач, І., Фонотактне скиіи анапв допвского текста, Работы Ив-та

/3/ Нобач, П., Фонетико-левсикальние взаимоденствия досприятии речи, Изд. Уд-та А. Мпикевй, Поздань, 1985.

\section*{RODLONGA POTAPOTA}

\author{
Dept. of Brperimental Phone- \\ tics; Instituto of Foreign \\ Iarguages; Moscow, USSR 119034
}

\section*{ABSTRACT}

The present report preposes a mothod of automatic speech segrentation using syllable tenplates based on soft-hardware method of speech analjisis to cope with sereral difificulties, i.e. indistinct syilable boundaries; absence of data on the amount of phonemes in a ayllable, localization of phonemen on temporal axis; relative complezty of prom cessing. The report describes one of the possible approaches to continuous speech segmentation, which in of great importance in solving tasks of automatic recognition and understanding of a spoken nessage in the process of "rizn-to-computer" comunication using a matural language and epoken speech as the basis.

\section*{INTRODUCTIOAT}

Method based on syllable templates is widelf used in automatic speech recognition ofstens. At present three approaches to automatic speech recognition using syl lable templates are know:
-a) inpūt speech is segmented into sylla-ble-sized units which are natched against stored syllable terplates;
-b) words synthesied from syllable-sized units are matched against input words; - ) input speech signal is analyzed, segmented into soundlike (or smaller) segments with subsequent forming of syllable units.
From literature it is known that in the first type of methods the difficulty is that they are liable to segmentation errors, while the difficulty in the second and the third approaches is an increase in the complexity of processing. Though the method using syliable templates is rather effective because it takes into account most of coarticulation phonemes models without considerable extention of memory and increase of processing rate, it is limited now, first of all, by the Way of presentation of input material
(separately pronounced words) and limited number of speakers [2].
Complexity of speech recognition as the
result of incraase of a number of speake ers and extention of lexicon, cleariy sho wa the advantage of the syllable segmentation method based on changes of feature parameters of speech wave [4].
It is proposed that the method can integrate with the method using syllable templates because, for example; in the Russian language there are comparatively small amount of main syllable types ( \(n \approx\) 200). It is possible to form plausible hf potheses on phoneme structures of a segment using data of probable occurence of these syllables and of phonetic correlates of distinctive phoneme features forming these syllables \([5, p .98]\).

\section*{PROPOSED METHOD}

Well-known principles of syllable recognition of speech are based either on analysis of average signal energy \(\mathrm{F}\left(\mathrm{t}_{\text {) }}\right.\) (the envelope) and determination of mitimum and maximum of the envelope, intervals be tween minima of signal envelope being taken for syllable boundaries and maxina of the envelope being located on the nucleus of a syllabic vowel; or on the analysis of the wave itself by segmenting it accon ding to maxima and minima with subsequent forming of syllable units based on typical properties of gegments, mainly, of an energy character [3].
In the method of syliable segmentation there are several difficulties: -indistinct boundaries between syllables; -absence of data on the amount of phonemes in a syllable and on the localization of these phonemes in time: -heuristic approach in forming syllable units from segments;
-relative complexity of processing; -insufficient self-descriptiveness of parameters which have very often nothing to do with parameters of vocal apparatus with subsequent false maxima and minima Which are the result of energy changes in bands depending on peculiarities of vocal apparatus more than on peculiarities of some parameters.
The present method of automatic speech recognition using syllable templates is free from these defects. It is based on


Fig.1. Block diagram of autoratic speech segmentating process using syllabic units
soft-hardware method of analysis of speech sounds. This is achieved:
-a) by segmentation of several parameters from a speech sound, (formant frequency, intensity averaged by analysis interval, frequency averaged by transition of signal through zero, pitch, etc) by analog or digital processing;
meters sormentation of a sequence of para) d) by sumpery of a sequence of segment; de rs normalyzed and averaged by all parametors in time;
- - ) by obtainting segmental function \(S\left(t_{j}\right)\); this function in a signal which are characterized by intensity decrease;
-g) by taking the extreme maxima for the boundaries of open syllables and extreme ser tit boundaries of sounds in every syllable.
The value of the function at the moment \(t_{j}\) is:
\(S_{\left(t_{j}\right)}=\sum_{i=1}^{n} \frac{k_{i} \Delta A_{i} t_{j}}{\overline{\Delta A} i_{i} t_{j}}\)
\({ }^{1}\) is the i-th feature, where \(k_{i}\) is the
eight value of a parameter, \(n\) is the numer of speech parameters utilized.
ret boundaries of (CC...)CV-syllables
notime, that are characterized by intenity decrease.
ries deterifind inside the syllable boundaThe organization block diagram is illustra ted as follows (Fig. 1).
Signal processed is put into segmenter of speech parameters (block 1) as described n [1] .
s corrinput register sequence of parameteasferred to storage input utterance is tra -Stored data are processed by blocks 3 and - Blo

Block 2 using the sequence of parameters inds and stores location on teraporal ax is end quantity of maxima of S (ti) int vals of decrease of signal intensity.
-Block 5 locates absolute marima of \(S\) on temporal intervals of decrease of sig -Block 6 finally determines boundaries of open syllable and boundaries between sou nds in a syllable using data obtained from blocks 3 and 5 .
Thus in the output of the syster we find boundaries of open syllables and sound boundary measurements is determined by di screte time quantization of data transfen red from separater of informative parameters (block 1).
As it has been demonstrated by numerous experiments, phonotactic information is matic speech recognition systems such information was not taken into account, whi ch significantly reduced the percentage of correctiy recognized words in continuous speech. Information of phoneme co cate ch passes actual combinations of phonemes and blocks phonotactically impossible ones. Information of phoneme concatenation inter morpheme and word junctures is also of great gignificance.
The characteristic pronunciation features, phonologic, accentual and rhythmic pecula guages can lead to certain constraints and additional complications in detecting syllabic boundaries. The difficulties in crease in case of languages with a high amount of consonants in speech continuum, bles helps to solve the task of correct recognition and understanding of a spoken message.
Thus, three-level segmentation of continuous speech is proposed: first, (CCC...) CV-syllables are marked along with the en syllables are segmented into certain sound types. At the einal stage the boundaries of linguistic units are specified on the basis of phonotactics.
Usage of additional acoustic data about the wey and place of sound formation alted syllables based on spectral, temporal

\section*{and energy parametors which are rather asily and reliably separatod by apecial}

\section*{REFRRETCESS}
1. T.A.Barašova, B.N Rudnyi, V.N.Tmuninongkoj, "Ob avtomaticeskoj segmentacii ecevogo potoka pri Frode recevogo signam.: ReXevoje upravlenije, Moskva, 1972:
2. H.Irajisaki, K. Hirose, T.Inone, "Autoatic recognition of spoken words froma large Focabuyary
3. C.Gagnoulet, G.Mercier, R,Vives,J.Vais iore, "A multi-purpose speech understan ding system", IEEE, International Conferen 108,1977.
4. R.K.Potapova, "Avtomaticeskaja sogmonracija redi na psevdoslogovyje edinicy" ("Automatic segmentation of speech into seudo-syllabic units \({ }^{n}\), Proceedings of the cation with Computers, Warsaw, 1980.
5. "Urovai jazyka 7 rečevoj dejatelnosti K probleme ingvisticeskogo obespecenija aingrad, 1986.

\section*{TOARDS AN AUTOKTIC LAHTLING SYSTM}

\author{
Charles Barrera \\ Jacques Francois Malet \\ Laboratoire C.E.R.F.I.A \\ UA 824 -GNRS CKECD \\ 118, Route de Narborne
31062-TOITOSE - F R A N C E
}

\author{
Jean Caelen \\ LA 368-aNS CRECD \\ 46, Avenue Felix Vialle \\ 38031 -GERNOBIE - FRANCE
}

\section*{AESTRACT}

We describe the enviroment required for a fine frequential labelling; 1.e., the code and the operation svstens resorted to. he also show how it is possible to devise a system that is aple of assisting an autconatic labelling system.

\section*{I. nitrowcitas}

Certain problens, cornected to Acoustic-Phonetic Decoding, all both for the elaboration of Accustic Phonetic Data Bases (labelling. Within the scope of the "Spoken Comumication" G.R.E.C.O. (NRS Coordinated Research Grow), various mutually complenenting approaches to labelling have been retained; e.g.,
broed, fine (both temporal and frequential) [1], [2], [3], ormative phonetic transcription, etc.. In the present article, we describe the "enviroment", required for a fine frequantial also show how, thanks both to manual labelling and to an APDB, it is possible to devise a system that is capable of assisting an automatic fine frequential labelling. In order to do this, we use chonetic units to set up a correspondence between strips of both ienal and spectrum, so that information itens that are useful解 extracted.

\section*{II. Tis Achosic ncturs}

The first step, in fine frequential labelling, consists in achieving a spectral analysis of the vocal stignal. The modulye of benk [4] : it yields spectrum in decibels on a 24 -chamel MEL scale. One spectral sample corresponds to a 128 -dot window of analyzed sifnal; therefore, over a duration of 8 ms . at a 16 kHz sampling frequency. In practice, this is the one analysis we use, aithoush we have on hand other methods -e.g., FFT, Cepstrum, .
In order both to interoret and identify the signal, the expert makes use of several types of paraneters:
Instantaneous values of: i)signal energy in \(d B\) (measured
immediately after
pre-stressing due to the earmodel), Immediately after pre-stressing due to the ear-model), i1)formants, iti) spectral cues [5] and iv)fundamental frequency. Continuous/Discontinious both of the above paraneters and of the derivative.

Once the parametrization systen is specified, there renains to define the. unit which the expert is going to work with. The unit we retained is the honogenecus infra-phonemic segment. At this level, processing is entirely automated.

The 'boundaries of the homogeneous-segment unit are determined through a segmenting function, computed on the basis of the overall variation of the acoustic and prosodic cues artomatically set, wherever of delta coding [6]. A boundary is exceed a certain threshoid value -that is variable and decreasing with time-or whenever the unit exceeds 60 ms. In duration. The unit, thus obrained, is bound to remain analier than the phoneme, whatever the value reached by the segnenting function.

\section*{III. lamang methoongi}

Labelling consists in placing a set of codes, either directly onto the signal in the case of tenporal labelling, or onto the spectrogram in the case of frequential labelling. True enouch, the temporal donatn is still favored by phoneticians: the raw signal is devoid of mathenatical processing, that is an infailing source of alterations. Nevertheless, we chose spectral reading:
on the one hand, within a spectrom, phenonena such as nasal urmur or friction can both be detected,
on the other hand, the auronated defindtion of honogeneous
 again, they can be used to spot events accurately [1]. Our ahtose definition is underimed by a phonetic model- at the boundaries of the "automatic" segments, defined above.

\section*{III. 1 The Systen of Code}
III.1.1 Definition of Label Vector-Components

Acoustic, phonetic and syllabic properties are characterized hrouph a label vector that is made up of several components, placed according to a previously set positional order. The system of codes consists of six different classes; five of which are set and only one allowed to vary:
two classes
lass, C1, and phoneme code, C2-atm two characterization,
nent, help classes, more closely related to the honogeneous dealing, help in further specifying Cl and C 2 above. The class dealing with accustic phonetic modality, \(\alpha\), is left to vary (i.e., several simultaneous descriptive adjectives are allowed). Class \(\alpha\) consists of contextual attributes, all coined to
an account of corarticulation phenomena. a further class -acoustic phases,
uence within a glven phonene realization,
\(\Rightarrow\) final class, \(C\), supplies information at the syllable

Let us now take up each such class, in the onder the expert follows withle labelling:

\section*{C1: Macro-Class}
 \(11 /\) and \(/ \mathrm{r} /\), Nesal Consonant ( N ), voiceless Doclusive ( 0 ), voice occlusive ( 0 ), Voiceless Fricative ( \((\mathrm{I}\) ), Voiced Fricative ( Z ) and Sllence ( P ).

C: Phoneme Codes
These codes take after the Intemational Phonetic Aphabet (IPA), which are not avalla
 ode \(C\); indeed, it is auromatically generated by the systen, thenever the expert identifies a phoneme.

C3: Acoustic Phase
This component describes the temporal unfolding of honogeneous segnents within a given phonene: Onset or Istablisment phase ( \(\mathbf{E}\) ), Sustained or Steaty phase ( \(\mathbf{T}\) ) and Coda or Pheseout ( 0 ). These three phases are applied systenatically to both consonants and vowels.

Ct: Contextual Actributes
These describe how contextual events concur with or ometimes even, prevail over the expected realization of phoneme; staking phenowena that often more properly pertain to horology. The cases most often encoumtered are: A fo proximating (e.g., final \(/ \partial /\) ), \(\mathbf{R}\) for Substicuting, \(I\) fo sert, F for Merging

\section*{S: Syllable Delimitors}

These codes are defined over non-complex phrases that are considered in a twofold manner:
-along the axds of structural complexty: Phrase (P) Groupword (G), Syllable (I, S, F, M),
: L for Lexical word, 0 fo Pol or Grammatical word.
pluri syllabic ( \(L, 0\) ) worncion is made between mono- ( \(M\), PL: first syllable
exical word consisting of more them a phrase that begins with lextal wi: first syllable witi s morderam that begins with Cisting of more than just one syllable,

(x: Modality of Realization
Acoustic or articulatory modality specifies sone of the implicit features pertaining to a macro-class (loss and/o of modality is open to variability, it is possible to choose nong a number of descriptive adjectives: Dral ( 0 ), Vocalic ( \(\mathbf{V}\) ), Hottal (G), Nasal (N), Consonantal (C), Unvoiced (S), Semi- (2) Closure ( \(\mathbf{I}\) ), Burst ( X ), Fricative ( \(\mathbf{P}\) ), Palatalized ( Y ), Affricat
(Z), Aspirate (B), Nolsy (B). Thds list is by no mean exhaustive, and can be updated should new accustic features come pertinent.
Defining and placing these label-components appeared, at first, rather to be a matter of interpretation than one of description. However, 11 ttle by 11 ttle, there beezan to energe a phonetic interpretation of acoustic facts; thus resulting in type of labelling that is more descriptive than interpretative Still, classes C1, ©2 and C3 can be considered as belonging rather to the descriptive type, whereas \(C A\) and 08 are definitely more subjective and are, therefore, a matter of interperation ore specifically, Accoustic Phase (C3) is:
at times, descriptive, and this is the case both of -at other times interpretative, and this is the case delicate, if anything - of semi-vawels, over which the notio o phose apolies with truly extreme difficulties.
III. 1. 2 Verifying the Labels

Errors, in inplementing both the syntax and the senantics of labelling, can intervene in the course of menual labelling herefore, it is necessarv to check the merually applied label t least for proper syntax.

The procedure is rum in three steps:
-Since the label vector is a pre-defined structure of amponents both belonoing to a finite set of values and obeyin a strict positional order, it is procedurally possible to check that the value, specifically assigned to a corponent, does belong to the appropriate set of definition of such values. Thus entered, can be automatically detected and then renoved.
-hithin the temporal sequence, witle shifting from one label o the next, choice of value is not arbitrary; indeed, it 1 subjected to sets of rules respectively applying to the different cypes of conmonents. Successive values are not dram, from one anch set, in a ranlom order. Thus, for example, when labelli or accustic phase (although, in practuce, Hme), sequences such as [ [ 0 T] or (B T O E], ..., over one and the same phonene, are strictly prohifited.
The process rule can be symbolized through the followin automaton:


Likewise, sequencing syllable codes within phrase structure be mense, sequencing syllable codes within phrase structued coding from the corpus of the G.R.E.C.O.'s Database of sound [7]:
\[
\underbrace{\text { ALORS LA MISE }}_{\text {POFL }}
\]
-The third verification step bears upon mutual compatibility among the components making up one and the same label and, more particularly, on conbinations involving C1-ct-c. Unauthorized combinations are those involving elther a recontradictory one (Ex.: by definition, wacro-class " Q ' excludes Oral modality " C ").
III.2.1 The Spectroxram Edtior

Labels placed by an expert are machine-acaui red thanks to a spectrogram editor. This software makes it possible to listen to the signal, to view it, to display the corresponding spectrorram, oon, to watch both formant values and fundamental frequency, ...

Such a systen offers two major advantages:
a) Defoult labelling is necessarily infra-ohonemic, since the labelling agent must set his/her/its view of reality in orrespondence with the autconatically determined sempen capable, as 1s, in the case of fine labeling. The systicn is designation; labelling over classes Cl and \(\mathrm{C}_{2}\) only. Thus it is possible to label broadly (Likewise, it would be possible to concentrate on apra-phonemic units; e.g., diphones).
b)The editor can handle any system of codes. Two other systems are, at present, being used withdn the scope of specific
studfes (foreign languages [8] and phrase complexdty 9\(]\). A user has only to specify the structure of the wanted label vector, the set of codes to be used by each type of component and, of course, their syntax within a given datastructure.
III.2.2 Verification Procedures

Once labelling is over, a verification procedure is intiated on labels. Procedures, defined on the basis of concepts nentioned earlier (See III.1.1 supra), supply an opportumity for a correction that is interactive with the user. Such a modise ensures both a qualltya and
III.2.3 Recapitulating Examole
in order to label, the expert has on hend
signal that can be both viewed and listened to,
Information iters, disolayed as spectrograms and curves.
From left to right, we can see:
-N , the spectrom sample mumber,
\(-W\), the signal's energy in dB, with an evolution curve
vs. time,
homogeneous seegnents 一whose boundaries are materialized
the 8 ms . skeleton spectrum,
the cues, mentioned supra, displayed as historrans,
the seeqmenting marks, properiv speaking, that the expert places in correspondence with houre as sems (A ver get one such mark). request, on graphic screen.

\section*{v. TEE MCUSTIC-WHOETTC DATABASE AD LAEALIN}

We now look at how labelling is closely knit in the elaboration of an APTB.
iv. 1 Setting up an APDB
iv.1.1 Information Retained

In order to meet the gaals, entailed in setting up a systen
hat delivers automated fine frequential labeling, the necessary PIB must, in the course of manual labelling (system priming), assenble all the required information; nenely, information ecompassing all processing phases, from the physics of vocal signal to sophisticated linguistic notions.

Two kinds of information, however, should be distinguis shed: rosodic paraneters (cf. I II above) and infra-phonemic segment boundaries.
-avalitative data: labels corresponding to lingurstic conceptual events that the expert detects in the course of mamual abelling.
Ail such information is woven into the APDB, thanks to a anagenent systen [10].

\section*{IV.1.2 Relations}

The managenent system aims at tying together the various ypees of information, described above.

Through a new datastructure, various kinds of data becone ssociated. For exanple: signal block number, spectrom sample semantic links, itens of symbolic information (phonetic concepts) becone associated with itens of acoustic quantitative information (spectrum, signal). In fact, this linking correspondence is one of the most crucial problens facing phonetic decoding. At leas we propose, atterpts to meet. Moreover, since users need to retrileve phonetic concepts from any context, it becomes useful to weave relations between the context that is being examined and other previous or subsequent contexts
Thus, for excmis otven a phoneme it is possible to find
out:
-its realized occurrence among blocks in the signal file, file,

Its phonemic context, both prior and posterior -its next realization within the same file.
The latter two types of relations are systenatically created set of links it entails, lies at the very base of any APD consultation.

\section*{IV. 2 consulting the APVE}

In order to learn an automated labelling system, retrieval of contents from various types of file is inperative (e.g., physical sounds, spectrum, labels issued from expertise, ...) Therefore, to the effect of facilitating new applicsten reach all information elaborated fram the vocal signal. This type of consultation is made possible, thanks to the semantic links that allow access both to units pre-defined throush labelling an realistic to between various data
mean value of energy parameter over realizations of phoneme /1/within a given corpus, uttered by a glven speaker,
mean value of fricative forment over realizations of mean of eneroy parameter over all \(\mathbf{T}\) phases (sustatned portion) of all occlusives within corpus,

\section*{IV. 3 Database Contents}

At present, we have avatlable an initial acoustic-phonetic database, labelled for 10 speakers ( 7 males, 3 fenales). The
comected digts and logatons cucver both for C.N.E.T Agreenent [11], ech: "La Bise et le soleil", for G.R.E.C.O., for a total of 13000 phonemes, labelled.

\section*{v. TOWRDS AN AUTOMATED LaBRILING}

The goal we set for ourselves is to help the phonetician's expert work. We mean either to automatize certain tasks or to further the degree of autconatization, already achieved within the pre-segnentation module that yields honogeneous segments.
As an initial step, we limit our scope to the identification of both phonene ( \(C 2\) ) and modality ( \(O 6\) ) components of a label vector. In the way of system input, we already have a normative honetic transcription and a set of quantitative we wish to tabel. From this transcription, we contemplate both introducin watonated 'aligment procedures [12], [13], [14], [15] and coparing these with procedures that segment for events [16].
By automatically placing boundaries, such procedures shoul make it possible to delimit phonenes. Mearnithle, for the purpose fine labelling, it is equally advantageous to add procedr) pecifications for this phase must include:
-not only a strategy of expert labelling [17], [18], [19],
tut also learning results delivered by statistical nodules, nen these are rum on a base of already labelled data.
For the time being, the systen is devised both to validate ormalize our results, with a view to elaborating an automate interactive labelling sytem.

\section*{conowidictert}

Orr warn thanks to Dany Laur who foined us on the lengthy spectrogram-reading expert's task.

\section*{}

1] C. Abry, C. Benoit, Ł.J. Boo, R. Sock, "Un Choix d 'Evénenents NP-Cuss, Paris
12] D. Autesserre, M. Ross1, "Propositions pour ume Segnentation et un Etiquetage Hierarchise. Application a la Base de Doménes cooustiques du GRECO- CP', XIV JKP, CNLP-CNS, Parls, Juin 1985, 13] C. 147-151.
\({ }^{[3]}\) C. Abry, D. Autesserre, C. Barrera, C. Benoít, L.J. Boé, J. Caelen, G. Caelen-Haumont, M. Rossi, R. Sock, N. Vigouroux, Données des Sons du Francais', XIV JKP, CNIP-QRS, Paris, Juin 1985, DP. 156-163.


\title{
VOWEL RECOGNITION BASED ON "LINE-FORMANTS" DERIVED FROM AN AUDITORY-BASED SPECTRAL REPRESENTATION*
}

Stephanie Seneff
Research Laboratory of Electronics Massachusetts Institute of Technology Cambridge, Massachusetts 02139

\section*{ABSTRACT}

A new approach to vowel recognition is described, which begins by reducing a spectrographic representation to a set of straight-line segments that collectively sketch out the formant trajectories. These
uline-formants" are used for recognition by scoring their match to a set of histograms of line-formant frequency distributions determined from training data for the 16 vowel categories in the recognition set Speaker normalization is done by subtracting \(F_{0}\) from line-formant frequencies on a Bark scale. Although the formants are never enumerated or tracked explicitly, the frequency distributions of the formants results are given for 2135 vowels extracted from continuous speech spoken by 292 male and female speakers.

\section*{INTRODUCTION}

The formant frequencies are probably the most important in formation leading to the recognition of vowels, as well as other sonorant and even possibly obstruent sounds. Therefore, re searchers have spent a considerable amount of effort designing robust formant trackers, which attempt to associate peaks in the spectrum with formant frequeacies, using continuity constraints to aid in the tracking of the formants. Once the formant tracks are available, it then becomes possible to identify directions and degree of formant movements, features that are important in recognizing diphthongs, semivowels, and place of articulation of adjacent consonants.

It is impossible to design a "perfect" formant tracker. The most serious problem with formants is that when they are wrong there are often gross errors. Therefore, we have decided to adopt a somewhat different approach, one that can lead to information about formant movements without explicitly labelling the for mant numbers. The method also collapses the two stages of for mant tracking and track interpretation (e.g., "rising formant") into a single step. The outcome is that a spectrographic repre entation is reduced to a skeleton sketch consisting of a set of lectively trace out the formant tracks. The recognition strategy then involves matching all of the line-formants of an unknown segment to a set of templates, each of which describes statistically the appropriate line-formant configurations for a given phonetic class (which could be as detailed as "nasalized / \(x /\) "
-This research was supported by DARPA under Contract N00039-85-C0254, monitored through Naval Electronic Systems Command.
or as general as "front vowel"). Usually the number of lineformants for a given speech segment is considerably larger than the number of formants, because in many cases several straightline segments are required to adequately reflect the transitions of a single formant.

\section*{SIGNAL PROCESSING}

\section*{Spectral Representation}

The system makes use of two spectrogram-like representations that are based on our current understanding of the human auditory system. These have been described in detail previously \([1,2]\), and will only be discussed briefly here. The analysis system consists of a set of 40 critical band filters, spanning the frequency range from 160 to 6400 Hz . The filter outputs are processed through a nonlinearity stage that introduces such effects as onset enhancement, saturation and forward masking. The outputs of this stage are then processed through two independent analyses, each of which produces a spectrogram-like output. The Mean Rate Spectrogram is red for to mean rate response in the auditory system, and is used for locan Spectrogram" takes a nerve fibers. It produces spectra that tend to be amplitudenormalized, with prominent peaks at the formant frequencies. The amplitude of each spectral peak is related to the amount of energy at that frequency relative to the energy in the spectral vicinity. The line-formant representation is derived from this Synchrony Spectrogram.

Line-formant Processing
The line-formants are obtained by first locating sonorant regions; based on the amount of low frequency energy in the Mean Rate Spectrogram. Within these sonorant regions, a subset of are rejected if their amplitude is not sufficiently greater than the average amplitude in the surrounding time-freguency field. For each selected peak, a short fixed-length line segment is determined, whose direction gives the best orientation for a proposed formant track passing through that peak, using a procedure as outlined in Figure 1. The amplitude at each point on a rectangular grid within a circular region surrounding the peak in question is used to update a histogram of amplitude as a function of the angle, \(\theta\). Typical sizes for the circle radius are 20 ms in time and 1.2 Bark in frequency. The maximum value in


Figure 1: Schematic illustration of process used to deterFigure 1: Schematic illustration of process used to deter-
mine an orientation for a formant passing through a peak. (a)
Syucliony Spectrogram with cross-bars indicating a referenced mine an orientation for a formant passing through a peak. (a)
Syuchrony Spectrogram with cross-bars indicating a referenced peak. (b) Sclematic blow-up of region around the peak, outlining procedure to generate a histogram of amplitude as a function of angle. (c) Resulting histogram for the example in part \(a\).
the histogram defines the amplitude and corresponding \(\theta\) for the proposed track, as marked by an arrow in Figure 1 c.

At each time frame several new short segments are generated, one for each robust spectral peak. A short segment is then merged with a pre-existing partial line-formant whenever the two lines have a similar orientation, and the distance beween each endpoint and the olher is is seating a weightedthe merge process is accomplates the new line. If a given mage he-forman that line-formant.

The resulting Skeleton Spectrogram for the / \(\alpha /\) in the word shock"is illustrated in Figure 2a, along with a Schematized Spectrogramin Figure 2b, included to facilitate visual evaluation. The latter is constructed by replacing each line-formant with a me sequence of Gaussian-shaped spectral peaks with amplitude equal to the line's amplitude. The corresponding Syndirony Spectrogram is shown in Figure 2c, with line-formants superimposed. For direct comparison, Figure \(2 d\) shows a Synhrony Spectral cross section at the time of the vertical bar, which is superimposed a cross section of the Schematized spectrogram. For this example, we see that peak locations and amitudes in the vowel are accurately reflected. In addition, formant transitions appropriate for the palatal fricative on the left and the velar stop on the right are also captured.

\section*{RECOGNITION EXPERIMENT}

Thus far, we have focused our studies on speaker-independent recognition for 16 vowels and diphthongs of American Enlish in continuous speech, restricted to obstruent and nasal context. The semivowel context is excluded because we believe hat in many cases vowel-semivowel sequences should be treated as a single phonetic unit much like a diphthong.


Figure 2: Sample line-formant outputs: (a) Skeleton Spectrogram for word "shock," (b) Corresponding Schematized Spectrogram, (c) Synchrony Spectrogram with line-formants superim
(d) cross-sections from \(b\) and \(c\) at the cursor, superimposed.

Speaker Normalisation
Our first task was to devise an effective speaker-normalization procedure. Many investigators have noted the strong correlation between formant frequencies and \(F_{0}[3]\). The relationship is clearly nonlinear - the second formant for female \(/ i /\) is higher on average by several hundred Hz , whereas the \(F_{0}\) difference is on the order of 100 Hz . However, on a Bark (critical band) scale the male-female difference in \(F_{2}\) for /i/ becomes much more simlar to that in \(F_{0}\). Thus we decided to try a very simple schemefor each line-formant, subtract from the line's center frequency the median \(F_{0}\) over the duration of the line, on a Bark scal
We found this normalization procedure to be remarkably effective, as illustrated in Figure 3. Part a shows a histogram \(f\) the center frequencies of all of the lines for 35 male and 35 male \(/ x /\) tokens. Part \(b\) shows the same data, after median \(F_{0}\) has been subtracted from each line's center frequency. The higher formants emerge as separate entities after the \(F_{0}\) nor malization. The normalization is not as effective for \(F_{1}\), but the dispersal in \(F_{1}\) is due in part to other factors such as vowel nasalization. A valid question to ask is the following: if it is supposed that speaker normalization can be accomplished by subtracting a factor times \(F_{0}\) from all formant frequencies, then what should be the numerical value of the factor? An answer can be obtained experimentally using autoregressive analysis. We defined \(F_{n}^{\prime}=F_{n}-\alpha F_{0}\) to be the normalized formant fre quency for each line. Using vowels for which the formants are well separated, we associated a group of lines with a particular formant such as \(F_{2}\). The goal was to minimize total squared ect ror for each remapped formant among all speakers, wis providing \(\alpha\). The resulting estimated valuel for \(\alpha\), proposed scheme. experimental evidence for the validity of the proposed scheme.
(a)

(b)


Figure 3: Histograms for center frequencies of all line-formants for
35 female and 35 male tokens of \(/ x /\) a 35 (b) with \(F_{0}\) (a) without \(F_{0}\) normalization,

\section*{Scoring Procedures}

Our goal in developing a recognizer for the vowels was to emphasize the formant frequency information without ever explicitly identifying the formant numbers. We wanted to avoid traditional spectral template-matching. schemes, because they depend too heavily on irrelevant factors such as the loudness or the overall spectral tilt. On the other hand, we did not want to specify, for example, the distance between \(F_{2}\) and a target \(F_{2}\), because this relies on accurately enumerating the formants.

We decided to construct histograms of frequency distributions of spectral peaks across time, based on data derived from the line-formants. The scoring amounts to treating each histogram as a probability distribution, and matching the unknown token's line-formants against the appropriate distributions for each vowel. To construct the histograms for a given vowel, all of the line-formants in a training set were used to generate five histograms intended to capture the distributions of the formants at significant time points in the vowel. All lines were normalized with respect to \(F_{0}\), which was computed automatically using a version of the Gold-Rabiner pitch detector [4]. Each line-
formant's contributions to the histograms were formant's contributions to the histograms were weighted by its amplitude and its length

Only left, center and right frequencies of the lines were used in the histograms. The left frequency of a given line-formant falls into one of two bins, depending upon whether or not it is near the beginning of the vowel. Right frequencies are sorted similarly, with a dividing point near the end of the vowel. Center frequencies are collected into the same histogram regardless of their time location. Such a sorting process results in a set of histograms that reflects general formant motions over time. For example, the \(F_{2}\) peak in the histograms for/e/shifts upward from left-on-left to center to right-on-right, reflecting the fact that /e/ is diphthongized towards a/y/ of-glide, as illustrated in Figure 4.
(a)

(b)

(c)


Figure 4t Histograms for (a) left-on-left, (b) center, and (c)
right-on-right line-formant frequencies for 128 tokens of \(/ \mathrm{e} / F_{0}\), \({ }_{\text {nore }}\) ( right-on-ri
malized.

2135 Vowels, 288 Speakers

\section*{}

Table 1: Distributions of vowels in recognition experiment
To score an unknown token, the left, center, and right frequencies of all of its lines are matched against the appropriate quencies of all of its lines are matched against the appropriate histograms for each vowel category, which are treated as prob-
ability distributions. The score for the token's match is the weighted sum of the log probabilites for the five categories for all of the line-formants. The amplitude of the line does not enter into the match, but is used only as a weight for the line's contribution to the score. This strategy eliminates the problem of mismatch due to factors such as spectral tilt or overall energy

\section*{Recognition Results}

The vowels used for recognition were extracted from sentences in the TIMIT database [5]. The speakers represented a wide range of dialectical variations. A total of 2135 vowel tokens spoken by 206 male and 82 female speakers were used as both training and test data, using a jackknifing procedure. The distributions of vowels are shown in Table 1. Each speaker's vowel tokens were scored against histograms computed from a of the line-formants except those from that speaker. The scor for sixteen ye was as discussed above, with histograms dels taken from the time-aligned phonetic transcription.


Table 2: First choice confusion matrix for the vowels
Row \(=\) = Low = Labeled Category, Column \(=\) Recognized Category.

A matrix of first-choice confusion probabilities is given in Table 2 , in terms of percent correct in the phonetic category. Fo tis performance especially considering that multiple dialects and multiple contexts are included in the same histogram.

Figure 5 summarizes recognition performance in terms of percentage of time the correct answer is in the top N , for all peakers, and for male and female speakers separately. Recog nition was somewhat worse for females, who represented only \(25 \%\) of the population. Also shown are the recognition results or female speakers when the \(F_{0}\)-normalization scheme is omit ed, both in collecting the histograms and in seoring. Significant gains were realized as a consequence of the normalization. The performance for the male speakers without \(F_{0}\) normalization however (not shown) did not change.

\section*{FUTURE PLANS}

We believe that recognition performance can be improved by extensions in several directions. One is to divide each vowel's histograms into multiple subcategories, based on both general leatures of the vowel and coarticulation effects. General categories, useful for the center-frequency histogram, would include aasalized," "Southern accent," or "fronted." Left- and rightontext place of articulation, such as "velar," could be used to xplore arresponding histogram subcategories. We also plan to geach linternative recognition strategy for explicitly match-- each line-formant against a set of template line-formanto he line to tharticular phonetic category, instead of reduch approach will better capture the fact that a given left frequency and a given right frequency are connected. Finally, we plan to sradually expand the scope of the recognizer, first to vowels in all contexts and then to other classes such as semivowels.

\section*{REFERENCES}
(1) Seneff, S. (1986) "A Computational Model for the Peripheral Auditory System: Application to Speech Recognition Research,"
ICASSP Proceedings, Tokyo, Japan, 37.8.1-37.8.4.


Figure \(5_{1}\) Recognition results expressed as percent of time correct choice is in top \(N\), for the following conditions: (a) all speakers, (b) males only, (c) females only, and (d) females without \(F_{0}\) normalization
[2] Seneff, S. (1988) "A Joint Synchrony/Mean-rate Model of Auditory, Speech Processing," Journal of Phon-tics, Special Issue on
Representation of Speech in the Auditory Periphery, to appear Representation of Speech in the Auditory Periphery, to appear in Jan.
[3] Syrdal, A. K. (1985) "Aspects of a Model of the Auditory Repre4, 121-135.
[4] Gold, B. and L.R. Rabiner (1969) "Parallel Processing Techniques for Estimating Pitch Periods of Speech in the Time Domain," J. Acoust. Soc. Am. 46, 442-448.
15] Lamel, L. F., R. H. Kassel, and S. Seneff (1986) "Speech Database Development: Design and Analysis of the Accoustic-Phonetic Corpus," Proceedings of the DARPA Speec.
shop Palo Alto, CA., Feb 19-20, 100-109.

RELIABILITÄTSMASSE FUR DIE AUTOMATISCHE TRANSKRIPTION

\section*{REINHOLD GREISBACH}

Institut für Phonetik
Universitat zu Koln

\section*{2USAMMENFASSUNG}

Die Beurteilung der Leistungsfähigkeit von automatischen Transkriptionsverfahren verlangt nach Methoden, die die Validitätsproblematik bei phonetischen Transkriptionen berucksichtigen konnen. Reliabilitatsfullen. Bereits im Hinblick auf zukünftige Entwicklungen wird deshalb hier die Anwendbarkeit solcher MaBe auf automatisch erstellte Transkripte theoretisch untersucht.

MOTIVATION.
Bereits heute ist es möglich, akustische Sprachsignale automatischen Spracherkennungsprozessen zu unterziehen mit dem Ziel, eine segmentale phonetische (impressionistische) Transkription dieses Sprachsignai zu gewinnen. Dabei läBt jedoch meist ein wie gut oder besser wie schlecht diese automatische Transkription (aT) arbeitet. Wenn sich jedoch in Zukunft die Leistungsfähigkeit automatischer Erkennungsverfahrer weiter verbessert, und daran scheint kein
Zweifel, wird die Entscheidung "TranskriZweifel, wird die Entscheidung "Transkridurch einfachen Augenschein zu treffen sein.
Bei der automatischen Spracherkennung labt sich i.a. sehr leicht ertscheiden, ob die automatische Erkennung gelingt oder nicht Dazu wird das Resultat des automatisch menschlichen Hörergruppe verglichen. Sehr oft besteht diese Hörergruppe nur aus einer einzigen Person, denn es darf hier vorausgesetzt werden, das auch jeder andere (muttersprachliche) Horer das gleiche wahrneh men wurde. Fur die Prufung eines automaden Höreindrücken einer menschlichen Hörergruppe verglichen werden muß, ist gerade diese voraussetzung nicht erfullt. Denn bei hinreichend enger phonetischer Notation und hinreichend langem Sprachsignal wird unte Einigkeit uber das Gehörte herrschen. Die bedeutet aber, daß die Richtigkeit eines automatischen Transkripts, anders als in Falle der automatischen Spracherkennung,
nicht an einem eindeutigen Muster gepruft werden kann. Die Uberprufbarkeit eines au tomatisch erstellten Transkripts hangt also von der Richtigkeit (Valiaite ab. Vor der genaueren Untersuchung der Validitätsproblematik betrachten wir zunăchst, wie ein phonetisches Transkript entsteht und kennzeichnen damit zugleich den Begriff "Transkription", wie er hier verstanden werden soll. Unsere (wohl für die skription geht von einem akustischen Sprachsignal aus, welches mithilfe der artikulatorisch definierten IPA-Symbole notiert wird. Der Transkribent verläBt sich dabei ausschließlich auf sein Gehör (audi tive Transkription)
ne Besonderheit in sich. Bei der auditiven Transkription mit IPA-Symbolen müssen mögliche artikulatorische Abweichungen des Sprechers kompensiert werden (so erscheint bei der Transkription der Außerung aincs Bauchredners die artikulatorisch nicht wahrgenommenen [ \(y\) ] aufgrund der artikulatorischen Definition dennoch im Transkript.) Notiert werden kann also immer nur ein vorgestellter, ideal artikulierender Sprecher. Umgekehrt bedeutet dies, da selbst dann, wenn sich die Artikulation) des Sprechers (2.B. mittels \(\begin{aligned} & \text { optisch beobachten labt, dies noch keine }\end{aligned}\) direkte Uberprufung der Notation gestattet.
Was ist also - bei auditiver Transkription mit IPA-Symbolen - eine richtige Notation? Die Antwort ergibt sich durch eine Gren Transkribent zu jeder zeit das gleiche Symbol verwendet, so ist diese Notation rich tig (valide)! Die Realität kann jedoch nu aus einer Stichprobe bestehen, die idealerweise verschiedene Transkribenten zu verschiedenen Zeiten von einer Sprachauf diese Stichprobe i.a. nicht fur jeden Laut das gleiche Symbol enthalten. Den Grad de Ubereinstimmung in einer solchen Stichprobe nennt man Reliabilität, den Grad der
darf aber grundsätzlich nicht mit Validitä verwechselt werden, denn liable audichen Sprecher produzierten Sprachsignals ist nur deshalb valide, weil sie auf keine andere Weise als durch das Ohr direkt überprüfbar ist. Bei Notation in anderen Alphabeten, z.B. dem analphabetischen von Jespersen, kann jedoch eine auditive Notation aufgrund von optischen Idann nämlich, wenn die artikulatorischen Beschreibungsdimensionen des Alphabets besser den tatsächlichen Bewegungsdimensionen des Artikulationsapparats entsprechen, als dies beim IPA-Alphabet der Fal st). Für eine eingehendere Diskussion lieso nur die Reliabilität eines Transkripts feststellbar. Ob damit auch seine alidität bestimmt ist, hängt offenbar vo ewählten Transkriptionsalphabet ab. Fur ie Bewertung eines automatisch erstellte ranskripts muß die Reliabilitat nun zu iner quantifizierbar.

AhNLICHKEITSMASSE
Reliabilitätsmaße oder allgemeiner Reliailitatsmessungen bas fenzen zwischen den Symbolen des jeweiligen Transkriptionsalphabets, sog. AhnlichkeitsmaBen ( A -MaBen). Anders als den aus dem täglichen Leben vertrauten Maben der physikalischen Umwelt fehlen den meisten ieser MaBe jedoch die (mathematischen) sikalischen Meßergebnissen einfach gestalten. Welche Eigenschaften ein MaB besitzt, welchem Skalentyp es zuzuordnen ist (wie man in der psychologischen Testtheorie sagt), bestimmt in der Phonetik zuvorders die Vorstellung, die der jeweilige Phonetiker von den Bezieh
tereinander besitzt.
Bei den einfachsten \(\AA\)-MaBen sind alle Symbole des Alphabets gleichberechtigt. Sie stehen ohne erkennbare ordnung nebeneinander, was letztlich bedeutet, da ferenz zwischen allen Symbolen gleich gro ist (Nominalskala). Kompliziertere MaBe voraus, z.B., daB die Differenz zwischen [i] und [e] kleiner ist als die zwischen [i] und [a](Ordinalskala). Bei einer Intervallskala lassen sich daruberhinaus die Differenzen zwischen den Symbolen vergleider Unterschied zwischen Kardinal-[e] und \(-[\varepsilon]\) definitionsgemả genauso groß wie der 2 wischen Kardinal-[ \(\varepsilon\) ] und - [a].
Um zu einem Zahlenwert zu gelangen, werden zunächst auf der Basis dieser Skalen (ab dem Ordinalskalenniveau) mehrdimensionale geordne konstruiert und die symole dieser Raume lassen sich der Konstrukfahren feststellen. Der eine Verfahrenstyp geht von den
artikulatorischen Klassifikationsdimensionen des Alphabets aus und spannt den Raum entlang dieser Dimension zumeist orthogonal auf (nicht orthogonal z.B. als "Vokaldreieck"). Der andere, aufwendigere Verfahrensyp erzeugt den Raum mittels auditiver Diensionen, die nach Hörtests mit Versuch rsons oder Faktorenanalyse gewonnen wer en. Das \(\AA\)-Maß gibt dann den Abstand zweier ymbole in diesen Räumen an (mit einer eist heuristisch gewonnenen Abstandsfunk tion).
elcher der Skalentypen ist nun aber fur die Transkription der richtige? Die Literagen, wobei die Befürworter des "transkriptorischen Messens" i.a. auf dem Intervall skalenniveau stehen, während sich seine Gegner (konsequenterweise) auf das Nominalskalenniveau zurückziehen (mussen). Alle bekannten Reliabis \((/ 2 /, 13 /, 14 /, 15 /, / 6 /, 17 /, 18 /)\) benutzen \(\mathbb{A}\)-MaBe zumindest auf Intervallskalenniveau.

RELIABILITAATSMASSE
Wahrend die erste quantitative ReliabiliWährend die erste guantitative Reliabilizu Anfang dieses Jahrhunderts stattfand 19/, verwenden erst die Arbeiten der '80er Jahre den Begriff "Messen der Reliabilitat" bzw. "Reliabilitatsmab" (R-Mab), der he) (wie in der psychologischen resthimmung je zweier Beobachter (Transkribenten) verstanden wird. Dieser "Korrelationskoeffizient" zweier Transkribenten ergibt sich als die gewichtete Summe aller zwischen den beiden (stichproben- Transkripten, gemessen Mit einer solchen Mesoung soll die Befahigung eines Transkribenten für eine transkriptorische Aufgabe festgestellt werden. Er gilt dann als befähigt, wenn seine Reliablitats-Korrela tion" zu einer gröBeren Gruppe /8/ oder za einem "master-transcriber
stimmten Transkribent wird damit aiso zu einem Meßinstrument, dessen Reliabilität (Zuverlässigkeit) meBbar ist. Dieser "Entmenschlichung" des Wissenschaftlers mag es wohl hauptsachilich zuzuschilitatsuntersuchungen tik an solchen
laut wird scheint deshalb angeraten, den Begriff Reliabilität anders zu fassen, ihn nicht auf die messende Instanz, sondern auf das gemessene Resultat zu beziehen. So kanm bei einem hohen R-Ma ach ihre Transkripte davon ausgehen, dab auch inre sind, und zuverlassig, Maß zuweisen (Text-Reliabilität [TR-MaB]). Umgekehrt darf allerdings bei einer geringen Text-Reliabilität nicht gefolgert werden, daB die Transkripte den gesamten Text gleichmaich haben die Re-
liabilitätsmessungen der '60er Jahre (/2/, 3/./4/) gezeigt, daß \(z\). B. die Reliabilials die von tiefen. Die Meßgröße für die Reliabilität bei diesen Untersuchungen wur de geometrisch/heuristisch gewonnen und läßt sich als Abweichung von einem Mittelwert interpretieren (Lautklassenreliabili-
tät [LR-MaB]). Gibt das LR-MaB quasi paradigmatisch die Reliabilität für jedes Symbol des Alphabets, so kann natürlich auch syntagmatisch jedem Laut des Textes ein solches MaB zugeordnet werden (SymbolRealibilität [SR-MaB]).
Durch den Ubergang vom TR- zum LR- und und insbesondere der Darstellungsaufwand. Andererseits kommt man so der ja eigentlich angestrebten physikalischen Idealvorstellung immer näher, nämlich für jeden einzelu Meswert zu bestimmen.
nen verschiedener Transkribent der Notatiogegebene Aussprache, so messen Variabilitätsmaße die Abweichungen verschiedener Aussprachen bei ggfs verschiedenen Sprechern. Dafür lassen sich natürlich die anders zu interpretieren. Zur Konstruktion und Anwendung eines solchen MaBes auf Wortbasis (Wort-Variabilität [WV-MaB]) vgl./12/.

KONSTRUKTIONS- UND ANWENDUNGSPROBLEME iese kurze Ubersicht dokumentiert, daB sich sehr leicht eine Vielzahl von A- und verwendbare MaBe aus der psychologischen Testtheorie vg1. /11/). Für alle diese Masse bestehen jedoch gewisse gemeinsame ProMaßes danach beurt die Brauchbarkeit eines Problemen gegenübersteht. Es sollen hier einige der augenfälligsten Probleme gena und zum Teil mit Anmerkungen versehen werden.
(1) Die meisten \(\AA\)-MaBe (auf Intervallskalenbasis) sehen keine Vergleiche zwischen Für die Ermittlung der Reliabilität muß jeaoch manchmal der Abstand von einem vokal zu einem Konsonanten bestimmt werden. (2)位 stand im vokalischen dem größtmöglichen AbBereich. Müssen sie gleich groB sein oder nicht? Eine Reihe ähnlicher Uberlegungen im usammenhang mit der Konstruktion von \(\AA\) aben eskaliert dann in der Hauptfrage: (Klassifikations-)Dimension die einzelnen tandsfunktion ein? (3) Der thergang Ab-\(\AA\)-Maß zum R-MaB bringt ein neues Problem. wei Transkripte des gleiches Sprachsignals werden sicher sehr oft eine unterschiediihe Anzahl von Symbolen enthalten. Somit "einem" Laut zu "keinem" Laut Abstand von
den. Die bekannten R-MaBe (/6/,/8/) ver wenden in diesem Fall den größtmöglichen dann am ehesten im Text fehlen, wenn de jeweilige Laut im Signal undeutlich erscheint, wie etwa bei Reduktionen (z. B ra:tən] \(\left.\left[r a: t^{2} n\right] \rightarrow[r a: t n]\right)\). Der Unterschied zwischen den beiden letzten Notationen sollte deshalb nicht grundsätzlich zwei deutlich wahrnehmbaren vokalen (etwa \(y\) ] und [a]). Es scheint also so, daß bei Reliabilitätsuntersuchungen zusätzlich zu einer Qualitätsmessung (mit dem \(\mathbb{A}-\mathrm{MaB}\) ) auch eine Substanzmessung (betreffend Deutlichkeit, bei synthetischer Sprache:
Natürlichkeit) vorgenommen werden und in as R-Maß einfließen sollte. (4) Dies ührt aber auf eine grundsätzliche Uber gung: Eignen sich Å-MaBe übernaupt als Basis für R-MaBe? Ganz deutlich stellt sich die Frage, wenn aufgrund von "semantische Hören" (an undeutlichen Textstellen) ganz 13/). An solchen Stellen können \(\dot{A}\)-MaBe icht viel aussagen, was bedeutet, daß sich \(\AA\)-Maße als Basis von R-Maßen nur dann nicht zu sehr vie jeweiliqen Transkripte nicht zu sehr voneinander abweichen. (5) bekannten R -MaBen betrifft die Nicht-Beachtung möglicher systematischer Abweichungen. So können gerade bei automatischer Anwendung der MeBvorschrift systematisch auftretende Abweichungen zu scheinbar geringen Reliabilitätswerten führen, Translation des Referenznetzes eines ranskribenten die Reliabilität entsche dend vergrößern würde. So könnte z.B. die Aspiration eines Plosivs, etwa [p], welche in Transkribent (T2) als [ \(\left.p^{h}\right]\) (bzw. [ \(\left.p^{\prime}\right]\) ) notiert, bei einem anderen (T3) durchweg Durch eine Transformation (Justierung) der Transkripte, also z.B. durch eine Anhebung des Aspirationsgrades bei T3 lieBe sich die Reliabilität erhöhen. Wenn aber aus einer hoheren Reliabilität auch eine höhedie deterministische Auffassung von Transkriptionsergebnissen infrage. Denn wenn nach eingehender Diskussion das [ \(p^{\prime}\) ] des einen Transkribenten ein [ \(\mathrm{p}^{\mathrm{h}}\) ] beim zweiten bleibt, so ist das gemeinsame, justierte Transkript 2 war reliabel, aber nicht meh eindeutig. Diese Tatsache richtet den
Blick direkt auf eine probabilistisch Transkriptionsauffassung, die für einen Laut ggfs. mehrere Symbolalternativen, nach ihrer Wahrscheinlichkeit geordnet, zuläBt. Ein solches Transkript entspricht verhalten" automatischer Prozesse, wo im Laufe der Berechnung immer mehrere Alternativlösungen vorhanden sind, und schlieBlich die wahrscheinlichste das Endergebnis bildet.

VERWENDBARKEIT FUR DIE Grundsätzlich lassen sich natürlich alle lung automatischer MeBprozesse verwenden. Welche sind jedoch zu bevorzugen? Typischerweise variieren akustische MeB größen, die die Ausgangsbasis für jeden aT-ProzeB bilden, kontinuierlich. Diesem entspricht am ehesten ein R-Maß mit einem lenniveau. Gleichfalls wird man ein \(\AA\)-Maß bevorzugen, das auf akustischer bzw. audi tiver Ahnlichkeit beruht. Denn die akusti schen MeBgröBen (Parameter) lassen sich oft nur schwerlich mithilfe der artikulaterpretieren. So kann auf der Basis akustischer MeBgrößen kaum erklärt werden, warum etwa der Abstand zwischen [p] und [ \(t\) ] kleiner ist als der zwischen [p] und \([k\), was jedes \(A-M a B\) auf artikulatorischer Basis grundsätzlich vorsieht. Andererseits ihrer Konstruktion mithilfe von Hörtests die Gefahr einer sprachspezifischen Fär bung.
enn das TR-MaB eines automatisch erstellen Transkripts nicht zu sehr von dem eieicht so weist dies auf die Brauchb es aT-Verfahrens hin Diese Aussage läk sich beim Ubergang von den globalen TR-
Maßen \(z u\) den LR-Maßen weiter verfeinern.
s ist durchaus vorstellbar, daB ein atlgorithmus für gewisse Lautklassen bereits akzeptable Ergebnisse liefert, für andere müßte dann der Text abschließend nur noch inmal für kritische Lautklassen manuell berprüft werden. Der tubergany zu einem -Mab erlaubt schlieblich die differenierteste Beurteilung. Die Prüfung des aueise nur an den maximal reliablen Textstellen stattfinden oder, wenn der Algoithmus mehrere gewichtete Alternativen ausgiot, auch diese einbeziehen.

AUSBLICK Sind auf der einen Seite R-MaBe die Vortützten Analyseprozeduren, so gestatten rechnergestützte Syntheseprozeduren in zuknft vielleicht sogar eine Validitätsprüung. Bereits heute ist es nämlich mög symbolfolge durch Simulation des menschichen Spracherzeugungsmechanismus synthe ische Sprache zu erzeugen, die jedoch noch cht die Qualität natürlicher menschlichex prache erreicht. Sollte es aber in Zukunf gelingen, den Sprechvorgang so gut nachzu(Hörtests!) noch artikulatorisch (Sehests!) von einem natürlichsprachlichen unterscheidet, so ware damit die Grundlage für eine echte Validitätsprüfung ge-
chaffen. Die richtige Symbolfolge als Basis für die Synthese ist dann unabhängig

\section*{LItERATUR}

1/ R. Greisbach: Grundlagen der Automati ierbarkeit phonetischer Transkription Diss. Köln 1986 (im Druck). /2/P. Ladefoged: The nature of vowel qua(1960) 73 Rev. L6 19/ J. 73 -162.
tion. Lang. \&Speech 8 Lity in vowel percep8 (1965) 95-121.
schreibung lautlicher Außerungen mit Hilf eines lautlichen Bezugssystems. z.f. Mund artforschung, Beih., N.F. 3 u. 4 (1967) 356-362.
5/ W.H. Vieregge et al.: A distinctive feature based system for the evaluation of segmental description in Dutch. Proc. 10th Int. Congr. Phon.Scie. Dordrecht 1984, 654 /659.
/6/ W. H. Vieregge: Ein Maß zur Reliabilitatsbestimmung phonetisch-segmenteller 52 (1985) 167-180. /7/ W.H. Vieregge: The problem of validity of segmental transkriptions. Proc. Inst. Phonetics,
\(23-26\). 23-26
" 8 / A. Almeida, A. Braun: "Richtig" und "Falsch" in der phonetischen Transkrip-
tion. Z.F. Dialektol.u. Ling. \(53(1986)\) \({ }^{\text {tion }} 158\). \({ }^{2}\).
/9/B. Schädel: Uber Schwankungen und reh lergrenzen beim phonetischen Notieren
\(/ 10 / \mathrm{M}\). Bürkle: Zur Validität eines MaBes zur Reliabilitatasbestimmung phonetischsegnenteller Transkription. Z.f. Dialektol. u. Ling. 53 (1986) 173-181. /11/J. Asendorf, H.G. Wallbot: MaBe der psychol. 10 (1979) 243-252.
/12/ S. Geršić: Mathematisch-statistische Untersuchungen zur phonetischen Variabili tät am Beispiel von Mundartaufnahmen aus der Batschka. Göppingen 1971
Methoden für die Analyse von phonetischer Situationen. In: P. Winkler (Hrsg.): Methoden der Analyse von Face-to-Face-Situationen. Stuttgart 1981. 9-46.

To locate positions in the speech signal where overall energy of the signal dropped and maintained a steady level, a routine was first developed to convert the time-serie data to an energy representation. Calculation of the signa rectangular window and computing the mean of the squared values in the measurement interval N . The time varying energy calculation \(E(n)\) is defined by the following function:
\[
E(n)=\frac{1}{\hbar} \quad \sum{ }_{m=0}^{n=1} x^{2}(n+m)
\]
where \(N\) is the number of sample points in the window.
To reduce the high amplitude of the lower frequencies in the signal, pre-emphasis was applied before energ calculation. Pre-emphasis was found to accentuate the sharp drop-off from the vowel to the nasal murmur and murmur. When pre-emphasis was applied to the signal, greater percentage of energy in the mid-frequency rang of the vowels than was present in the neighbouring nasa murmurs caused the total energy in the vowels to b ccentuated.
Experimentation with the window lengths of \(N\) in the alculation of the signal energy revealed that a 20 m window ( \(\mathrm{N}=200\) points, sampled at 10 K per second) yield an energy curve that is not affected by the time-varying mplitude properties of the speech signal. However, to locate the onset of the nasal murmur accurately, \(E(n)\) was omputed at 5 ms intervals. Thus, energy values advancing along the time series in 5 ms jumps.

Determination of a significant change in energy was performed in terms of ratio. For a vowel-nasal sequence, he ratio between the energy value of the triggering frame in the vowel and the lower energy value of the nasal to be 1.9:1 or greater.

The following procedure was incorporated. Sequential xamination of pairs of energy values representing non verlapping 20 ms sections of the time-series data carried out every 5 ms to locate a trigger ratio of 1.9:1 ifth, the second with the sixth, etc, and the ratio etween the pairs is calculated. Once a trigger ratio is ound, the next three consecutive pairs are examined and the pairs with the greatest ratio are selected. The high hergy value represents a 20 ms section of the time series The low-energy value paired with the triggering frame epresents a 20 ms portion that is potentially the start of hasal murmur. The time co-ordinate of the low-energy rame is the start time of the steady energy level, which an be determined with an accuracy of \(\pm 2.5 \mathrm{~ms}\), or half th uration of the 5 ms advance used in calculating the energy of the signal.

The steady energy level of the triggered section of the time series is also calculated by sequential examination of hon-overlapping pairs of energy frames, at 5 ms intervals. The pairs must not exceed a ratio of \(2: 1\) or fall below \(0.5: 1\). That is, the energy value of the first frame in the
steady state must not be more than double, or less than
half, the energy value of the fifth frame, the same being true for the second and sixth frames, etc. The steady state must last for a minimum duration of 60 ms to be accepted. When a ratio above \(2: 1\) or below \(0.5: 1\) is encountered before 60 ms have elapsed, the segment is and the segment of time-series data is accepted. In order to avoid acceptance of segments with gradual increases of the energy level, the segment is rejected if the value exceeded that of the triggering frame. Shut-off also occurs if the value of any frame drops below a specified value.

\section*{Profile Matching}

To characterize the spectral distribution of energy common to nasal murmurs, a profile-matching routine was developed for use on the main frame. The procedure used were isolated by energy curve location, and to creat power spectra of the sections, using 50 Hz resolution and 20 ms Hamming window advancing along the time series a 20 ms intervals. Pre-emphasis was applied to the time series. The spectra were saved on computer tape, and were later retrieved for comparison with an adjustable profile table

The parameters incorporated for profile-matching were minimum segment duration, minimum total energy, and percentage and tolerance in up to 20 frequens buckets. The frequency buckets were delined by buck upper frequency range, total percentage of all the bucke the profile table upon the initiation of each operation examine the spectrum file called up from storage, and sem the results of the profile-matching to the main rame printer. Results reported were frames matched,
vectors, and distance as a measure of closeness of fit.

As noted above, the nasal murmurs commonly show a dominance of energy in the \(0-500 \mathrm{~Hz}\) range. To avoid th influence of individual speaker characteristics, only two routine. The first was \(0-500 \mathrm{~Hz}\), in which the minimum allowable percentage of energy was found to be \(57 \%\) and the maximum was \(99 \%\). In the profile table this was state as \(78 \%\) of the spectral energy wis 500 to 5000 Hz , in which the remainder of the energy in the spectrum could b distributed. This was stated as \(22 \%\) with a tolerance 21\%.
Spectral Centroid Determination
The frequency centroid of a spectrum is essentially the mean frequency of energy

Centroid frequency \(=\frac{\sum_{i=1}^{n} f_{i} I_{i}}{\sum_{i=1}^{n} I_{i}}\)
where \(f\) is the frequency of \(\operatorname{bin} i, I\) is the intensity of bin \(i\), and \(n\) is the number of the last bin that corresponds to a frequency not greater than the cut-off frequency defined for the centroid calculation. A Fortran program was
power spectra held in storage on the main frame. An adjustment to the upper frequency \(n\) was included so that the centroid could be determined for any lowpass bandwidth of the power spectrum. The results of the calculations were displayed in the time domain.

When the centroid calculation was applied to the full 5 KHz passband, a large number of non-nasal segments had a frequency centroid in the range of nasal murmurs; i.e., below 600 Hz . These segments included [ \(\mathrm{d}, \mathrm{l}, \mathrm{w}\) ] voiced stops, [u] and unstressed [i] and [ \(\partial\) ], especially when the consonants combined with the vowels. Reducing the cut-off frequency to 1000 Hz eliminated most of the above unwanted segments if only segments with a centroid below 400 Hz were accepted. Although some of the non-nasal elements still exhibited low centroids, the 60 ms duration criterion succeeded in eliminating a majority of these.

\section*{Sequencing of Routines}

The energy curve location routine was designed to scan the time-series data to determine areas in the speech signal where a nasal murmur was possible. Since this did not require conversion to Fourier series, it was the most economical of the routines to apply to the full data to isolate potential nasal segments. These could then be converted to the Fourier series and be processed by the profile-matching and centroid routines. The latter two routines were applied independently of each other and therefore did not require a particular order.

\section*{RESULTS}

The speech data of the ten subjects under analysis contained a total of 780 post-vocalic nasal phonemes. Of these, the energy curve location routine successfully isolated 593. The routine also isolated 655 non-nasal phonetic events or sequences of events that took place in a post-vocalic environment. A further 155 non-nasal phonetic events were captured after being triggered by a high-energy non-vocalic signal, indicating the need to incorporate a subroutine that will examine the triggering frame to determine the presence of voicing.

Of the 593 potential nasal murmurs isolated by the energy curve location, the combined profile matching and centroid locating functions accepted 516. When performed independently, the profile-matching routine rejected 356 non-nasals and the centroid calculation rejected 330. The combined effect resulted in the rejection of 454 of the 655 sections of unwanted data.

For a large group of subjects, where robust parameters must be applied in order to isolate the segments, interspeaker characteristics interfere with the process of distinguishing the nasal murmurs from the non-nasals. We have found, however, that speaker-specific characteristics may be used to describe the quality of the nasal murmurs, thereby creating a criterion for rejecting most of the nonnasals. It is apparent from our observations that speakerspecific characteristics are recurrent in the majority of the nasal murmurs. A statistical approach might therefore be usefully employed to describe automatically the mean spectral characteristics of the speech events accepted by the system. A comparison could then be made of each spectral series to determine its closeness of fit to the mean, and, using a degree of tolerance or a distance
metric, deviant spectral data could be rejected.

\section*{REFERENCES}
[1] J.W. Glenn and N. Kleiner, "Speaker identification based on nasal phonation ", Journal of the Acoustical Society of America 43: 368-372, 1968.
[2] M.R. Sambur, "Selection of acoustic features for speaker identification", IEEE Transactions in Acoustics, Speech and Signal Processing ASSP-23: 169-176, 1975.
[3] L-S. Su, K-P. Li, and K.S. Fu, "Identification of speakers by use of nasal coarticulation", Journal of the Acoustical Society of America 56: 1876-1882, 1974.
[4] J.J. Wolf, "Efficient acoustic parameters for speaker recognition", Journal of the Acoustical Society of America 51: 2044-2056, 1972.
[5] Osamu Fujimara, "Analysis of nasal consonants", Journal of the Acoustical Society of America 34: 1865-1875, 1962.
[6] P. Mermelstein, "On detecting nasals in continuous speech", Journal of the Acoustical Society of America 61: 581-587, 1977.

\title{
A SEMIVOWEL RECOGNITION SYSTEM*
}

\author{
Carol Y. Espy-Wilson \\ Department of Electrical Engineering and Computer Science \\ Research Laboratory of Electronics \\ Massachusetts Institute of Technology \\ Cambridge, Massachusetts 02139
}

\begin{abstract}
We discuss a framework for an acoustic-phonetic approach to speech recognition. The recognition task is the class of sounds known as the semivowels ( \(w, l, r, y\) ) and the results obtained across several data bases are fairly consistent. We discuss some issues which were manifested by this work. These issues include feature spreading, the assignment of phonetic labels and lexical representation.
\end{abstract}

\section*{Introduction}

We have developed a framework for an acoustic-phonetic approach to speech recognition. Such an approach consists of four basic steps. First, the features needed to recognize the sound(s) of interest must be specified. Second, acoustic correlates of the features must be determined. Third, algorithms to extract the properties must be developed. Finally, the properties must be integrated for recognition.

In this paper, we discuss briefly the application of the above mentioned steps to the development of a recognizer of voiced and nonsyllabic semivowels of American English. In addition, we discuss some issues brought forth by this work. These issues include feature spreading and how it can possibly be explained with a theory of syllable structure, how feature spreading affects lexical access, and if and when phonetic labels should be assigned to acoustic events.

\section*{Corpora}

The initial step in this research was the design of a data base for developing and testing the recognition algorithms. We chose 233 polysyllabic words from the 20,000 word Merriam Webster Pocket dictionary. These words contain the semivowels and other similar sounds in many different contexts. The semivowels occur in clusters with voiced and unvoiced consonants and they occur in word initial, word final and intervocalic positions. The semivowels are also adjacent to vowels which are stressed and unstressed, high and low, and front and back.

For developing the recognition algorithms, the data base was recorded by two males and two females. We refer to this corpus as Database-1. Two corpora were used to test the recognition system. Database-2 consisted of the same polysyllabic words spoken by two new speakers, one male and one female. Database- 3 consisted of a small subset of the sentences in the TI data base [1]. In particular, we chose two sentences which contained a number of semivowels. One sentence was said by 6

\footnotetext{
-Supported by a Xerox Fellowship
}
females and 8 males. The other sentence was said by 7 females and 8 males. The speakers covered 8 dialects.

Several tools described in [2] were used in the transcription and analysis of the data bases. Database-1 and Database-2 were transcribed by the author and Database-3 was segmented and labelled by several experienced transcribers.

\section*{Features, Properties and Parameters}

To recognize the semivowels, features are needed for separating the semivowels as a class from other sounds and for distinguishing between the semivowels. Shown in Tables 1 and 2 are the features needed to make these classifications. The features listed are modifications of ones proposed by Jakobson, Fant and Halle [3] and by Chomsky and Halle [4]. In the tables, a " + " means that the speech sound(s) indicated has the designated feature and a "-" means the speech sound(s) does not have the designated feature. If there is no entry, then the feature is not specified or is not relevant.

An acoustic study [5] was carried out in order to supplement data in the literature (e.g., \(\{6]\) ) to determine acoustic correlates for the features. The mapping between features and acoustic properties and the parameters used in this process are shown in Table 3. As indicated, no absolute thresholds are used to extract the properties. Instead, we used relative measures which tend to make them independent of speaker, speaking rate and speaking level. The properties are of two types. First, there are properties which examine an attribute in one speech frame relative to another speech frame. For example, the property used to capture the nonsyllabic feature looks for a drop in either of two mid-frequency energies with respect to surrounding energy maxima. Second, there are properties which, within a given speech frame, examine one part of the spectrum in relation to another. For example, the property used to capture the features front and back measures the difference between F2 and F1.

To quantify the properties, we used a framework, motivated by fuzzy set theory [7], which assigns a value within the range
\begin{tabular}{|l|c|c|c|c|}
\hline & voiced & sonorant & nonsyllabic- & nasal \\
\hline \begin{tabular}{l} 
voiced fricatives,stops, affricates \\
unvoiced fricatives,stops, sffi-
\end{tabular} & + & - & + & - \\
\(\quad\)\begin{tabular}{l} 
cates
\end{tabular} & - & - & + & - \\
semivowels & + & + & + & - \\
nasals & + & + & + & + \\
vowels & + & + & - & - \\
\hline
\end{tabular}

Table 1: Features which characterize various classes of consonants


Table 2: Features for discriminating between the semivowels
\begin{tabular}{|c|c|c|c|}
\hline Feature & Acoustic Correlate & Parameter & Property \\
\hline Voiced & \[
\begin{aligned}
& \text { Low Frequency } \\
& \text { Periodicity }
\end{aligned}
\] & Epergy 200.700 Hz & Iligh \({ }^{\circ}\) \\
\hline Souorant & Comparable Low \& & Energy Ratio \(\frac{10-300)}{1300-7000}\) & High \\
\hline Nonsyllabic & High Frequency Energy & Energy \(640-2800 \mathrm{~Hz}\) & Low \({ }^{\text {a }}\) \\
\hline \multirow{3}{*}{Stop} & \multirow[b]{3}{*}{Abrupt Spectral
Change} & Energy 2000-3000 Hs & Low' \\
\hline & & 1st Diference of & High \\
\hline & & Dandlimited Energies (positive \& negative) & \\
\hline High & Low F1 Frequency & F1-F0 & Low \\
\hline Bnck & Low F2 Frequency & F2-F1 & Low \\
\hline Front & High F2 Frequency & F2-F1 & High \\
\hline Labisl & Downward Transi- & F3-F0 & Low \({ }^{\circ}\) \\
\hline & tions for F2 and F 3 & F2-F0 & Low* \\
\hline Retrofex & Low F3 Frequency \& & F3- F0 & Low \\
\hline & Close F2 and F3 & F3-F2 & Low \\
\hline
\end{tabular}

Table 3: Parameters and Properties
- Relative to maximum value
\([0,1]\). A value of 1 means we are confident that the property is present, while a value of 0 means we are confident that it is abcating our level of certainty that the property is present/absent.

\section*{Control Strategy}

Phonotactic constraints are used heavily in the recognition sysem. These constraints state that semivowels almost always oc cur adjacent to a vowel. Therefore, they are usually prevocalic, intervocalic or postvocalic. For recognition, these contexts map into three types of places within a voiced sonorant region. First he semivowels can be at the beginning of a voiced sonorant region, in which case they are prevocalic. Second, the semivowels an be at the end of a voiced sonorant region, in which case they are postvocalic. Finally, the semivowels may be further inside a voiced sonorant region. We refer to these semivowels as intersonorant, and one or more may be present within such a region. Semivowels of this type can be either intervocalic or in a cluster with another sonorant consonant such as the / \(y /\) in "banyan." Although there is one overall recognition strategy
mencals.
The recognition strategy for the semivowels is divided into two steps: detection and classification. The detection process is a potential influence of a semivowel. In of times where there minima in the mid-frequency energies and we look we look for and maxima in the tracks of F2 and F3. Such events should correspond to some of the features listed in Tables 1 and For example, an F2 minimum indicates a sound which is more "back" than an adjacent segment(s). Thus, this acoustic event will occur within most / \(\mathrm{w} / \mathrm{s}\) sand within some \(/ 1 / \mathrm{s}\) and \(/ \mathrm{r} / \mathrm{s}\).
Once all acoustic events have been marked, the classification process integrates them, extracts the needed acoustic properdetected sound is a semivowel and, if so, dhich ses whether the An example of this process is illustrated with the word "flour-

\(\stackrel{-108}{\sim 1 \infty}\)
Figure 1: (a) Spectrogram of the word "flourish," (b) formant tracks
and (c) Energy 640 Hz to 2800 Hz . -
ish" shown in Figure 1. As can be seen, several acoustic events signal the presence of the intervocalic \(/ \mathrm{r} /\). These events include an energy dip, a small F2 dip and a strong F3 dip. Given the energy dip marked in part c , the recognition system will extract the surrounding energy maxima corresponding to syllabic nuclei. These latter points are used to define a region for further analysis of the detected sound. Among the various events, the F3 dip is the most prominent one which gives some clue to the identity of the detected sound. Thus, it is in a small region surrounding the time of this event that the formant based propr erties are extracted. In addition, it is between the time of the F3 dip and the surrounding energy peaks that we characterize the
rate of spectral change to determine its degree of abruptness. rate of spectral change to determine its degree of abruptness. Once the properties listed in Table 3 are extracted for the
detected sound, the control strategy, on the basis of the types of detected sound, the control strategy, on the basis of the types of
events marked, decides which semivowel rules to apply. Again, events marked, decides which semivowel rules to apply. Again,
since there is a strong F3 dip, the / \(\mathrm{r} /\) rule is applied first. The since there is a strong F3 dip, the / \(\mathrm{r} /\) rule is applied first. The
only other semivowel which is expected to sometimes have a only other semivowel which is expected to sometimes have a
sizeable F3 dip is the labial sound \(/ \mathrm{w} /\). Thus, the \(/ \mathrm{w} /\) rule is sizeable F3 dip is the labial sound \(/ \mathrm{w} /\). Thus, the
applied if the \(/ \mathrm{x} /\) rule receives a low score \((<0.5)\).
Rules for integrating the properties were written for each of the semivowels. In addition, because they are acoustically similar, a rule was written for identifying a class that could be either \(/ \mathrm{w} /\) or \(/ 1 /\). Across contexts, the rules are similar.
However, well known acoustic differences between allophones However, well known acoustic differences between allophones final /1/'s as opposed to sonorant-initial /1/'s are accounted for. Additionally, within the rules, primary versus secondary cues are distinguished. For example, the / \(\mathrm{r} / \mathrm{rule}\) states that if the detected sound is retroflexed, classify it as an \(/ \mathrm{r} /\). However, if the sound is "maybe" retroflexed, look at other cues before making a decision.
Since the value of each property lies between 0 and 1 , the score of any rule within the fuzzy logic framework is also in this range. Thus, we consider a sound to be classed as a semivowe if the result of a rule is greater than or equal to 0.5 .

\section*{Recognition Results}

The overall recognition results are given in Table 4 for eac of the data bases. The term "nc" in the table means that on or more semivowel rules was applied, but the score(s) was less than 0.5 . The term "others" refers to flaps, voiced \(/ \mathrm{h} / \mathrm{s}\) and sonorant-like voiced consonants.
As can be seen, there is quite a bit of confusion between/w/ and \(/ 1 /\). However, the degree to which they are confused varies considerably with context. For example, when they are prevocalic and are not preceded by a consonant, the system correctly classifies \(80 \%\) of the / \(\mathrm{w} / \mathrm{s}\) in Database- 1 and \(67 \%\) of the / \(\mathrm{w} /\) 's in Database-2. Likewise, it correctly classifies \(63 \%\) of the /1/'s
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \# tokens & 369 & \[
540
\] & 558 & 222 & \[
\begin{gathered}
\text { neatale } \\
\hline 64
\end{gathered}
\] & others
508 & vawela & \\
\hline undetected(\%) & 1.4 & 3.3 & 2.6 & 2.8 & 24 & 81.6 & & \\
\hline w(\%) & 52 & 7.5 & 3.4 & 0 & 1 & 1 & 1 & \\
\hline (\%) & 0.1 & 65.7 & 0 & 0 & 11 & 3.3 & 5.5 & \\
\hline W.1(\%) & 31.4 & 30.4 & 0 & 0 & 3 & . 8 & 2 & Databave-1 \\
\hline \%(\%) & 4 & . 2 & 20 & 0 & 2 & . & 6 & \\
\hline \(y\) (\%) & 0 & 0 & 0 & 93.7 & 6 & 1.4 & 8.6 & \\
\hline nc(\%) & 2 & 3 & 4.7 & 4.9 & 53 & 11.4 & 39 & \\
\hline * tokens & 181 & 274 & 279 & 105 & 232 & 135 & 1184 & \\
\hline ondotected(\%) & 1.7 & 1.5 & 4.3 & 2.8 & 24 & 69 & & \\
\hline -(\%) & 48 & 3.6 & 1.9 & 0 & 5 & 0 & 1 & \\
\hline (\%) & 12.7 & 57.7 & 0 & 0 & 7 & 6 & 5 & \\
\hline w.1(\%) & 29 & 33.8 & 0 & 0 & 8 & 1 & 4 & Detabace-2 \\
\hline \%(\%) & 3.5 & 4 & 91.3 & 0 & 3 & 2 & 4 & \\
\hline \(y(\%)\) & 0 & 0 & 0 & 84.9 & 3 & \({ }^{3}\) & 10 & \\
\hline dc (\%) & 6.7 & 2.9 & 4.3 & 13.3 & 55 & 19 & 42 & \\
\hline \# tokens & 28 & 40 & 49 & 23 & 44 & 121 & 350 & \\
\hline undetected(\%) & 3.6 & 7.5 & 0 & 4 & 50 & \({ }^{7}\) & & \\
\hline *(\%) & 48 & 10 & 0 & 0 & 15 & 0 & 2 & \\
\hline (\%) & 21.8 & 52.8 & 0 & 0 & 13 & 2.5 & 0 & \\
\hline m.1(\%) & 21.6 & 24.7 & 0 & 0 & 0 & 0 & 4 & Database-3 \\
\hline r(\%) & 7.1 & 0 & 89.8 & 0 & 5 & 2.5 & 15 & \\
\hline \(y(\%)\) & 0 & 0 & 0 & 78.5 & 0 & 5 & \(\bullet\) & \\
\hline - - (\%) & 0 & & & & & & 62 & \\
\hline \multicolumn{9}{|c|}{Table 4: Overall Recognition Results} \\
\hline
\end{tabular}


Figure 2: Spectroge "rams with
with the words "cartwheel" and "harlequin." In each instance it appears as. if the underlying /f/ and adjacent vowel combin such that their acoustic realization is an \(r\)-colored vowel. The occurrence of such feature assimilation is predicted by the syllable structure theory as explained by Selkirk [8]. This syllable structure is shown in Figure 3; where the onset consists of any syllable-initial consonants, the peak consists of either a vowel or vowel and sonorant, and the coda consists of any syllable-fina consonants. Selkirk states that when \(/ \mathrm{l}\) or \(/ \mathrm{r} /\) is followed by a consonant which must occupy the coda position, it becomes part of the peak. Thus, the structure for the first syllable in "cartwheel" is as shown in Figure 4. Since the /a/ and / \(\mathrm{I} /\) both occupy the syllable peak, we might expect some type of feature assimilation to occur. If it is true that a vowel and / r / in this context will always overlap to form an \(r\)-colored vowel, then \(n\) exception is needed in the phonotactic "strains ols" from the vowel by the \(/ \mathrm{r} /\) Instead, the constraints can simply state that asivowe must always be adicent to a rowel
state that semivowels must always be adjacent to a vowel.
When a postvocalic \(/ 1 /\) or \(/ t /\) is not followed by a syllablefinal consonant, Selkirk states that it will tend to be in the coda although it has the option of bers in park 1 and tion was ce As an conser the two repetitions of the word "carwash" shown in Figure 5. As in the word "harlequin," the / \(a /\) and \(/ \mathrm{r} /\) in the word "carwash" on the left appears to be one segment in the sense that retroflexion extends over the entire vowel duration. However, in the repetition on the right, the /a/does not appear to be retrofexed. Instead, there is a clear downward movement in F3 which separates the /a/ and \(/ \mathrm{r} /\) and thus the / \(\mathrm{r} /\) appears to be syllable-final

We dealt with this feature spreading phenomenon in the recognition system by considering it a correct classification if the vowels in words like "cartwheel," "harlequin" and "carwash" were labeled /r/. This seemingly "disorder" was allowed since the vowel's and following \(/ \mathrm{r}\) 's appear completely assimilated.
Allowing this "disorder" at the acoustic level means that the ambiguity must be resolved at or before lexical access. There is at least one example in the data bases where a seemingly prevocalic / \(\mathrm{r} /\) and adjacent vowel merged to form an r -colored vowel. If this is so, then there does not appear to be a clear method for


Figure 3: Tree structure of syllable


Figure 4: Tree structure of syllable "cart."


Figure 5: Spectrograms with formant tracks overlaid of two repetitions of "carwash."
determining whether an \(r\)-colored vowel is underlyingly a vowel followed by / \(\mathrm{r} /\) or a vowel preceded by / \(\mathrm{r} /\).

This ambiguity as well as the fact that some vowels and other voiced consonants are classified as semivowels raises the issue of whether or not phonetic labels should be assigned before lexical access. In other words, is the representation of items in our lexicon in terms of phonetic labels or features?

If we assume that lexical items consist of a sequence of phonetic labels, then it is clear from an analysis of the misclassifcations made in the semivowel recognition system that context must be considered before phonetic labels are assigned. That is, some sounds are misclassified because contextual influences caused them to have patterns of features which normally correspond to a semivowel. For example, consider the word "forewarn" shown in Figure 6. Because of the labial F2 transition and the downward F3 transition arising from the adjacent \(/ \mathrm{r} /\), the beginning of the first \(/ \mathrm{o} /\) was classified as a/w/. It is clear in cases like this that if phonetic labels are going to be assigned, context should be considered before it is done. The issue then becomes, how much context needs to be considered. For example, consider the word "fibroid" also shown in Figure 6 which has a fairly steady state F3 frequency of about 1900 Hz . We have observed that in words like this where a labial consonant is preceded by a normally non-retroflexed vowel and followed by a retroflexed sound, the first vowel can be totally or partially retroflexed. Such feature spreading is not surprising when we consider that the intervening labial consonant does not require a specific placement of the tongue.

If, instead of phonetic labels, lexical items are represented as matrices of features, it may be possible to avoid misclassifi-


Figure 6: Spectrograms with formant tracks overlaid of "forewarn" (left) and "fibroid" (right).


Table 5: Lexical Representation vs. Acoustic Realizations of /ar/.
cations due to contextual influences and feature spreading since we are not trying to identify the individual sounds before lexical access. For example, consider the comparison given in Table 5 of what may be a partial feature matrix in the lexicon for an /a/ and postvocalic / \(\mathrm{r} /\) with property matrices for these seg. ments in the words "carwash" shown in Figure 6. The lexical representation is in terms of binary features whereas the acoustic realizations are in terms of properties whose strengths as determined by fuzzy logic lie between 0 and 1 .

Acoustic realization \#1 and the lexical representation are a straightforward match. (Assume a simple mapping strategy where property values less than 0.5 correspond to a "-" and property values greater than or equal to 0.5 correspond to a " + .") However, the mapping between acoustic realization \#2 and the lexical representation is not as obvious. It may be possible for a metric to compare the two representations directly since the primary cues needed to recognize the / \(a /\) and \(/ \mathrm{r} /\) are unchanged. On the other hand, we may need to apply feature spreading rules before using a metric. The rules can either generate all possible acoustic manifestations from the lexical representation or generate the "unspread" lexical representation from the acoustic realization.

Determining the mapping between features and properties which have varying degrees of strength is an important and difficult problem which may give insights into the structure of the lexicon. The solution to this problem will require a better understanding of feature assimilation in terms of what features are prone to spreading, and in terms of the domains over which spreading occurs. Resolution of these matters is clearly important to an acoustic-phonetic approach to speech recognition.

\section*{REFERENCES}
[1] Lamel, L., Kassel, R., and Seneff, S., "Speech Database Development: Design and Analysis of the Acoustic-Phonetic Corpus," Proc. Speech Recog. Workshop, CA., 1986.
[2] Cyphers, D., Kassel, R., Kaufman, D. Leung, H., Randolph, M. Seneff, S., Unverferth, J., Wilson, T. and Zue, V. "The Development of Speech Research Tools on MIT's Lisp MachineBased Workstations, \({ }^{\text {n Proc. Speech Recog. Workshop, CA, } 1986 . ~}\)
[3] Jakobson, R., Fant, G. and Halle, M., "Preliminaries to Speech Analysis," MIT Acoustics Lab. Tech. Rep. No. 19, 1952.
[4] Chomsky, N. and Halle, M. The Sound Pattern of English, New York: Harper and Row, 1968.
[5] Espy-Wilson, Carol Y., "An Acoustic-Phonetic Approach to Speech Recognition: Application to the Semivowels," Doctoral Dissertation, MIT, to be completed in June 1987.
[6] Lehiste, I., "Acoustic Characteristics of Selected English Consonants," Report No. 9, U. of Mich., Comm. Sci. Lab., 1962.
[7] DeMori, Renato, Computer Models of Speech Using Fuzzy Algorithms. New York: Plenum Press, 1983.
[8] Selkirk, E.0., "The Syllable," The Structure of Phonological Representations (part II), ed. van der Hulst, H. and Smith N., Dordrecht: Foris Publications, 1982.

\title{
PHONEME-BY-PHONEME RECOGNITION AND SEMANTIC INTERPRETATION OF MULTI-SPEAKER SPEECH (THE HCDP-APPROACH)
}

\section*{TARAS VINTSYUK}

Speech Recognition and Synthesis Laboratory
Institute of Cybernetics
Kiev, Ukraine, USSR 252207

\section*{ABSTRACT}

A new approach to phoneme-by-phoneme recognition and semantic interpretation of mul-ti-speaker speech is proposed. The approach is based on a constructive (C) representation of complex speech signals with hierarchic (H) structure of speech patterns (signals, microphonemes, phonemes, diphones, syllables, words, sentences, comunicated senses). The recognition and semantic interpretation reside in composing (C) for a given speech signal and subsequent parsing of such complex speech patterm that is consistent with all levels of the hierarchy and is the most similar in some sense to the one to be recognized. The guided composition and subsequent parsing of this complex speech signal are realized by means of dynamic programming (DP). Some examples of solved problems are listed.

SPEECH PATTERN HIERARCHY AND MATHEMATICAL MODELS OF SEGMENTS

The HCDP-method integrates the approved principles of speech information decoding and processing and generalizes the CDP-method \(/ 1 /, / 2 /, / 3 /\). The hierarchic principle presumes the hierarchy of the patterna. The speech signals are discribed by sequences of observable elements-vectors \(X_{i}: X_{1}=\) \(=\left(x_{1}, x_{2}, \ldots, x_{i}, \ldots, x_{1}\right)\), where \(l\) is a length of the speech signal in uniform or quasi-uniform discrete time with spacing (mean spacing) of 15 ms for instance. The
subsequences of the elements \(X_{m n}=\left(x_{m+1}\right.\), \(\left.x_{m+2}, \ldots, x_{n}\right)\) being named segments are interpreted as the speech patterns or more precisely as the realisations of firstlevel speech patterns (the microphonemes, phonemes, diphones, or syllables). In this case \(X_{m n}\) is considered as the first-level segment. Sets of the signals \(X_{m n}\) for the first-level patterns \(j^{1}\) are specified by diatributions \(p\left(X_{m n} / j^{1}\right), j^{1} \in J^{1}\), where \(J^{1}\) is an alphabet of the first-level patterns. The second-level speech patterns \(j^{2}\) are specified by the transcriptions in the alphabet of the first-level patterns: \(j^{2}=\) \(=\left(j_{1}^{1}, j_{2}^{1}, \ldots, j_{s}^{1}, \ldots, j_{q\left(j^{2}\right)}^{1}\right)\), where \(q\left(j^{2}\right)\) is the length of the transcription of the pattern \(j\) ? \(\in J^{2}, J^{2}\) is the alphabet of the second-level patterns. The secondlevel segments correspond to the second-level patterms and are composed (the composition (C)) of the first-level segments by merging them into the sequences in conformity with the second-level pattern transcription. For instance if the microphonemes or phonemes are the first-level patterns then the phorremes or diphones (syllables) can be the second-level patterns correspondingly.
The patterns and segments at the next hierarchic levels (the syllables, words, sentences, communicated senses) are defined similarly. Let \(j^{r}\left(-J^{r}, j^{r}=\left(j_{1}^{r-1}, j_{2}^{r-1}, \ldots\right.\right.\) \(\left., j_{s}^{r-1}, \ldots, j_{q\left(j^{r}\right)}^{r-1}\right), p\left(X_{m n} / j^{r}\right)\) be the \(r-l e-\) vel pattern from the alphabet \(J^{r}\), the transcription of the pattern \(j^{r}\) and the probability of the \(r\)-level segment \(X_{m n}\) under
the condition of the pattern \(j^{r}\) correspondingly. The top-level patterns in the hierarchy - the communicated sense from a given finite set of senses - are specified by a canonical form and a formal constraction being named a directed semantic network and sense types and sentence types \(/ 2 /, 13 /\). While forwarding to publications \(/ 2 /, / 3 /\) for the details let us concentrate attention on a fact that the top-level hierarchic patterns - the communicated sense - are specified actually by a list of the sentences that express the same sense. But this specification is realized by some memory-saving means instead of direct enumeration. From this more accurate definition it also follows that the r-level pattern is not obligatory expressed with one transcription in the alphabet of the ( \(r-1\) )level patterns and there can be several or even many such transcriptions.
Constructive (C1) nature of the model manifests in expressing the probabilities of the segments \(X_{\text {mn }}\) under the condition of the r-th pattern \(p\left(X_{m n} / j^{r}\right)\) as products of the probabilities of the corresponded to the transcription \(j^{r}\) segments under the condition of the patterns of the previous (r-1)th level:
\[
\begin{equation*}
p\left(X_{m n} / j^{r}\right)=\prod_{s=1}^{q\left(j^{r}\right)} p\left(X_{m_{s-1} m_{s}} / j_{s}^{r-1}\right), \tag{1}
\end{equation*}
\]
where \(m_{s}\) are bounds of the ( \(r-1\) )-level segments: \(m_{0}=m, m_{s-1}<m_{s}, m_{q}\left(j^{r}\right)=n\). Thus the probability of the observed (to be recognized) signal \(X_{1}=X_{o l}\) under the condition of the top-level hierarchic pattern \(j^{R} \in J^{R}, J^{R}\) is the alphabet of the top-level hierarchic patterns, takes a form of the product of the corresponding segment probabilities under the condition of the first-
\[
\begin{align*}
& \text { level patterns: } \\
& \qquad p\left(x_{o l} / j^{R}\right)=\prod_{s=1}^{\bar{q}\left(j^{R}\right)} p\left(X_{m_{s-1}} m_{s} / j_{s}^{1}\right) \tag{2}
\end{align*}
\]

In the expression (2) \(\bar{q}\left(j^{R}\right)\) is a number of
the first-level patterns from the sequence of which the top-level hierarchic pattern \(j^{R}\) is composed, \(m_{0}=0, m_{s-1}<m_{s}, m_{\bar{q}\left(j^{R}\right)}=\) \(=1\) are the bounds of the first-level segmente.
To describe (specify) the mathematical model of the speech signals and to use it then for solving the speech recognition problems there is obviously sufficient to give the transcriptions of the patterns at all levels of the hierarchy with the segment distributions under the condition of all first-level hierarchic patterns
\(p\left(x_{m n} / j^{1}\right), j^{1} f J^{1}\). These distributions are specified for every possible segment length \(n-m\) that takes generally different values for the different patterns \(f\left(f J^{1}\right.\).
In line with the expression (1) it may seem that the segments of the speech signal are considered as mutually independent ones. In reality it follows just from the expression (1) as well as (2) that there is a strong deterministic dependence of the segments in the sequences that is manifested in constraints on the pattern order in the sequences, i.e. is expressed in the transcriptions of the patterns at all levels of the hierarchy.

\section*{RECOGNITION CRITERION AND METHO}

By using the maximal likelihood method let us classify the signal \(X_{1}\) to be recognize as such top-level hierarchic speech pattern that the acceptable for the subject field sequence of the first-level patterns that is composed by the transcriptions in accordance with the pattern hierarchy will induce on \(X_{1}\) such first-level segmentation for which the likelihood expression reaches an absolute maximum:
an absolute maximum:

The expression (3) presumes the exhaustive search through all pattern transcriptions
sformed into se goals. INTERPRETATION
if the patterns are specified not by one but by two or more transcriptions.
The recogaition criterion (3) determines top-down and down-top analysis of the signal \(X_{1}\) simultaneously. It is important that by solving the problem (3) one receives a consistent with all hierarchic levels interpretation referring if necessary to the segment borders of all-level hierarchic patterns being contained in the analizing aignal. By analizing the expression (3) and taking account of a fact that the borders of the r-level segments unconditionally coincide with the borders of certain ( \(r-1\) )-level segments one concludes that the exhaustive search to maximize the expression (3) can be avoided and the solution can be found by the Bellman's optimality principle with help of the dynamic programming. For computation is more convenient to use a logarithm of the likelihood. The expression (3) is tran-
\(j^{R}\left(X_{1}\right)=\underset{j^{R} \in J^{R}\left\{m_{s}\right\}}{\operatorname{argmax} \max } \sum_{s=1}^{\bar{q}\left(j^{R}\right)} \ln p\left(X_{m_{s-1} m_{s}} / j_{s}^{1}\right)\). (4) The constructivity (C2) of the HCDP-method is just in referencing the effective method to maximize (4) for the segment borders \(\left\{m_{s}\right\}\) and all-level hierarchic patterns - in using the dynamic programming (DP) for the-

To afford the constructivity \(C 2\) one needs the constructive (C3) techniques to specify the hierarchy of the patterns and their transcriptions and the constructive (C4) means to describe the distributions \(p\left(X_{m n} / j^{1}\right)\), \(j^{1}\left(J^{1}\right.\) under the condition of the first-level patterns for every possible segment length. Let us consider the realization of the constructivity principles with the particular examples from \(/ 2 /, / 3 /\).

MICROPHONEMIC RECOGNITION AND SEMANTIC
The first level of the hierarchy is the mic- speech that is composed of the worda from rophonemes (parts of the phonemes). The mic- the chosen vocabulary.
rophoneme \(j^{1}\) is specified by one or more standard elements being denoted by \(e\left(j^{1}\right)\) and having more frequently the same physical nature as the observed speech elements. The distribution of the segment \(X_{m n}\) under the condition of the microphoneme \(\mathrm{j}^{1}\) is defined by the relationship:
\[
\begin{aligned}
& G\left(x_{\operatorname{mn}}, j^{1}\right)=\ln p\left(x_{\operatorname{mn}} / j^{1}\right)= \\
& =\sum_{i=m+1}^{n} \ln p\left(x_{i} / e\left(j^{1}\right)\right)=\sum_{i=m+1}^{n} g\left(x_{i}, e\left(j^{1}\right)\right),
\end{aligned}
\]
where the segment length satisfies the condition
\[
\begin{equation*}
T_{\min }\left(j^{1}\right) \leqslant n-m \leqslant T_{\max }\left(j^{1}\right) \tag{6}
\end{equation*}
\]

In accordance with (5)-(6) one considers the quantity \(g\left(x_{i}, e\left(j^{1}\right)\right)\) as an elementary measure of similarity between the observed element \(x_{i}\) and standard element \(e\left(j^{1}\right)\), and \(C\left(X_{m n}, j^{1}\right)\) as the similarity between the segment \(X_{m n}\) and the first-level pattern \(j^{1}\) such that the latter itself is the stationary segment being composed of one element \(e\left(j^{1}\right)\) that is replicated \(n\)-m times to quote the constraints (6). The number of the microphonemes \(J^{1} \in J^{1}\) is \(128,256,512\), but not greater than 1024.
The second level of the hierarchy is the words that are specified by one or more socalled acoustic or Q-transcriptions - the sequences that are composed of the firstlevel patterns /2/, /3/.
The third level of the hierarchy is the arbitrary word sequences being composed of the free-ordered words from a selected vocabulary. The fourth level is the allowable sentences of the subject field that are specified by the sentence types, or sence types, or directed semantic network \(/ 2 /, / 3 /\). The fifth level is a canonic form of the communicated sense. By restricting to the first two or three levels a system is obtained to recognize correspondingly the words or continuous

PHONEME-BY-PHONEME (DIPHONIC) RECOGNITION AND SEMANTIC INTERPRETATION

The diphonic model of speech signal generation \(/ 2 /, / 3 /\) is a good compromise reflecting dynamic properties of the speech signals and realizing the phonemeness principle in the recognition. Let us insert in the hierarchic model being dealt in the previous section an additional level - the level of the diphones that takes an intermediate place between the level of the microphonemes and the level of the words. The diphonic word transcriptions are evidently defined by their phonetic transcriptions in a unique manner. The obtained six-level speech recognition and semantic interpretation system is realized the phoneme-by-phoneme recognition principle more evidently.

ZERO IEVEL OF THE HIERARCHY - MULTIDIMENSIONAL (VECTOR) QUANTIZATION

The constructivity (C5) of the HCDP-method is in using the principle of the vector quantization of the speech signals, i.e. in inserting the zero-level hierarchic patterns where the observed sequences \(X_{1}=\left(x_{1}\right.\), \(x_{2}, \ldots, x_{1}, \ldots, x_{1}\) ) from the vectors-elements \(x_{j}\) are replaced by the sequences \(I_{1}=\left(j_{1}^{0}\right.\), \(j_{2}^{0}, \ldots, j_{1}^{0}, \ldots, j_{1}^{0}\) ) from vectors-scalars \(j_{i}^{0}=\) \(=j^{\circ}\left(x_{i}\right)\) : each observed element-vector \(x_{i}\) is replaced by a number of a domain \(j_{i}^{0}=\) \(=j^{\circ}\left(x_{i}\right)\) to which the observed element \(x_{i}\) belongs in the multidimensional space of the signals \(x, j^{\circ} \in J^{0}\), where \(J^{\circ}\) is the alphabet of the zero-level patterns. The introduction of the zero-level patterns allows to go over from an investigation of the relationships in the vector sequences to the investigation of the relationships in the sequences of the scalars. Now one ought to substitute the distributions \(p\left(I_{m n} / j^{1}\right), j^{1}\left(J^{1}\right.\), where \(I_{m n}=\left(j_{m+1}^{o}, j_{m+2}^{o}, \ldots\right.\) ,\(f_{n}^{0}\) ) for the distributions \(p\left(X_{m n} / j^{1}\right)\) in the formulas (1)-(5). Then in line with the principle C4 one should point out the cons-
tructive principles of specifying the distribitions \(p\left(I_{m n} / j^{1}\right)\) for the allowable values of \(n-m\). The first group is the methods based on a tabular specification of the distributions \(p\left(I_{m n} / j^{1}\right)\), on an effective storing these distributions in the networks, or simply on storing the encountered values \(I_{m n}\) under the condition of the pattern \(j^{1}\left(f J^{1}\right.\). In the second group there are the methods based on an approximation of the distributions \(p\left(I_{m n} / j^{1}\right)\) with help of simple expressions and on usage of the formulas that are analogous with (5). One example:
\(p\left(I_{m n} / j^{1}\right)=\prod_{i=m+1}^{n} p\left(j_{i}^{0} / j^{1}\right)\) or \(G\left(I_{m n}, j^{1}\right)=\) \(=\sum_{i=m+1}^{n} \ln p\left(j_{i}^{0} / j^{1}\right) \cdot \begin{aligned} & \text { Here the distributiona } \\ & p\left(I_{m n} / j^{1}\right) \text { are specified } \\ & \text { by the tables of }\left|J^{\prime}\right|\end{aligned}\)
\(\left|J^{1}\right|\) numbers \(p\left(j^{0} / j^{1}\right)\).

LEARNING TO RECOGNITION AND MULTI-SPEAKERNESS

The necessary knowledge base - such a priori data as the pattern hierarchy, subject field, syntax, semantics, vocabulary, alphabets and transcriptions of the upper-level patterns - is prepared beforehand by a creator of the speech signal recognition systems. The remained undefined data (the alphabets of the lower-level patterns, the corresponding transcriptions of the lowerlevel patterns, the distributions \(p\left(X_{m n} / j^{1}\right)\) or \(p\left(I_{m n} / j^{1}\right)\) for all first-level hierarchic patterns) are computed in a learning-to-recognition mode from a multi-speaker learning set.
References
/1/ T.K.Vintsiuk, CPD-methodes de reconnaissance et d'interpretation de la parole,
"Le Symposium Sovietico-Francais sur "Le Dialogue Acoustique de 1 'Homme avec la Machine", Moscou, 1984, p. 38-41.
/2/ T.K.Vintsiuk, Speech recognition and semantic interpretation, "Kibernetika", 1982, No.5, p. 101 - 111 (in Russian). /3/ T.K.Vintsiuk, Analysis, recognition and interpretation of speech signals, Kiev, "Naukova Dumka", 1987, 280 p. (in Russian).

\section*{THE LIMITS OF SEGMENTAL DESCRIPTION}

\section*{FRANCIS NOLAN}

Department of Linguistics
Cambridge University
Cambridge CB3 9DA, UK

\begin{abstract}
Evidence is discussed which perturbs the segmental, categorial foundation of descriptive phonetics. EPG studies showed that in cases which would be treated in auditory phonetic analysis and in phonological description as place assimilation, there is often a residual gesture towards the 'underlying' segment. Such results underline that the performance of segmental contrasts is neither discretely segmental in time, nor categorial in the sense of involving an inventory of discretely different elements. Segmentalised phonetic description is further challenged by instrumental evidence that neutralisation may be phonetically incomplete; and that segmental contrast may be cued over domains as large as the stress foot. Phonetics needs a more explicit statement of the relation of segments to articulation and to perception.
\end{abstract}

\section*{INTRODUCTION}

Throughout the history of modern phonetics the phone-sized segment has been crucial. True, other elements such as syllables and features have periodically competed for attention; but the centrality of the phone is such that even these alternative elements are often talked of as combinations of, or decompositions of, phones.

The phone-sized segment remains at the heart of phonetic description despite decades of instrumental research into articulation and acoustics demonstrating beyond doubt that discrete phones do not exist in a straightforward way in the speech event, at least as superficially observable. An x-ray film of speech, or a dynamic palatographic record, shows gestures for different segments overlapping and blending. And from the earliest speech synthesis it has been known, for instance, that the perceptual cues to a consonant are distributed at least over the adjacent vowels.

But the survival of the phone is not hard to explain. It is the basis of our only extensive model of general phonetic description, as embodied for instance in the alphabet of the International Phonetic Association. This in turn reflects the fact that phone- or phoneme-sized units provide the most generally applicable and revealing descriptions of the phonologies of languages.

Thus the phonetic sciences have proceeded in a somewhat schizophrenic state of mind, knowing that phones aren't really there, but at the same time they have to be there. The hope is generally that at some stage the relationship between segmentalised descriptions and the continuum of speech performance will become clear and well specified.

This paper draws together a number of cases where it seems that the tension between the discretely segmental description and the observable speech event is high enough to make the resolution of their relationship a priority.

\section*{DISCRETENESS ON TWO AXES}

The traditional phone-based model of phonetic description implies discreteness on two axes.

Firstly, the phone symbols from left to right in a transcription imply a temporal sequence of discrete phonetic events. The strongest interpretation of this, with for instance all acoustic cues to a segment ending simultaneously and abruptly at a boundary with a following segment, is clearly falsified even by casual observation of spectrograms. Perhaps the weakest interpretation is one which allows overlapping in the realisation of phones, but still expects their implied sequencing to be respected in that the realisation of phone \(n\) will not extend later in time than that of phone \(n+1\) nor earlier than that of phone \(n-1\) (see Fig.1). For instance, if in
the utterances [ski] and [sku] the friction of the [s] contains from its onset cues to the velar, and to the tonguetip configuration of the vowel, the
implied sequencing has been respected. If however the velar or is not cued until late in the friction, whilst the vowel configuration is cued from the start, the implied sequencing has been violated
(because cues to segment 3 begin before (because cues to segment 3 begin before
cues to segment 2). The issue of sequencing' has probably not been addressed in quite this form in existing work on coarticulation.
Secondly, the phone symbols imply selection of phonetic events from a paradigm of is either present in an utterance or it is not, and if it is, it is wholeheartedly [d] and not something which vacillates between being a [d] and being a b]. Speech performance is thus implied to CONNECTED SPEE

It is reasonable to expect that phone segmental phonetic description would be under greatest stress with fluent connected speech. Carefully produced
citation forms yield maximal phonological contrast, and come nearest to exhibiting a imple relationship between segmental rep resentations and the physical event. In connected speech the explicitness of the realisation of phonological contrasts may assimilation and deletion. These various reductions in explicitness have been termed connected speech processes (e.g. Barry 1985).
Linguistic phonetics has, perforce, described connected speech processes (CSPs) deleted, or changes into another phone which, in the case of assimilation, more losely matches an adjacent phone in on or more phonetic dimension). It is un change implied by this type of description reflects the facts of speech performance (production, or perception) since, as pointed out above, a phone-segmental repness sequentially and paradigmatically
o find out if assimilation involves a in production we can with forms which underlyingly contain the segment potentially created by the assimilation. For instance, when a speaker assimilates the place of articulation of the that stop in road to the following velar in the road \(\frac{\text { collapsed, is the }}{\text { then }}\) phonetically identical in every respect to the realisation of the rogue collapsed?

This question has recently begun to be studied using electropalatography (EPG). For instance, Barry (1985) shows that
where a word-final alveolar precedes a where a word-final alveolar precedes a
word-initial velar there are three possibilities (see Fig. 2). The EPG display may show complete alveolar closure (no assimilation); it may be identical to the display for a matched utterance with an underlying velar word-finaliy (complete tokens it shows that no closure is completed across the alveolar ridge, but nevertheless the sides of the tongue make contact far forward along the sides of the palate in a 'residual' gesture towards the occurrence of these types is influenced, though not directly determined, by speech rate.
The existence of partially assimilated forms is supported in a similar experiment by Kerswill (1985). The gradual nature of with the paradigmatic discreteness of phone based representations. In principle, articulation could be categorial in that a speaker either made a gesture sufficient to create a given configuration of the vocal tract, or did not make it. Instead, that arme appears are allowed to be present, but inadequate (from the point of view of the phonetic target, and probably from that of perception - as discussed later). Note that it is not simply the case that a gesture is being curtailed a speaker can speak fast but with relatively few reductions when asked to speak 'carefully'.
NEUTRALISATION
It appears that it is not only connected speech processes which put phone-segmental descriptions under strain. Recent instrumental work has suggested that in many long-accepted instances of phonologital traditional view of neutralisation, some phonetic realisation of the underlying (morpho-) phonological contrast.
Thus it has been argued that the underlying word-final voicing contrast is reflected in small, but measurable phonetic differences in languages where on the surface, such as German (Mitleb 1981. Charles-Luce 1985), Russian (Chen 1985). Polish (Slowiaczek and. CharlesLuce 1984). The dimensions of the realisation include the duration of the vowel preceding the stop, the duration of the stop, and the way in which these durations are affected by the class of sound at such
beginning of a following word. Such
evidence is not uncontroversial le.g. Iverson and Fourakis 1984), but may at that neutralisation in these languages is incomplete, rather in the way that the partial. To the extent that the residue of the vowel, sequential discreteness of segment is violated, rather in the way argued by unfeasible condition on the relationship between phonemic and phonetic representa tions. It has recently been suggested however, that such violations may be mor extensive than implied by chomsky's discussion of adjacent serican listeners can differentiate potentially neutralised pairs of the writer-rider type, and that they do so on the basis of 'cues other than preceding vowel duration or the acoustic properties of the flap properties cues incluce overall and global dif ferences in phonetic quality - e.g. that rider is more open mouthed in its articulation than writer. Kelly and Loca (1986) suggest, too, that the spectral cues to \(/ 1 /\) versus / \(r /\) in English extend usually considered - perhaps as extensive as the stress foot.

PRODUCTION, PERCEPTION, AND PHONETICS
Might it be the case that phenomena which hit the limits of segmental description are of no interest to phonetics because no are not perceptible, and therefore their perceptual status forces ansideration of one of the

The ambiguity is whether a transcription is a record of what is said, or what is heard. As long as these coincide, the instance, is unobtrusive. speakers reliably produced a measurable difference in Rad-Rat but neither native peakers nor phoneticians could perceive it, what would the correct phonetic trans-

The evidence as yet is inconclusive. Port and \(O\) Dell (1985) report, for German, \(59 \%\) neutral identification of compared with 50\% as chance. Experiments are proceeding in Cambridge to test whether listeners are articulations of partial assimilations. And in a case of a phonological merger in progress, Costa and Mattingley (1981) show
that subjects exibit a residual vowel duration difference in New England cod versus card, but are unable to exploit it perceptually.

On the whole it seems probable that at least some cases will emerge where reliable production differences realising phonological contrasts are not perceived. The following table sets out some of the logical possibilities. In the three
columns or columns + or istinction is (A) articulatorily realised by a speaker, (N) perceived by a native speaker, and ( P ) perceived by, a welltrained phonetician in 'analytic' mode.
(a)
(b)
(c)
(d)
(e)
(a) represents the unproblematic ideal.
b) the native speaker and listener are coping fine with the distinction, (c) the native listener hears a dissenction within a view such as that of Chomsky and Halle (1968) where the phonetic percept is partially determined by higher level linguistic knowledge. (d) native users produce a distinction without reliable perceptio, salient enough for phoneticians to identify; some 'merger in progress' cases appear to fit here.
e) in other cases the measured effect may e) in other cases the measured
itherto it has been convenient to regard a phonetic representation as a linguistic construct, independent of articulatory and perceptual domains, but with definable (if as yet undefined) and equivalent revidence \(f\) a lack of congruence between what a speaker produces and what he perceives may force a reappraisal of precisely what a phonetic representation for.

CONCLUSION
Phonetic description has revolved around the phone-sized segment. This construct is ssentially discr

Sequential discreteness has long been recognised not to characterise any aspect (acoustic, articulatory) of the speech signal. The ques are how extensive the influence of a segment is in time; and,
perhaps, as summarised in Fig. 1, whether even proper sequencing is preserved in the speech signal.

Do speakers behave as if segments represent categorial choices? Apparently not; in environments with the potential for place of articulation assimilation a gradation of assimilation occurs.

Categories may be a function of hearing, rather than speaking. The continuum of behaviour from no place assimilation through partial to complete assimilation may turn out to yield a categorial perceptual boundary somewhere in the 'partial' region. But on the other hand it is possible that no perceptual boundary will emerge because, as with the cod card case, listeners can't exploit the acoustic details.

A consideration of the limits of segmental description, then, inevitably leads to consideration of the status of the categories which phone-segments imply, and of the representations which they comprise. If the disparity between production and perception which is hinted at by work cited here is confirmed, the general conception of phonetic analysis will have to be radically revised and its relation to aspects of speech performance made explicit.

\section*{REFERENCES}

BARRY, M. 1985 A palatographic study of connected speech processes. Cambridge Papers in Phonetics \(\underline{E}\) Exp'l Linguistics 4. CHARLES-LUCE, J. 1985 Word-final devoicing in German: effects of phonetic and sentential contexts. J.Phon. 13, 309-24. CHEN, M. 1970 Vowel length variation as a function of the consonantal environment. Phonetica 22, 129-59.
zHOMSKY, N. 1964 Current issues in linguistic theory. In: J.A. Fodor \& J.J. Katz (eds), The Structure of Language. COSTA, P.J. \& MATTINGLY, I.G. 1981 Production and perception of phonetic contrast during phonetic change. Status Rep. on Sp. Res. SR-67/68, 191-6. Haskins Labs.
DINNSEN, D.A. \& CHARLES-LUCE, J. 1984 Phonological neutralisation, phonetic implementation and individual differences. J. Phon. 12, 49-60.

FOURAKIS, M. \& IVERSON, G.K. 1984 on the 'incomplete neutralization' of German final obstruents. Phonetica 41, 140-9. KELLEY, J. \& LOCAL, J.K. 1986 Long-domain resonance patterns in English. To appear in IEE Proceedings of Conference on Speech Input/Output, London.
KERSWILL, P.E. 1985 A sociophonetic study of CSPs in Cambridge English: an outline and some results. Cambridge Papers in Phonetics \& Exp'l Linguistics 4.

PORT, R.F. \& O'DELL, M.L. 1985 Neutralization of syllable-final voicing in German. J.Phon. 13, 455-71.
SLOWIACZER, L.M. \& DINNSEN, D.A. 1985 On the neutralizing status of Polish wordfinal devoicing. J.Phon. 13, 325-41. SCOTT, D.R. 1984 More on the /t/:/d/ distinction in American alveolar flaps. JASA 75 (Suppl. 1), S66.

(b)

(c)


Fig 1 (a) discrete phones, as not found in the speech event; (b) implied sequence of phones in [sku] preserved; and (c) violated, since cues to the vowel precede those to the stop.
8888888
\(880::: 8\)
\(::::: 8\)
\(80::: 8\)

(D)

(a)
(c)

Fig 2 EPG displays taken from (a) unassimilated alveolar; (b) alveolar completely assimilated to following velar; (c) alveolar partially assimilated to following velar, showing maximum 'residual' alveolar gesture.

\title{
SOME ASPECTS OF 21 SPOKEN BULGARIAN CONSONANTS PERCEPTION
}

\section*{RADKA KURLOVA}

\author{
Laboratory of Applied Linguistics \\ Institute for Foreign Students, 1111 Sofia, Bulgaria
}

\section*{ABSTRACT}

The perceptual organization of 21 spoken Bulgarian consonants and the distinctive features have been determined using similarity and dissimilarity data drawn from two perceptual experiments with 200 Bulgarian native speakers.

\section*{INTRODUCTION}

In the past decade research in speech perception has utilized information-transmissions, cognitive strain in short-term memory, linguistic, psychophysical, and reaction-time methods to gain insight into speech processing. In addition, there are many variants to the methods of measurement in psychophysics which include absolute judgement or direct estimation, scaling of paired comparisons, and triadic comparisons. An extensive review of many of these approaches can be found in singh /22/ and Dauhauer and Singh/6/. In studies investigating the constituents of the phonemes the common elements have been the articulatory and acoustic features of the input stimuli. In general, the distinctive features have been consistently retrieved. Collectively, these studies appear to have established their psychological reality and perceptual independence relative to the input stimuli \(/ 29,28,17,21 /\). It has been determined as well that a hierarchical structure exists within the phonological domain of distinctive features/25/. Utilizing some aspects of the above mentioned methods and on the basis of experimental results \(/ 2,3,1,5,18,19,20,26,27 /\) a model of the phoneme as theoretical construct was developed/14/. The phoneme is represented as a three-space unity in which the physical reality of the speech unit, the phonological construct of the phoneme, and the perceptual speech sound space of Subjects are described as sets of acoustic, distinctive, and psychological features, respectively. It is suggested that relations and correspondences exist among all types of features and spaces.

The acoustic features could be represented by one or more physical properties of the speech unit (segment) which are changeable in time. Sources of these changes could be several physiological and geometrical parameters, as well as some physical phenomena (the form and size of the vocal tract, "basis of articulation", the transition from one target configuration to the next). All processes attending articulation and coarticulation contribute to the variation of the acoustic features on the time-axis too. Our understanding of the acoustic feature character is very close to Stevens's view /25/. We assume that: 1.An auditory system could give a distinctive respon se not only to the sound itself, but also to each physical property of the sound and its change in time, according to the psycho physical laws. 2.There are many invariant acoustic properties(physical ones) associated with each acoustic feature. 3.The simul taneous appearance of some physical properties and their variations could cause changes in the perception of other physical properties (a high frequency signal of great intensity is perceived as a lower frequency signal). A support of the third assumption has been found out in an investigation of the Bulgarian vowels. For the acute vowels /i/ and /e/ the third formant F3 influences the first formant frequency \(F_{1} / 14 /\). The acoustic features can be measured objecively. They form an \(n\)-dimension physical space with its axes corresponding to the number of features. The allophones corresponding to the phoneme variants can be presented as a set of points in a fixed region of that space. The distinctive features characterize the phoneme as linguistic construct/9/. Each distinctive feature has its acoustic and psychological correlates. The type of the acoustic correlate depends on the phoneme in which the distinctive feature is realized. Up to some limits, the variations of the acoustic features (correlates) cause changes in the grade of the distinctive feature in the phoneme. In other words, the quality and variations of the physical properties of the acoustic correlates are transformed by the phonological system/15/ into an estimation of the
distinctive feature gradation. The degree of the distinctive features in phonemes which are found in different languages is different due to phonological system dist inctions.

The psychological features are charact space of the Subjects. These features have correlates both in physical and phonologic al spaces and are represented as orthogonal axes. Their number defines the space es significant of the phoneme classification. The "psychological phoneme" occupies well confined "psychological region"which is invariable with respect to the psychological axes even in case the coord The phonsystem is rotated or translated. The phon can be studied within the framework of the model. Relations among physical, distinct ive and psychological features of Bulgarian vowels have been found out. It has been established \(/ 4 /\) that the perceptual ional and the second formant frequency \(F_{2}\) is an acoustical correlate of the distinct ive feature grave-acute and the first psychological axis. As a result of another investigation/12,13/ the first formant frequency \(\mathrm{F}_{1}\) has been defined as an acoust compact-diffuse and of the second psychological axis ( \(\mathrm{r}=-0,97\) ). The analysis of experimental data \(17,8 /\) reveals that the perceptual space for whispered and sung whispered, and sung allophones of each vowel perceived were situated in a fixed region. The results support the hypothesis of the psychological reality of the phon eme (the "psychological phoneme \(h\) gave good grounds for considering the have good grounds for considering the able tool by which we describe our speech samples" and "a basic pragmatic function in speech"/11,p.59/but also as a cognitive structure with its own complex dimensions. Twenty-one Bulgarian consonants hav scaling technique/5/. The purpose of the present study is to determine the organiza tion of 21 spoken Bulgarian consonants and their features in the perceptual space.

METHOD
Subjects. Subjects were randomly select ed students from four classes of the Technichal School of Electronics in Sof ia( \(N=\)
\(=100\) ) and from four classes \((N=100)\) of the \(=100)\) and from four classes \((N=100)\) of the
Polytechnical School in Roman. All the stu dents were 16-18 years old Bulgarian native speakers.
210 Stimuli. A stimulus set consisted of 210 pairs of CV-syllables. In each syllable the Bulgarian consonants \(/ \mathrm{b} /, / \mathrm{v} /, / \mathrm{g} /\),
 were uttered with the vowel fal in the way
they were spelled in the Bulgarians alphabet. The pairs were recorded with a microphone feeding high-fidelity stereo tape re-
corder "Jupiter"-202. The stimuli were uttered at a confortable loudness level by a female Bulgarian native speaker born in \(N\) West Bulgaria.
pet \(\frac{\text { Procedure. Experiment } 1 \text {. The experimental }}{}\) was presented auditory to a hundred set was presented auditory to a hundred students from the Technical School of Elec similarity judgements for each consonant pair using a 7 -point scale whose categories were marked verbally by phrases (and by cor responding numbers running from 1 to 7 ) in the direction of increasing similarity. Th
scale was anchored on the left with the phrase "Not at all similar" (number 1) and on the right with the phrase"Very similar" (number 7). The Subjects were instructed to write down on the answer sheet their assess ments of similarity between the consonants Experiment II. The same experimental set was presented auditory to a hundred students from the Polytechnical School in the manner described above. Only the scale was anchored with the phrase "Not at all different on he left (number 1) and "Very different" on the right
Two symmetric matrices (of similarity Table la and of dissimilarity - Table 1b,respecively) were obtained as a result of the two experiments. The matrices were analyzed stering scheme. The hierarchical clustering tree in Fig. 1 proceeds from the analysis of the similarity matrix. The branches of the tree differ in lenght as contrasted with the common hierarchical clustering tree


Table 1a. Matrix of Similarity for 21 Bulgarian Consonants
/Scores run from 1 (lowest similarity) to 7 (highest similarity)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\mathrm{1b}^{1 \mathrm{a}}\) & b & p & \(v\) & f & g & k & d & t & 3 & / & z & s & dz & ts \\
\hline b & & 5,25 & 3,96 & 3,53 & 3,55 & 2,99 & 4,49 & 3,92 & 2,57 & 2,55 & 2,51 & 1,78 & 2,89 & 2,61 \\
\hline p & 3,27 & & 3,59 & 4,20 & 3,26 & 3,02 & 3,48 & 3,71 & 2,17 & 3,31 & 2,09 & 2,07 & 2,24 & 2,81 \\
\hline \(v\) & 4,75 & 4,70 & & 5,72 & 2,79 & 2,26 & 3,12 & 2,56 & 2,26 & 2,76 & 2,46 & 2,51 & 2,47 & 2,27 \\
\hline f & 4,39 & 4,26 & 3,11 & & 3,21 & 2,85 & 2,91 & 3,65 & 2,67 & 4,14 & 2,76 & 3,63 & 3,01 & 3,56 \\
\hline g & 4,48 & 4,65 & 4,87 & 4,47 & & 5,89 & 3,48 & 3,38 & 2,86 & 1,95 & 2,64 & 2,49 & 3,17 & 2,63 \\
\hline k & 5,29 & 4,91 & 5,47 & 5,14 & 3,39 & & 3,11 & 3,18 & 2,15 & 2,73 & 2,22 & 2,65 & 2,02 & 2,36 \\
\hline d & 4,59 & 4,58 & 4,78 & 4,81 & 4,42 & 5,33 & & 5,17 & 2,80 & 2,24 & 3,42 & 2,57 & 4,36 & 2,66 \\
\hline \(t\) & 4,29 & 4,26 & 5,14 & 4,85 & 5,76 & 5,08 & 3,34 & & 2,98 & 3,69 & 2,40 & 3,40 & 3,34 & 4,30 \\
\hline 3 & 5,29 & 5,56 & 5,58 & 5,07 & 5,27 & 5,33 & 4,85 & 5,43 & & 5,97 & 4,75 & 3,33 & 4,36 & 3,37 \\
\hline 1 & 5,23 & 4,64 & 5,15 & 4,17 & 5,26 & 5,09 & 5,00 & 4,06 & 3,12 & & 3,74 & 5,03 & 3,33 & 3,76 \\
\hline z & 5,10 & 5,22 & 5,45 & 5,35 & 5,11 & 5,26 & 4,60 & 5,43 & 3,45 & 4,29 & & 5,76 & 5,45 & 4,53 \\
\hline s & 5,63 & 5,31 & 5,24 & 4,77 & 5,26 & 5,28 & 5,06 & 4,87 & 4,73 & 3,60 & 3,02 & & 4,95 & 5,32 \\
\hline dz & 4,95 & 4,90 & 5,42 & 5,26 & 4,86 & 5,38 & 4, 54 & 4,92 & 3,54 & 4,68 & 3,90 & 3,86 & & 5,92 \\
\hline t & 5,65 & 5,25 & 5,42 & 4,83 & 5,37 & 5,41 & 5,22 & 4,43 & 4,63 & 4,38 & 3,93 & 3,19 & 2,98 & \\
\hline d & 4,82 & 5,36 & 5,47 & 4,85 & 4,90 & 5,58 & 4,48 & 4,93 & 3,54 & 4,99 & 3,80 & 4,91 & 3,47 & 4,09 \\
\hline t & 5,42 & 5,27 & 5,48 & 4,97 & 5,14 & 4,94 & 5,01 & 4,79 & 4, 57 & 3,57 & 4,67 & 4,80 & 4,07 & 3,96 \\
\hline h & 5 & 4 & 4,65 & 3,52 & 4,71 & 4,27 & 5,05 & 4,03 & 5,17 & 3,79 & 4,92 & 4,60 & 5,16 & 4,92 \\
\hline m & 4,99 & 4,88 & 4,91 & 5,75 & 5,43 & 5,18 & 5,32 & 5,45 & 5,83 & 5,02 & 5,61 & 5,28 & 5,51 & 5,91 \\
\hline n & 4,86 & 4,64 & 4,99 & 5,04 & 5,07 & 5,04 & 4,91 & 4,85 & 5,46 & 5,05 & 5,52 & 5,35 & 5,33 & 5,61 \\
\hline 1 & 4,75 & 5,06 & 5,04 & 5,16 & 5,26 & 5,20 & 5,39 & 5,25 & 5,48 & 5,20 & 5,38 & 5,63 & 5,67 & 5,69 \\
\hline r & 5,72 & 5,57 & 5,35 & 5,15 & 5,57 & 5,60 & 5,93 & 5,61 & 5,68 & 5,23 & 5,51 & 5,54 & 5,72 & 5,57 \\
\hline \multicolumn{15}{|c|}{\begin{tabular}{l}
Table 1b. Matrix of Dissimilarity for 21 Bulgarian Consonants \\
/Scores run from 1 (lowest difference) to 7 (highest difference)/
\end{tabular}} \\
\hline
\end{tabular} The 21 Bulgarian consonants are classified in six clusters /Fig. 1) which are equivahierarchical tree in Fig. 2 is an upshot of the dissimilarity matrix analysis. The bran ches are represented by both the correlati-
 \(\stackrel{1 \mathrm{~d}, \mathrm{t} /, / \mathrm{b}, \mathrm{p} / \text { and the groups } / \mathrm{n}, \mathrm{m} / . / 1 / . / \mathrm{r} / \mathrm{n}}{\frac{n}{m}}\)
 between Bulgarian consonants as
hierarchical clustering scheme

In this section we relate the present results to the representation of consonants in terms of clusters and trees, and the con cepts of family resemblance and prototypica lity有 Table 2.Characteristics of Bulgarian CIass \(\begin{gathered}\text { Family } \\ \text { resemb. R Prototypicality P }\end{gathered}\)
\begin{tabular}{|c|c|c|}
\hline 1 & 2,22 & \\
\hline II & 3,44 & 2,38n, \(2,36 \mathrm{~m}, 2,13 \mathrm{l}\) \\
\hline III & 3,90 & 3,25f,3,25k,3,12k,3,112,2,87v \\
\hline IV & 4,34 & 3,41b, 3,28d, \(3,20 \mathrm{t}, 3,11 \mathrm{p}\) \\
\hline V & 5,08 & 3,89ر, \(3,87 d \mathrm{dg}^{3}, 3,813,3,66 t f\) \\
\hline VI & 5,32 & 4,08dz,4,01s,4,94ts, \(4,93 z\) \\
\hline
\end{tabular}
conducted according to \(/ 23 /\) were between the classes and features or properties of the objects belonging to the class. ties of the objects belonging a direct link between the clustering approach to the representation of proximity data and the contrast model. The feature tree can be interpreted as a hierarchical clustering scheme
\begin{tabular}{llllllll}
\hline \multicolumn{7}{c}{ Table } & (continued) \\
\hline d & t & h & m & n & 1 & r \\
\hline 2,78 & 2,50 & 2,70 & 2,90 & 2,70 & 2,61 & 1,77 \\
\hline 1,95 & 2,66 & 3,58 & 3,08 & 2,87 & 2,67 & 2,20 \\
\hline 2,20 & 2,28 & 3,23 & 2,72 & 2,84 & 2,91 & 2,23 \\
\hline 2,67 & 3,14 & 4,81 & 1,85 & 2,43 & 2,80 & 2,59 \\
\hline 3,12 & 2,85 & 3,64 & 2,31 & 2,94 & 2,20 & 2,14 \\
\hline 2,26 & 3,05 & 4,58 & 2,51 & 2,94 & 2,57 & 2,17 \\
\hline 3,79 & 2,72 & 2,81 & 2,31 & 3,17 & 2,19 & 2,05 \\
\hline 3,46 & 3,84 & 4,10 & 2,67 & 2,48 & 2,29 & 2,50 \\
\hline 5,33 & 3,93 & 3,09 & 2,20 & 2,16 & 1,90 & 2,01 \\
\hline 4,53 & 5,07 & 4,42 & 2,35 & 2,54 & 2,38 & 2,33 \\
\hline 4,73 & 3,01 & 2,96 & 2,04 & 2,37 & 2,16 & 2,09 \\
\hline 3,35 & 4,95 & 3,82 & 2,28 & 2,22 & 2,30 & 2,23 \\
\hline 5,32 & 4,58 & 2,91 & 2,02 & 2,58 & 1,70 & 1,87 \\
\hline 4,61 & 4,55 & 3,57 & 1,88 & 2,41 & 1,71 & 2,32 \\
\hline & 5,64 & 2,71 & 2,09 & 2,24 & 1,86 & 2,08 \\
\hline 3,29 & & 3,26 & 2,12 & 2,42 & 1,79 & 2,10 \\
\hline 4,87 & 4,63 & & 2,04 & 2,83 & 1,80 & 2,71 \\
\hline 5,39 & 5,72 & 5,39 & & 3,91 & 3,17 & 2,29 \\
\hline 5,16 & 5,20 & 4,92 & 4,25 & & 3,24 & 2,21 \\
\hline 5,46 & 5,37 & 5,47 & 5,00 & 4,83 & 2,44 \\
\hline 5,20 & 5,42 & 5,32 & 5,73 & 5,26 & 5,40 & \\
\hline
\end{tabular}
where each arc lenght represents the weight of the cluster consisting of all objects that follow from that arc. It is known that similarity is a relation of proximity that holds between two objects or concepts, prototypicality ( P ) is a relation between an object (concept) and a class, family resemblance (R) is a network of similarity relations that link the various members of the class. Clusters form so as to maximize similarity of objects within the class and dissimilarity of objects from different classes, therefore the class with higher fa mily resemblance separates earlier in clust ering. Table 2 reflects the measures of family resemblance of the consonant classes, and the prototypicality of the class members. The relation between family resemblan ce and each cluster is represented graphically in Fig.1. The arc lenght of the clusters is inverse to \(R\) and shows that the class with the highest \(R\) forms first. The correlative pair including the class member with the highest prototypicality attracts the nonpaired members (the pair/f,v/ attracts \(/ \mathrm{h} /\) ). The order of the correlative pairs separation from the tree stem (Fig.2) is closely related to the pair similarity and the difference ( \(S-D\) ) between similarity and dissimilarity. The correlation between pair similarities and differences ( \(S-D\) ) is \(-0,94\) There is no correlation between pair similarities and dissimilarities ( \(r=-0,50\) ),
and between pair dissimilarities and differences ( \(S-D\) ) ( \(\mathbf{r}=076\) ). These findings imply that the salience of the feature changes in the pair so that difference (S-D) and similarity remain in linear relation.

The organization of the 21 Bulgarian consonants in the perceptual space can be well interpreted in terms of the proposed phoneme model. In support we would like on\(1 y\) to mention that there are relations among psychological axes, family resemblance, features, and physical properties of the consonants, and that time is the link connecting difference (S-D), order of pairs separation, and the distinctive feature of voicing.

\section*{REFERENCES}
/1/Бондарко Л.В.,"Слоговая структура речи и диФ.пр.Фонем", АВт. докт.дис., Л., 1969.
/2/Chistovich L.A.,"Auditory Proc.of Sp" Proceedings of the \(9-\) th ICPhS, vol.1, Cop.'79.
/3/Chistovich L.A,Ogorodnikova E.A."Temp. Proc. of Spectra in Vowel Perception", Speech Communication, v.1,No. 1, 1982 .
/4/Gerganov E.et al'!MDSCAL of 21 Bu1.Consonants", 2ndNat. Conf."Acoustics'75", 1975.
/5/Gerganov E.et al."A Model for Percept. of Sp.Sounds,Nat.Conf."Acoustics'75",1975. /6/Dauhauer J.and Singh S.,'MDSp. Percept. by the Hear.Impaired:A Treat. on DF, NY, 1975. /7/Gerganov E.and Kurlova R.,"Perc.of Bul. Vowels Sung with Diff.Fo'YYearbook of Inst. for Foreign Stud.,v.1, 1983.
/8/Gerganov E. and Kurlova R., MDSCAL of Bul.Vowels,Yearbook of IFS,v.2, 1983. " /9/Jakobson R.,Fant G., and Halle M. ",Pre1. of Sp.Analysis':Cambr.,MIT Press,1963. \(/ 10 / J o h n s o n ~ S . C . ; H i e r a r c h i c a 1 ~ C l u s t e r i n g ~\) Schemes','Psychometrica, 32,1967,241-254. /11/Kent R.D."The Segm.Organ. of Sp."in: The Prod.of Sp. (ed.byP.F.MacNeilage), NY,'83. /12/Kurlova R. YBul.Vowel Recogn."Intern. Conf."Robcon-2", Varna, 1983.
/13/Kurlova R.,"Phys.Space of Bul.Vowe1s", Yearbook of IFS, v.3,1985.
/14/Кзрлова Р.,"Експер.Фонет.и перцепт. изсл.на бълг.гл.", Авт.кандид. дис., С. , 1985.
/15/Kurlova R.,"Transf.of Bul.vowels", Yearbook of IFS, v.4,1986.
/16/Kurlova R.and Gerganov E.,"Appl. of Meth.of Princ. Comp. and HC1. Scheme, 12 th Europ. Meet. of Statisticians, Varna, 1979 .
/17/La Riviere C.et al., "The Concept.Rea1ity of Select. DF, JSHR,17,122-133.
/18/McNeil D.,and Linding K.,"The Percep. Real.of Phon., Syll., Words and Sent.,JVLVB, v.12,No.4,1973.
/19/Randy D.et al."Perceiv.V.in Isol.and Conson. Context,JASA, v.69,239-248,1981.
/20/Singh S.and Woods D.,"Precept.Str.of
12 An. Eng1.Vowels,JASA, v. 49, 1981.
/21/Singh S.et al.,"Percept.Str.of 22PreVoc.Engl.Consonants",JASA, v. 52, 1972.
/22/Singh S., Dist.F.:A Meas. of Conson. Percept.",Univ.Park Press, Baltimore, 1975. /23/Tversky A., "Features of Similarity", Psychol.Review,v,84,No,4,1977. Eng1.Cons.

\section*{ELECTRO-PALATOGRAPHIC STUDIES}

ON JAPANESE INTERVOCALIC /r/ AND /d/

\section*{MASAYUKI SAWASHIMA AND SHIGERU KIRITANI}

\author{
Research Institute of Logopedics and Phoniatrics, Faculty of Medicine, University of Tokyo, Tokyo, Japan
}

\begin{abstract}
Electro-palatographic studies on the tongue palate contact patterns have been conducted on Japanese / \(\mathrm{d} /\) and \(/ \mathrm{r} /\) in /VCV/ sequences in a carrier sentence. Subjects were 3 adults of Tokyo dialect. Complete stop closure at the anterior palate was seen for /d/ while many /r/ samples showed incomplete closure. Some of /r/samples showed the anterior contact separate from the contact at the lateral part of the palate. Time curves of the anterior contact for /r/ revealed smaller area and shorter time span than those for /d/.
\end{abstract}

\section*{INTRODUCTION}

\begin{abstract}
Japanese /d/ is a stop consonant with formation of closure at the back of teeth and/or the alveolar ridge, while it is generally said that Japanese / I / in intervocalic position is realized as a tap or a flap, with the tip of the tongue making one tap against the alveolar ridge. This stop-flap opposition implies that the palato-lingual contact is shorter in duration and also smaller in area for /r/ than for /d/.

In the field of experimental phonetics, use of the electro-palatography is considered to be one of the most powerful approaches for elucidating articulatory characteristics of the two sounds. Electro-palatographic finding of shorter duration and smaller area in articulatory contact has already been reported[1]. However, the data were quite limited and a more systematic study was needed.

In the present paper, results of our electro-palatographic study of tonguepalate contact patterns of Japanese intervocalic /d/ and /r/ in varying vowel contexts are presented.
\end{abstract}

\section*{EXPERTMENTAL PROCEDURES}

Three native Japanese speakers of the Tokyo dialect served as subjects. None of the subjects reported any speaking disabilities. Test words were meaningless
sequences of the form \(/ V_{1} C V_{2} V_{1} C V_{2} /\left(V_{1}=i\right.\), e, \(\left.a, 0, u ; V_{1}=e, a, o ; C=d, r\right)\). The test words were embedded in the carrier sentence /Sorewa \(\qquad\) desu/ (It is \(\qquad\) Each of the test sentences was repeated ten times, with a flat accent for the test word, at a comfortable speaking rate for the subject. Thus, 20 utterance samples were recorded for a given / \(\mathrm{V}_{1} \mathrm{CV}_{2} /\) sequence.

The artificial palates used in this study had 63 electrodes. Contact signals from the electrodes in the artificial palate were stored in a computer connected to a portable electro-palatograph unit at a rate of 64 frames/sec. When the subject read a test sentence and pushed the control button after each utterance, the data for a duration of one-second were stored in the computer. The speech signals were also sampled by the computer at a rate of 64 frames/sec after rectification and integration over a 16 msec time window. The stored data were reproduced and observed in slow motion on an oscilloscope. The plotting of the necessary contact patterns was printed out by a high-speed line printer.

\section*{RESULTS AND COMMENTS}

\section*{1. Maximum contact patterns}

For each of the utterance samples, successive palatographic frames indicating the time course of the articulatory tongue-palate contact for the pertinent consonant were obtained. The peak articulatory contact was identified as the frame showing the maximum contact (maximum contact pattern) in the frame series. Maximum contact patterns were collected for all the utterance samples. With these maximum contact patterns, we constructed a contact pattern which consisted of the electrodes showing contact in more than 10 (50\%) of the 20 repetitions, for each test word of each subject. This pattern was considered to be the average contact pattern for each test word in a given subject. The results are shown in Fig. 1.

Sawashima and Kiritani 2 In the figure, the patterns for \(/ d /\) and /r/ in the same vowel context are superimposed on the scheme of ed by the thick palate. The area demarcated by the thick while the shaded area indicates that for /r/.

The average patterns reveal that, for /d/ there is a complete stop closure at the anterior margin of the palate for all
of the vowel contexts in all three subjects. Also, there is little variation in the contact pattern among the different vowel contexts at the anterior part of the palate within each subject, while there is posterior part
The average patterns for /r/ generally show a smaller contact areas than those for \(/ \mathrm{d} /\). At the anterior part of the palate, there are many rompatterns which as defined by the number of on-electrodes in the maximum pattern for selected /d//r/pairs of the test words. It is seen that for all the subjects \(/ \mathrm{d}\)
greater contact area than frequency of the occurrence of complete closure for 20 tokens of selected /d/-/r/ pairs of the test words are summarized in table 2. It is noted that for all the subjects, most or more than hal of the /d/ patterns show more than half of the /r/patterns do not. The characteristic feature for Subj. 1 is that the contact at the anterior part shifts backward for \(/ r /\) as
compared to \(/ \mathrm{d} /\). This appears to occur Utterance
\begin{tabular}{c|cccc} 
Subject & \multicolumn{5}{c}{ ada/ara } & ede/ere & odo/oro & Average \\
\hline Subj. & 25 & 28 & 22 & 25 \\
Subj. & 16 & 20 & 17 & 18 \\
Subj. & 22 & 28 & 21 & 24 \\
& 17 & 20 & 16 & 18 \\
Average & 17 & 27 & 22 & 26 \\
& 24 & 28 & 22 & 26 \\
Table 1: The average number of on-elec- \\
& trodes in the maximum contact
\end{tabular} Table 1: The average number of on-elecpatterns for 20 tokens of se-
Utterance
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{3}{*}{Subj. 1} & \multicolumn{4}{|l|}{ada/ara ede/ere odo/oro Average} \\
\hline & 20 & 20 & 20 & 20 \\
\hline & 1 & 6 & 7 & 5 \\
\hline \multirow[t]{2}{*}{Subj. 2} & 13 & 13 & 13 & 3 \\
\hline & 6 & 1 & 4 & 4 \\
\hline \multirow[t]{2}{*}{Subj. 3} & 19 & 14 & 20 & 18 \\
\hline & 2 & 10 & 14 & 9 \\
\hline \multirow[t]{2}{*}{Average} & 17 & 16 & 18 & 7 \\
\hline & 3 & 6 & - & 6 \\
\hline Table 2: & \multicolumn{4}{|l|}{he frequency of occurrence of omplete closure for 20 tokens f selected dest words.} \\
\hline
\end{tabular} The frequency of occurrence of
complete closure for 20 tokens
of selected dest words.
only in the context of the back vowels for Subj. 2, while no such shift in the place of contact is observable for subjo. in the contact patterns for \(/ \mathrm{r} /\). Another feature of \(/ r /\) is that some of the \(/ r /\)-patterns show contact at the anterior part separate from the contact a the lateral part a specific tongue gesture for /r/ or not is an open question at this moment.


Sawashima and Kiritani 3 2. Time course of the tongue-palate contact As described above, there was a complete stop closure at the anterior part patterns. The duration of the complete closure ranged from 2 to 4 frames out of 64 frames/sec. Some of the/r/ patterns also showed this stop closure. The duration of the closure in these cases ranged
from 1 to 2 frames. This indicates that there is a difference in the time pattern, as well as the spatial pattern, of the tongue-palate contact between /d/ and /r/. We then determined the average number of on-electrodes at the anterior part of
the palate for 20 repetitions along the time course of each \(/ V_{1} C V_{2} /\) sequence, as
shown in fig. 2. In the figure, the ordinate of each graph indicates th number of on-electrodes and the abscissa the time axis. The time curve is demar-
cated by each frame of the palatogram, and the vertical line on the curve indicate the standard deviation. The dashed line indicates the contact for \(/ d /\) and the solid line that for \(/ \mathrm{r} /\)
It should be noted that the area of the contact, i, e, the number of onelectrodes, is larger for / \(/\) / than for \(/ \mathrm{r}\) / throughout the time curse for all of the subjects and for all of the test samples. Also, \(1 t\) is apparent that laf shows contact and in the transition of the contact area. Thus, the \(/ \mathrm{d} /\) and \(/ \mathrm{r} /\) curves of subj. 1 are clearly separated


Fig. 2-1: Time curve of the area of contact as defined by the number of es at the anterior palate for \(/ d /\) and \(/ r / r /\). a subj . Dashed line is for /d/, solid line for / /

Subject 3


Fig. 2-2: Time curve of the area of contact as defined by the number of on-electrodes at the anterior palate for \(/ d /\) and \(/ r /\) for Subj.3. Dashed line for \(/ \mathrm{d} /\), solid line for \(/ \mathrm{r} /\).
from each other for all of the vowel contexts. Some of the curves of Subj. 2 show that the peak values of contact for /d/ and/r/are comparable to each other. In these cases, however, the /r/ curves show a much steeper slope before and after the peaks than the /d/ curves, indicating a faster transition to and from the peak contact for /r/. The time curves of \(/ \mathrm{r} /\) for Subj. 3 present rather similar contours to those for / \(/\) /, the contacts for /r/ showing smaller values than those for \(/ \mathrm{d} /\). Thus, the distinction between \(/ d /\) and / \(/ r /\) appears to be less evident in Subj. 3 than in Subjs. 1 and 2, as far as the tongue-palate contact pattern is concerned.

\section*{SUMMARIES}

Electro-palatographic study was conducted on Japanese intervocalic \(/ d /\) and /r/. The results were summarizedas follows:
1) Maximum contact pattern revealed that the contact area was greater for / \(/ /\) than for \(/ \mathrm{r} /\). It was also noted that most of the /d/patterns showed complete closure at the anterior palate while many of the /r/ patterns did not.
2) Some of the /r/ patterns showed the anterior contact separate from the lateral contact along the teeth ridge, which was never seen in the /d/ patterns.
3) Time course of the anterior contact revealed a shorter time span of articulatory contact for \(/ \mathrm{r} /\) than for \(/ \mathrm{d} /\).
4) There appeared to be greater individual variation in the articulatory contact for \(/ r /\) than for /d/, which resulted in some individual variation in the difference between /d/ and /r/.

\section*{REFERENCES}
[1] Fujimura, O., Tatsumi, I. F. and Kagaya, R.: Computational processing of palatographic patterns. J. Phonetics, \(1 ; 47-54,1973\).

\section*{ACKNOWLEDGEMENT}

This study was supported in part by a Grant-in-Aid for Scientific Research (No. 59101003 ) from the Japanese Ministry of Education, Science and Culture.

\author{
Bereiob Spreobwissensobaft \\ Martin-Lutber-Universität \\ Halle, DDR 4020
}

\section*{ZUSAMMENFASSUNG}

Es wird Uber die Entwicklung eines in der Praxis verwendbaren, möglichst billigen und möglichst einfachen computergestutzten Verfabrens zur Rationalisierung sprechwissenscbaftlich-phoniatriscber Routineuntersuchungen bei Studienbewerbern berichtet. Die Aufstellung der Vergleichsnorm und die Durobfuhrung des Vergleichs werden diskutiert.

\section*{PROBLEMSTELLUNG}

In der DDR bewerben sich in jedem Jahr zebntausende von Abiturienten an den Universitäten und Hoobschulen mit dem Ziel, eine Ausbildung fur einen sprecbintensiven Beruf (z.B. als Lebrer, als Schauspieler, als Kindergärtnerin) zu absolFieren. Alle diese Bewerber milssen siob einer Taugliobkeitsprufung unterzieben, die durob eine "Gemeinsame Anweisung der Miniterien fur Volksbildung und Gesundbeitswesen zur Beurteilung der Taugliobkeit fur Berufe mit besonderer Stimm- und Spreobbelastung" aus dem Jabre 1974 geregelt wird. Nach dieser Abveisung sind folgende Untersuohungen durohzufubren: (1) Sorgfältige Anamneseerbebung zur Einsobätzung der Stimm- und Sprechleistung; (2) Erbebung des HNO-fachärztlioben Status, gegebenenfalis mit audiologischen und rönt genologisoben therprufungen;
(3) Ermittlung des Stimmstatus, d. b . des Stimmklanges, des Stimmeinsatzes, der Sprechstimmlage und der Steigerungsfäbigkeit, gegebenenfalls mit Hilfe der Stroboskopie und der Pneumographie;
(4) Ermittlung dess Sprechstatus, d.b. der Artikulation und des Sprecbablaufs.
Als untauglich mussen Bewerber unter anderem dann eingestuft werden, wenn sie Stimm- und Spreobstorungen baben, die einer Behandlung nioht oder aur sobwer augägglich sind.
Diese Routineuntersuchungen sind außerordentiloh arbeitsintensiv und zeitaufwendig, sie mussen dringend rationalisiert
werden, damit die Bebandlungskapazität der entsprechenden Einrichtungen nicht unzumutbar eingeschränkt wird. Unsere Arbeiten zielen darauf \(a b\), fur die Ermittlung des Stimm- und Sprecbstatus ein mögliobst einfacbes und möglichst billiges computergestutztes Verfabren zu entwikkeln, das es ermöglicht, einen Teil der Untersuchungen Hilfskraften zu uberantworten, obne daß die Qualität der Beurteilungen daduroh eingeschränkt wird.
Wir baben aus zwei Grunden mit Arbeiten zur objektiven Bewertung von Sigmatismen begonnen: 1. Sigmatismen machen nicht nur im Kindesalter den größten Teil aller Lautbildungsstörungen aus, sondern sie sind auch bei Erwaobsenen, wenigstens im deutsoben Spracbbereicb, als nabezu einzige funktionelle Stammelfebler weit verbreitet und werden von Kindera leicht imitiert. Studienbewerber mit auffälligem Sigmatismus sind desbalb fur ein Lebrerstudium nicht taugliob.
2. Die subjektiv-auditive Bewertung der /S/-Realisationen ist vom Horvermögen abbängig, das bekanntlich mit wachsendem Alter in dex Hơbe abnimmt, wodurob die Diskriminationsfäbigkeit fur korrekte bzw. unkorrekte /S/-Allopbone eingeschränkt. wird. Da die Zabl der Sigmatiker unter Lebrer- und Schauspielstudenten trote Taugliohkeitsuntersuobung sebr grob ist und möglioberwe ise anwäcbst (in manoben Statistiken der letzten zebn Jabre werden bis zu 35\% der Studenten eines Matrikels als Sigmatiker ausgewiesen), sind wir der Beeinträcbtigung des Hörvermögens und der Diskriminationsfäbigkeit gesondert naobgegangen. Mit einem von U. Hollmach entwickeiten Hooberequeneaudiometer wurden in drei verscbiedenen Altersgruppen Horsobwellenuntersuobungen durohgefubrt. Es bandelte siob (1) um ewöle Lebrerstudenten mit einem Durobsobnittsalter von 21,2, (2) um zwölf Sprecbwissenschaftler mit einem Durchschnittsalter von 31.7 und (3) um aobt Lebrkrafte fur Musik, alle Uber 50 Jabre alt mit einem Durobsobnittsalter von 53.9. Das Audiometer kan口 in der Frequenz stufenlos zwischen 20 Hz und 22 kHz eingestellt werden, die Intensitat
ist in 1-dB-Stufen regelbar. Die Umwertung der dB-Angaben in Pbonzablen und de Korrektur, die wegen der EigenireKopfbörers und des fur die Prifung eingesetzten kunstlichen obr erforderlich ar, wurden mit einem speziellen Programm durch den Kleincomputer KC \(85 / 3\) es VEB Mikroelektronik NWilbelm Pieok Mublbausen vorgenommen. Fur die Prifung tel der Schwellenintensitäten ( \(x\) ) und die jeweilige Standardabweiohung (s) seben abgerundet wie folgt aus:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline kHz & \[
\begin{aligned}
& \text { Gruppe } \\
& \bar{x}
\end{aligned}
\] & \[
1
\] & Gruppe \(\bar{x}\) & & Grupp \(\overline{\mathrm{x}}\) & 3
8 \\
\hline 0.4 & 6 & 4 & 7.8 & 4 & 3.8 & 6 \\
\hline 0.7 & 8 & 4 & 6.4 & 7 & 3.4 & 3 \\
\hline 1 & 4 & 4 & 4 & 6 & 1.5 & 3 \\
\hline 1.2 & 0.9 & 3 & 2.4 & 5 & 2.1 & 4 \\
\hline 1.5 & 4 & 7 & 6.2 & 5 & 4.9 & 6 \\
\hline 2 & 5.9 & 4 & 4.9 & 6 & 12 & 8 \\
\hline 2.5 & 6.7 & 5 & 7 & 8 & 13.8 & 11 \\
\hline 3 & 6.3 & 6 & 9 & 9 & 16.6 & 8 \\
\hline 4 & 5.6 & 9 & 8.8 & 7 & 19.3 & 12 \\
\hline 6.3 & 9.6 & 6 & 12.7 & 9 & 27.9 & 23 \\
\hline 7.6 & 5 & 6 & 10.9 & 10 & 38 & 66 \\
\hline 9.5 & 6.6 & 6 & 14.8 & 8 & 48 & 63 \\
\hline 10.8 & 9.2 & 5 & 12.3 & 14 & 51 & 64 \\
\hline 13 & 2 & 9 & 10.2 & 12 & 101 & 82 \\
\hline 16 & 16 & 11 & 48.8 & 81 & - & \\
\hline
\end{tabular}
erständlicherweise wurde fur die Gruppe er Studenten beim Mittel und bei den Exremwerten das beste Hörvermögen festge-位t sid ruppe zeigt die zweitbeste Mittelwert urve; die Extremwerte liegen weiter von ittelwert entfernt, als in der ersten Gruppe. Die starksten Ausfalle, besonders in derbeit zu beobacbten ist. Bis \(1,2 \mathrm{kHz}\) baben die älteren Probanden eine um urchsobnittlicb 4 dB niedrigere Hörsobwelle, als die beiden anderen Gruppen.
 ausgewiesene Varianz in diesem Bereiob fux den anderen Gruppen. Besonders bei den tudenten ist die Variang bei 1,5 und 4 kHz sebr groB. Eine Erklärung'bierfür tebt noch aus.

Der Hörsobwellenaudiometrie scbloß siob sofort obne Veranderung der Stellung de Kopfbörers ein Diskriminationstest mit

Satzpaaren an, in dem gegenubergestellte /S/-Allophone auf Geräuscbscbärfe, auf Geräuschfarbe, auf Abnliobke it der Geräus ob zu beurteilen waren. Um das Verbältnis wischen den diskreten, von einem compuergestutzten Analysator ausgegebenen Spektraldaten der einzelnen /S/-Allopbone and den ermittelten Hörscbwellenwerten be den die Differenz zwischen Hörschwellenwerten und Spektraldaten ermittelt. Die entstebenden Differenzkurven ermöglichen Aussagen uber die Wabrnebmungswabrsobeinlicbkeit fur die einzelnen/S/-Allophone. größer ist die wabrgenommene Lautstärke fur die einzelnen Frequenzen und desto böber die Wabrscheinliobkeit, daß die wabrgenommenen Frequenzbereiche signalgereobt identifiziert werden. Erwartungsgemäß ergab sich daß die Gruppe der Stu-
denten die Sigmatismen am ebesten erkannte und am besten unterschied, daß die mittlere Altersgruppe aucb eine Reibe von stumpfen S-Geräuschen als scharf beurteil te, daß diese sowie die letzte Gruppe den smatismus stridens a matischen Allophone nicht sicher untersobeiden konnten. Diese Aussage beziebt sich selbstverständlich nur auf die auditive Beurteilung. In der Diagnose der sprecbwissensohaftlichen oder phoniatriauf genommene Informationen genutzt. Trotzdem fordern diese Untersuchungsergebnisse daß die erfabrenen ailteren Kollegen, die in der Regel die fur die Tauglicakeitsuntersuchungen zustandigen Einrichtungen nur von Arbe it saufwand entiastet, sondern auch binsiontlioh der Beurteilung der /S/-Realisationen unterstutat werden mussen. Nach unserer Vorstellung kann das auf sebr ökonomisobe Weise mit einem entsprebend programmierten Kleinoomputer gesobe ben, der mit einem Analog-Digital-Umwandvon Testwörtern oder kurzen Sätzen eine objektive Bewertung der /S/-Allophone, aber z.B. auch der Vokalartikulation im Fremdsprachenunterriobt vornimmt. Der benutzte Kleincomputer KC 85/3 wird von uns sprechwissenschaftlich-phoniatrischen Praxis empfoblen, weil er vielfälig nutz bar ist und z.B. durch RAM-Erwe iterung und zusatzmodul mit Textverarbeitungsprogramm ierung der Anamnese un

AUFBAU DES SPEKTRALANALYSESYSTEMS Fur die Forscbungsarbeiten mußte zunäobst den, das es möglich macht, zusammenhängende naturliohe Außerungen mit einer be-
stimmten Mindestdauer, also "flieBend autsprache , zu untersuchen. Dieses System bestebt aus 4 Komponenten: einer
 licben Software
Mit der von U. Hollmach aufgebauten Filrequenzdiskrete Signale gerle Sprache in der Abstand der einzelnen Frequeazkompo benten eine Viertel Oktave beträgt. Die ilterbank umfabt 32 Kanale, die parallel gesohaltet sind und eined Frequenzgang älle werden durob einen Analog-Multiplexer (ANUX) nacbeinander durchgesobal tet, der das gleichgeriobtete Signal. eriell zum Ausgang fubrt. Die Integratufis ausgelegt; signale, die sich sobvell verändern (z.B. Sprache), kön it einem Zeitfenster von 6 ms erfaßt erden, fur quasi-konstante Signale (z.B. Stimmkiang) stebt ein Zeitfenster von 138 ms zur Verfugung. Wäbrend der AMUX an ignal abfragt würde an allen anderen Filterkanälen das Signal zeitlicb versetzt weiterbin integriert werden. Das ätte eine Verfälscbung der Signale zur olge. Durch den Einsatz eines Analogpeichers wird die Ungenauigkeit verbinrierte Filterausgangswert bis zur Abrage zur Verfugung. In der Zwischenzei kan an jedem Filter der zeitlich äquiralente Wert abgerufen werden.
Der Ausgang der Filterbank fubrt auf den Analog-Digital-Umwandler (ADU), mit des sen Hilfe die analogen Gleiobspannungsignale in digitale, fur den Computer ver on uns benutate ist ein Zusatzmodul M 010) fur den KC 85/3. Er besitzt ein uflosung von 10 bit, das entsprich 024 Stufen.
Der KC 85/3 ist ein 8-bit-Recbner; er laystrukturierung. Ein besonderer Voreil dieses Computers sind seine Erweierungsmöglicbkeiten. So kann selbstveren, und der RAM-Speicher kann bis zu 4 Mbyte aufgestockt werden.
ie Software wurde zur Hälfte in BASIC fur scbnelle Abläufe in Masobinenprache (0 880) gescbrieben. Das Programm st ein Grundprogramm fur die Spektraisierung und Auswertung gesproobener pracbe und kann fur jede spezielle Anerden Mittels Menuteobnik können die graphisoben Darstellungs- und Auswertungs arianten benutzerfreundich aufgelistet verden. Das Programm siebt eine farbige
sonagrapbiscbe Darstellung mit 12 Farbwerten fur die unterscbiedicioben Intensitatswerte vor. Im Gegensatz zu den klassi schen
dion ubersichtich als Sonagramm erscheinenden Abschnitt der gesproobenen Spracbe labt siob insbesondere das stimmlose /S/-Allophon leicht berausfinden. Die optiscbe Segmentierung erfolgt mit zwei Leuohtbalken. Aus den quenz-Intensitätsdiagramm als auch ein Intensitatszeitdiagramm aufgebaut werden. Fur die Beurteilung der /S/-Allopbone ist das Frequene-Intensitätsdiagramm vorteil-

REFERENZMUSTER UND VERGIEICH
Die objektive Bewertung beliebiger idiolektaler /S/-Allopbone gescbieat dur das der Norm des Aussprachestandards entspricbt. Als Norm wird bier die von den Spracbbenutzern als dialektfrei und orrekt beurteile Realisierungsvariante musters und der Vergleioh orientieren ich an den Prozessen der Spracberkennung 1/. Die Feststellung und Bescbreibung der Norm ist problematisch, so daß spezisuchungen angesetzt werden mußten. Mit iesen Untersucbungen wurde in Kommunikationsexperimenten die Wirkung der einzelnen/S/-Allophone bzw. Sigmaismen als subjektive Bewertung durob waren standard isierte Polaritätsprofile, it denen ublicberweise soziale Bezüge barakterisiert werden können. Die biserigen Ergebnisse besagen, daß bei Kommunikation uber Mikrofon (z.B. Rundeunk und Fernseben) bobere Anorderungen a stumpfes S -Geräusch als auffälig und törend abgelebnt wird. In der face-to-faoe-Kommunikation und vor allem im All tagsgespräch wird dagegen ein Sigmatisismatismus addentalis sehr viel eber oleriert; bier ist die Norm also weniger streng. Je nacb dem Berufsziel des Studienbewerbers wird man desbalb öglicherweise mit zwei Referenzmustern arbeiten mussen, einem iduster fur die inem zweiten Muster fur die liberaliierte Norm bei Lebrern und Scbauspieern. Das Referenzmuster entstebt, indem S/-Allophone von mebreren Spreobern ittelt werden. Die einzelnen Allophone atstammen untersobiediichen Pbonemverbindungen in unterscbiedlicben Äußerunen; jeder Sprecher wird durcb eine Exertengruppe auditiv und visuell auf die
pruft.
Bei der Diagnose baw. der Erbebung des Sprechstatus werden /S/-Allopbone aus restsätzen mit dem gespeioherten Referenzmuster nacb der Minimum-DistnazStrategie /2/ verglicben. Dieses statistiscbe Verfabren autzt die Beziebung zwischen dem Mittelwert der korrekten /S/-Realisationen und der durch die idiolektale Variation der Normsprecber entstebenden Streuung der Spektraldaten, wobei der Abstand zwiscben dem Jeweiligen Mittelwert und dem Streuungswert als die zulässige minimale Distanz bewertet wird. therschreiten die Spektraldaten der /S/-Realisation eines zu diagnostizierenden Sprecbers diese minimale Distanz, so wird diese /S/-Realisation zuruckgewiesen. In unserer Forschung mub also praktiscb die mögliche Unschärfe der /S/-Realisation bestimmt werden, die noob als korrekte Artikulation bewertet wird. Dabei ist ein Maß fur die Abaliobkeit aus den Distanzzablen zu ermitteln.
Es bestebt auoh die Möglichkeit, die Wörter brw. /S/-Allophone bereits in Sonagramm zu verrecbaen. Ein entspreobendes Programm bierzu existiert an der Sektion Informationstecbnik der TU Dresden. Hierbei werden mittels dynamischer Programmierung zwei Sonagramme zeitäquivalent ubereinander geschoben und dadurob vergleichbar. Diese Metbode erfordert jedoch einen boben Rechenaufwand.
Die Spektralanalyse mit Hilfe der Filterbank dient der Grundlagenforsobung und ist nicbt fir den Einsatz in der Praxis gedaobt. Auf der Grundlage der gewonnenen Ergebnisse wird ein System mit Fast-Fourier-Mransformation entwickelt, das ledigliob den Kleincomputer mit dem ADUZusatzmodul nutzt. Die Arbeit mit der Filterbank war jedooh unabdingbar, weil sie gegenuber der Fast-Fourier-Transformation zwei Vorteile bietet: (1) Spektralisierung mit geringem Reobenaufwand und kurzer Rechenzeit, (2) speioberplatzsparendes Zerlegen des Signals bis zu einer Frequenz von 18 kHz (bei 10 bit Auflösung). Bei 64 kbyte des Computers bat die Filterbank eine Grenzfrequenz mit einem Analysebereich \(70 n 1.2 \mathrm{~s}\), die bei 20 kHz liegt. Das Zeitfenster bietet einen Aussobnitt von 6 ms .
Das Spektralanalysesystem bat folgenden Aufbau:



\section*{LITERATUR}
/1/ Paul, V.: Modelle fur die Verarbeitung fließender Spraobe. Nachriobten/ Elektronik 37 (1987), 22-23
\(/ 2 /\) Berg, H.: Statistische Untersuobung an einem Spraoberkennungssystem. In: 20. Facbkolloquium Informationstecbaik. TU Dresden 1987, 94-98

\section*{BRIAN ANNAN}

Department of Linguistics
University of Zimbabwe
Box MP 167, Harare, ZIMBABWE

\section*{ABSTRACT}

An attempt is made here to illustrate a prosodic analysis of English ('allegro' style), showing that the initial consonants play the major role in determining the pronunciation of English. Some comments on the perception of 'allegro' speech are made which are for further investigation. An insight into the status of liquids in English is presented.

Prosodic analysis as a method of phonological analysis has been well exemplified, mainly througn Asian and African languages, but little has been written on European languages, see however \(/ 1,2 /\). The method is basically a top-down analysis which may be completely phonological or phonological explanation for grammatical features \(/ 2 /\). In an analysis of English I have attempted to show how prosodic analysis can make useful generalizations about phonology by starting with the Tone Group (Halliday \(/ 3 /\) ), the Foot (Abercrombie /4/), the Syllable and the Phonematic Unit. At all these levels abstractions are made called Prosodies and syllable and at the classification of liquids in English. The syllable under each foot consisting of a stressed syllable (plus one or more weak syllables). Please note that in this form of analysis there is no need for a level "Word", although alternative analyses may incorporate it - my approach is basically dealing with speech in an "Allegro" style. In allegro speech the vowels tend to be centralized and thereby lose much of their contrastive features and consonant articulations control to a greater extent intelligibility \(/ 5 /\). The inherent prosodies associated with the initial consonants of stressed syllables thus control the pronounciation of the whole foot. Let us now look at the prosodies of English consonants. Initial consonants in English may be divided into two classes based on phonation, namely
 and Aspirated [ptkfas \(f t f\) ]. . The so-called semi-vowels [ \(j, w, h\) ] are infact the prosodies associated with syllable structure. Voiced clusters are always Plosive + Continuant [dr-, g.l, ar, bl, br] ; Voiceless clusters involving plosives have a period of voiceless-
ness on release which is
realized by lack of voicing in the continuant, being the equivalent of aspiration in initial plosives. A three-place cluster involves pre-frication in the form of [s-] before plosives which causes the release phase of the plosive to become voiced: it is thus possible to call this aspiration so that all voiceless clusters initially have an exponent of aspiration. Please note that all clusters beginning with \([s, f, e, f]\) + continuant, the continuant must be voiced, . therefore this justifies my labelling these as aspirates.

It is also possible to divide the initial consonants as to labialization (w-prosody) \(\left[\theta ; 3, r, f, 3, t f, d_{3}\right]\), , the others having \(y\)-prosody [ \(f, v, 1, s, z]\). If we turn to the problem of the LIQUID in English we see that, in initial position, there is a contrast between clear [1] and [r] labialized and that in clusters they only combine with their appropriate preceding \(C\) on the grounds of palatalization, with the exception of [ f\(]\) which is open for clustering. Note the restriction on [sr-] which must be [ \(\mathrm{Sr}-\) ] and that [1-] signals a foreign feature, e.g. 'Schloer'. There is thus only one phonematic unit [L] in English, especially as, in final position the only possibility is w-prosody.

This Liquid in English we will call /L/ but it is governed by three prosodies, namely \({ }^{\prime} w^{h}\) ] and we can observe it acrass different accents of English. So far, we nave only dealt with R.P where \(\left[L^{y}-\right]=\) 'clear' ' 1 ' and \(\left[L^{w}-\right]=[x]\) and in final position only \(\left[-L^{w}\right]=\) dark ' 1 ' occur. In intervocalic position [[l] and [ \(x\) ] can occur contrastively and it is here that we have the possibility of \(\left[\mathrm{L}^{\mathrm{h}}\right]=[x],[f]\) and \(\left[\mathrm{L}^{y}\right]\) or [Lw] dependent on morphological boundaries, although again these differences are reduced in normal speech. 16/. Common speech defects or malarticulations reflect this stance as initial \([x]\) is often replaced by \({ }^{[ } w\) ] or [ \([0]\), namely the w-prosody, and final[l] in monosyllables is replaced by[w]e.g. 'full' [fuw] and 'milk' [miok] where a rounded back vowel shows the prosody. If we now compare other accents of English where e.g.'post-vocalic' ' \(r\) ' is pronounced, then in Scots the [1] is always 'dark' with the possibility of non-articulation in syllable-final cf. R.P 'war'[wo:] with

Scots 'wall' [wo:] : therefore the contrast in Scots in initial position is between [ \(\mathrm{L}^{\mathrm{w}}\) ] = [1] and \(\left[L^{\mathrm{n}}\right]=[r]\).

It has been posited above that there are good reasons for investigating a top-down analysis of speech especially as it provides a different perspective on the relative values of Consonants and Vowels, in that in an analysis of a 'most careful pronounciation' /7/ the characteristics of vowels in 'words' play the major role. We are not dispirting the fact that words have an important role in the learning and production of language, but we are suggesting that, in normal conversation or communication between two speakers, there is a greater dependence on the prosodic features - prosodies - than on words per se. It is my personal experience that perception on a socio-linguistic acceptability level is a question of one listener matching at different levels the performance of a speaker in terms of congruence/lack of congruence: as follows, a) if intonation is congruent, acceptance: N.B. even if lower levels are observed and, b) if intonation is non-congruent - check lower levels for possible congruence. If no congruence at any level, then acceptance of non-native speaker of language. This is basically an area which 1 should like to pursue, especially within the context of event perception /8/.

Brief Outline of a Prosodic Statement of English
TONE GROUP: (Pre-tonic) Tonic \({ }^{(1-5)}\) : Prosodies of pitch contrasts and voice quality.

FOOR: Salient syllables plus weak syllables \(=S\left(W^{1-4}\right)\) : prosodies of isochronicity: \(W\) syllables are Syllabic \(C\) and central unstressed vocoids \([\mathrm{r}, \mathrm{v}, \boldsymbol{e}]\) represented prosodically by \(\left[{ }^{\mathrm{y}},{ }^{\mathrm{w}}, \mathrm{h}\right.\) ]

SYLLABLE: Salient syllable \(=(C) V(C) 0 / y / w / h\)
PHONEMATIC UNIT: V = phonemic short vowels C m as described in article above plus some finals not discussed but which mainly are included in the syllable nucleus, namely the vowel.

References
/1/ K.H. Albrow, "Mutation in 'Spoken North


Welshi in In Memory of J.R.
Firth" ed. C.E. Bazell et al.
(1966)

14/ D. Abercrombie,"Syllable quantity and enclitics in English, in In Honour of Daniel Jones, ed. Abercrombie, D. et al (1964)
/5/ C.A. Fowler, "Coarticulation and theories of extrinsic timing; J. Phon. Vol. 8, 113-133 (1980)
/6/ R.A.W. Bladon \& A. Al-Bannerni, Coarticulation Resistance in English /l/, J. Phon. Vol. 4, 137-150 (1976)
/7/ Per Linell, "The Concept of Phonological Form and the Activities of Speech Production and Speech Perception, J. Phon. Vol. 10, 37-72 (1982)
/8/ B. Annan, "Articulatory Base, Coarticulation and Assimilation: some theoretical proposals, XIV Congress of Linguists (1987) forthcoming.

\section*{Y. Kuzmenko}

Dept. of Indoeuropean Studies
Institute of Linguistics
Leningrad, USSR 199053

\section*{ABSTRACT}

A pattern of the change from a phone ric language to a syllabic one is established (mora-counting \(\rightarrow\) isochrony \(\rightarrow\) contact correlation -+ morphosyllabism) on the basis of the evolution of Germanic languages and dialects.

\section*{INIRODUCTIOA}

The phonological type of a language, as it is understood here, depends upon the smallest unit of phorological segmentation, which in its turn, is determined by the relationship of the syllable and morpheme boundaries. In the languages where these boundaries do not coincide and the syllable-final consonants'may become syl-lable-initial (cf. Russ. pol - pola with the morpheme boundary after 1 and the syllable boundary after o: pol-a vs. po-lal. units of segmentation less than a sylla ble can be distinguished (i.e. phonemes). In the languages where syllable and morpheme boundaries always coincide and sylla-ble(morphome)-inal consonants do not be come syliable-initial the smallest unit of phonological segmentation is a syllable[1] Two types of languages immediatly follow irom this segmentation procedure, viz. phonemic and syllabic. One should remember that the notion of syllable is different in each type: while in the former it is purely phonetic in the latter the syllable is a unit of both morphological and phonological level and should be termed therefor morpho-syllable. There is a third group: languages where these two types of morpheme - syilable boundary relationships coexist and are opposed, namely the languages with the correlation of contact (or sjliable cut). The loose contact words are characterized here by the relations typical of phonemic languages (cf. Engl. reader whth morpheme boundary after d and syilable boundary after the root vowel), while in close contact words the syliable boundary does not separate the consonant from the preceding vowel (cf. Engl. putting) inherent to syi-
lable languages.
The three types of languages however can represent three stages of the development Irom a phonemic language to a sjilabic one. The stages of this evolution can be found in Gereanic languages with their well documented history and deeply rooted tradition of dialectology.

\section*{1. PHONENIC STAGE: FROM MORA-COUNTING TO ISOCHRONY}

All Old Germanic languages had free quantitative oppgsitions of vowels and consonants (CVC, CVC, CV̄̈, CV̄̄̄) which did not depend upon the differences in segmentation into sjllables, i.e. the syilable boundary could be after a rowel irrespective of its quantity as in Modern Estonian or Lithuanian. Prosodic equivalence of one long syllable to two short ones suggests that in 01d Germanic languages the quantity was based on mora-counting, both CVC, CVC and CVict being bi-moric. The situation is similar in some of the modern Swedish and Norwegian dialects where "disyllabic words play the same role in the sentence rhythm as in Early Latin or 01d Icelandic: two short syllables being equal to one long"[2].
yost of the poot morphemes in Old Germanic languages were bi-moric. According tc E.Haugen 75 per cent of Old Icelandic stressed syllables (i.e. root morphemes) were long (i.e. bi-moric) [3]. Hy own data show that the frequency of mono-moric roots in old Icelandic did not exceed 12 per cent. Toward the "middle" period monomoric roots in all Germanic languages were ousted by bi-moric ones which resulted in the lengthening of either yowels or consonants in the original CViC roots and hence in the equal quantity of all root morphemes (CV:C \(\sim\) CVC:). The ousting of the remaining last mono-moric root signified the end of the mora-counting. The mora-counting correlation transformed into that of syllable length: the law of syllable leveling by which a stressed syllable is always long and consists either of a long vowel (plus a short consonant)
or a short vowel plus a long consonant (or two consonants). Since long and short rowels are possible before short and long consonants respectively tie lenguint The gitustion which may be for convenience's sake termed 1sochrony was characteristic of all west Germanio languages and of Danish in the "middile" period of their his tory and is still characteristic of all nodern can
Tho transition from mora-counting to isoThe transition from mora-countic hanguages to numerous phonemic changes caused by the elimination of quantitative oppositions (quantity being replaced by quality: Horwegian the establishment of isochrony has resulted in the transformation of mo has resulted peak accents into syllable accents. The change of mora-counting to isochrony does not mean a change in phonological typology for here too the sylc languages,
remeins as it is in phonemic lan emains as it is in phonemic languages, (ff. Swedish karra [čă- r : al [6]).
2. TRANSITION: FRON ISOCRRONY TO THE CORRelation op contact
The next stage in the evolution of the tpology of Germanic languages comes whe ecomes established. This stage wish becomes established. This stage which reguages and in Danish is characterlsed by the opposition of two different syllable divisions (cf. Rngl. pulling - pooling, rords the syjlable boundary does not separate the postrocalic (=morpheme-final) consonant from the preceding rowel. In loose contact mords the syllable boundary vowel in disyllabic words. Two types of contacts and two types of syllable morpheme boundary relationship are opposed here. In Danish the establishment of relevant syllable division was followed by the transformation of syllable accents of Sv
dish type into the markers of contact. Thus in addition to two types of contact of west Germanic languages we have in Danish two more types of contact (superclose and superloose) effocted throngh the Danish stpd. The superclose contact is pecusonant (cf. Dan. falder [fall-or])while the superloose one to the words with the stpd on a vowel (cf. huset [hu'-sed]) [7]. The suparclose contact in CVCV words proFides for a complete coinciden

Whithin the framework of the correlation of contact there are syntagmatic changes
words with coinciding 日yllable and morpheno boundaries which 18 especially notice in in English, Iow German and Datch and its stpd on a consonant (superclose contact). According to L.Brink and J.Lund[8] most frequent changes that occurred in Stadard Danish over the past hundred years were the vowel shortening and the shift of the stod, the latter being the change from one. The alternations like Danish brer -
 [breut eaj reflect various stages of the process leading to the coincidence of the rorphome end syllable boundaries the the contemporary usage. In the languagos with the correlation of contact the coincidence of the boundaries and close contact have resulted in the monophonemization of all combinations of vowel plus by either syliable nor morpheme division, including the combination of rowels and velar nasal. The words like English hang and Danish hoeng should be regarded therefore as indivisible morpho-syilables for there is no linguistio procedure of sepa rating the rowels in these rords sonant.

\section*{3if SYIlabic stage: Frai mar corrilurio}

This change is exemplifiod by the Danish iileotts of Jutland (especially West and lables has increased here due to the apocope and the shifting of the postpositional dorinite article to the preposition (cI. West Jutlandic [a hu's], [a ruon]Standard Danish huset \({ }^{\text {konen }}\). As far back of the South Jutlandic observed that "words here are so shortenee to look like pure roots" \([9]\). However the apocope and
the shifting or the definite article did the shifting or the definite articie di not lead to the complete elimination of unstressed surfixal morphemes. formant of verbs and substantives and the formant of pest participle [en]. However, in most of the forms mentioned root rowel shortening and shifting of the stpd have taken place which resulted in the coincidence of the syllable and morphome boun
daries (cf. Jutlandic [diell-1djal'e],
 gribe-griber, kone-koner, past participle

 frysor, skinner, koner [10j). The predominorpheme bounderies coincide has caused
he shifting of the syllable boundary in he romaining fow (the frequency of such lords in disilectal toxts does not exceed por cent). In ins desoription of the dilect of Bjorre B.Mrelsen points out the ere no syilable-initial consonants ano possible in unstrossod syllables and a incldence of syllable and morpheme boun deries (i.e. the words of CV'CV or even \(\mathbb{V}^{*}\) CCV types have both boundaries after he last consonant of the root morpheme: \(C T^{*} \mathrm{C}-\mathrm{T}_{\text {, }} \mathrm{CV}{ }^{\circ} \mathrm{CC}-\nabla\) ) [11]. It should be no tod here taat consoble-initial in the syllabic languages of South Fast lsia (e.g. In Viet-Namese).
The coincidence of syllable and morpheme oundaries in the Jullanic calects has od to the elimina the of the phoological type of the dialects.
This change has in its turn caused the change of the function of the stod and the length which are no longer syllable ivision (and contact) markers but super segmental features concuages of the Chinee trpe Accordingly the dynemic quality se type. Accordingly the for implementing the type of contact and syllable divisio are less prominent in the syllabic Jutlandic dialects. In the apocope area either a so called wat) or solely tonal mo rement (as in South Jutiand) exist. The ousting of the stod by the tone 18 espect ally conspicuous in those apocopating dialects that have retained the postpositi nal article (e.g. in Himaerraterised by predominently tonal distinctions (cf. [bI \({ }^{\circ}\) I] with rising-falling tonal movement Standard Danish bil vs. [bi \(\left.{ }^{\circ} 1\right]\) bile) whil the dissyllables have retained the strone stod (i.e. glottal stop) - (cfi [bilion] bilen) which is a mariker or syouk Jutlandic dialects the stfod and its absence are already ousted by tonal distinctions. Tonos in Danish dialects are believed to roflect an archaic stage, due to their similarity with the acconts [13] However \({ }^{\text {dialects OI }}\) Himmerland and Fyn where the process of ousting is 2 living one show process tonal distinctions here are socondary as compared to the markers of contact (the stod and its absenco) dialects where the stip rione of syllable and morpheme boundaries testifios that it should be regarded as a tone fun ctionally similar to that of syllabi languages of 1 A1a.
length, and the tone in apocopating and
on-apocopating Danish dialects was quit lear to P.Andersen who noted that "the phomological function of the length, the rom that of island dialects. Tha stofo in island dialocts is a marierer of a particuar syllable structure, while in Jutlan ents (or probably even phonemes!)" \([14]\) cents ort promabizeven phonemes. the stod (or tonal movements) in syllaic Danish dialects are responsible for traditionally termed as tones, Dan. tonehold: CVC, CV \({ }^{\circ}\), CV'C, CVC \({ }^{\circ}\), CVC'. It is by no means a coincidence that the term tone (tonehold) was coined by the prominent Danish scholar of the XVIII. century in the syllabic languages of the South inst Asia the number of tonal oppositions epends on the quality of rocalic and cononantal elements of the gillable. This is just the case rith the Jutiandic aialects where anl five tones can occur only in the
inviroment of poweltsonorant, while in the nowroment of roweltsonorant, whit in the tones (West Jutlandic stpd and its absence) re available. These two tones correspond oo so called entering tones of the syila bic languages of Asia.
The similarity botween the syllabic langu-
 ialects is not solely confined to the concluence of to the similar function of rosodic features. The qualitative struc ture of a syllable in Jutlandic tends to be the same as in the ayllabie langag of Asia which is evident from the more intimate juncture of vocailc and consonan the quaittative and quantitative differetiation of its initial and final compogents. At the same time Jutianaic differs considerably from nodern sy1able delat languages. The syllabic aialects ic and/or yalt itive morthonological alternations ([hu's] - [mosp] or [ \(\left.\mathrm{ku}{ }^{\circ} \mathrm{s}\right]\) - [ hu's] tandard Danish hus - huse, [s69 \({ }^{\circ}\) ] - [say']
 dental surfix is lost

 , lumkee : [E1omit] gipmt. noteed 2 per cent, but the sheer fact of their existence may be regarded as the evidence of phonemic sogmentation. Howerer, the syllable-final [t] in Jutienal one and this fact does not allow us to
regard [t] here as a separate phoneme. In such forms as [lot] and [glomt] the mor phological meaning is indicated by the alternations of the indivisible morpho-syllybles rather than by the phoneme [t]. In phonemic languages the morphological meaning can be signified by a distinctive feature (cf. such morphonological alternations as garsun - garsuin in Irish or lup -lupi in Rumanian). In the same way In the syllabic languages a morphological meaning can be indicated by a distinctive feature of the phonologically indivisible morpho-syllable (its vocalic or consonantal component). Though modern syllabic languages of Asia have now only few examples of morphonological alternations a great nomber of facultative variants of morpho-syllables here may have resulted from the similer morphophonomic alternations at the early atage of their development [15].

\section*{CONCLUSION}

To sum up, the evolution of Germanic languages and dialecta provides a pattern of the change from a phonemic language to a syllabic one. The pattern involves four stages: mora-counting, isochrony, contact correlation and morpho-syllabism that can be exemplified by modern Danish dialects. This patterm may contribute to foreseeing some trends and shifts that can take place in the Germanic languages (it may be suggested that the next stage in the ovolution of Swedish and Norwegian isochrony is the correlation of contact, while in West Germanic languagea and in Standard Danish the correlation of contact is to be followed by morpho-syllabism). The same pattem can be employed for the reconstruction of changes that have occurred in the sJllabic languagen of various Iamilies. While mora-counting and isochrony may haraly be consuderod as obligatory stages in the languages other than Germanic, the correlation of contact soens to be indispensable ts the predecessor of morpho-syl-

\section*{REPRERENCES}
I. Гордина М.В. Оразличных функциональных единицах языга. - Исследования по фоноло гии, Москва, I966, I77-I83.
2. Hesselman B. Huvudiinjer i nordisk spr\&ichistoria. Uppsala, 1952, 247.
3. Haugen E. On the stressed vowel system of Norwegian. - Scandinavian studies presonted to G.Flom. Illinois studies in language and iiterature...1942, v.29, N 1, 68. 4. Hofmann D. Die "spätgermanische" Silbenquantitätsverschiebung und die Doppelschreibung alter kurzer Konsonanten in den altiriesischen Quellen. - Studia frisica in memoriam Pr. Dr. K.Foickema. Talters Nordhoff n.v. Grins, 1969, 67-68. 5.- Мячинская Э.И. Количественнье отношения в фонологической системе среднеанглийского языка. - Вестник ЛГУ \({ }_{2}\) I985, N 2, 99. 6. Malmberg B. Die Quantitat als phone -tisch-phonologischer Begriff. - Lundsuniversitetets ársskrift. Lund, 1945, avd. 1, bd 41, \(\mathrm{N} 2,50\).
7. Kuz'menko Iu. Three types of prosodemes in Scandinavian languages. - X. In ternational congress of phonetic sciences. Utrecht, 1983. Dordrecht, 1983. 100. 8. Brink L., Lund J. Dansk rigsmal. Lydudviklingen siden 1840 med saerlig henblik pa sociolekten i København. Kobenhavn, 1975, 221-223.
9. Varming \(I_{0}\) De jyske folkesprog grammatisk Iremstillet. Kjpbenhavn, 1862, 2. 10. Nielsen B. Et Bjerreherredsmal. - Udvalg for folkemalspublikationer, sor. A, N 23 , K申benharn, \(1968,23,44,52\). 11. Nielsen B. Óp. cit., 18 .
12. Molback-Hansen P. Stod and syllabicity in a Jutlandic dialect. - ARIPUC, 1978, 7. 12, 16-17.
13. Ringgaard K. Distribution af stod og tonal accent i danske dialektomrader. Nordic prosody, Lund, 1978, 150.
14. Andersen \(P\). Orientering i dansk dialektologi. Kobenhavn; 1954, 85.
15. Fang Kuei Li. Some tonal irregularities in the Thai langages. - Studies presented to Chirô Hattori. Tokyo, 1970, 420-421.

\title{
PHONOLOGICAL TYPE IN MOVEMENT
}

\section*{V.A.VINOGRADOV}

\author{
Institute of Iinguiatics Academy of Sciences \\ of the USSR
}

\section*{ABSTRACT}

Dynamic approach in phonological typology makes it possible to show that the movement of a type in time involvea two mutually bound processes: cyclic changes and an outstripping development of the secondary typological features before the primary ones have fully developed.

Many different ways exist for arriving at phonological types, but it is quite impossible to outine them here even briefly. Along with the inventoryconfiguration approach set up by Trubetzkoy (cf. his typology of vocelic aystems), only some of the most typical can be mentioned.

Particular attention paid by Trubetzkoy to configurative traits of sound syatems, incidentally, gave rise to purely surface representations of them. Thus, in the not too remote past there was a vogue for "geometric" typology that gave much room for drawing impressive pictures but too little - for enrichment of our atill poor knowledge of the deeper atructures and languages changes. Quite another, more fruitful trend of the configurative approach concerns the ascertainment of universal implicative relations between the feature categories that set the sound space of a language, cf. \(/ 1 /\).

There was also (and still is) an "arithmetic" typology based on the conso-nant-to-vowel ratio in sound systems and/ or in sound sequences which represent some (no matter how sampled) texts in some (ideally in all) languages. This approach makes it possible to show the rough atructure of the phonic substance of expression and to get a phonological typology of rather modest informativeness and of even more modest historical significance. Such a typology is still less promising when it is letters, not sounds that are counted.

Yet another ine of typological reasoning deserves closer attention. The phoneme can be considered a mode of sto-
rage of the information about the most constant and "pressed" blocks of distinctive features. The other mode can be a syllable, in which case it acquires the status of an emic unit - ayllabeme. Thereby a aimple but universal typology can be (and actually has been) obtained that distinguishes phonemic vs. syllabemic languages, cf. \(/ 2 /\), especially \(/ 3 /\). This approach has the merit of being not eurocentric since it is applicable to practically all languages.

All the typologies mentioned above, however, are obviously static by their nature, whereas more effective is a dynamic approach, most soundly vindicated by J.H.Greenberg, aimed not merely at the arrangement, but at the explanation of the attested data by means of a complex procedure including both Bynchronic and diachronic argumentation (cf., for ingtance, /4/).

Such an approach implies the focusing of attention on thie evolution of phonological types. There are two, to a certain extent mutually exclusive, properties of any language (permanent changeability and restrictedness of language technique) which induce one to suggest that the main principle of the language-type movement in time should be a cyclicity, deapite the fact that some particular changes in the system can be irreversible The cyclicity is apparent both in separate cells of the system and in the whole inventory of its items. It must be noted, though, that the cyclic movement by no means implies a precise repetition of the previous atate of the system (type). In other worda, a chain of evolution represented as \(S \rightarrow S_{i} \rightarrow S\) (where \(S\) is some initial state) is But a particular case along with a more common case: \(S_{0} \rightarrow S_{i} \rightarrow S_{0}^{\prime}, i . e\). the question is not of a return to the initial state but of the transition into a state partly mapping the previous one.

Thus, in Polish a current process of denasalization of the nasal vowels is observed, but it leads to the restitution of the "initial" state only in some envi-
\begin{tabular}{|c|c|c|}
\hline ronments．There are yet other positions & （1）acoustically poor and articulatorily non－homogeneous expression of the non－ & Universals of Human Languages．Vol．2： Phonology．Stanford UP，1978，p．93－152． \\
\hline Where the nasality either disappears & non－homogeneous expression of the non－ privative opposition of the＂hard／soft＂ & Phonology．Stanford UP，1978，p．93－152． 2．V．B．KaseviC．FonologiCeskije problemy \\
\hline （ \(\tilde{\mathrm{V}} \rightarrow \overrightarrow{\mathrm{V}}\) ）or is substituted by the labia－ & privative opposition of the & 2．V．B．Kasevic．Fonologiceskije problemy obšego i vostornogo jazykoznanija．Nauka \\
\hline ＇teeth＇，but ide－－／ide／＇I＇m going＇， & the properties of subsequent vowels \(/ 5 ; 6 /\) ； & Moskva， 1983. \\
\hline coeb－－／stobou／＇with you＇． & （2）weakening of the rule of assimilative & 3．Kao Xuan Hao．Phonolog \\
\hline An example of the cyciicity at & ＂softing＂of consonants before a soft con－ & Reflexions critiqes sur les postulats de \\
\hline level of a whole subsystem can be found & sonant，the process spreading frommor－ & la phonologie contemporaine．SELAP，Paris， \\
\hline in Bantu languages where some of them & pheme－juncture positions to the intra－ & 1985 \\
\hline have seven－phoneme vocalism while the & morphemic positions／7／； & 4．J．H．Greenberg．Rethinking linguistics \\
\hline others have five－phoneme vocalism．As & （3）a much higher degree of the articula－ & diachronically．＂Language＂，1979，vol．55， \\
\hline soon as for the Proto－Bantu a system of & tory cohesion in the unstressed syllables & N．2，p．275－290． \\
\hline seven vowels has been reconstructed while & as compared to that of the stressed ones & 5．L．R．Zinder，L．V．Bondar \\
\hline for the Proto－Benue－Congo（of which the & 18／； & kaja．Akusticeskaja xarakteristika razli－ \\
\hline Bantu is an offspring）－a five－vowel sy－ & （4）a sort of harmonization of the unst &  \\
\hline stem，it means that we are faced with a & ressed syllables／9／； & skom jazyke．－In：Voprosy fonetiki．Uce \\
\hline \begin{tabular}{l}
cyclic movement：＊5 \(\rightarrow\)＊7 \(\rightarrow 5\) ． \\
The above aramples present simple and
\end{tabular} & （5）phonetic asymmetry of the syllable pattems CV／VC，the latter showing the & nyje zapiski Leningradskogo universiteta， 325 serija filologixeskix neuk，Yy－ \\
\hline The above examples present simple & patterns CVivc，the lat ent shacklaut type & N．325，serija filologiceskix nauk，vy－ pusk 69，1964，s．28－36． \\
\hline more complicated instances as well where & before V －and a voiceless vowel after C－ & 6．A．A．Reformatskij． 0 korrelacil＂tver－ \\
\hline an analysis of the phonological movement & ／10／． & dych＂i＂m＇agkix＂soglasnyx（v sorremen－ \\
\hline implies a phonological type to be corre－ & These apparently strange facts can & nom rusakom jazyke）．＂Cercetari de lin－ \\
\hline lated with more general types（in the & be clear enough if put into relation with & gristical＇，anul III，1958，Supliment， \\
\hline first turn，with grammatical types）． & the agglutinative tendency observed in & p．403－407． \\
\hline In these latter cases another pecu & the Russian morphemics／11；12／，i．e． & 7．M．L．Kaleňuk．Osobennosti realizacii \\
\hline liarity of the type evolution can come & with a change of the morphological type， & soglasnyx fonem na styke morfem V sovre－ \\
\hline to be better noticeable－an outstripping & and then（2）and（4）could be treated as & mennom rusakom literaturnom jazyke． \\
\hline development of the secondary（implied） & facts of the outstripping development & Avtoreferat kandidatskoj disserta \\
\hline traits while the primary（type－forming） & secondary syntagmatic（antifusional） & Moskva，1986． \\
\hline features have not yet evolved as a com－ & traits of a new paradigmatic type that is & 8．L．V．Bondarko，L．A．Verbickaja，L．R． \\
\hline plete system．Such an evolutionary situ－ & but taking shape．As regards the（1）， & zinder．Akusticeskije xarakteristiki \\
\hline ation could be called the type antici－ & （3）and（5），they reflect perhaps the & bezudarnosti（na materiale rusakogo ja－ \\
\hline pation，but in reality not every fact of & competition of the cyclically bound pho－ & zyka）．－In：Strukturnaja tipologija ja－ \\
\hline the outstripping development means an & nological types－phonemic and syl & zykov．Nauka，Moskva，1966，s．56－64． \\
\hline obligatory transition to a new type：the & mic，the（3）probably meaning that in the & 9．R．F．Paufosima．Fonetika slova i frazy \\
\hline movement can slow down or completely & Russian phonetic word two alternative & \(\checkmark\) severnorusskix govorax．Nauka，Moskva， \\
\hline cease，and the new secondary features & patterns coexist－the phonemic one in & 1983. \\
\hline already in view either vanish or under－ & stressed syllables and the syllabemic & 10．L．V．Bondarko．Struktura sloga i xa－ \\
\hline go restructuring．Below，a probable exa－ & one in the stressed ones．The syllabemic & rakteristika fonem．＂Voprosy jazykozna－ \\
\hline mple of a＂deep＂phonological cyclicity & type is sypposed（R．Jakobson，R．I．Avane－ & nija＂，1967，N．1，s．34－46． \\
\hline will be regarded in some details，which & sov，V．K．zuravlev）to be older，therefore & 11．Ślovoobrazovanije sovremennogo rus－ \\
\hline is bound up with the evolution of the & we must be faced with the cyclic movem & skogo literaturnogo jazyka．Nauka，Mosk \\
\hline hierarchically higher－morphological & ＂syllabemic type－－phonemic type－－ & \\
\hline type． & （quasi）syllabemic type＂．At the present & 12．Fonetika sovremennogo russkogo lit \\
\hline Generally speaking，in every langua－ & stage，the elements of the syllabemic & raturnogo jazyka．Narodnyje govory．Nauka \\
\hline ge the phonetic system may contain some & type turn out to be consonant with the & Moskva， 1968. \\
\hline more or less evident discrepancies in & new tendency to the agglutination proper & \\
\hline the sound production（or variation），due & to the Russian morphemics． & \\
\hline to the articulatory nature of different & A phonetic background of the cycli－ & \\
\hline sounds or to a change（drift）affecting & city outlined here could be seen in the & \\
\hline the system．In the last case，those dis－ & far gone qualitative variation of vowels & \\
\hline crepancies could be of a high typologi－ & due to the consonantal domination in the & \\
\hline cal value as indicative of some profound & Russian syllable，which causes the pho－ & \\
\hline changes that affect the phonological sy－ & netic unstability of morphemes．And what & \\
\hline tem as a representative of a certain pho－ & is more，the usurpation of the timbre & \\
\hline nological type．However，within the Pro－ & category（＂fronted／backed＂）by consonants & \\
\hline crustean bed of rigorous phonemic inter－ & threatens the very existence of vowels & \\
\hline pretations，most of the allegedly margi－ & as an autonomous phontmic class，that is & \\
\hline nal phonic anomalies inevitably come to & why in the discrepancies mentioned above & \\
\hline be smoothed over．Undoubtedly，a functi－ & one can see a＂phonetic riot＂against & \\
\hline onal view of speech data is a virtue and & phonemic regime，a riot directed towards & \\
\hline the very essence of linguistic analysis， & the morphemic process of restructuring & \\
\hline but this view must not lose sight of the & that goes from above． & \\
\hline incessant movement of＂language matter＂． & & \\
\hline In the Russian phonetic system，the & REFERETCES & \\
\hline following discrepancies and anomalies & 1．J．Crothers．Typology and Universals & \\
\hline can be observed that are of interest in & 1．J．Crothers． & \\
\hline view of the topic in question： & & \\
\hline
\end{tabular}
ronments．There are yet other positions Where the nasality either disappears
 eeth＇，but ide－－／ide／＇I＇m going＇ An example of the cyclicity at the evel of a whole eubere some of them ave seven－phoneme vocalism while the thers have five－photeme even vowels has been reconstructich the （ and we are faced with a Thic movement：＊5 \(\vec{\rightarrow} * 7 \vec{\rightarrow}\) ．simple an vident cases of cyclicity．One can find ore complicated thon movement pitio phonological type to be corre－ with more general types（ypes） In these latter cases another pecu－ to be better noticeable－an outstripping development of the secondary（tmporming eatures have not yet evolved as a com－ plete system．Such an evolutionary situ ation could be called the type antici－ parion，outstripping development means an
 novement can slow down or completely cease，and the new secondary features go restructuring．Below，a probable exa－ will be regarded in some details，which is bound up with the evolution of the type．

Generally speaking，in every langua－ ge the phonetic gystem may contain in eound production（or variation），due the articulatory nature of different unds or to a change（drift）affecting system．In the last case，those dis value co indicative of some profoun changes that affect the phonological syo－ em as a representative of a crustean bed of rigorous phonemic inter－位 smoothed over．Undoubtedly，a functi－ view of speech data is a virtue and he very essence of linguistic analysis，隹 lny the Riscran phonetic system，the iew of the topic in question：

1）acoustically poor and articulatorily on－homogeneous expression of the non－ consonants mostly identified according to he properties of subsequent vowels \(15 ; 6\) 2．meakening of the rule of assimilative onant the process spreading from mor－ peme－juncture pogitions to the intra－砣

3）a much higher degree of the articula－ as compared to that of the stressed ones （4）a sort of harmonization of the unat－ ressed syllables／9／；
atter extraphonemic elements of Knacklaut type ／10／．
clear enough if put into relation with the aggiutinative tendency observed in with a change of the morphological type facts of the outstripping development of traits of a new paradigmatic type that is （3）taking shape．As regards the（1）， competition of the cyclically bound pho－ nological types－phonemic and syllabe the Russian phonetic word two alternative patterns coexist－the phonemic one in one in the stressed ones．The syllabemic type is sypposed（R．Jakobson，R． 1 ．Arane must be faced with the cyclic movement quasi）syllabemic type＂．At the present stage，the elements of the syllabemic tondency to the arclutination proper

A phonetic background of the cycli－ ity outined here could be ton for ue to the consonantal domination in the etic unstability of morphemes．And what more，the usurpation of the timbre ategory（ronted／backed ）by consonant eatens the very existence of that is yy in the diacr phencies mentioned above can see＂phonetic riot＂against honemic regime，a riot directed towards that goes from above．

REFERENCES
1．J．Crothers．Typology and Universals

Universals of Human Languages．Vol．2：
Phonology．Stanford UP，1978，p．93－152． obstego i vostočnogo jazykoznanija．Nauka，

3．Kao Xuan Hao．Phonologie et Iinéarité． Reflexions critiqes sur les postulats de 1985
4．J．H．Greenberg．Rethinking linguistics N．2，．p．275－290．
5ia．Akuatic，V．V．Bondarko，L．A．Verbio cija tverdyx i m＇agkix soglasnyx \(v\) rus－ nyje zapiski Leningradskogo universiteta － 25 ，serija filologiceskix nauk，vy 6．A．A．Reformatskij． 0 korrelacii＂tver dych＂ 1 ＂m＇agkix＂soglasnyx（v sovremen gVistican＂anul III，1958，Supliment，

7．M．L．KaienCuk．Osobennosti realizaci soglasnyx fonem na styke morfem \(V\) sovre vtorefort kandidatskoj disgertacit．
r8， 1986
－．L．V．Bondarko，L．A．Verbickaja，L．R． inder．Akusticeskije xarakterisiki rudarnosti（na materiale rusakogo ja－ ykov．Nauka，Moskva，1966，s．56－64． severnorusskix govorax．Nauka，Moskva，

10．L．V．Bondarko．Struktura sloga i xa akteristika fonem．＂Voprosy jazykozna－ 11．Slovoobrazovanije sovremennogo rus a， 1968.
aturnogo oskra， 1968 ．

SPATIAL CONFIGURATION OF TYPES OF PHONOLOGICAL
SYSTEMS OF CENTRAL AND SOUTH-EUROPEAN LANGUAGES
M.I.Lekomtseva

Institute of Slavic and Balkan Studies of
Academy of Sciences of USSR. Moscow

ABSTRACT
The paper presents an areal classifiation of the phonological systems of 18 By means of cluster analysis of phonological specifications of these languages two areal types are obtained: Balto-Balkanic type, presented by two areas, and tween these areas

After the discovery of phonological features N.Trubetzkoy and R. Jakobson were led to conclude that the distribution of phonological features in different languages was
not random. The areal distribution of the not random. The areal distribution of the glosses of lexemes studied in linguistic geography. At the 1 st International Congress of Linguists N.Trubetzkoy outlined the task of studying the areal configurations of linguistic features /9/. R.Jakobson presented the first example of as language area (the modelled on the basis of compact territorial distribution of languages of different degrees of genealogical relation. The phonological systems of the corresponding languages were characterized by the two following dominant features: palatalization of language studies show that the phonological ystem of a language derives not only from its genealogical relations, but is likewise influenced by the neighbouring languages /2, 3,5,6,7/. The development of the phoconditioned by the language situation in the given region and the spatial structure of the linguistic area.
While the task of finding out the distribution of phonological features is allover ing up a basis for defining the areal type of phonological systems (i.e. the domain of connectedness of a linguistic area) presents serious difficulties \(/ 3,6 /\). E.g. though the phonological system of Irish is character ized by the two abovementioned dominant fea-
tures: the opposition of palatalized/non palatalized consonants and monotony of vowels, the Irish language can hardly be recognized as belonging to the Euro-Asian lan guage area. Two coincidences of the language belongs to a definite type /against: 3/. The Balkan language area (like other cur rently defined language areas) does not hold such features that might be regarded as necessary and sufficient in the traditional logy that every feature defined as specific for a linguistic area can also be found in a language beyond the area \(/ 3,7 /\). On the other hand, some languages belonging to the area may lack a feature defined as specific. Es characterizes the languages belonging to the same domain of connectedness of a linguistic area \(/ 1,2,3,6,7 /\). The setting up of abstract ideal types to serve as a basis for a quan titative evaluation of real language systems jecomes one of constructing ideal types to be used for a further description of the language systems of a given area. A high degree of similarity among the languages of a given area however is frequently due to non-exfall into clear-cut patterns.
This paper presents an attempt
ing areal types of the areal types of phonological systems on
the basis of the languages of the BalticBalkan areal

The phonological systems are viewed with regard to their inherent features, i.e. the scope of our study. phoneme identification was accomplished according to the distinctive features of Chomsky-Halle and their amendment in Halle-Stevens. The syntagmatic aspec into account.
Areal studies naturally fall into the domain of dialectology. N.Trubetzkoy regarded them as a continuation of dialectal studies /9/. The language material used and the way we have set our task inclines us, however in the present preliminary stage of analysis
guages in standard form. Further tasks inphonological systems, each with a given set of features and setting up areal types of dialectal phonological systems of genealogically related and unrelated languages. The areal types are set up on the basis of the phonological systems of the following
languages belonging to the Balto-Balkan linguistic area: Latvian, Lithuanian, UpperLusatian, Polish, Belorussian, Russian, Ukranian, Slovak, Check, Hungarian, Romanian, Bulgarian, Turkish, Greek, Albanian, Macedonian, Serbo-Croatian and Slovenian languages.
A transparent procedure of construction, mbiguity objectivity on allstages and unandinuty of results are essential forsetDue to types of phonological features. Due to the abovementioned peculiarities of Aristotelean classification is believed to e of little value. In the present case a quantitative approach seems preferable. of all techniques of cluster analysis, employed for the purpose of obtaining groups of objects characterized by a maximum degree of algorithm as best suited for our needs \(/ 8 /\). The Linker algorithm gives hierarchically arranged object clusters and determines the elative degree of similarity by which the objects are clustered. Generally the algooptimura. In our case if the objects can be enumerated, the algorithm guarantees the global optimum as well /8/. Consequently, if the data matrix has inherent structure cluser analysis will succeed inidentifying it. he result of the Linker algorithm is unam(or distance) among the objects are different from each other. If, however, there are dentical degrees of similarity between two or more pairs of objects (as may frequently the case in areal studies) the result of this disadvantage of the Iinker algorithm we have introduced a subalgorithm to be applied in the case of identical degrees of similarty (or distance). The subalgorithm assigns clustering value to each claimant depending on the next step of the main algorithm, i.e. ther clusters is preferred if this results in the maximum sum of the mean degrees of imilarity (or correspondingly the least sum f the mean degrees of distance)
The Linker algorithm can be appiled to the given languages if metric space has been determined. The condition of metricity is met by applying the formula defining distance /8/ between the phonological systems of the iven languases. I.e.
\[
\mathrm{d}=1-\frac{\alpha+\delta}{1}
\]
\[
\begin{aligned}
\alpha & =\sum_{k=1}^{1} \min \left(x_{k}, y_{k}\right) \\
\beta & =\sum_{k=1}^{1} x_{k}-\alpha \\
\gamma & =\sum_{k=1}^{1} y_{k}-\alpha
\end{aligned}
\]
\(\delta=1-(\alpha+\beta+\gamma)\)
1 - the number of positions (features) chosen to represent the given language. Else: \(\alpha-\) the number of positions (features) where both
languages have a positive values (1); languages have a positive values (1); the number of positions (features) whe
languages have a negative value ( 0 ).
The data matrix of the distance between the given languages is filled according to the abovementioned formula.
According to the algorithm the least distance between the languages is selected and the corresponding languages clustered. Next
the mean distance from the obtained cluster to the rest of the languages is calculated. The languages showing minimum distance once more undergo clustering. In the case of several identical distances we introduce the subalgorithm. The routine is run until The algorithm can be presented in the form of a dendrogram mapping the sequence of element and group clustering and showing the minimal distances at which the clusterings take place.
lowing picture of language present the folan increasting degree of similarity in paradigmatic phonology (see Fig. 1).
Fig. 1 shows the maximum similarity (minimum distance) between the phonological systems of Romanian and Turkish here, is viewed paradigmatically, -f.e. the introduction of syntagmatic features would naturally change the position of both Romanian and Turkish). Likewise the maximum degree of similarity characterizes Latvian and it thuanian, Check andslovak, Serbo-Croatian

The next cluster is formed by Check, Slovak, Serbo-Croatian and Slovenian, while the following step adds Hungarian to the cluster. Last the group
The Bulgarian-Macedonian cluster is ed by Greek, and next - by Albanian between the initial language the distance garian-Mace initial language cluster (Bulgreater than the distance between the languages of the formerly mentioned language group. Both language clusters are united into one which is globally opposed to another cluster formed by consequent joining of Uk-


Fig.

Alb. Gr. Mac. Bulg.S.ec. Slov. Sluk. Ch. Hung. Lat. Lith. Blr.Russ.U.-l.Ukr. Pol. Rom. Turk
(Russian-Upper Lusatian) Belorussian
It should be noted that while the ciuster ed languages demonstrate a high degree of one or several of specific features. One and the same feature could appear as aimost specific or almost non-specific depending on the concrete constellation of features in the given language and its neighbours. Thus the ed consonants was noted to he specific not only to the languages of the first cluster but also to mark the phonological systems of the languages belonging to the 2nd group (IIthuanian and Bulgarian). This, however, respondingly with the their clustering corthe Macedonian language on the basis of whole sets of features.
The dendrogram showing the clustering of the phonological systems depending on the deon the map as a structure of the corresponding inguistic territory. Thus the relative similarity of languages can be shown as an altitude of the corresponding territories
resent case we have established two areas similar ohonological system or two area types: Balto-Carpathian-Balkanic area represented by two territories that are sepa rated by a compact Central area of phono Upper Lusatian to Russian.
The features of syntagmatic phonology a well as features of other language level should be likewise included in the dat matrix. The interpretation of areal types thus obtained will yield the best results the global characteristics of the language does not change the output of the algorithm.

\section*{CONCLUSIONS}
1. From the point of view of paradigmatic phonology the Balto-Balkanic region is a with two language areas: a marginal BaltoBalkanic area proper and a central compact area, separating the two territories of the
Balto-Balkanic language area.
2. A quantitative analysis of the degree of similarity characterizing the phonological systems of a given area helps to establish the systems of maximum similarity, the hierarchy of their clustering and the optimu areal types.
3. The areal types obtained as a result of the cluster analysis described in the present paper show a high degree of overall similarity, while they do not necesserily contain
specific features. As specific features specific features. As specific features haracterizing areal types tend to be absent, belfeved to be rather objective.

\section*{REFERENCES}
/1/ L.Campbell, T.Kaufman and T.Smith-Stark. Meso-America as a linguistic area. guage, v , N (1986), 530-570
/2/m.B.Emeneau. Language and linguistic rea. Stanford, 1980.
/3/ H.Haarmann. Aspekte der Arealtypologie Die Problematik der europäischen Sprachbün. Tubingen, 1976.
4/ R.Jakobson. к характеристике евразииского языкового союза. Paris, 1931. Reprint: R.Jakobson (1971). Selected Writings. I. Phonological Studies. The Hague-Paris, \(144-\) 201
/5/ R.Jakobson. Uber die phonologischen Sprachbünde. - TCLP, IV (1931), 234-240 eprint: R.Jakobson (1971), 137-143.
/6/ R.Kattein. Zur Definition des Begriffs \({ }^{3}\) prachbund. - Sprachwissenschaft, B. 11 H (1986), 276-287.

7/ C.Masica. Defining a linguistic area: South Asia. Chicago, 1976.
/8/ H.Spath. Cluster-Analysen-Algorithmen und Datenreduk tion. Munchen Wien 1975.
/9/ N.S.Trubetzkoy. Phonologie und Sprach

Dept. of English Philology Leningrad University

\section*{ABSTRACT}

Analysing linguistic facts observed in and English dialects, the author pre sents evidence suggesting that, contrary gically occupies a place intermediste between purely non-syllabic and syllabic languages.

The predominant concept of the role of purely articulatory phenomenon, viz an articulatory unit. But there are facts related to the phonological structure of nglish words, and especially facts of dalect variation, that are hard to ac
Tat me first point out the fact that /i/ in feat is in most dialects, including BP , much shorter than /i/ (apparentin the same phoneme) in lead. That is only one example of the by now wellknown feature of the dependence of the in the short--iong dichotomy, but rather on the type of the syllable-final consonant - an example of the re-evaluation of be role performed by the syllable, curently devel
here is also another angle to the problem. Had the English phoneme been as inependent a unit as is suggested by the oncept of the minimal unit of surface structure, words like feeling and Ealing structure - and that throughout the entire English-speaking world. However, facts of dialect variation show that there is an important difference in sylabic structure between words like feelng, whose morphemic structure is feelt phemic boundary. The difference in question consists in that some dialects develop an [ 2 -glide before the \(/ 1 /\) in the
feeling words, whereas no such thing hap-
pens in the Ealing words \(/ 1 /\). It is plainly the consequence of the \(/ 1 /\) in Ealing, the clear [1]. That means that in feeling /1/ belongs to the first syllhis is one of the facts that show tha in English, wherever a morpheme boundary occurs after a consonant, it tends to be Iso the place of a syllable boundary, ing to remain syllable-fingl even when a vowel-initial morpheme is affixed to it. although this fact has often been menioned in the literature, it seems that ts implications for the structural role escaped the notice of theorists
Nowadays our theory is benefited by an mportant contribution by Prof. Vadim B. Casevich whose profound re- examination of the syllable, its structure and functional role in various languages enabled him to come up with an entirely new, intypology. According to this theory the world's languages form a continuum with two extreme types - the ideal phonemic type, the ideal syllabic type and a number of intermediate types and sub-types of these extremish belong to the firs acts as those described above simply could not happen, for in purely phonemic languages syilabic structure of the words is entirely independent of their morphf any dependence on their place in the ayllable.
a careful examination of the facts of English phonology shows that many of these have most striking analogies in syllabic and near-syllabic languages. The ation will be reported in my book due to ppear in print in Leningrad University ress in the near futureß/. What follows is a concise version of the analysis. n important division between purels ormed by the existence/non-existence of non-syllabic morphemes. In syllabic lan-
uages morphemes that do not form a sylable are impossible. In English, it rould seem, we do find such non-syllabic (-s : 3 rd , p. singular, present tense of

 ense); the morpheme th (ordinal numers) and, finally, the morpheme -th/-t (non-productiv \(s\) in length).
uctive of thet) (except the non-promorphs: looks, kisses; books - faces
 morphemes having syllabic allomorphs in in the above-mentioned continuum languge mply proved in the literature \(/ 4 /\) It should also be noted that the non-byl labic morphemes are only a very small part of the morphemic repertoire of kngish. Moreover. Whereas this very modes number of non-syllabic morphemes does ords in Finglish. Compare this to such a ofpically phonemic language as Russian here many prepositions are non-syllabic

An important feature of syllabic
languages is the impossibility of what ation" i.e. the process of shifting a syllabie boundary from, say, a position after a consonant to a position before the consonant on adding a vowel-initial morpheme to the previous structure. Cl. \# Russian examples of dom \# -- do the feact that Modern English shows a considerable resistance to this process retaining the syllable boundary wherever possible in the place of the morpheme olso bey. This reature of engish has vestigations \(/ 5,6 /\). Another typological characteristic of syllabic languages (one that is closely linked with the above-mentioned) is the predominance of the (C)VC syllable type in such languages, almost to the excluaion of the CV syilable type. Now, Eng (C)VC type of syllable forming the most irequentig occurring type. Experimental results reported in \(/ 6 /\) are most persuasive. The preference of the English fore a consonant, but after it has been well proved by B.Malmberg in experiment ing with nonsense sequences, such as ipi Opo, apa \(/ 7 / 7\) sely innked languages the vowel is cloandy innked to the following consonent ous, a fact which is related to the previ above-mentioned composition of the syllable. In English we observe many in-
stances of the vowel being closely con-
nected with the following - and not the iation is subject to any influence of onsonant - it is always the following onsonant, and not the preceding, which xercises this influence. Examples are y/ \(8 \mathrm{~s} / \mathrm{a} /\) and not \(98 / \mathrm{mo} / \mathrm{accurs}\) in RP and in the South in general before a ortain group of consonants, as \(/ \mathrm{s}, \theta, f /\) and sometimes \(/ n+C /\). In the case of bistorical /ס/ a long vowel also develops uently in the North. In many southern ialects, including RP , / \(80 /\) is lengthened before /d and some other voiced consonants \(/ 8 /\). Cf. also the well-known deveopment of historical short vowels before \(r\) / in r-less dialects. The influence of he way vowels are influenced by the following /l/ (cr. [fia lin] mentioned bove). Many illuminating examples of the influence of the gyllable-final \(/ 1 /\) on he preceding vowel were cited by Dr.P. the development of East Anglian corres pondences to the RP / ə \(\operatorname{D} /\), P. Truagill ound out that the process of approximation of the /u:/ in no and / \(A u /\) in know tho a form of \([\theta U] 1 s\) hindered by the ore RP-like sound is noted \(19 /\)
A very important feature of syllabio languages is the difference in ways of variation (diaehronic and synchronic) of syllable-rinal and syllable-initial allophones of consonants. In this, English syllabic languages. In RP, for example only syllable-initial/p,t,k/ have aspiration, whereas onis syilable-final /t/ is glottalized or (again only in syliable -final position) a glottal stop develops before a group of voiceless stops. was vocalized in the so-called non-rhoting, or r-less dialects. and it is precisely the same position where /l/ is now being vocalized in London speech and in a pecially to the south-east of Iondon. The pealization of / \(/ \mathrm{/as}\) either [d] or [ V\(]\) (London) depends on whether it is syliab-le-initial ([d]) or syllable-final ([v]) Examples where the variation of a consonayllable are \(f\) few. Among them are af frication of /t/ or the realization of / \(\theta\) / as [f] in Londion speech.
To sum up. There are many features of the English syllable demonstrating that in Yodern English it is something more than meres are:
- the scarcity of non-syllabic mor phemes and the fact that all of them possess syllabic allomorphs
- The trend for a morpheme boundary to coincide with the syllable boundary;
- the resistance of English to resyllabification;
- the close contact of vowels with the following consonants;
- the dependence of vowel variation only on the following consonant;
- the difference in variation patterns of syllable-initial and syllablefinal allophones of consonants.
None of these facts are entirely new to theorists. But their typological importance, it seems, has been overlooked. These facts have been discussed in the literature in connection with different theoretical problems. Considered together, these facts show that the gyllabie in English is developing into a peculiar unit of surface structure, somewhere in between the phoneme and the morpheme, and that it is moving in the direction of coalescence with the morpheme. The purely asemantic syllable of the non-syllabic, phonemic languages is being gradually ousted by the syllable which is typically a morpheme. To be sure, English greatly differs from such pureis syllabic languages as Vietnamese or Chinese, but it shows in many ways a trend to develop into a type intermediate between non-syilabic (phonemic) and syllabic languages.

\section*{References}
/1/ J.C.Wells. English Accents in England. In: P. Trudgill, ed. Language in the British Isles. Cambridge, 1984.
/2/ V.B.Kasevich. Phonological Problems in General and Oriental Linguistics. Moscow, 1983. (In Russian).
/3/ 0.Brodovich. Aspects of the Theory of Dialect. Leningrad; in print. (In Russian).
/4/ A.K.Ogloblin. Diachrony and the Morphonology of Malay-Javanese Languages. "Voprosy Jazykoznaniya", 1985, No 3. (In Russian).
/5/ R.K.Potapova, N.G.Kamyshnaya. Syllabification as Viewed from Segmentational Speech Function. "Voprosy Jazykoznaniya", 1973, No 3. (In Russian).
/6/A.A.Pedersen. Comparative Analysis of English and Danish Syllable Structures. Candidate thesis. Abstract. Moscow, 1980. (In Russian).
/7/ B. Malmberg. The Phonetic Basis for Syllable Diviaion. "Studia Linguistica", vol.9, 1955, No 2.
/8/ J.C.Wells. Accents of English, vol.2. Cambridge, 1982.
/9/ P.Trudgili. On Dialect. Social and Geographical Perspectives. Oxford, 1983.

\title{
SPEECH RHYTHM \\ (main approaches and definitions)
}

\author{
ANTONINA M. ANTIPOVA
}

\author{
Department of English Phonetics \\ Maurice Thorez Moscow State Institute of Foreign Lenguages MOsCOW, USSR 119034
}

\section*{ABSTRACT}

The report sets out a brief review of main trends and concepte on rhythm.

Among the numerous definitions of rhythm two main ones can be singled out: 1. rhythm is an alternation of contrastive speech events (usually stressed and umatressed ayllables); 2. rhythm is a periodicity of similar and isochronous (on the perception level) events.

At ilrst glance, these definitions may seem to contradict each other. In reality, they only accentuate different aspects of the same phenomenon.

Those phoneticians who concern themselves with the stiudy of a text usually look upon rhythm as a hierarchical sysitem consisting of units of different size and value: In this connection two main questions arise:
1. What units can form periodicities?
2. What speech segments (syllable, rhythmic. group, sense-group, phrase, or supraphrasal unit) can perform the function of a rhythmic unit?

In speech, there can be an alternation of sounds, syllables; sense-groups (tone-groups), phrases (utterances) and supraphrasal unts of different types. In verse lines and stanzas can also alterm nate. Alternating elements are opposed to each other, this opposition being based on different features. On the segnental

Ievel, vowels are opposed to consonants. This opposition is based on the presence or absence of noise. This type of alter nation is characteristic of languages with syllable structure CV. In English this type of alternation has infrequent ocour rence. Only occasionally in poetry does a syllable become a rhythmic unit.

On a higher level, the opposition is based on the degree of prominence, \(i\).e. stressed syllables alternate with unstress ed ones. In Engliah this type of altermation is more regular. Stressed and mstressed syllables form a unity which shows periodicity. This unity is usually referred to as a "rhythmic group" (an accentual group). It often coincides with a word. In English a rhythmic group can be considered to be the smallest basic rhythmic unit as it occurs both in prose and in verse.

The next segments larger than the syllable are the sense-group, the phrase and the superphrasal mit. The aforementioned segments cain alternate with a pause Here the opposition is based on the presence or absence of phonation. In this respect the mentioned segments exhibit a different behaviour. Sense-groups are not always separated by pauses, so the "phow nation-pause" alternation is not obligatory. A phrase alternates with a pause more frequently than a sense-group. Supraphrasal uits, as a rule, is separated by

\section*{pauses.}

A sense-group is formed by lexicosyntactical and prosodic means. In the case of lexical repetitions and parallel constructions, sense-groups are perceived as similar in structure. If lexico-syntac tical meana vary, their similarity is based on prosody. The beginning of a sense-group is usually marked by the maximum pitch and intensity and a slower tempo compared to the central part of the sensegroup. The end is marked by the minimum pitch and intensity, often by the falling tone (in the author's material \(84 \%\) ), and by a slower tempo. The body of a sensegroup is characterised by a descending pitch contour (regular or irregular depending on the speaker, style, emotions,etc. 2 The majority of sense-groups contain 2-4 stressed syllables the total length not exceeding 2-3 seconds, the most typical length being \(1-1.5\) seconds. Thus all these means make sense-groups similar /8/. At present linguists are researching the altermation of different types of sensegroup /18/.

It appears that semantically dominated sense-groups form rather regular periodicities and altermate with semanticalis neutral sense-groups, just as emotionally coloured sense-groups alternate with emotionally neutral ones. It has also been observed that semantically dominated sense-groups tend to occur in marginal areas of supraphrasal units in prose and of stanzas in verse /12, \(17 /\).

Supraphrasal units are characterized by the same prosodic means as sense-groups but the number of features which characterize the individual supraphrasal units decreases whereas the isochrony increases. Supraphrasal units alternate with pauses and form the "S.Ph.U + pause" complex, which is periodically repeated. A long phonation period is frequently followed by a short pause or vice versa. In other
words, a pause here can perform an equallzing function.

Phrases occupy the intermediate position between sense-groups and supraphrasal units. They alternate with a pause more frequently than sense-groups and less Irequently than supraphrasal units. Considerable variation in length and rather a vague prosodic. similarity prevent phrases from functioning as irequent rhythmic units. They play this role when they coincide either with a sense-group or with a supraphrasal unit.

Thus, practically all speech segments can function as rhythmie units if they become isochronous and similar in character.

In dialogical speech, in addition to the aforementioned types of alternation, the alternation of cues (the speech of each interlocutor) can be added. If a pair of cues (a stimulus and a response) is more or leas isochronous they are normally perceived as periodic unita. The phonation period (period between two pauses) can form fairly regular periodicities. Periodiaities can also be formed by a phonation + pause period, by a series of falling tones, and even by hesitation pauses. Thus, not all the units in spontaneous speech form a hierarchical system. Apparently, the rhythmic system is of a more complicated nature /13/.

Consequently, periodic events can consist of contrasting (in the case of alternation) and non-contrasting elements (in the case of sense-groups). If there is a regular altemation of elements, the leading role in the regulation of rhythm is performed by time, i.e. isoohrony. If the alternation is not regular, the leading role in forming periodic units is performed by accentual and tonetic features.

Thus, the perception of speech elem ments as periodic is determined by the
two factors: isochrony and qualitative similarity. The latter can be expressed by a contrastive complex, (alternation), or by a system of accentual and tonetic characteristics.

Rhythm has been defined as a periodicity of similar and isochronous events, Isochrony can be of two types: physical, which presupposes physical identity of intervals, and perceptual, which presupposes similarity of intervals on the perception level. This last assumption is largely based on works of phsychologists. As it comes from numerous experiments concerned with the perception of intervals of different size (different within certain limits), variations in length can be ignored and physically different intervals can be perceived as similar. There is apparently a process of mental equalization at work / 1 , 3/. According to some experimental data, non-verbal rhythm (the intervals between recorded clicks) is perceived as stable, with as much as \(14.5 \%\) displacement of temporal regularity.

Data pertaining to the perception of speech rhythm vary greatly, but there is some evidence to suggest that the size of units (intervals) perceived as regular is relevant: the larger the unit, the greater the difference in length that can be ignored \(/ 5,6 /\).

A retrospective look at the studies of rhythm gives an idea of how the linguistic approach to this phenomenon developed.

In the 1920s and 1930s Russian linguists conducted extensive textual research. In particular, poetic rhythm was regarded as a hlerarchy of rhythms /13,19/.

In the 1950 s and 1960 s - a period of structural and generative views, when an utterance (not a text) was at the centre of linguists' attention - rhythm was normally understood as an altermation of stressed and unstressed syllables /2, \(4 /\).

In the 1970s and 1980s - a period of close attention to textual problems -, rhythm came to be understood as a system again. By that time, many facts pertaining to rhythm had been accumulated by different sciences (primarily, biology and physics), whioh gave grounds for considering rhythm to be a fundamental law of the structure and development of the material world.

Achievements in the development of philosophical ideas as to the character and structure of a system largely contributed to the study of speech rhythm. In 1974 the authors of the book "Rhythm, Space and Time in Literature and Art" actually raised the problem of mity of these fundamental forms /14/.

Rhythm, being a periodicity, organizes events. It organizes the space-time continuum and the events themselves. Rhythm can be regarded as a general language system that organizes a language as a. whole. A large proportion of rhythm research is concerned with the linguistic form investigated in the context of the meaning it conveys. Views on Thythm as a functional unit are characteristic of Russian linguistios. The works of A.M. Peshkovsky /13/, B. M. Fihenbaum /19/, I.I.Timofeyev \(/ 15 /\), B. V. Tomashevsky and \(\mathrm{U}_{0} \mathrm{~N}_{0} \mathrm{Ty}\) nyanov/16/ had a great influence on later works on rhythm. Even in the study of meter a successiul attempt has been made to correlate meter and meaning (a range of images and themes) /10/.

There is another trend in the investigation of rhythm which is not widely acknowledged, but which appears to be very promising, being connected with other sciences of Man and capable of opening up avenues to the study of verbal and nonrerbal thinking. An attempt has been made to see rhythm "from the inside" through the unity of a poetic image and the overlapping of semantic fields. Rhythm is
considered as an intermediate stage between the continuity of Thought and the descreteness of Language. Rhythm is perceived subconsciously and is directed straight to continuous image thinking /11/

Thus, a further perspective in the study of rhythm lies in a systematic approach to this problem, in the comparative study of the rhythm of different texts, different languages and groups of languages, and in the study of both verbal and non-verbal rhythms.

An extremely fruitful and valueable, if complex, approach would result from considering the concept of rhythm with reference to Man as the central object of investigation.

\section*{REFERENCES}
/1/ P. Fraisse, "Les Structures Rhyth-
miques", Studia Phychologica, Lou-
vain Publ. Univ., 1956 , 124 p.
/2/ M.Lebereman and A. Prince, "On Stress and Linguiatic Rhythm", Linguistic Inquiry, 1977, 8, 2, p.336-449.
/3/ G.Lehiste, "Rhythmic Units and Syntactic Units in Production and Perception", Journal of the Acoustic Society of America, 1973, 54, 5, p.1228-1234.
/4/ P.Kiparsky, "The Rhythmic Structure of English Verse", Linguistic Inquiry, 1977, 8, p. 189-347.
/5/ J.D. \(0^{1}\) Connor, "The Perception of Time Intervals", Progress Report, London, University College, Phonetics Laboratory, 1965, p.11-15.
\(16 /\) J.D. \(O^{\prime}\) Connor, "The Duration of the Foot in Relation to the Number of Component Sound-Segments", Progress Report, London, University College, Phonetics Laboratory, 1968, p.1-6.
/7/ H.Woodrow, "A Quantitative Study of Rhythr", Archires of Psychology, 1909, 14.
/8/ А.М.Антипова, "Рутмическая скстема

английского языва", М., Выстая пкола, I984, II9 c.
/9/ E.А. Бурал, "Роль просодй в формиー ровании ритма спонтаннои диалогичөской речи (на материале аптлииского языка)", сб.науч.тррдов, М., МІІИИЯ им.М.Тореза, 1982, выт.I96, c.IO-30.
/IO/ М.Л.Таспаров, "Семантическии ореол метра. К семантике русского трехстопного ямба", в сб. Лингвпстика п поэтпка, M., I979, с.282-307.
/II/ I.A.Дрогалина, В.В.Налимов, "Семантика ритма: рптм как непосредственное вхажденде в континуальный поток образов", в сб. Вессознательное, Тбщлисп, I978, Мецниереба, т.3, c.293-300.
/I2/ Д.К.Исхаков, "Особенности семантическои свлзности текстов англий ских лирических стихотворөний XVI, XIX पI XX веков", АКД, M., I983, \(2 I \mathrm{c}\).
/I3/ А.М.Пешковскқи, "Стихи пи проза с лингвистической точки зрения". соораик статен, Л.-M., I925, с.I53I66.
/I4/ "Рутм, пространство п время в литературе п искусстве", Л., I974.
/I5/ Л.И.Тимофеев, "Теория ствха", М., Госполитпздат. 1939, 232 с.
/I6/ Б.В.Томашевскии, "Стих п язык", М., Госполитхздат, \(1959,470 \mathrm{c}\).
/I7/ Н.Б. Іпоуля, "Роль интонацип в структүрированй текста", АКД, I982, 24 c .
/I8/ Н.В. Чөрөмисина, "Ритм и пнтонацдия
 M., I97I, 48 c.
/I9/ Б.М. Эихенбаум, "Мелоддка русского лирического стиха", в кн. 0 поэзви, Л., I969, с.327-5II.

\author{
REBECCA M. DAUER
}

\author{
ESL Program \\ University of Massachusetts Amherst, MA 01003 U. S. A.
}

\section*{ABSTRACT}

Rhythm, or the grouping of elements into larger units, is a property of all languages. The particular rhythm of a language is the result of the interaction of a number of components, including phonetic components, such as the relative length, pitch, and segmental quality of accented and unaccented syllables, and phonological components, such as sy1lable structure and the function of accent. A system of rating whereby these components are broken down into features which can be assigned a plus or minus value allows us to compare the rhythm of languages or language varieties. Languages which have "strong stress" or which have been labeled "stress-timed" are seen to share certain features. Rhythm is a total effect involving phonetic and phonological as well as segmental and prosodic phenomena.

\section*{INTRODUCTION}

Is it possible to develop a phonetic concept of rhythm that can be applied to all languages, in the same way that we use the system of cardinal vowels or the IPA chart of consonants? The distinction between stress-timed languages and syllable-timed languages [1, 2] is just such an effort at a general phonetic definition. In this theory, stress-timed languages show a tendency for stresses to recur at regular time intervals, and in syllable-timed languages, syllables are said to recur at regular intervals; all languages are believed to have one or the other rhythmic basis. Although many linguists have adopted the distinction, some have criticized the theory for being too simplistic (after all, it only divides all the languages in the world. in half) and for grouping together languages which are felt to have noticeably different rhythms, such as English and Arabic [3] or Spanish and French. In addition, many native speakers of "syllable-timed" languages have objected to the designation, as if it somehow meant that their language had no rhythm. Indeed, Crystal and Quirk [4] refer to the lack of regular stress-timed pulses as "arhythmic." Linguists have had difficulty applying the concept to languages. Attempts to do so by instrumental analysis have been futile. Numerous experiments have shown that a language can not-be assigned to one or the other category on the basis of instrumental measurements of interstress intervals or syllable durations [5,

6]. Moreover, Scott, Isard, and Boysson-Bardies [7] have shown that the perceptual tendency towards isochrony of stress beats is not specific to stress-timed languages, nor to language. Miller [8] had English and French phoneticians and nonphoneticians listen to selections of seven different languages and evaluate them as stresstimed or syllable-timed. Only Arabic was unequivocally categorized as stress-timed by all groups. Phoneticians generally agreed in finding Spanish stress-timed and Yoruba syllable-timed, but found no strong tendency for Finnish, Japanese, or Indonesian, and disagreed about Polish. This experiment seems to suggest that a language may be categorized on the basis of how strong and easily perceivable stress is.

Should we then give up the only phonetic theory of rhythm that we have, or perhaps turn to a purely phonological approach? Phonologists in the tradition of Trubetzkoy have treated rhythm in terms of the function and location of accent in the word. Metrical phonologists (following Martin [9]) have assumed that all languages have an underlying strong-weak distinction and show a tendency towards alternation which can be shown in a grid or tree structure of the word. Although this approach brings out the importance of grouping of elements into larger units, which is considered essential in all psychological definitions of rhythm, it tends to make all languages look alike, at least on paper, and makes no attempt to specify further how these patterns are realized in spoken language in continuous speech. But as Ladefoged and Wu [10] have noted, phonetic details are part of linguistics and do matter to any linguist who wants to make a complete, accurate description of a language.

It seems that an adequate description of rhythm in a language or across languages requires both phonetic and phonological information (a conclusion also reached by Hyman [11]). We can define rhythm as the grouping of elements into larger units; the units need to have some similarity and be marked off from each other in some way in order to be perceived as groups [12, 13]. In language, most would agree that the elements that are grouped are syllables, and that in some languages at least, stresses (or accents) serve to set off groups. Neither "syllable" nor "stress" have general phonetic definitions, which
from the start makes a purely phonetic definition of language rhythm impossible. All instrumental studies to decide in advance where the stresses (if any) fall and what a syllable is in the language under investigation in order to proceed. A1though rules for syllable division and inventories of languages on the basis of phonological criteria, stress is more problematic, and definitions of it have varied widely. In this paper, I shall use the term "accent" as it has been defined by Trubetzkoy [14] as the phonological feature which hen realized promotes (he perce) in relation to others. Accent can then serve as a basis of rhythmic grouping. The term "stress" will be reserved for the phonetic realization of certain kinds of linguistic accent. I hypothesize that 11 languages have necessarily have accent. Rhythm is a total effect (also probably a grouped series of motor commands in production) that involves the interaction of a number of components, of which the following appear to be the most important fo the purposes of comparing languages. It is mos repetition of rhythmic groups at a natural speed for the speaker. Obviously, some speakers and some styles exhibit better rhythm than others and seem to be more representative of a particular speech community. The following analysis is base lectures, monologues, or prose reading by peopl who are used to reading aloud. In each category, a plus, zero, or minus is assigned to a language depending on the extent to which it exhibits the
feature in question.

COMPONENTS OF LANGUAGE RHYTHM

\section*{1. Length}
\(\frac{\text { Duration }}{+ \text { Accented syllables, and especially accented }}\) + Accented syliables, and than unaccented syllables (by 1.5 or more). (e.g. English, SerboCroatian)

0 Accented syllables are slightly longer than unaccented sy1lables. (e.g. Spanish, Greek) syllables, or the language has no accent. (e.g. Japanese, Yoruba)

Sy11able Structure
+ The language has a variety of syllable types (both heavy andight, syllables with many syllables tend to be accented, whereas light syllables tend to be unaccented. \{English, Arabic)
- There are a very limited number of sylrable types (predominantly CV or CVC), and accent and syllable weight are independent. There may be active processes such as final cluster simplification, epenthesis, or liaison to break up or prevent the formation of unusually heavy or prevent (Spanish, French)
\(\frac{\text { Quantity }}{+ \text { Quantity distinctions, if present in the }}\) language, are only permitted in accented syllables; in unaccented syllables they are
neutralized (only short). (some Arabic dialects) neutralized (only short). (some Arabic dialects)
0 All quantity distinctions occur in accented syllables, but only a small subset can occur in unaccented syllables. (Estonian) - Quantity distinctions are permitted in both accented and unaccented syllables. Restriction on quantity are not conditioned by accent (Hungarian, Finnish)

\section*{2. Pitch}

\section*{\(\frac{\text { Intonation }}{+ \text { Accented }}\)}
+ Accented syllables are turning points in the intonation contour. Pitch (usually high or pitch contour depends on the position in the utterance and the intonational meaning. Emphasis or contrast affects primarily the accente syllable. (English, Greek)
there may be a negative correlation of pitch and accent. Relative pitch patterns may be consistent with respect to the word regardless of its position in the utterance or intonational meaning Emphasis may affect unaccented syllables or be
\(\frac{\text { Tone }}{+ \text { Tones, if present in the language, only }}\) exist Tones, if presela in the languge, syllables exist on accented syll
are atonal. (Swedish)
0 Tones are fully developed on accented syllables, but they are neutralized or subject syllabl changes
- Tones are present on all syllables or all syllables with a particular structure, regardless of accent. If there are sandir
3. Quality

Vowels The maximal vowel system exists in accented llables; vowels in unaccented syllables tend to be reduced or centralized (especially open vowels). (English, Swedish)
0 The unaccented vowel system is smaller than that of accented vowels, but unaccented vowels are not necessarily centralized. There may be only to unaccented vowels. (Russian, Portuguese) - There is the same vowel system and similar articulation in all syllables. If elision or devoicing processes exist, they affect accented by phonetic environment rather than accent.
(Spanish, Japanese)

Consonants
+ Consonants are more precisely articulated in accented syllables, and some may have special reduced allophones (e.g. syllabic consonants, loss unaccented syllables. (English, Thai)
- All consonants have the same articulation accent. Consonantal allophones are not conditioned by accent. (French)

\section*{4. Function of accent}
+ Accent can occur in different positions in a word (accent is "free" or free over a range) and is an integral part of the word shape for recognition. Moving the accent could result in a new word with a different meaning. (English, Spanish, Swedish, Russian)

0 Accent can occur only in one position in a word (accent could result in the formation of a new word boundary. (Hungarian)
- There is no word-level phonological accent no one syllable consistently stands out over stylistic or emotional reasons (in a language with a phrasal accent), but moving the accent does not result in a change in referential meaning or the保 (Yoruba French)

\section*{CONCLUSION}

By applying these categories to various languages, one should be able to come up with a language has, the more likely we are to say that the language has "strong stress" ("dynamic" or "expiratory" accent) and is "stress-timed." The differences between accented and unaccented syllables are maximized, and accent would clearly be the principle for grouping. We would expect
that naive native speakers-as well as trained non-native speakers--could fairly consistently identify accented syllables in continuous speech. In a language with many minuses in these categories, we would have to look elsewhere for permeates the entire linguistic system, binds units together and helps 1isteners segment the flow of speech into meaningful chunks? It could be patterns of tone, of syllable or vowel length, or even the repetition of certain segmental or grammatical features. Although the language may would have difficulty identifying the place of accent consistently in continuous speech, and linguists would have difficulty finding its acoustic correlates, even in words said in isolation. This does not necessarily mean that
this kind of language is somehow defective or arhythmic because.it is lacking a feature that certain prestige languages have. All languages have rhythm, but more independent research needs to be done to discover exactly what the rhythmic principles are in languages which do not show a
tendency

The above chart vould also be useful in comparing different styles, dialects, or historical stages of a language. Rhythm can be significantly changed, for example, by pronouncing every syllable distinctiy in a language whic vowel reduction rules (Jamaican English). No
native speakers of English can improve their rhythm enormously by reducing unstressed syllables, and this is usually more successful than tring to get them to equalize stress beats. In comparing the naturalness of synthetic speec concluded that "the amount of isochrony implemented in the rules via, e.g., cluster shortening and unstressed segment shortening is probably sufficient, and no isochrony rule' per se need to be added." We must not forget that the an abstraction created by linguistic science for the purposes of analysis. In early stages of language acquisition, Crystal [17] aptly notes that primitive words are used as units with th segmental and non-segmental characteristics
'fused'."
Even in adult language, segmental non-segmental phenomena are interdependent and can influence one another. This fact is quite evident in the analysis of tone languages. It is als important in helping us to better understand language rhythm

\section*{REFERENCES}
[1] Pike, K. L. The Intonation of American English. Ann Arbor, University of Michigan Press, 1946.
[2] Abercrombie, D. Elements of General Phonetics. Edinburgh, Edinburgh University Press, 1967.
[3] Mitchell, T. F: Review of Abercrombie 1967 Journal of Linguistics, \(5: 153-164,1969\).
[4] Crystal, D. Prosodic systems and language acquisition, in Prosodic Feature Analysis. Edited by P. Léon, G. Faure, \& \({ }^{\&}\).
Montreal, Didier, 1970, p 77-90.
[5] Roach, P. On the distinction between stresstimed' and 'syllable-timed' languages, in Linguistic Controversies. Edited by D. Crystal. London, Edward Arnold, 1982, p \(73-\)

6] Dauer, R. M. Stress-timing and syllabletiming reanalyzed. Journal of Phonetics, 11:51-62, 1983.
[7] Scott, D., Isard, S., \& Beysson-Bardies, B. Scott, D.. Isard, S., in Enslish and in
Perceptual isochrony in French. Journal of Phonetics, 13:155-162, Frenc
1985.
[8] Miller, M. On the perception of rhythm On the perception of rhyth.
Iornal of Phonetics, \(12: 75-83,1984\).
[9] Martin, J. G. Rhythmic (hierarchical) versus serial structure in speech and other behavior. Psychological Review, 79:487-509, 1972.
[10] Ladefoged, P. \& Wu, Z. Places of articulation: an investigation of Pekingese fricatives and affricates. Journal of Phonetics, 12:267-278, 1984.
[11] Hyman, L. M. On the nature of linguistic stress, in Studies in Stress and Accent. Edited by L. M. Hyman. Los Angeles, Dept. of Linguistics, Univ. of Southern California, 1977, p 37-82.
[12] Woodrow, H.. Time perception, in Handbook of Experimental Psychology. Edited by S. S. Stevens. New York, Wiley, 1951, p 1224-1236.
[13] Fraisse, P. The Psychology of Time. London, Eyre \& Spottiswoode, 1964.
[14] Trubetzkoy, N. S. Introduction to the Principles of Phonological Descriptions. Edited by H. Bluhme. The Hague, Martinus Nijhoff, 1968. First German edition, 1935.
[15] Joos, M. The Five Clocks. Bloomington, Indiana University Research Center in Anthropology, Folklore, and Linguistics, 1962.
[16] Car1son, R., Granström, B., \& Klatt, D. Some notes on the perception of temporal patterns in speech. Proceedings of the Ninth International Congress of Phonetic Sciences, vol. 2. Copenhagen, Institute of Phonetics, University of Copenhagen, 1979, p 260-267.
[17] Crystal, D. \& Quirk, R. Systems of Prosodic and Paralinguistic Features in English. The Hague, Mouton, 1964.

\title{
METRO-RHYTHMIC AND PHONIC STRUCTURES OP SPANISH POETIC SPEECH
}

\author{
SERGEI F. GONCHARENKO
}

\author{
Translator's Department \\ Maurice Thorez Moscow State Institute of Foreign Languages
Moscow USSR 119034 Moscow , USSR 119034
}

\begin{abstract}
Spanish poetic speech has three systems of metro-rhythmic structures (sylla-bo-tonic, accentual-syllabic and tonic) and three varieties of phonic structures (ormamental, symbolic and paronymic). The metro-rhythmic and phonic structures play a major role in ensuring poetic commonication through the means of Spanish poetic speech.
\end{abstract}

The mechanism of Spanish poetic speech has specific media of tranaforming discrete units of practical linear discourse into the continuum of what is known as score-spatial poetic signs /1/. The high communicative-informational potential of these "spatial signs" is largely determined by that specific impact which, in accordance with the author's communicative design, is exercised on the initial informativeness of speech units by the conditions of the poetic context, which contributes to combining all the informative elements of the poem "vertically" and "horizontally" into a cohesive communicative-informational complex - a lyrical text.

In other words, under the impact of the poetic context the informational relevance of units of poetic speech not simply becomes transformed (relative to their "homonyms" in the language at large)
and not simply becomes multiplied, but also acquires a qualitatively new - aggre-gative-integral - character: remaining formally and in terms of factual semantics a combination of discrete linear units, the work of poetic speech as regards conceptual-semantic and aesthetic informativeness, is already found to be not the sura and in general not an arithmetical "product" of the semantics of discrete linear signs, but an aggregate and, to a certain extent, indivisible poetic macrosiga none of what would appear to be its quite autonomous components can independently perform the communicativeinformational function which it performs as part of a cohesive macrosign. As soon as a certain communicative element of the poetic play is taken out of the text, which severs its ties of similarity and/ or contrast with other (and very frequent ly with all) elements of the poem, this element changes from a component of the spatial poetic macrosign (or perhaps from a spatial poetic microsign) into a flat inear - prosaic and discrete - sign. Here, however, it is important to note another - on the face of it, paradoxical - property of connected poetic speech. Alongside an expressed tendency toward the loss by elements of the spatial poetic microsign of their autonomous communicative value, the opposite tendencJ is at work - a tendency toward the orientation of the conceptual structure
of the units of the poetic discourse to the general conceptual and aesthetic informational programe of the text: each of such units, down to an individual word, being "overturned into the subject and idea of the artistic design" \(/ 2 /\), tends, as much as possible, to reflect the overall commonicative task of the text in an integral, if simplified, forme This dialectical unity of the aynaementics and autosemantics of spatial and poetio microsigns predetermines the specific complexity both of the analysis of the poetic text (especially written in a foreign language) and of its poetic translation, i.eq of the synthesis of a spatial poetic macrosign equivalent in terms of conceptualaesthetic informativeness in the target language.

An important role in the "spatialisation" of poetic speech units is played by poetic (metro-rhythmic, phonic and metalogical) structures, quite specific to the poetry of each natiomal language.

Metro-rhythmic structures can be regarded as techniques of the systems segmentation of speech into verse Ines as well as of the systems intralinear speech organisation which takes the form of an ordered alternation of marked and unmarked syllabic positions. The ideal pattern of such altemations is traditionalIy known as metre. The realisation of the metre in empirical verse is known as its rhythm. Implementing the principle of repeat at the syllabic and linear level, the metro-rhythmic structures ensure the generation of verse speech and form the basis for its development into poetic speech, in other words, speech capable of performing the function of poetio communication - communication with the laconic means of two-tiered semantic (factual and conceptual) and multiaspect aesthetic (aesthetio proper, cathartio, hedonistic, axiological, suggestive-hypnotic, struc-
tural-formal, funotional-formal, eto.) information.

The metro-rhythmic structures play the major communicative role of "stratifiers" of semantio information: "linear" syntagmatic connections, which take no account of the "desyntagmatisation" (the term of I.R.Galperin) of verse speech, ensure a continuum of factual information, which bears a marginal character in the lyrical text and, as a rule, is of no basic significance. The "vertical" (naturally, combined with "horizontal") syntagmatic and paradigmatic connections determined by the metro-rhythmic division of the text guarantee the continuum of conceptual and aesthetic information.

Contrary to a widespread view, the Spanish metro-rhythmic structures correspond not to one, but to three different versification systems. First, to the syl-labo-tonic system, whose metric repertoire in principle is as diverse as that of Russian or English syllabo-tonic poetry, including bisyllabic and trisyllabic metres. Even among the best-known poetic works by Spanish and Latin American authors the body of "flawless" syllabo-tonic texts, according to preliminary calculations, comprises no less than 3,000 poetio lines. Second, they correspond to the accentualsyllabic system, which represents a nonfooted (in contrast to the syllabo-tonic system) compromise between the tonic and the syllabic systems. The accentual-syllabic metre in principle coincides with the metric pattern of dol'nik but, in contradistinction to it, presupposes the constant isosyllabism of the verse lines. Therefore the metre of the accentual-syllabic verse is determined both by the number of ictuses and by the number of syllables, for instance, three-ictus octosyllable, two-ictus pentasyllable, etc. Finally, old Spanish poetry and its mo-dern-time derivations show a trend toward
the tonic system proper - toward what is known as taktovik ("Cantar de mio Cid") and dol'nik (old romances, some texts by Pablo Neruda and Garola Lorca, etc.).

The phonic verse structure can be interpreted as a device of the syatems use of the grapho-phonemic repeats designed to convey semantic (as a rule, conceptual) and/or aesthetic information in a poetic text. The grapho-phonemic system of Spanish occasional alliteration contains 21 units (Spanish has 25 phonemes and 30 letters) and the grapho-phonemic system of the Spanish rhyme has 25 units, which, however, are not fully coincidental with the units of the Spanish phonological system.

The phonic structures, which, in the main, convey only aesthetic information, will be referred to as ornamental. But it should be observed that ormamental phonic structures may also exhibit a measure of semantisation, but not to the extent of enabling the grapho-phonemic repeat to gain the status of a quasi-morpheme /3/a sound-letter combination having a certain occasional meaning within a euphonic context, as, for instance, in the following verse by Miguel de Unanumo: "geta es mi España" (the quasi-morpheme "es" meaning "existence" or even "eternal existence" or "Las montañas de mi tierra/ en el mar se miran" (the "distant" quasimorpheme "mnr", whose meaning, "mountainsea", symbolizes Biscaya as a land of mountains and the sea).

The phonic structures which contain a quasi-morpheme and therefore are undoubtedly semantized can be classed with symbolic phonic structures. Finally, clearly semantized ("quasi-morphemic") sound-letter repeata perceived as a apecific phonic feature not so much of the verse line as of concrete lexemes /4/ which enter in image-paronymic relations can be categorized as paronymic phonic
structures: manzana amanecida (Jiménez), avienta tus destinos al viento aventurero (Greiff), amarillas mariposas. (Jimenez).

In our time the recognition of the conceptual relevance of symbolic and paronymic phonic structures appears to encounter less and less resistance - at any rate, among the authors of works on lingropoetics and linguostylistics. However, as before, debates as to whether it is correct to speak of any informativeness of that part of the phonic structures which has been categorized as their ormamental variety continue unabated. Indeed, what, for instance, is the informational load of the sound repeats 1 and ll (i.e., of the repeats of the sound-letter "L", which in the Spanish grapho-phonematic system of occasional sound repeats mites both phonemes and both graphemes) in the following lines by Juan Ramon Jimenez (the general language probability of the frequency of occurrence of this graphophoneme is 5.7 per cent, and in this fragment its probable expectancy is exceeded more than twice, equaling 12 per cent)? n ... levanta nubes de polvo/y llora con sus esquilas, /bajo la luma de oro./ Le aldea del valle está/ quieta en humo blanco. Todo/ 10 que era alegre al sol. sueña/ no se qué amores lloroses ...

The functional relevance of precisely such and similar phonic structures, more often then not, raises doubts. Some researchers simply deny that these phonic structures have any conceptuality of their own, reducing their communicative load to the oreation of a sonic patterm, emotional resonance, etc.

It appears, however, that the inclusion in the conceptual-terminological apparatus of poetics of such notions as semantic and aesthetic information makes \(t\) possible to minimize misumderstandings and narrow the scope of theoretical confrontations of-minor importance on this
question as well.
In the author's opinion, ornamental alliteration (i.e., the phonic structures which carry no direct semantic load) bears an informative character if only because it is a major factor creating general textual information and imparting to the text the conclusive, coherent, integral character of the only adequate unit of poetic communication, of a "spatial" sign, which has a paradoxically indiscrete nature.

Furthermore, ormamental phonic structures are also discrete bearers of quanta of aesthetic and sometimes even mediated semantic information in its different manifestations, of which reference will be made to just a few.
1. First, it is a variety of hedonistic information connected with the identification of the degree of creative mastery and the technical freedom of versification and with the "delight" experienced by the recipient, who shares with the author "emotions of creative power over the language" /5/.
2. Second, it is the additional information that the recipient deals not with "practical", but with "poetic" speech, the adequate perception of which requires the use of a specific poetic code.
3. Third, it is phono-motivational information supporting by sound identities the semantic similarity or difference between the verbal structures involved in the sound repeat. Here two situations can be distinguished in their turn (A). Sound repeat as the phonic motivation of a trope construction, which emphasizes not only the associative-semantic, but also the phonic community of the comparatum and/or the tertium comparationis and/or comparant: "una lagrima lucero (Jiménez), "mi ilustre soledad de esquila y lana" (M.Hernandez) (B). Aid with phonic means
to the reconstruction of lexical meanings in autological, i.e., formally ugly construction of a poetic text and the soundletter motivation of the "fluctuating signs of meaning" (Yu.N. Tynyanor) in a poetic word \(/ 6 /\), as a result of which intensifies the semantic interpretation of units of syntagmatic sequences: "tremulos trigales" (Greiff), "flautas plexibles" (Hernandez), "valles llenos de dulce añoranza" (Jimenez).
4. Fourth, it is information indicating textual cohesion, expressed by means of phonic cohesion, which itself can ensure such a high degree of the coherence of a poetic discourse that it becomes possible to neglect the ramified grammatical and lexical devices of interphrasal connection.
5. Fifth, it is so called anagrammatical information, produced by the saturation of the text with grapho-phonemic complexes which form part of a certain key word.
6. Sixth, ornamental phonic structures are sometimes used for conveying onomatopoeic information. Naturally, in conceptual terms, it is a fairly lightened sound-letter device. However, its modest semantic advantages do not at all compromise this type of the phonic structure as an auxiliary means of sound expressiveness.
7. Seventh, the conceptualness of another variety of ormamental structures is quite possibly based on the latent effect of primary or secondary sound symbolism. The author says "quite possibly" since specialists in linguopoetics have not arrived at a final solution of this question, in distinction from, for instance, the problem of contextual sound symbolization of poetic speech. It is another matter that the "practical", primary "meaning" of a sound and its relevance to poetic speech, contrary to the
conceptions of the majority of the authors of phonosemantic researches, are divided by as deep a chasm as the meaning of the word "dream" in everyday speech and in the text of Galderon's drama Life Is a Dream.

\section*{REFERENCES}
/1/ N.I.Baleshov, "Structural-Relational Differentiation of Iinguistic Sign and Poetic Sign", Izvestia AN SSSR, Seriya literatury 1 yazyka, 1982, vol. 41, No 2, pp.125-135.
/2/ G.O.Vinokur, "Selected Works on the Russian Language", Moscow, 1959, p. 247 (in Russian).
/3/ V.P.Grigoryev, "Poetics of a Word", Moscow, 1979, pp.286-290 (in Russian).
/4/ Ibido, p. 272.
/5/B.A.Larin "Aesthetics of a Word and the Language of a Writer", Leningrad, 1974, p. 61 (in Russian).
16/ Yu.I.Levin, "Concerming Some Features of the Content Plane in Poetic Texts", in Structural Typology of Languages, Moscow, 1966, pp.213-215 (in Russian).

\section*{Galina N. Ivanova-Lukyanova}

мгпиия им. М. Тореза Москва 119034, Остоженка, 38

Grammatical form of text and punctuation marks will help define the rhythm of any written text.

However, many intonation variation are possible and they determine the exact rhythmic characteristics.

Thus the choice of a variant has to be made in keeping with the author's intention to change the rhythm of the text.

There is an opinion that the rhythm of work of prose can be studied on hearing a text, and that its written form doesn't give any information about its rhythmic and intonational structure.

However many investigators of rhythmic perculiarities of Russian belles-lettres texts didn't need to reproduce these texts orally. Therefore in the works of B.M.Tomashersky \({ }^{\text {I }}\), A.M.Peshkorsky \({ }^{2}\), G.P.Firsor and others even the possibility of comparing the written and spoken forms of the same text isn't mentioned.

Thus an investigation of the written text of "Queen of Spades" gave B. Tomashevsky the opportunity to write on the rtythmic peculiarities of Pusthein's prose \({ }^{\text {I }}\).A.M. Peshkovsky, while analysing the rhythmic structure of I.S.Turgenev's "Verses in
prose" gave a beautiful specimen of a subtle penetration into the rhythmic substance of the work.

Some linguists have asserted directly that the phonetic system of a piece of prose, which was created by the author, can be reproduced exactly while reading the text. For example, L.V.Scherba \({ }^{4}\) wrote on the only right way of pronouncing a text, which corresponded to its correct interpretation; N.I.Zhinkin \({ }^{5}\) considered that the reader must be able to find the very intonation which the author had in mind. Besides, it has been asserted experementally that the author, while choosing the very varient, which corresponds to the written form of the statement, reproduces in his inner speech all the variants, including the final one, which became the written form. Thus we may speak about both the phonetic similarity of the oral and written variants of the same text.

The author's intention as regards the rhythmic and intonational structure of the text is realized through linguistic devices which include the syntactical system of the text; and through non-language devices, which include, in their turn, a graphic arrangement of the mate-rial and punctuation marks.

The Rhythm of emotive prose is considered as the regularity of alternating: a) stressed and unstressed syllables, b) borders of sense division and c)Rising
of combinations of rises and falls of tone gives us a chance to judge the level of its rhythmical harmony, which implements such things as smoothness, musicality of the text, and this is turn brings about a more suitable pronounciation of it. In belles-lettres the number of deviations is far less than in non-fiction. That's why its intonation is more versitile and flexibile. In belles-lettres intonation we find tone-contrasting intonational types, which seldom can be found in business like texts, journalistics and scientific texts.

The cause of such deviations may be found in the peculiarities of syntactical links of different functional texts. Subordinate construotions prevail in the texts of different functional styles (such as business-official, publicistic and scientific styles) in contrast to belles-lettres and colloquial texts in which subordinate, co-ordinating and asyndetic constructions are used equally. The high degree of intonational rhythm in a text, first of all, depends on the frequency of co-ordinating and asyndetic links which require the falling tone (pitch). The frequent combinations of the falling and rising tone (pitch) create and undulating movement of the intonation accepted as one of the elements of good rhythmic organization of the text.

The dependence of rythm on the syntactical structure of the text suggests that the author with the help of syntax determines the intonation of the text which is an inseparable part of prosaic rhythim.

It is also common knowledge that when we sound-track a written text the intonation may be different in variation. This is explained by the complex relation between syntax and intonation.

We tried to solve this matter by thinking thus: there are two types of intonation: the rising and the falling tones. The rising tone conveys the syntactical meaning of dependence and incompleteness, and the falling tone conveys the meaning of independence and completeness. If some syntactical structure has meanings that are combined in one intonational type then in this case it has no intonational variants (variations): if the syntactical structure convegs meanings that cannot be combined in one intonational type then it permits intonational variants, i.e. may be pronounced with both a falling and rasing tone. A non-terminal syntagma of a simple sentence, a terminal syntagma of declarative and interrogative sentence, and some others may serve as an example of non-intonational variants. A coordinating link inside a simple or a complex clause in which the meanings of completeness and incompleteness are not combined in one intonational type would be an example of a syntactical structure permitting intonational variants. The choice of this or that variant while reading must follow the requirements of the general message of the text which calls the author very often determines the choice of the intonation type using graphic means, when for example A.S.Pushkin uses any punctuation marks of his choice, i.e. the semicolon instead of a comma in unextended homogeneous sentences he points out necessity of the falling tone in cases when the symtax permits intonational variants.

Thus the rhythm of a written prosaic text may be suggested by the author's consent and in order to determine the rhythmic characteristic of a text it may be enough to use only its written variants.
and Falling of the pitch. Diversions from a regular pattern in these alternations comprise the main rhythmic characteristics of the text: syllabic, having sense-group character and intonational. If the syllabic characteristic doesn't permit any differences \({ }^{7}\) in the written and spoken forms of the text, then the two other characteristics depend on the concrete interpretation of the text and cannot be derived from its written form.

The sense-group characteristic, which shows the regularity of the arrangement of sense-group limits depends on the quantity of contrasting sense-group differing in length (contrasting sensegroups are those, the length of which exceeds two phonetic words).

Thus this characteristic is based on, the sense-group segmentation of the text which, as it is known, is variational.
Qe reader divides the text into short sense-groups, another into long ones.It may seem that the rhythmical characteristic wholly depends upon the segmentation, cannot be more or less stable for a certain text. Still this is not quite so. Research testified that both written and spoken texts, from the rhythmical point of view, had a high degree of rhythmican composition of sense-group, which occurs irrespectively of any kind of reading. This means that the segmentation of the text into long or short sense-group leads to more or less similar results, when counting characteristics.

It is explained by the fact that the sense-group rhythmics is assessed not only by the absolute length os seens-group but also by a correlation of short and long sense-group, as the rhythmical side is violated by the neighbouring lenghtcontradictory sence-group.

Thus the author's intentions as long as the rhythmical point of view is con-
cerned provides for a certain constancy of this characteristic along with any correct spoken representation of the text. But this rhythmical representation is possible only due to correct reading, during which the reader understands in a correct way the whole rhythm of the text. That's why it would be extremely unnatural to read (quite) a rhythmical text dividing it atternately into short and long sencegroups.

A rhythmical tendency, which means our desire to equalise the rhythm of speech helps to assess the rhythmical side of the text. In spoken words this can be seen in a more rapid or slower pronunciation of different words and sense-group, in oral and written speech - in the equalisation of spoken passages, which happens due to the addition or interchangability of the words due to various stress-marks you place on unstressed words. Hence this rhythmical tendency determines the syllabic rhythmical characteristic.

Unstable stressing of link-words, pronouns, short numerals and adverbs is explained by the fact that these eradynamially unstable words serve as rhythmic organisators in speech. When they are found between two stressed syllables of the neighbouring words, they lose their personal stress, when found in a large interstressed interval, obtain it, thus showing the rhythmical harmony of speech?

The third, intonational rhythmic characteristic depends upon the rhythmical tendency. An ideal rhythm in our understanding, a rhythm with interchangability on the upswing and descend in sense-groups. The correlation of identical intonational types is a deviation of the ideal rhythm. The author's rhythm is again a matter of determination by a syntactical order of the text. A certain character

\section*{Bibliography}
I. B.V.Tomasherski. "About Verse", "Priboi", L., I929.
2. A.M.Peshkovski. "Rhythm in I.S.Turgenev's "Verses in Prose".
3. G.P. Firsov
4. L.V.Sherba. "The Experience of A.S. Pushkin's Linguistic Analysis of Verses", "Reminiscences".
5. N.I.Zhinkin. "The Development of Written Language by Pupils of the III-IV forms", "Izvestia", APN, RSISR, issue 78, p.I43.
6. A.N.Sokolov "Inner Speech and Thought' M., I968.
7.G.N.Ivanova-Lukyanova. "Rhythm in Prose", From the book "The Development of Phonetics in the Modern Russian Language \({ }^{n,}\) M., I973.
8.G.N.Ivanova-Lukjanova "About the Stress of the

\section*{IRREGULAR RHYTHMS}

\section*{HIKOLAI KITMOV}

The Maurioe Thorez Institute
of Foreign Languages
The Department of German Phonetics

\section*{Abstract}

Speech rhythm is treated as an irregular temporal structure, characterized by a certain correlation of values of phonetic parameters of elements, comprising the structure itself. The problem of language specific feature of rhythm is discussed.

In phonetics rinythm is mainly understood as a certain harmony of elements in speech, manifesting itself in their isochronism and isomorphism. Phoneticians are apt to consider regularity the gist of rhythm.

For the versification and music theory, which mainly determines the phonetic studies of rhythm in prose, the idea of harmony is naturally of great importance, because of the emotional impact of regularity. The question arises, whether harmony should remain the decisive criterion in determining the object of the stu-
dies of rhythm in phonetics.
Let's proceed from the fact that in sciences, related to phonetics, there is a widely accepted point of view, according to which rhytbm in the broad sense of the word is "a temporal structure of any perceived processes, comprised of accents, pauses, division into sections, their grouping, duration correlation, etc." /1/. This approach allows us to look upon the recurrence of elements as possible, but not obligatory. As E.Benvenist puts it, the word "rhythm", connected with equal intervals and recurrence, used to be one of the subtypes of a broader meanings /2/.

> The idea of rhythm as a structure does not mean the appearance of a new conception, but the preservation of the old tradition, which continues to exist along with the idea of rhythm regularity, which according to E.Benvenist, appeared in the 5th century.

Rhythm as a atructure means above all a dialectical unity of diviaion and wholeness of movement as perceived by man.

It seems obvious that rhythm presup-
poses a physical sequence of elements, which are perceived as relatively independent. A speech signal, whose parameters may become changeable according to continuous linear function, is naturally devoid of any rhythm. On the other hand, movement aquires a certain rhythm if its elements are perceived by man as having certain temporal relations. Phychologists, dealling with musical perception, believe that a physical pause of more than 6 sec. destroys the temporal correlation of elements and thus distorts the feeling of rhythm /3/.

Rhythm as a structure is also used in phonetics. It manifests itself in all kinds of description of accentual-ayllabic structures of speech. The description of accentual-syllabic structures, traditionally accepted in phonetics, uses a limited number of qualitative features, such as the number of syllables, accent and the recurrence of stressed and unstressed syllables in the structure. Such an abstract model of rhythm, which (with certain reatrictions) can be called metrical, can easily be observed and does not require a more detailed experimental analysis. The correlations of elements in the accentual-syllabic structure, reflected by the metrical model of rhythm, correspond to the scale of order and convey the most general relations of the "more - less earlier - later" type. The olements them-
selves (syllables) are represented without disclosing their inner prosodic structure. Finally, the metrical model of rhythm is static, it does not convey the dynamics of syllable transitions. Its only dynamic characteristic is the direction of changes in riythm-creating parameters, which makes it possible to discriminate between rising, falling and other types of rhythms.

Making the metrical model more concrate by means of rhythm-creating parameters (intensity and duration both in the sillable and inter-syllable relations) would be of considerable interest.

In this connection it would be interesting to deal with the problem of rhythm creating parameters as the material substratum of speech rhythm. No doubt, rhythm, as any other structure, is to a certain degree independent of its substance. One and the same rhythm can also be transformed into different kinds of substances, e.g. the conversion of the rhythmical structure from non-sound into sound substratum (e.g. a hand movement and prosody) and also from one type of sound substance into another (the manifestation of rhythm in melody and intensity). On the other hand it would be wrong to think that rhythm in general is not connected with any kind of substratum. It is important not to mix the question of the possibility of substance
conversion with the question of optimal relation of structures and substratum, which provides for functional reliability of rhythm. If it's correct that "all the speech elements can be relevant to rhythm" \(/ 4 /\), than it's also correct that one and the same rhythmical structure gains and loses in its definiteness, "transparancy", requires a kind of effort for its production and identification.

Rhythm is mainly related to the energy foundation of speech. The material substratum of rhythm is above all the respiratory system of speech orgens. In the most explicit way this point of view has been expressed by R.Stetson and D.Abercrimble. The structure of movement on the level of other subsystems of the speech organs (voice production and articulation) displays a certain parallelism with the structure of respiratory pulses, thus producing a delicate differentiation of rhythms. When melody and articulation "deviate" from respiration, the form-building function of rhythm is performed by the latter. Thus the perception of rhythmical variations is closely connected with intensity changes of speech signal, and not with the changes in fundamental frequency or voice quality.

Investigation of irregular rhythms makes it possible to introduce another essential parameter in the description of specific features of different languages.

Correlation between language specific features and rhythm in general can hardiy manifest itself on the level of 180chronism. The latter is determined mainly by speech, aims and conditions of communication, style. The harmony of speech units in texts of one and the same language can fluctuate within a very wide range. Besides, any text reflects the specific features of a language.

Language specific features of rhythm depend on metric schemes that prevail in speech continuum. According to E.Sievers, in German and English trocheeic or dactilic rhythm prevails, while in Romance languages it is iambic or anapaest /5/. But the most essential features of speech rhythm lie in the sphere of its non-metrical features, i.e. such phonetic variations that create rhythmical differences in one and the same metrical structure.

Syllable dynamics seems to be one of the most essential non-metrical features of an accent group. Syllable dynamics is the distribution of values of velocity (acceleration) of changes in intensity within syllable impulses. From the point of view of psychology the character of syllable dynamics is determined by correlation between static and dynamic muscular tension of speech organs.

The problem of syllable dynamics has been more or less investigated in different branches of phonetic siences,
such as the investigation of syllable accents in Germanic languages (Danish jerk, gravis and acut in Swedish, "sharp" character of syllables in Rhenish dialects). Investigators point to double-peak/ single peak syllables and the character of release as parameters of dynamic differences of syllable accents. The change of syllable dynamics as manifestation of the speaker's emotional state was experimentally investigated by F.Troyan, who used the musical terms "staccato" and "legato" to denote two polar forms of dynamics /6/. Syllable dynamics as a whole ballistic movement and as a phenomenon of speech norm remains up to now a problem, which hasn't been sufficiently investigated.

The character of distribution of values of prosodic parameters in syllables is another non-metrical feature of an accent group. In this respect we can evidently distinguish only two poles, which will serve to distribute these meanings: decentric and centric (contrastive) rhythm. Regarding centricity and decentricity as auditory images, we must point out that the difference between these auditory images will be based not only on complicated interaction of syllable duration, intensity and tone, but also on spectral characteristics of vowels in syllables. It can be assumed (with a great degree of certainty) that the degree of reduction of unstressed
vowels will affect the perception of centric rhythm.

We assume that investigation of irregular rhythms is of great phono-didactic importance. In teaching phonetics practising regular rhythm pursues mainly aesthetic aims, while irregular rhythm creates a special language colouring, whose absence in the speech of a foreign learner (especially on advanced stages) is the main feature of a foreign accent. Irregular rhythms become even more important if we treat a language not only as a system of phonological oppositions, but also as a general pronunciation norm, which distinguishes one language from another. This approach deals with identity of phonetic phenomena and not with their differences, thus giving the investigator a chance to make general conclusions, which, in their turn, lead to the phonetic basis of the language (a phenomenon which is both well-known and uninvestigated). Irregular rhythms comprise one of the most important components of the phonetic basis of a language.

According to modern conceptions of speech physiology, the upper structure of speech movement is the final result of interaction between several hierarchically organized levels of controlling speech movement, each of them having its own units. The data obtained in the
course of investigation of speech ontogenesis and aphasia give ground to assume that the hierarchical structure os speech movement includes a rather autonomous "deep" level of the production of rhythaical groups as whole units, which are characterized by both metrical and non-metrical features, conveying the specific character of each language. If it is so, teaching phonetics of a foreign language should include a apecial stage of practising specific features of rhythm. This stage should precede teaching intonation and sounds.

\section*{References}
/1/ B.M.Teplov. Psikhologiya musykalnykh sposobnostey. M., 1947, p.269270.
/2/ E.Benvenist. Obshaya Iingristia. M., 1974, p. 383.
/3/ E.Nasaykinskiy. O psikhologil musykalnogo vospriyatiya. M., 1972, p. 192.
/4/ D.Abercrombie. Vaglyad fonetista na strukturu stikha. /Novoje \(V\) lingVistike. Vol. IX, M., 1980, p.404/.
/5/ E.Slevers. Grundzüge der Phonetik. 4.Aufl. Leipzig, 1898, S. 217.
/6/F.Trojan. Biophonetik. Wien, 1975.

\title{
the study of rhythm in relation to metrics
}

\section*{MARIJKE LOOTS}

\section*{Faculty of Letters}

Catholic University Brabant
P.O. Box 90153, 5000 LE Tilburg, The Netherlands

\section*{ABSTRACT}

It is argued that the majority of experiments into what is called rhytmical or metrical speech has no actual bearing on the study of metre. The question is raised whether it is at all useful to make metrical verse the object of experimental research.

\section*{introduction}

\section*{Rhythm}

In the strictest sense of the word, rhythm is the perception of groups in a series of stimull. Instead of being merely successive, the stimuli appear to be organized into groups on the basis of a difference in prominence between the stimuli. Rhythm is an everyday phenomenon for everyone who is in the happy possession of an old-fashioned clock instead of an electronic time indicator. The name 'subjective rhythm' is given to the phenomenon that in a series of equidistant stimuli that are acoustically identical, people hear the stimuli as grouped, with a prominent stimulus either beginning (falling or trochaic rhythm) or ending (rising or iambic rhythm) the group. The term 'objective rhythm' aplies to cases in which the stimuli are objectively different, either by nature or because the experimenter makes them so. Provided that the interval between the most prominent syllables does not exceed an upper or lower thireshold, the events will appear to be grouped in the same way as in the case of subjective rhythm.
The recurrent theme in the study of rhythm is the question whether the perception of rhythm is the result of 'the arrangement of durable elements, or [...] the succession of more or less intense elements [...]' [1]. Any attempt at an analysis of rhythm has to steer a middle course between overemphasizing the temporal aspect or the succession per se and the difference in prominence between the elements. No matter which one is chosen, the notion of isochrony is central to the notion of rhythm. Subjective rhythm hinges on the idea that some stimuli are perceived as prominent because they fall at isochronous intervals. Objective rhythm depends on the claim that intervals between stimuli that differ in prominence will appear isochronous if these stimuli follow one another in more or less regular alternation.
Being a perceptual phenomenon, rhythm looks back on a long history of experimental research. One only
has to open a few back numbers of Perception and Psychophysics to see that rhythm is still a hot issue in the field of psychology.

\section*{Metre}

Whereas the perception of rhythm is spontaneous, metre is recognized on a cognitive basis rather than perceived on a sensory basis. By using metre, poets can try to induce the sensation of rhythm in their. audience. Whether they succeed depends on a great number of factors, the willingness of the audience to comply with the poets' intentions being one of them. Poets and audience should share a familiarity with certain metrical schemata and other literary devices responsible for structure, such as alliteration and rhyme. This shared knowledge makes it possible for poets to deviate from strict regularity: the aesthetic effect of metre exists by virtue of the tension between the strict pattern and its realization through the medium of language. The realization differs from the pattern, not only because the poet consciously inserts a deviation from the norm (e.g. a trochaic foot in an otherwise iambic line) but also because speech does not easily allow itself to be put in a straightjacket of strict regularity. Both concrete and abstract properties of speech will rebel against the notion of strict regularity. By the term 'concrete properties' we mean measurable parameters, such as, for example, the duration of speech segments. Here, strict regularity is made impossible by the fact that individual speech segments have an inherent duration. By 'abstract properties' we mean the syntactic and semantic organization of speech, which also asserts itself at the concrete level, for instance by affecting the values of individual speech segments.

\section*{Problem}

In this paper the question is raised whether anything can be gained by applying the principles and methodology of rhythmical research to the study of metre. Three positions in the study of metre suggest themselves:
1) Metrical speech is subject to the same regularities as tone sequences and should be investigated in the same way; this approach denies speech its own character.
2) Metrical speech is subject to a tendency towards rhythmic structure in that the latter imposes a regularity on the speech material that is otherwise absent in the acoustic signal.
3) Metrical patterns manifest themselves in speech material by totally abstract means, which elude
any experimental approach.
In this paper it will be taken for granted that the first position is untenable. The article hopes to
demonstrate that the second position will also prove unfruitful and that new research paradigm are merely begging the question. One seems to be forced to accept the third position, even if this may have unattractive implications for an empirical discipline.

THE INFLUENCE OF RHYTHMIC STRUCTURE ON SPEECH material
\(\frac{\text { The metrical foot as a prosodic unit }}{\text { Let us assume for the sake of the }}\)
a metrical line of verse may give rise to the perception of rhythm.
In the line
sweet day, so cool, so calm, so bright
an iambic rhythm will be perceived. What seems to
be primarily responsible for the division of the be primarily responsible for the division of the
line into groups of two syllables is the linguistic line into groups of two syllables is the linguistic
structure, which may be called abstract in that it can be recognized in writing. Let us assume, however, that on top of that linguistic structure there is a contribution of concrete measurable parameters. This
assumption is given support by the repeated claim assumption is given support by the repeated claim
that lines in iambic metre "sound different" from lines in trochaic metre. If this is true, metrical feet are not merely the conventions handed down to us by the Classical writers, but they may also have a perceptual reality.
At the outset of our investigation we hypothesized
that the metrical foot behaved as a prosodic unit, that the metrical foot behaved as a prosodic unit,
very much like a phrase or a clause. As such, it would show the prefinal lenthening characteristic of these larger prosodic units [2]. This idea was
tested in a number of experiments, two of which will tested in a number of experiments, two of which will
be mentioned briefly.

We started with nonsense syllables [də da:] read either with a falling rhythm or with a rising rhythm.
The hypothesis predicted that the stressed element The hypothesis predicted that the stressed element in the iambic line (foot-final syllable) and the unstressed syllable in the trochaic line (also footcounterparts. In the experiment involving nonsens syllables we found some evidence for prefinal lengthening in metrical feet, in perception as well as in production. Although this effect was only
found when we asked our reader to scan the nonsen syllables (i.e. read them slowly and with emphasis) and although only non-naive listeners were able to ignore the actual opening of the line (stressed versus unstressed) we did find evidence for the
metrical foot as a prosodic unit. metrical foot as a prosodic unit.
In the case of meaningful material,
necessitated manipulating lines in such a way that they could be read as iambic (with an unstressed word at the beginning) or trochaic, depending on the metrical context.
The line was inserted as the second in a four-line
stanza, the first line containing two-syllable words corresponding to the metrical pattern: trochaic in
a trochaic stanza, iambic in an iambic stanza. The a trochaic stanza, lambic in an will serve as an example (rather than giving a translation I will give a paraphrase in which there is a coincidence between metrical structure and language comparable to the Dutch instance; critical second line only differs in the addition of an unstressed word at the beginning)
\begin{tabular}{|c|c|}
\hline trochaic & \\
\hline dreigend door het duister & threatening through the twilight \\
\hline sprak een stem tot Piet & spoke a voice to Pete \\
\hline handen in de hoogte & better stop your talking \\
\hline & \\
\hline iambic & \\
\hline opeens bewoog een tak & at once the air resounds \\
\hline er sprak een stem tot Piet & a voice to Peter speaks \\
\hline ga heen en kijk niet om & obey the voice you hear \\
\hline je weet dat ik dan schiet & behave or I shall shoot \\
\hline
\end{tabular}
of each line the individual segment durations were compared in their iambic and trochaic reading. No systematic difference between foot-final elements
and their foot-initial counterparts was found [3] and their foot-initial counterparts was found Presumably, in the meaningful material a possible temporal organization of the material in terms of metrical feet was overridden by other prosodic
regularities, governed by the syntactic organization
of the material of the material.
The above example should be read as an instance of
how the many interactions in speech may override a possible rhythmic structure. In this example, as in all other variations upon this theme, metrical feet coincide with word or phrase boundaries in one type
of rhythm, but, as a logical consequence of the opposition but, aen rising consequence of the with the other kind of rhythm. If we want to investigate the interaction between syntactic and morphological structure on the one hand and metre
on the other, we are faced with the problem that, on the other, we are faced with the problem that,
in the majority of cases, it is impossible to vary the one and keep the other constant. This renders it impossible to make syntactic and morphological structure the object of experimental investigations into metre

\section*{\(\frac{\text { Isochrony revisited }}{\text { The claim that in }}\)}
lables claim that in metrical speech prominent sylis ables should be separated by isochronous intervals at a suprasegmental level the duration of speech segments is affected by many more influences than metre. If the claim of strict isochrony is considered naive, would not a more sophisticated interpretation of the notion be feasible? Two lines of research into the rhythm of speech have been develop-
ed in which the notion of isochrony plays a central ed in which the notion of isochrony plays a centr
part. The question should be considered whether these approaches might prove fruitful for the study of metre.
\(\frac{\text { Rhythm is predictability. Martin [4] argues that }}{}\) the rhythmic structure of speech enables listeners to generate expectancies concerning later events in
real time on the basis of the perception of earlier
events. The notion of isochrony is inherent in Mar tin's model in that the hierarchical organization of accent patterns depends on the notion of relativ timing. Over time, rhythm has become more or less periments the influence of a disruptionies of extemporal structure on the predictability in certain phoneme has been investigated, e.g. [5] Rather than suggesting an application of this ex perimental design to the study of metrical speech, that this interpretation of rhythm is misg argue Although it is true that rhythm entails predic. tability, predictability does not necessarily entail解 so many factors other than temporal structure that have little bearing on rhyth the Isochrony and perceptual centers. If not between s claimed to exist between 'perceptual centers' 6]. Perceptual centers correspond to the locus of center aligned digits are perceived as more isochronous than randomly aligned digits. Buxton [7] even reports on an experiment with meaningful aterial in which subjects found it easier to tap ly aligned words. It would ned words than to randomof an experiment into metrical speech in which the claim of metrical speech being isochronous could be tested. However, the location of the P-center has at the ease with which Buxton seens that one wonders structed her material. P-centers seem to be dendent not only on the nature of the initial consonant finalso on the duration of the medial vowel and final consonant of a CVC sequence ( \([8],[9]\) ).

\section*{CONClusion}

In our own work, we have been unable to demonstrate at a chythm imposes a regularity on speech materia to manifest itself in the fimic structure was supposed various recent publications, the metrical feet. I become little more than temporal structure per se, or mere predictability. If we cast our net so wide as to include these interpretations of the terms,
there is no end to speech. If we adhere to the more orthodox meanings of the words rhvthm and metre, however, we will have to conclude that, no matter how much their internature will continue to interest us, its precise vestigated only be speculated on, and cannot be in posal.

\section*{REFERENCES:}
[1] Fraisse, P., Rhythm and Tempo, in: Deutch, D <<The Psychology of Music>>, Academic Press,

2] Klatt, D.H., Vowel lengthening is syntactically determined in a connected discourse, <<Journal 3] Loots, M.E., <<Metrical Myths>>, Martinus Nijhoff, The Hague, 1980.
4] Martin, J.G., Rhythmic (hierarchical) versus serial structure in speech and other behavior serial structure in speech and other behavior,
<<Psychological Review>>, \(1972,79,487-509\)
[5] Shields, J.L., A. McHugh, and J.G. Martin, Reaction Time to phoneme targets as a function nal of Experimental Psychology>> speech, <<Jour 250-255.
[6] Morton, J., S. Marcus, and C. Frankish, Perceptual Centers (P-centers), <<Psychological
Review>>, 1976, 83, 405-408.
[7] Buxton, H., Temporal Predictability in the Per ception of English Speech, in: Cutler, A., and D.R. Ladd, <<Prosody: Models and Measurements>>
[8] Fowler, C.A., 'Perceptual Centers' in Speech Production and Perception, <<Perception and

Fox, R.A., and I. Lehiste, The effect of vowel quality variations on stress-beat location
<Journal of Phonetics>>, \(15,1-14,1987\).

This paper has greatly profited from discussions with Els den Os and, at a later stage, Prof.Dr
A. Cohen, both of the Department of Phonetics, Utrecht, The Netherlands

\section*{THE EVOLUTION OF OLD GERMANIC METRICS: \\ FROM THE SCOP TO THE SCALD}

Olga Smirnitskaya

Dept. of Germanic Philology
scow State Universit

ABSTRACT
In the evolution of Old Germanic poetry the need for a metre as the exof application is supplied in two ways. the metre is elther abstractad fram the terative line giving rise to syllabotonics (in Late Old Raglish poetry) or is originated as the atscovery of form within the language (the formalization of pro
sodic word-structures in scaldic poetry).

\section*{1. The alliterative verse}
I.I. In works on comparative metrics the Germanic alliterative verse (AV) is
usually referred to as a free form of tonic (or accentual) verse. Thus, M. I. West defines an alliterative line as "a variable unit containing two stresses and as /I, p.I8I/. This definition is to a certain extent contradictory. In fact, sentence stress is the basic measure of alliterative long line, but the long line carries short line, or half-line, it is known Bince Sievers' "Die altgermanische Metrik" (phonetic it not only counts stresses (phonetic words), but also takes into the prosodic least in regular forms of AVword. In its schemes syllables are classi. fied by quantity and also by stress. However, it follows from the alliterative design that in the long line the gradation of phrasal
The complexity of \(A V\), the union in it of utmost freedom with "inscrutable and needless" distinctions has always impeded scholars. Innumerable attempts have been Sievers and his followers, either by changing priorities fram the linguistic arrangement of the line to its oral (musical) performance or by drawing a sharp cal) schemes and their phonetic (rhythmical)
realization. "Sievers faßte bloß die Rea lisierúng ins Augen,- Euryłowicz writes in this connection, - ohne zum Grundsche-
 indeed, that is they prescriptively discurrent in verse) and non-metrical (not in use or occsaional) lines (cf \(/ 4, p, 174 /\) ) Thus, being an accentual system, AVis quite sensitive to the quantitative structure of words in stressed positions. Th change in the word order in old Norse non-metrical ('too hani lighto) line reuld hani in fagrraudr. But a minor emendation would reconcile it with the scheme: eða hani
fagrraűr (cf. Gठ̄r.II.7. eða gull glód


It is only natural that the metrical relevance of secondary stress provoke again, Nach Sievers gehören sie zum metrischen Schema, während sie in Wirklichkeit blof eine submetrische Rolle spielea aichtigt merden, aber metrisch ebenso renig relevant sind wie die kombinatorichen Varianten der Sprachlaute fur die phonologische Gestalt des Wortes" \(/ 3\), S. I4 \(\%\) secortheless, in spite of the theory, econdary stress is essential to the
 Slevers' notation), where it supports the four-element structure of the line, 1.e. prevents the weak syllables from slurring. Thus, this line is not to be modified mintigan drihtne). E. Slevers, with all his alleged 'empiricism' made' a clearcut distinction between the schemes with obligatory (1.e. metrical) and facultaive (i.e.submetrical) secondary stresses. Language selectivity of avis neve cences'. The extrametrical ( \(1 . \theta . a d d i\) tional to two scheme drops ') anacrusis in BEOWULF will be a good erample. The orident that in spite of what is expected
of the accentual verse, AV distinguishes
etween the so-called 'phonetic words lexical units. In the regalar verse of the BEONULF-poet anacrusis is reserved hilie the unstressed anxiliary prords (1.e, prepositions, conjumacions etc.) are aroided in this position. The pattorn of Beo. 217. Gewat ba ofer wepgholm/wind ines of the recurrent. in at least 15 tice of the fact, pointing out that the deviations in metre are based on the same naterial as the deviations in Germanic accentual word structure /5, p. 35/. Hence, has remained in fact a minor rhytmic il. cence in the Scandinatian version of AY where it occurs only occasionally and only in loose forms of Fornyroislag. The matter is that in 01d Norse there are practicaliy no words with non-initial stress (verbs ray, there exists no prosodic material here anacrusis could have been opposed o'metrical: initial drops in B-,C-types \(x-\) or \(x-\frac{1}{-x}\) ).
These facts taken into consideration, rence betreen regular forms of AV and its loose forms. The rhythmic tendencies of the latter are in regular forms spliti into main rule and the alternative ruie保 the rule realized under definabl inguistic conditions (cf. Yeyser's apIf metre is
as an invariant tare of a concrete line, them buch metre not to be found in AV, however comlicated and strict it might be. The detion but to Ats further splitting and deFision into variant metrical (main and alternative) schemes and, consequently to its still closer union with the poetic language.
rerse metre is called the general law of system can be alh Wth the common law of anctent feutons with its incidental detailing and casulstry. I believe that this mode of existence abstracted from the wort- and sentenceprosodic structures) is prectsely the feature that makes it so interesting for the theory of metrics. It is an archaic feature of verse typologically implie
I.2. Theoretical studies of AV hav always been verified by the question of how an ancient scop could cope with the system so astoundingly complicated as this. A. Heusior belleved that sievers \({ }^{\circ}\) pive rspes of the short line are to be regarded
but to the artificial style that had decondary in crasalizatton as a result of seowing to the discoveries of recent deca es, more is known about the nature of pic authorship, we would rather say: formal complexity of AV is the result of ts 'artlessness'. that is of the fact as such. It was not the form as a system of devices that he mastered but the form ally organized - formulaic - language Recreating and varying formulas the scop was at the same time recreating the verse he norm (canonized forme) usace and free variation.
It would not be a mistake to say that the whole theory of AV is imbedded in the ormala theory as created by M. Parry the formula as a group of pords s regularly employed under the same met cal conditions to express a given essen tial idea" \(/ 8, \mathrm{p} .80\) / and still more the liuminating statements of"The Singer of same type of relations between language and verse as was outlined above, except for the lact that the 'tendencles' of the olkiore epic songs as distinguished from he medieval epos, have not jelled into

But in spite of Lord's assumption that the singer "learns the meter ever in association with particular phrases, those expressting the most common and oft-re 19.0.32/, and that, consequently study of formula must therefore properly begin with a comsideration of metrics and music" /9, p.3I/, the nature of epic mettheory \(n\) the the background or his verse :a more or lese rigid rhythmic pattern" the singer "has to pour his ideas into"/9,p.22/ which seems exactly the opposite to the assumption cited above. Francis P. Magoun and his pupils by Whose formulas were examined, never attempted any explanation of AV , though 'the five types as one could have imagined, proved indispensable for the practical purposes of classifying formulas. In the heated mulaic theory (ses the review of Ann Ch. Watts /IO/) the problems of rerse were altogether omitted from consideration. This indifference to the verse aspect reasons.
Firstiy, the formulaic poetry was invariably viewed by the followers of Parry and Lord as the oral-formulaic poetry, trace of oral composition that is nthe composition during oral performance".

The 'metrics'. in its turn, was mainly thought of as the reflection of 'music', the reconstruction of which was belleved to be the major aim of scholarly studies
Special importance was attached to the Anglo-Saron harp (cf. the discussion in ry situation in the twentieth century Yugoslavia ind the situation in medieval Fngland was obscured in that reasoning; though this particular difference is rery was transferred to parchment without the assistance of a philologist with a tape-recorder. It has been shown ever since that formulas can not be used as a proof of the oral origin of a text in its to say the ieast, in texts definitely known as those created on parchment. Formulaic poetry - and the corresponding type of metrics - lived as long as 'the un-
conscious authorship' (M. Steblin-Kamenshij's term) prevailed in medieval written poetry. To quote Steblin-Kamenskif, "The porement from unconscious to consci authorship, obviousiy, is the basic diis a assume that the transition prom oral to written literature coincides with the transition to conscious authorship"/I2, p.130/.

Secondly, among various types of for-
mulas and formulaic systems it was the mulas and formalaic systems it was the to equip epic themes) that mainly attracted attention. It is clear, however, that the comection of verse with language 1 s first and foremost realized on the level mantic formulas, i.e. on the level of rhythmic-syntactic formulas. As a matter of fact, only the latter justify speahing of the 'totally formulaic style' as the general organizing principle of old Gerformulas, their share is largely dependant upon the genre of the text and other features of its poetic style.
ship; AV can not break thropious authorof traditional ideas and values of epic poetry, an this puts an end to its extstence. \(\dot{I}_{\text {.3. There were several attempts to }}\) in the Finglish tradition) as the result of the changed structure of the language Primary importance was attached to the changes in rord prosodics ( quantitative changes in Middle maglish word), in worddeterioration of poetic vocabulary) and also to the analytic tendencies in grammar. This approach (ifirst applied to AV by Winired \(P\). Iehmann /I3/) seems nowa-
days too straightforward. No less radical
prosodic transformations (as well as other
Iinguistic changes) took place in the pre rritten period, but while an unbroken po etic tradition and the continuity of poproduce any catastrophes in the metrical system. The Old Norse =post-syncopal" Fornyroislag had, obviousiy, inttle af finity to the Common Germanic long line which was current at the time of syllable autonomy. Still, both systems, whicn are and typologically (as far as vêfe identical. Innguistic changes become destruc tive for the verse only when poetry conquered (and unconquerable) by tradition, and the verse comes into contact with new subjects and raw speech materlal This process can be to some extent traced the author of the Late 01d Fnglish poem DURHAM takes great pains to follow the classical samples of AV, his attempts ar bound to fail:" "like a boy riding a bicycle, once the traditional poet or singe he was liable to fall off" \(/ I 4, p .176 /\). Although the syllable range varies in DURHAM Within the same ifmits as in BEOWULF and the number of alliterative words per line is usually observed, the allion, marking accidental words, is ineffective, the metrical schemes of the short line are crushed, and the place of formalas is taken by di sorderly apeech material. The verse of DURHAM might be two stresses and as much else as the poe saw ift to put in" (see I.I), but this is no longer alliterative verse
At the same time it is quite symptomatic, that in this particular loose ferse
and as an attempt to compensate for its and as an at tempt to compensate for its comes almost mandatory"/I3, p.Io /:
9. Is in 犭ere byri eac/ bearnum gecyod


The same is more or less true of other Late Old English texts. The way is other Late old knglish texts. The way is and French poetic metres and for the conception of syllabo-tonics.

Some centuries earlier and on an incomparably larger scale the process of abstracting metrics as an external form starting point for this process was (as in the case of Old maglish poetry) the spreading of poetry to new subjects (fins and foremost the sphere of the actual
present) and the development of indivi. present and the development of indiviunlike the budding syllabo-tonic schemes

\section*{of English poetry appears as the result of abstracting the form within the pros}

\section*{2. The scaldic verse}
2.I. The scaldic verse is generally considered as a tightened form of the epic erse: the scalds added external requireene scaldic line is had inherited" \(/ 13\),p84/. point of view, by adding a fixed cade ( \(x\) ) to the short line of the epic mould. he scald retains the accentual schemes of the line (Sievers' pive types), but adds to them some innovative syllabic resylictiones and the number of unstressed resolution is permitted in the initial positions of the ine but avoided in the inde of the line, etc. The alliteration, in its turn, is subfected to some new for rhyme ('hending') of two types : abalhending or full rhyme, in the even lines of atsa and skothending, or partial rhyme, \(n\) its odd lines.

It is clear, however, that this
daitional the scaltions to the old
question of how poets were able to cope
with their technique. The rules of epic with their technique. The rules of epic
poetry, as we have seen, were not cumber poetry, as we have seen, were not cumber-
some for the scop : "he learnes the meter ever in essocistion with particular phrases \(19, \mathrm{p} .32\). But the scaldic poetry is demonstrably unformulaic. Entity of sense is not evolved by its 11 nes. So, the three Wordf of the following line by scald Sigrent sentences interwoven within the space of a helming: eirlaust - konungr - peira. Peter G. Foote might be quite right when he suggests that pairs of alliterative rords and rhyming stems must have hung, toIn the strict sense of the word, but ready to spring in mind=/I5,p.I83/, but the echnique of such composition, - if we onsider the remarkable 'scaldic sensibiship. - remaing even more obscure with this suggestion.
What is still worse, there are numerous Innes that do not lend themselves to the routine procedure of metrical analyteria are ineffective in case of the scaldic verse (especially those based on the semantic values of words), others insurficient (as eddic alliteration in innes rith an additional stress). The ac centuation of the simplest line of four a problem for a scholar attached to the traditional approach. It is often assumed that the scalds sacripied some metrical rules for the sake of some other metrical
rules, and that being taveterate 'forma ists they often actually violated form. ary words in the so far as to put aux eration to adjust the number of syllales and the framework of hending. We prefer another solution to this sent paper that eddic metrical schemes are not to be taken for granted in scaldic erse. The violation of the eddic struc ures was not compulsory but deliberate versification. In his attictude towards the outworn treatment of the language in traditional poetry the scald resorted to a device that might be called alienation' (ostrannenie) after the Russian for mal school. He experimented with the pro structuralist and in doing so reduce the structures of language to a few operable patterns. We are going to show now plicated ss metrics is not at all as con cated as it 100 ks
Irish) completely passes over the ques tion of how the young scalds, learned their trade. It 1 s well-known to all those Who attempted to penetrate 'Snorri's
categories', that elucidations of the author of the YOUNGER EDDA are in fact mystifying, and the most important things are left unsaid. Suffice is to say that abounding in most exotic terminology, snorri's famous treatise does not even bability the metrical units. In all proalliterative epic line, but the relations between the two metrical units underwent complete transformation in scaldic poetry. prom scaldic six-syllable line derives from the short epic line. But the shor mans, first, that it can not be divided into any smailer segments, and, second, that it is subordinated to the long lin in the same way as the prosodic strucspeech to phrasal rhythm. It is then the long line with its rhythmic integrity and its variable schemes establishing the
semantic values of words which can be semantic values of words which can be rightly called the principal unit of AV is abolished in scaldic verse, whose met rical schemes are constituted by the prosodic structures of isolated words As a phrasal rhythim can not be retained in verse where the phrase is broken by unjustified en fambements and is interwoven with other phrases to make the text near-
ly inscrutable. Alliteration under these ly inscrutable. Alliteration under these nection for ilnes with the general accen-
 an integral unit. It is transersien in a distich, or a constructive el ement
the composition of a visa (cr. the old Norse term ffórðungr, 1.e. 'the fourth part of a visa').
Thus, in scaldic poetry the short line 1s autonomous and serves as the principal metrical unit or the line proper (vf suorr. 18 most evidently manifested in its ca18 most evidently manifested \({ }^{\text {dence. The scaldic cadence } 18 \text { obligatoriby }}\) marked by a honding and is formed by an inseparable (whole) word. Marking the end of the line, the cadence 18 at the same of time an elonent of the binary structure is, in 1 its turn, segmented into two separate 'prosodic words'. The successive binary segmentation of the line corforand as we can bee, to the succesbive binary
 there appears a certain correlation be-
tween the metrical form and the separability of scaldic komings.
In the composite structure of scaldic lines the traditional metrical types are and deformation.
2.3. The metrical types of scaldic
 that may be termed in accordance with the succession of its begmentation as the
finale (cadence), the mediale and the finale (cadence), the mediale and the marked is the bourdary of the pernultimate notional word:
\(\frac{\text { the maln part of the line }}{\text { austr } s^{\circ} \mathrm{k} / \mathrm{fopgll} \text { af } / /} \frac{\text { cadence }}{\text { flausta }}\)
+1
Each of these three segments of a
scaldic line has essentially different metrical functions and rhythmic possibilities. The rigidity of the inne increases froum 1ts beginning to 1 ts ond. The finale, as we know, is the 1120 's \(\frac{\text { constanta. The }}{}\) me-
diale is chosen by the
Bcald from all the available prosodic structures of the 1 anguage (some structures, hovever, are dropped out or merge into one, see below). In this rospoct the mediale can be termed the \(11 n{ }^{\prime} \mathrm{s}\) alternanta \({ }^{\text {altene structure or }}\) treatment of the inguistic material in the initialo, which owing to 1 te predictability allows considerabie rinthmic variation (rarlanta). It is within this saction of the (sometimes doubling the syllabic range of varianta), additional vordboundaries and cohesion are widely practised by the scald. However, the immediate
prosodic prototype of the initiale is the
prosodic structure of a two- or threesyllable vord.
mhree prosoditc typos of alternantas are distinguished; hence, the riole variety
 three unified patterns. The lines which ean not be coppined to these throe types (apecifically, lines irth weak nitial ost gcalaic poetry (the 9 th - the first half of the Ioth century). In other cases they develop as a socondary metrical dievice in the innorative efforts of 1ndiby Einarr Skajaglamm and some of the variettes of dróttikreott encountered in HATTALYKTIT and HATMATAL.
- \(\frac{\text { Type } 1}{}\), neatral, alternanta - \(x\) ('heary'T. This is the only type, whose alternanta admits of the nnner addit the weak position in it is filled by the 11 ghtest of "clitics \({ }^{\circ}\). Thus, the finite forms of the verb are arotdod in this position, the vartanta (Anit1ale) of the same type or altornantamies: hneỉounky
 1 ga; bettit hef'k/ opt vio // betra.
 doori) up to 56 (Arnorr pordarson)por cen conturies and has a conspicuous proference for odd lines.
Two other types of alternantas are formed by a 'minimal' word ('11ght'alter-
nanta). Both of them are functionally nanta). Both of them are functionaly ar
 ternanta \(/\) gotur / liangar; berrmik

 blasit sko
haf The one-syllable alternanta in type \({ }^{3}\) has some noterorthy quantitative restric tions. Thus, the structures with a long rowel in a closed syllable andor con-
sonant cluster (skós, batt, lezk) are personant cluster (skor berbs but avolded for
mitted for finite ver nouns and nominal forms. This restriction (know as the Craigie's rule ') reflects the accentual disparity betwrean the vorb longing to dipferent metrical ranks: the nouns, 11 ke 'hrings, hraustr' appear to be too 'heavy' for this alternanta.
 (type I) and 'light' (types 2, \({ }^{2}\) ) alter
nantas is manifested in their treatment of alliteration and rhyme. The 'heavy'al tornanta as a general rule (more than 85\%
 scalds') 1s marked by rhyme and/or alli-
teration. The \({ }^{\text {Ilight }}\) alternantas, on the
other hand, take no part in sound repetiin this position. The matn weight of the inine is correspondingly shifted in such ines to varianta (the initiale) crammed with heary syllables and marked by both chyme and alliteration. The natural prosodic strucures (as they are reflected in lines for an artificial, forced rhythm, most vividly show in type 2 (with bisyllabic compounds in the initiale). Such lines as hugevinn / kona /" innan would保 system' as a heavy variety of A-line usually interpreted in ifterature on acaldic poetry. The structural function of rhyme is sure to be denied in this case /I6,p. \(35 /\) It is evident, on the other a most offectual tool of bringing into prominence scalditc nonce words heavily burdened with consonant clusters and dise sected by rhyme and alliteration in jaxt. apposition. CP. Bome more examples from
Sigvat's ERPIDRAPA OUAPS HELGA (IO40):
(type 2) sठknstriza / firum //riða; marg dyrr / konungr // varga; stálgustr / oran/ pustu; (type 3) uthlaupum gram //kaupask hundmorgum gram //brodir; framiundar/qg//mundar. above, although the observed features of caldic metrics can be easily described as 'taking the stress off' alternanta, the stress junction in varianta etc. iy wever such a description would obviouslowing from the quantitative analysis of verse and the study of sound-repetitions. The scaldic verse fully justifies the ap proach to word stress according to which stress is not a force markng off a syla mechanism referring syilables to one or another category" /I7,p.25/. But this statement is justified by the scaldic met rics only insolar as it operates with solated words.
be noted Quantity and stress. It should scaldic verse is both genetically and functionally linked with the types of the epic short line (and scaldic derices are effective only against the background of epic poetry), the relations between the two prosodic features of the epic line quantity and

In AV quantity was subordinated to streis. The syllable length served as an of the line. The role of quantitative rules is minimal in loose forms of AV (such as in LAY OF HILDEBBRAND). held by
eying the name of tonic verse. The role the course of canonising short-1ine 1 schemes and/or reducing the range of gyllable variation in the line. Their priority in relation to stress in scaldic verse is the natural consequence of its syllabism. But at the same time this is prototype of the scaldic verse pattern is the short line, whose schemes are based on the prosodic structures of the word.

\section*{REPEREMCES}
/I/ M.L.West, "Indo-European Metre", in: "Glotta. Zeitschrift für griechische und /2/ E. Sievers, "Die altgermanische Metrik", Halle (Saale), I899.
13/ J. Kuryiowicz, "Metrik und Sprach gescht chte* Wrocław-Warszawa-Kraków-
Gdan'sk, I975.
 Leningrad, I975. The Meter and Melody of BROWULF:", Urbana, I974.
/6/ S.J. Keyser, "O1d Knglish Prosody", /7/ A. Heusler, "Deutsche Versgeschichte", Bd.I,T.I-II, Berlin, I956.
/8/ M. Parry, Studies in the Epic Technique of Oral Verse-Making, Is Homer and Homeric Style", in: "Harvard Stud. /9/A.B. Lord, "The'Singer of Tales" Cambridge, Mass., I960.
/IO/A.Ch. Watts; nThe Iyre and the Harp. A Comparative Reconsideration of Oral Tradition in Homer and Old English Epic V. I69, New Haven, I969. Fifteen Egasy /II/"Old English Poetry. Fifteen ed. by R.P.Creed, Providence, I967. and Literature in iceland ans "Scandinavica", Bd.II,N2, pp.I27-I36. I \(3 /\) W. Ph. Lehmann, "The Devel opment of
Germanic Verse Form", Austin, Tex. 1956 . Germanic Verse Form", Austin, Tex.,I956. II4/Th.A.Shippey, Mond I972. /I5/P.G. Poote, "Beginnings and Ending ry", in: "Les vikings et leur cirilisa tion", Paris. - La Haye (Mouton), I976. /I6/R, Frank, "Old Norse Court Poetry: Bd.42, Ithaca - London, I978.
/I7/A. Iiberman, "Germanic Accent ology", V.I. "The Scandinavian Languages", Minne: vopoiis, Minn., 1982.

\section*{КРИТЕРИИ ОРГАНИЗАЦИИ РИТМА ХУДОЖЕСТВЕННОЙ ПРОЗЫ,}

ВЕРЛИБРА И СИЛЛАБО-ТОНИЧЕСКОГО СТИХА

\section*{л.в. Златоустова}

\section*{Филологический факультет, Московскии гос. университет, Московскй гос. Уни 119899 СССР}

\section*{ABSTRACT}

The main prosodic characteristics of prose texts, vers libre and syllabo-tonic verse are defined on the basis of acoustic and perceptive analysis. A system of rhythm organization rules is suggested for the texts of various genres. An attempt is made to create formal criteria for distinguishing verse, vers libre and prose

В последние два десятилетия проблема ритмической организации речи неоднократно привлекала внимание исследователеи. Это вызвано п несомненным увеличением использования звучащей речи в сфере общения, и успехами в области возможностей исследования звучащей речи, и теми сведениями, которыө дает нам современная наука о функциях ритма в живой природе п искусстве.

Вместе с тем нет достаточно полного описания единиц ритма, их структурной организации, недостаточно определень особенности ритма прозн, верлибра и стиха (силлабо-тонического).

В определениях ритма делается, как правило, акцент на неоднозначности метра ритма, - это несомненно важно. В силла-бо-тоническом стихосложении различакт метр, понимаемый как условная схема расположения ударяемых и неударяемых слогов,

а ритм - как фамтическое растределение ux.

Ритмическая организация стихотворного произведения связана с содержанием и со всей инструментовкой стихового произведения.

Однако в приведенном понимании ритма не учтен один из основополагаюших фактов реализации единиц звучащей речи - факт объединения ударным слогом неударньх слогов, что составляет фонетическое слово или ритмическую структуру (РС).

Термины синонимичнн, они обозначают словоформу или сочетание словоформ, объединенных одним словесным ударением. Как правило, ритмическая структура равна знаменательному слову или сочетанию служебного и знаменательного слов. (Значительно реже, а для стихотворнои речи крайне редко, в ритмическую структуру входят два знаменательньх слова).

Аудитивнне исследования ритмики фонетичәского слова не только подтвердили положение об организующей роли словесного ударения, но п показали возможность членения текста на ритмичөския структуры при подавлении речевого сигнала шумом, в рөзультате чего смысл высказывания не опознавался, а его ритмическая структура сохранялась. (В качестве источника равномерного шума использовался генератор с полосо 20 - 20000 (пі).

При оптимальннх условиях эксперимента - полный стиль произнесения, употреб-

ление наиоолее частотных ритмических структур, соблюдение типичной их сочетаемости в рамках синтагмы, степень подготовленности аудиторов - возможна верная идентификация ритмических структур в \(97 \%\) случаев. Этот процент подтверждает сведения, полученные путем ин்струментального и статистического анализа специфики организации предударной, ударной и заударной частей фонетических слов, а именно: сведения о степенях редукции гласннх, типах консонантных стечений начал и концов слов, месте ударения й количестве слогов в слове и т. І.

Как поназнвают статистические исследования художественной прозы, верлиб ра и силлабо-тонического стиха, наиболөе типичннми ритмическими структурами (РС) для всех указанннх типов текстов оказываются структуры односложные, двусложны - 2/I (цифровые обозначения ритмических структур построены так, что в числителе указано количество слогов, а в знаменателе - место ударения в структуре) и \(2 / 2\), трехсложнне \(-3 / 2,3 / 3\), четьрехсложные \(-4 / 3\), пчтисложные \(-5 / 3\). Однако проза, верлиор и художественная проза дают разное распределение частых ритмических структур. В стиховом тексте повншается процент односложннх и двусложньх структур, несколько сокращается процент трехсложньх с ударением на первом слоге, понижается процент четьрехсложннх структур. Верлибр занимает некое промежуточное положение, т.е. в этом типе текста падает частота употребления многосложннх структур.

Из сказанного следуют два положения, очень важные для дальнейшего изложения материала:
I. Ритмическая структура - объективно существующая в речи единица ритма, о чем свидетельствуют опыты со сннтием лексического значения; типы структур суцествуют в памяти человека в некой обобщен-

ной форме. Принциипально важными оказываются место ударения в структуре и набор предударных и заударньх слогов с их специфической иерархией по степени редукции, наборами консонантов и вокальннх элементов, позволяюцих определить границы PC.
2. Ритмическая структура при конкретной речевой реализации имеет план содержания - лөксико-семантическое значение слово-

формы или последовательности словоформ. Такой подход позволяет описать содержание и просодическую организацию в их единстве. Это особенно важно при анализе просодии опорньх в эмопиональном или смысловом плане единиц речи. Сугубо формальное представлениө ритма текстов ограничивает эти возможности.

Рассмотрим характернне особенности ритма стихотворении А.Блока

Равномерное чередование количества слогов в соседних строках - один из устойчивых признаков ритма лирики А.Блока. Эта особенность прослеживается во многих произведениях циила "Стихов о Прекраснои Даме" ("Встану я в утро туманное", "За туманом, за лесами"", "Тпхо вечерние тени", "Душа молчит", "Я понял смысл твоих стремлений"). Аналогичное распределение количества слогов по строкам находим в лирике А.Пушкина, например, в стихотворениях "Предчувствие", "Стансн" и др. Более редкий случай - одинаковое количество слогов в строках всөго стихотворения. В то же время количество ритмических структур, а следовательно, ударных слогов, не всегда одно и то же в каждой строке.

Вероятно, можно говорить о способах компенсаторной ритмизации, когда (например, в стихотворении "Ярким солнцем, синей далью...") меньшая регулярность повторяемости одинакового количества ритми ческих структур компенсируется равным количеством слогов в строке и повтором

строк (см. табл. 2)
Рассмотреннне параметры ритмическои организации стихового текста, а именно: I) регулярное чередование количества слогов в соседних строках (9-8, 8-7, 10-9, 9-3); 2) регулярнов чередование обязательной связи рифмм с данным типом PC ;
3) регулярное чөредование типов \(P C\) в начале соседних стиховых строк; 4) ограниченный набор PC, определяемый стиховым размером, достаточннй для того, чтобы принять решение о типе текста - именно стихового, а нө прозаического, дажө в случае снятия графической подсказки расположения текста по стиховнм строкам.

Подтверядением этой точки зрения может служить эксперимент, при котором предлагалось прочитать без предварительной подготовки стиховые текстн (силлабо-тонические) с перекрестной рифмой; стихи были расположөны как прозаический текст с сохранөнием знаков прөпинания.

Из 24 участников эксперимента, владеюших хорошей техниюой чтения, 22 человека со второй строки начинали читать текст как стиховой, следовательно, ни риФма, ни строка не являлись для них подсказкои.

Закономерен вопрос: что же явилось критерием принятия решения о прочтении дикторами текста как стихового? Тание критерии лөгко сформулировать, исходя из анализа результатов инструментального эксперимөнта. В первую очередь это замедление темпа произнесөния текста, которое связано в основном с вокатизацией ритмических структур, проявляющейся в увеличении времени звучания гласных, преимушественно гласннх ударного, первого предударного и конечного заударного слогов РС. Увеличение времени органически связано с другими просодическими особенностями стиха, которые также получены в результате акустического эксперимента. К ним относятся: а) однотипность повторяюшихся PC ;
б) изменениө регистра реализации частоты основного тона; в) спегифическое изменение спектральной структуры гласных, заключающееся в расширении области первой п второй формант; г) появление устойчивой полосы усиления энергии в области четвертой форманты, где максимальная энергия реализуется на ударннх гласннх PC; д) спепифика контура частоты основного тона (чоТ), характеризующаяся отсутствием контрастного вццеления единиц текста (последнее не своиственно стиховои типологии набора единиц тональньх контуров, отличительной чертой которех является суженность диапазона чОТ.

Предложенний перечень наиболее важных признаков, формируюцих ритм стиха, есть способ выражения в звучащей речи синтагмы - единицн, представляющей собой семантико-синтаксическое единство, оформленное указанными выше фонетическими средствами. Наиболее простой случай совпадение синтагмы и стиховой строки. Однано стиховая строка можөт включать две, реже три синтагм:
( 2 с.) Не сердись п прости / Ты цветешь одиноко./
( 1 с.) Да и мне не вернуть /
(2 с.) Этих слов золотвх, / этой веры глубокой.../
( \(I\) c.) Безнадежен мой путь. /
( \(I\) c.) Неотвязный стоит на дорогө,
(2 с.) Белнй - / смотрит в морознуо ночь./
(2 c.) Я - / на встречу в глубокой тревоге, /
(3 с.) \(0 \mathrm{H}, /\) шатаясь, / сторонится прочь /
Независимо от каличества синтагм, стиховая строка сохраняет ритмичөское единство благодаря внутренней структурированности единиц РС и синтагм, составляюших строку. Определеннал роль здесь принадлежит риф̆ме.

В организации ритма графическая уре-

гулированность текста не играет ведущей рали - она лишь способствует вылвленип его при чтении, выполняя ту же функцию, кахую внполняет пробел между словами в люом графическом представлении речи.

Значит ли в таком случае, что для стихов ранней лирики А. Блока строка формальннй показатель графики, не несушшй ритмообразующей функции? Да, значит, если остановиться в анализе ритма только на тех параметрах (хотя они и занимают ведущее место в ритмообразовании), ноторне здесь рассмотрены. Однако ритмообразуощей фунниией в звучащей речи обладает пауза, которая подчеркивает ритмическую схему синтагмы, способствует внявлению ритма на уровне строфы и целого стихотворения, выявлению регулярной повторяемости хорошо структурированннх отрезков речи.

В табл. I и 2 представлены значения в мс распределения пауз в текстах.

Таблица \(I\).
Стихотворение "Милнй друг"
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{Кол-во слогов} & \multicolumn{3}{|r|}{Длительность (В мс)} \\
\hline & стиха & \multicolumn{2}{|r|}{паузы} \\
\hline & & межстиховой & внутристихов. \\
\hline IO & 2838 & 552 & 572 \\
\hline 3 & I304 & 816 & - \\
\hline IO & 3148 & 94 & 652 \\
\hline 3 & 867 & 528 & - \\
\hline IO & 3264 & - & звуч. п. \\
\hline 3 & 1042 & 914 & - \\
\hline IO & 3488 & 496 & II2 \\
\hline 3 & 982 & 830 & - \\
\hline IO & 3718 & 660 & I62 \\
\hline 3 & 1446 & 506 & - \\
\hline IO & 3876 & IIO & I88 \\
\hline 3 & 1570 & - & - \\
\hline
\end{tabular}

Дажө беглая оценка приведенннх значений говорит о ряде особенностей употребления пауз. Паузой завершается каждая (за редким исключением) строка, на границе строки пауза больше, чем внутри строки

в случаях еө синтагматического членөния.
Таблица 2.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{Кол-во слогов} & \multicolumn{3}{|r|}{Длительность (в мс)} \\
\hline & стиха & \multicolumn{2}{|r|}{паузы} \\
\hline & & межстиховой & вНутристиховой \\
\hline 8 & 2238 & 482 & звуप. 1. \\
\hline 8 & 2696 & 462 & - \\
\hline 8 & 2206 & 2 I 8 & - \\
\hline 8 & 2888 & 912 & - \\
\hline 8 & 2898 & 414 & 198 \\
\hline 8 & 2524 & 562 & - \\
\hline 8 & 2594 & 410 & - \\
\hline 8 & 2606 & - & - \\
\hline
\end{tabular}

Распределение пауз теснейпим образом связано с мелодическим оформлением текста, которое выполняет для стиха прежде всего функцию создания тональнои рамки регулярно чередуюиххся структурированннх единств, заданных последовательностьы типов РС и типов спнтагм, составляюших строку. Собственная ритмизируюпан функция стиховой строки заключается во взаимодействии паузы и мелодического контура.

Сравнение текстов верлиора (Typreнев И., Куприянов В.) со стиховыми текстамии показывает значительно большөе разнообразие типов РС в верлибре. Однако ряды повторяющихся РС, составляопих "блоки" текста верлибра, не типичны для художественной прозы. Напримөр, у И.Тургенева находим следующее распределение типов РС в последовательности синтагм:
Теперь зима; / мороз запуипл стекла окон/ \(\begin{array}{llllll}2 / 2 & 2 / 2 & 2 / 2 & 3 / 3 & 2 / I & 2 / I\end{array}\) в темной комнате / горит одна свеча //
\(\begin{array}{lllll}2 / I & 3 / I & 2 / 2 & 2 / 2 & 2 / 2\end{array}\)
Следствие подобной ритмической организадиии - всл просодическая инструментовка текста: повторяемость PC, замедление темпа, сужение диапазонов ЧОТ, выровненность чоТ, создание типи чной тональной рамки синтагмы, близкой к характеристикам стиховой, сокращение длительности синтагмы по количеству PC. Сходство просодичес-

хого рисунка в синтагмах верлиора и стиха определяется общим художественным заданием текстов, где основная функция просодической инструментовки не создание просодических контрастов, свойственных прозе, а наоборот, стремление к снижению पх.

В значительном количестве произведений стиха и верлибра социальное сознание писателя как основной предмет художественного воспроизведения жизни направлено "или в глубь самого себя или на явления внешнего мира, на социальнне и личные отношения бытия, на явления природы" /I/. Сказанное находит свое выражение в сфере просодии стиха и верлибра.

Основным отличием стихотворного текста от верлибра явлнетсл отсутствие в нем некоторнх типов ритмического параллелизма, а именно: закономерннх повторов рит-мо-мелодических схем синтагм (РМСС),
строк, рифм. В верлиоре редки случаи полного совпадения в синтагмах тональных рисунков, что составляет специиину силлаботонического стиха, где одинаковый тип тонєльной рамки строки есть существенннй компонент ритмики стиха. Верлиор и по параметру интенсивности характеризуется болыеей неоднородностью оформления синтагм, что создает градации, стиху не свойственные. Для интенсивности внутри синтагм верлибра характ ерно появление контрастньх выделений отдельных епиниц, что сближает верлибр по данному показателю с прозаическим текстом /2/.

В отличие от силлабо-тонического стиха и верлиора прозаический художественный текст направлен прежде всего на выполнение коммуникативной бункции с подчинением ей Функции членения текста, выражение модально-эмоциональннх отношений с учетом экстралингвистических факторов способствующих созданию художественной реальности.

Вместе с тем основой просодии прозы

гакже является совокупность средств ритма. Это: типы РС и их последовательность в синтагме, синтагма и ее объем в количестве РС. Однако в прозе упорядоченность фразово-синтагматической организации имеет собственнне закономерности, включаюцие типичные для каждого языка повторяемость синтагм по количеству в них РС, фразовое и фоноабзапное разбиение.

Нельзя не остановиться на специф̆ине реализании типов бразовнх акцентов в текстах разннх жанров. Так, фуннция синтагматического фразового акцента - объединять просодическими средствами последовательность PC, что создает PMCC. Однако ипология PMCC различна для трех рассмарриваемых жанров.

Фразовые выщелительные акценты также специфичны в своей реализации по жанрам. Если в прозаическом тексте они внражены контрастно средствами частоты основного тона и сегментными спектральными характеристиками, то в стихотворном отсутствуют резко-контрастнне выделения чоТ й интенсивности, а сегментнне спектральнне показатели в силу особенностеи общей просодической организации стихового текста - создание "стиховой тесситури" - имеют нестаңдартнне показатели спектра, особенно слогов и слов, стояпих под фразовым акцентом.

На основании полученных экспериментальных данных целесообразно выделить для стиховых текстов и верлибра особнй вцделительннй 'тип ударения - эмоциональ-но-поэтический, в отличие от логического и эмфатических.

На основании всего сказанного выше можно предложить следующую схему просодии трех типов текстов. Естественно, что приведеннне количественные даннне о типах PMCC отражают исследованный материал.


На рис. I дана обобщенная схөма, показывающая роль ритма в образовании просодии разннх жанров текстов.

\section*{תИTEPATYPA}
/I/ Поспелов Г.Н. Лирика. - \(\mathrm{M}_{0}\), изд. MIY, I976, с. 63
12/ Кедрова Г.Е. Фоностилистические варианты оформления текста. Автореф. канд. дисс. М., 1985.

\section*{INSTITUTE OF LANGUAGE AND LITERATURE}

\begin{tabular}{|c|c|}
\hline Se 77 & BALTIC ACCENTS 91 \\
\hline Se 77.1 & А. Гирденис, Г. Качюшкене Вторичные типы слоговых интонаций в литовских диалектах \\
\hline Se 77.2 & Л. Грумадене, Б. Стунджя Динамика оппозиций слоговых интонаций в фонологических системах диалектной и городской речи (на материале литовского языка) \\
\hline Se 77.3 & \begin{tabular}{l}
L. Anusiene \\
Duration of Long Stressed Vowels in Present-Day Lithuanian Utterances
\end{tabular} \\
\hline Se 77.4 & \begin{tabular}{l}
V. Vaitkevičiūte \\
Pitch Accents in Standard Lithua
\end{tabular} \\
\hline Se 77.5 & \begin{tabular}{l}
D. Markus \\
Types of Syllable Toneme in the Ziemeri Variant of High Latvian Dialect
\end{tabular} \\
\hline Se 78 & DURATIONAL ASPECTS OF \\
\hline Se 78.1 & R. Carlson, B. Granström Modelling Swedish Segment Duration \\
\hline Se 78.2 & G. Meinhold Statistische Zeitparameter der gesprochenen Sprache \\
\hline Se 78.3 & \begin{tabular}{l}
B. Lyberg \\
Some Observations on the Timing of \(F_{0}\)-Events
\end{tabular} \\
\hline Se 78.4
Se 78.5 & O. F. Krivnova Durational Pattern of Russian Syntagma: The Standard Scheme and Its Modifications \\
\hline Se 78.5 & \begin{tabular}{l}
L. Santerre \\
Systematique des durees segmentales dans les rimes syllabiques: a voyelles longues et breves par nature
\end{tabular} \\
\hline Se 79 & INTERFERENCE 1 \\
\hline Se 79.1 & A. A. Metlyuk Prosodic Interference: A Typologic \\
\hline Se 79.2 & Approach \\
\hline & Phonetic Interference in Bilinguals' \\
\hline Se 79.3 & \begin{tabular}{l}
Learning of a Third Language \\
J. C. Webster, C. Cave, M. Rossi \\
A Speech Discrimination Test Using
\end{tabular} \\
\hline Se 79.4 & \begin{tabular}{l}
Bilingual Competing Messages \\
A. M. Feodorov \\
Native or Alien: Verification of \\
Foreign Accent in the Speech of
\end{tabular} \\
\hline Se 79.5 & \begin{tabular}{l}
M. Cruz-Ferreira \\
Difficulties in Comprehension of \(L_{2}\) Intonation: Diagnosis and Prediction in English
\end{tabular} \\
\hline
\end{tabular}

Se 77 BALTIC ACCENT
А. Гирденис, Г. Качюшкене в литовских диалектах
Диямиа, Б. Стунджя нтонаций в фонологических речи (на материале литовского Anusie
Duration of Long Stressed Vowels in Present-Day Lithuanian Utterances
V. Vaitkeviciūte Pitch Accents in Standard Lithuanian D. Markus

Types of Syllable Toneme in the lemeri Variant of High Latvian

URATIONAL ASPECTS OF
Se 78.1 R. Carlson, B. Granström
Se 78.2 G. Meinhold Segment Duration
Statistische Zeitparameter der
B. Lyberg Sprache
ome Observations on the Timing of

Syntagma: The Standard Scheme and Its Modifications
Systematique des durees segmentales ongues et breves par nature

Se 79 INTERFERENCE 1
130
\[
\begin{aligned}
& \text { Approach } \\
& \text { J. Llisterri, D. Poch-Olive } \\
& \text { Phonetic Interference in Bilinguals' } \\
& \text { Learning of a Third Language } \\
& \text { J. C. Webster, C. Cave, M. Rossi } \\
& \text { A Speech Discrimination Test Using } \\
& \text { Bilingual Competing Messages } \\
& \text { A.M. Feodorov } \\
& \text { Native or Alien: Verification of } \\
& \text { Foreeign Accent in the Speech of } \\
& \text { Russian Learners of English } \\
& \text { M. Cruz-Ferreira } \\
& \text { Difficulties in Comprehension of } L_{2} \\
& \text { Intonation: Diagnosis and Prediction } \\
& \text { in English }
\end{aligned}
\]

Se 80 SPEECH DISORDERS 3 Lesion G. Scheimann
\[
\begin{aligned}
& \text { Y. V. Romanenko } \\
& \text { Speech Patholoo }
\end{aligned}
\]
\[
\begin{aligned}
& \text { Accident Patients } \\
& \text { P. M. Bhatt }
\end{aligned}
\]

Burst Intensity as a Means of Speech Communication
\[
\begin{aligned}
& \text { P. M. Bhatt } \\
& \text { Sentence Intonation Following }
\end{aligned}
\]
\[
\begin{aligned}
& \text { Unilateral Left and Right Hemisphere } \\
& \text { Lesion }
\end{aligned}
\]
H. Amorosa, U. von Benda,

Assessing Speech Motor Performance U. von Benda, H. Amoros Intonation as a Potential Diagnostic Tool in Developmental Disorders of
M.-G. Di Benedetto

On Vowel Height: Acoustic and Perceptual Representation by the Fundamental and the First Formant
Frequency C. A. Casablan

Perception de voyelles en contexte nasal dans l'espagnol parlé a Porto-Rico
H. Traunmüller, D. Krull

An Experiment on the Cues to the
Z. Wu, Y. Xu

Aspirated vs. Nonaspirated Stops and
\[
\begin{aligned}
& \text { Speech Pathology in Infants } \\
& \text { Suffering from Infantile Cere }
\end{aligned}
\] Affricates in Standard Chinese S. Hlaváč
Palsy
schechischen Extung der

4 SEGMENTATION AND LABELLING 1
P. J. Roach, A. M. Dew, P. Rowlands Automatic Assessment of Machine Transcriptions
\(\underset{\text { Etiquetage automatique A. Andreewsky }}{ }\) parole continue a l'aide de signal d variation relative d'energie des
sequences de phonemes
P. Ringot, M. Andreewsky
L. Devillers, M. Desi, C. Parisse parole continue a l'aide des refere en parole continue a l'aide des references
issues du systeme VARAP V. Y. Chuchupal

The Algorithm for the Phonemic Labelling and Segmentation of Speech Waveforms Using Feature
Maps

SPEECH PERCEPTION: FORMANTS
Se 82.1 H. R. Javkin, H. Hermansky, H. Wakita

Interaction Between Formant and Harmonic Peaks in Vowel Perception V. V. Lyublinskaya, E. I. Stolyarova, S. Y. Zhukov

The Study of Auditory Detection of he Jamp of Formant Frequency and Amplitude as a Consonant
C. B. Huang
Perception of First and Second

Forception of First and Second Fowmant
Vowequency Trajectories in Se

PHONETIC DATA BASES 2; SPEECH
Ph. Christov
A Large Bulgarian Central
Allophones Data Base
B. Г. Саннкков, Ю. .. Прохоров,
Ю. И. Журавский
Формирование банка априорных
данных o peчи диктора
M. S. Phillips
Speaker Independent Classification of
Vowels and Diphthongs in
Continuous Speech
K. Bartkova, D. Jouvet
Spaker-Independent
Speech-Recognition Using Allophones

Se 85.5
Е. К. Людовик

Табличный метод выделения признаков речевого сигнала и пофонемное распознавание речи

Se 86 WORD RECOGNITION
Se 86.1 G. Kuhn, K. Ojamaa Automatic Recognition of Words 86.2 Differing in Distinctive Quantity Computer R Words in Fixognition of Isolated V. B. Kuznetsova Length Feature Space The Principles of Structuring of Vocabulary for Speech
Recognition System Recognition System Search for Optimal Teachder Procedure and Warping Algorithms for on Isolated Word Recognition Device

Se 87 NORMATIVE PHONETICS AND PHONOSTYLISTICS

Se 87.1 M. W. Rajewski
Grundbegriffe einer Theorie der Aussprachenorm
            in der deutschen Standardaussprach
            ksichtigung bei de
            Normkodifizierung
            Urban Speech as a Product of
            Standard, Colloquial and Dialecta
            Speech
            G. Torsuyeva-Leontyeva
            phonostylistique
Se 88 ATTITUDINAL-EMOTIONAL
ATTITUDINA L-EMOTIONAL
VARIATIONS IN SENTENCE
PROSODY 2

Se 88.1 Y. A. Dubovsky, G. I. Yermolenk Attitudinal Semantics of Prosody and Its Metalanguage Attitudin
Intonation; and Dialectal Variation in and the R; High Tone Displacement Componente of the Distortional J. Tió

Die Rolle der Tonhöhe in der Emphase am Beispiel des Katalanische
M. Laur
Perceptual Aspects of Emotional
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Se 89 & technical aids in teaching PHONETICS 1 & Se 92 & ACOUSTIC FEATURES AS PERCEPTUAL CUES 3 & Se 95
Se 95.1 & \begin{tabular}{l}
SPEECH SOUND RECOGNITION 339 \\
S. Seneff \\
Vowel Recognition Based on
\end{tabular} & Se 97 & \begin{tabular}{l}
TYPOLOGY AND UNIVERSALS: \\
CHANGE OF PHONOLOGICAL TYPE
\end{tabular} \\
\hline Se 89.1 & \begin{tabular}{l}
R. Weiss \\
Computer Assisted Diagnosis of Perceptual Errors
\end{tabular} & Se 92.1 & \begin{tabular}{l}
S. Hawkins, K. N. Stevens \\
Perceptual and Acoustical Analyses \\
of Velar Stop Consonants
\end{tabular} & Se 95.2 & \begin{tabular}{l}
Vowel Recognition Based on \\
<Line-Formants» Derived from an Auditory-Based Spectral \\
Representation
\end{tabular} & Se 97.1
Se 97.2 & \begin{tabular}{l}
Y. K. Kuzmenko \\
The Change of the Phonological Type of a Language V. A Vinogradov
\end{tabular} \\
\hline Se 89.2 & \begin{tabular}{l}
J. H. Esling \\
Teaching Phonetics Using the Phonetic Data Base on Microcomputer
\end{tabular} & Se 92.2
Se 92.3 & \begin{tabular}{l}
The Perception of Voicing in Dutch Two-Obstruent Sequences \\
I. H. Slis, R. J. H. van den Berg
\end{tabular} & Se 95.2
Se 95.3 & Reliabilitätsmaße für die automatische Transkription H. J. Warkentyne, B. C. Dickson & Se 97.3 & \begin{tabular}{l}
Phonological Type in Movement \\
M. I. Lekomtseva \\
Spatial Configuration of Types of
\end{tabular} \\
\hline Se 89.3 & \begin{tabular}{l}
G. Lindner \\
Grafische Modellierung der \\
Sprechbewegungen mit Hilfe eines \\
Kleincomputers \\
R Thomas, S. Bagnoli, J. Genin,
\end{tabular} & Se 92.4 & \begin{tabular}{l}
Assimilation of Voice and Perception of Voicing: Effects of Phonetic Context \\
U. Thein-Tun \\
Cue-Trading Relations for Initial Stop
\end{tabular} & Se 95.4
Se 95.5 & \begin{tabular}{l}
Automatic Isolation of Nasal \\
Murmurs \\
C. Y. Espy-Wilson \\
A Semivowel Recognition System \\
T. K. Vintsyuk
\end{tabular} & Se 97.4 & \begin{tabular}{l}
Phonological Systems of Central and \\
South-European Languages \\
O. I. Brodovich \\
English in the Continuum of Syllabic \\
- Non-Syllabic (Phonemic)
\end{tabular} \\
\hline Se 89.4 & \begin{tabular}{l}
R. Thomas, S. Bagnoli, J. Genin, \\
R. H. Green, H. Greven, \\
N.-O. J \(\phi\) nsson, A. McKenna, W. Weiss \\
For an Up-to-Date Visual \\
Representation of Speech
\end{tabular} & Se 92.5 & \begin{tabular}{l}
Voicing Contrast at Different \\
Linguistic Levels \\
V. Hazan, L. Holden-Pitt, \\
S. G. Revoile, D. Edward \\
Perception of Cues to a Stop Voicing Contrast by Normal-Hearing Children and Adults
\end{tabular} & Se 95.5 & Phoneme-by-Phoneme Recognition and Semantic Interpretation of Multi-Speaker Speech (the HCDP-Approach) & Sy 6
Sy 6.1
Sy 6.2 & \begin{tabular}{l}
Languages (RP and Dialect Data) \\
RHYTHM AND METRICS \\
A. M. Antipova \\
Speech Rhythm" (Main Approaches and Definitions)
\end{tabular} \\
\hline Se 90 & SPEECH CODING 310 & & & Se 96 & DESCRIPTIVE PHONETICS: CONSONANTS 3 & Sy 6.2 & R. M. Dauer Phonetic and Phonological \\
\hline Se 90.1 & \begin{tabular}{l}
M. Copperi, F. Perosino \\
Perception of Phonetic Features in Speech Coders for Mobile Communications
\end{tabular} & Se 93
Se 93.1 & \begin{tabular}{l}
SPEECH PRODUCTION AND PERCEPTION \\
L. Schiefer
\end{tabular} & Se 96.1
Se 96.2 & \begin{tabular}{l}
F. Nolan \\
The Limits of Segmental Description R. Kurlova
\end{tabular} & Sy 6.3
Sy 6.4 & \begin{tabular}{l}
Components of Language Rhythm \\
S. F. Goncharenko \\
Metro-Rhythmic and Phonic \\
Structures of Spanish Poetic Speech
\end{tabular} \\
\hline Se 90.2 & \begin{tabular}{l}
K. Ratkevičius, A. Rudžionis \\
A Relationship between the quality of Vocoded Speech and Its Compression Ratio
\end{tabular} & Se 93.2 & The Role of Intensity in Breathy Voiced Stops: A Close Link between Production and Perception V. B. Kuznetsov, A. Ott, A. V. Ventsov & Se 96.3 & \begin{tabular}{l}
Bulgarian Consonants Perception \\
M. Sawashima, Sh. Kiritani \\
Electro-Palatographic Studies on \\
Japanese Intervocalic /r/ and /d/
\end{tabular} & Sy 6.5 & \begin{tabular}{l}
How the Author Conveys the Rhythm of Prose, \\
N. D. Klimov \\
Irregular Rhythms
\end{tabular} \\
\hline Se 90.3 & \begin{tabular}{l}
Л. В. Лесогор \\
Кодирование речевых сигналов для целей электродного протезирования слуха
\end{tabular} & Se 93.3 & \begin{tabular}{l}
Inherent Vowel Duration in Russian: Production and Perception Data B. Pompino-Marschall, \\
H. G. Tillmann
\end{tabular} & Se 96.4
Se 96.5 & \begin{tabular}{l}
E. Stock, U. Hollmach Objektive Bewertung von /S/-Allophonen \\
B. Annan
\end{tabular} & Sy 6.6
Sy 6.7 & \begin{tabular}{l}
M. E. Loots \\
The Study of Rhythm in Relation to Metrics \\
O. A. Smirnitskaya
\end{tabular} \\
\hline Se 90.4 & \begin{tabular}{l}
С. Ф. Лихачев, М. В. Назаров, \\
Ю. Н. Прохоров \\
Метод повышения качества звучания синтезированного речевого сигнала в цифровом вокодере с предсказанием
\end{tabular} & Se 93.4 & On the Multiplicity of Factors Affecting P-Center Location K. A. Michurina The Role of Auditory Control in Speech Monitoring & & Prosodies of Initials in English & Sy 6.8 & \begin{tabular}{l}
The Evolution of Old Germanic Metrics: From the Scop to the Scald \\
Л. В. Златоустова \\
Критерии организации ритма \\
художественной прозы, верлибра и силлабо-тонического стиха
\end{tabular} \\
\hline Se 91 & \begin{tabular}{l}
MODELS OF SPEECH \\
PERCEPTION 3
\end{tabular} & Se 94 & \begin{tabular}{l}
SEGMENTATION AND \\
LABELLING 2
\end{tabular} & & & & \\
\hline Se 91.1 & \begin{tabular}{l}
K. S. Ogorodnikova \\
On Universal and Specific Features in Vowel Perception
\end{tabular} & Se 94.1 & В. Г. Рудаков, В. Н. Трунин-Донской Микросегменты как основные элементы первичной сегментации & & & & \\
\hline Se 91.2 & K. J. Kohler Categorical Pitch Perception & Se 94.2 & \begin{tabular}{l}
речевых сигналов \\
П. Домагала
\end{tabular} & & & & \\
\hline Se 91.3 & \begin{tabular}{l}
D. W. Massaro \\
A Fuzzy Logical Model of Speech Perception
\end{tabular} & Se 94.3 & Автоматическая сегментация сочетаний звуков (диад) R. K. Potapova & & & & \\
\hline Se 91.4 & \begin{tabular}{l}
B. С. Шупляков \\
Нелинейность периферического отдела органа слуха и явление маскировки
\end{tabular} & Se 94.4 & \begin{tabular}{l}
One of the Methods of Automatic Syllable Segmentation for Connected Speech \\
C. Barrera, J. Caelen \\
Towards an Automatic Labelling System
\end{tabular} & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Ahlbom, G. & Se 73.2 & Greisbach, R. & \\
\hline \begin{tabular}{l}
Akchekeyeva, M. S. \\
Amorosa, H
\end{tabular} & Se 76.5 & Greven, H . & Se 95.2 \\
\hline Andreewsky, A. & Se 80.3 , Se 80.4 & Grumadiene, L. & Se 77.2 \\
\hline Andreewsky, M. & Se 84.3 & Hadersbeck, M. & Se 73.3 \\
\hline Annan, B. & Se 96.5 & Hawkins, S
Hazan, V. & Se 92.1 \\
\hline Antipova, A. M. & Sy 6.1 & Hermansky, H. & Se 92.5 \\
\hline Anusiene, L . & Se 77.3 & Hess, S. A. & Se 82.1 \\
\hline Auberge, V. & Se 73.1 & Hind, A. & Se 76.1 \\
\hline Autesserre, D. & Se 81.2 & Hlaváç, S . & Se 88.2 \\
\hline Bagnoli, S.
Bancel, P . & Se 89.4 & Holden-Pitt, L. & Se 83.5
Se 92.5 \\
\hline Barrera, C. & Se 75.4 & Hollmach, U. & Se 96.4 \\
\hline Bartkova, K. & Se 94.4 & Howard, D. M. & Se 81.1 \\
\hline Batliner, A.M. & Se 74.2 & Huang, C. B. & Se 82.3 \\
\hline Beltjukowa, N. P. & Se 76.4 & Isayeva, N. A. & Se 72.4 \\
\hline Bhatt, P. M. & Se 80.2 & Juanova-Lukyanova, G. N.
Javkin, H. R. & Sy 6.4 \\
\hline \({ }^{\text {Bickiey, }}\) Bimbot, F . & Se 72.2 & J \(\phi\) nsson, N. -O. & Se 82.1 \\
\hline Brodovich, O. I. & Se 73.2 & Jouvet, D. & Se 85.4 \\
\hline Brown, J. W. & Se 97.4 & Kačiuškiene, G. & Se 77.1 \\
\hline Caelen, J. & Se 80.1 & Kasatkin, L. L. & Se 76.2 \\
\hline Carlson, R. & Se 78.1 & Kasatkina, R. F. & Se 76.2 \\
\hline Casablanca, C. A. & Se 83.2 & Kiritani, Sh. & Se 96.3 \\
\hline Cave, C. & Se 79.3 & Klyuchevsky, A B & Sy 6.5 \\
\hline Chobor, K. L. & Se 80.1 & Kohler, K.J. A. B. & Se 81.5 \\
\hline Christov, Ph. & Se 73.2 & Kohno, M. & Se 91.2 \\
\hline Chuchupal, V. Y. & Se 85.1 & Krech, E.-M. & Se 74.4 \\
\hline Contini, M. & Se 75.3, Se 84.4 & Krivnova, O. F. & Se 87.2 \\
\hline Copperi, M. & Se 73.1 & Krull, D. & Se 78.4 \\
\hline Crump, J. M. & Se 90.1 & Kuhn, G. & Se 86.1 \\
\hline Cruz-Ferreira, M. & Se 79.5 & Kurlova, R. & Se 96.2 \\
\hline Desi, M. \({ }^{\text {D }}\). \({ }^{\text {d }}\). & Sy 6.2 & Kuzmenko, Y. K . & Se 97.1 \\
\hline Devillers, L. & Se 84.2, Se 84.3 & Kuznetsova, V. \({ }_{\text {B }}\) B. & Se 93.2 \\
\hline Dew, A. M. & Se 84.3 & Laine, U. K. \({ }^{\text {a }}\) & Se 86.3 \\
\hline Di Benedetto, M.-G. & Se 84.1 & Laur, M. \({ }^{\text {L }}\). & Se 72.3 \\
\hline Dickson, B. C. \({ }^{\text {ch.-G. }}\) & Se 83.1 & Lekomtseva, M. I. & Se 88.4 \\
\hline Domagaya, P . & Se 95.3 & Lesogor, L. V. & Se 97.3 \\
\hline Dubovsky, Y. A. & Se 94.2 & Likhachev, S. F. & Se 90.3 \\
\hline Edward, D. & Se 92.5 & Linder, T. & Se 86.4 \\
\hline Esling, J. H. & Se 89.2 & Lindner, G.
Lindsey, G. A. & Se 89.3 \\
\hline Feodorov, A. M. & Se 95.4 & Llisterri, J. A. & Se 81.1 \\
\hline Genin, J. A. M & Se 79.4 & Loots, M. E. & Se 79.2 \\
\hline Girdenis, A. & Se 89.4 & Lugosi, G. & Sy 6.6 \\
\hline Goncharenko, S. F. & Se 77.1 & Lyberg, B. & Se 86.4 \\
\hline Goncharov, S. L. & Se 75.3 & Lyublinskaya, V. V. & Se 82.2 \\
\hline Granström, B. & Se 78.1 & Lyudovik, Y. K. & Se 85.5 \\
\hline Green, R. H. & Se 89.4 & Maeda, Sh. & Se 76.1 \\
\hline & & Maeda, Sh. & Se 72.1 \\
\hline
\end{tabular}
Mantoy, A.
Maret, D.
Markus, D.
Massaro, D. W.
McKenna, A.
Medonis, A.
Meinhold, G.
Metlyuk, A. A.
Michurina, K. A.
Nazarov, M. V.
Nolan, F.
Ogorodnikova, K. S.
Ojamaa, K.
Ott, A.
Parisse, C.
Perosino, F.
Phillips, M. S.
Piroth, H. G.
Poch-Olive, D.
Pompino-Marschall, B.
Potapova, R. K.
Prokhorov, Y. N.
Puech, G.
Radchenko, G. L.
Rajewski, M. W.
Ratkevicius, K.
Revoile, S. G.
Ringot, P.
Roach, P. J.
Romanenko, Y. V.
Ross, J.
Rossi, M.
Rowlands, P.
Rudakov, V. G.
Rudzionis, A.
Sannikov, V. G.
Santerre, L.
Sawashima, M.
Scharpff, P. J.
Scheimann, G.
Schiefer, L.
Schnabel, B.
\begin{tabular}{|c|}
\hline Se 73.4 \\
\hline Se 77.5 \\
\hline Se 91.3 \\
\hline Se 89.4 \\
\hline Se 81.4 \\
\hline Se 78.2 \\
\hline Se 79.1 \\
\hline Se 93.4 \\
\hline Se 90.4 \\
\hline Se 96.1 \\
\hline Se 91.1 \\
\hline Se 86.1 \\
\hline Se 93.2 \\
\hline Se 84.3 \\
\hline Se 90.1 \\
\hline Se 85.3 \\
\hline Se 74.3 \\
\hline Se 79.2 \\
\hline Se 93.3 \\
\hline Se 94.3 \\
\hline Se 85.2, Se \\
\hline Se 75.4 \\
\hline Se 76.3 \\
\hline Se 87.1 \\
\hline Se 90.2 \\
\hline Se 92.5 \\
\hline Se 84.2, Se \\
\hline Se 84.1 \\
\hline Se 80.5 \\
\hline Se 81.3 \\
\hline Se 79.3 \\
\hline Se 84.1 \\
\hline Se 94.1 \\
\hline Se86.2, Se 90.2 \\
\hline Se 85.2 \\
\hline Se 78.5 \\
\hline Se 96.3 \\
\hline Se 74.1 \\
\hline Se 80.3 \\
\hline Se 74.2, Se 93 \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline \begin{tabular}{l}
Scotto di Carlo, N. \\
Sedivý, J. \\
Seneff, S. \\
Sheikin, Y. I. \\
Shuplyakov, V. S. \\
Sinkevičiūte, B. \\
Slis, I. H. \\
Smirnitskaya, O. A. \\
Stevens, K. N. \\
Stock, E. \\
Stolyarova, E. I. \\
Stundžia, B. \\
Thein-Tun, U. \\
Thomas, R. \\
Tillmann, H. G. \\
Tió, J. \\
Torsuyeva-Leontyeva, I. \\
Traunmüller, H . \\
Trunin-Donskoy, V. N. \\
Uhlíř, J. \\
Vaitkevičiūtę, V. \\
van den Berg, R. J. H. \\
Ventsov, A. V. \\
Verbitskaya, L. A. \\
Vicsi, K. \\
Vilkman, E. \\
Vinogradov, V. A. \\
Vintsyuk, T. K. \\
Vlasov, Y. V. \\
von Benda, U. \\
Wakita, H. \\
Warkentyne, H. J. \\
Webster, J. C. \\
Weiss, R. \\
Weiss, W. \\
Wu, Z. \\
\(\mathrm{Xu}, \mathrm{Y}\). \\
Yermolenko, G. I. \\
Zhukov, S. Y. \\
Zhuravsky, Y. I. \\
Zingle, H . \\
Zlatoustova, L. V.
\end{tabular} \\
\hline
\end{tabular}~~~


[^0]:    Figure 1: (a) Adult's and child's vocal-fold structures (not drawn to
    Scale) (adapted from Bosma, 1980); (a) Bending beam model of vocal
    folds.

