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ABSTRACT

An extension of Goldstein’s Optimum Processing Theory is pre- a '
sented which can account for pitch perception behavior for si-
multaneous complex tones. The essence of the theory is that all
aurally resolved stimulus frequencies are transformed into inde-
pendent Gaussian random variables with a. variance that depends
only on the frequency- of each partial. A central processor is as-
sumed to use its prior knowledge about the number of simulta-
neously present tone complexes and the proper parsing of the
observed random variables to find the respective fundamentals of
the best fitting harmonic templates. In a series of pitch iden-
tification experiments for two simultaneous two-tone complexes
with diotically and dichotically distributed partials, some model
assumptions and their consequences were tested. It was found _
that (l) the processes of estimating two simultaneous (missing)
fundamentals are to a large extent independent, (2) that the cen-
tral processor tends to group the partial percepts on the basis of ,
common fundamental and not on the basis of ear input, and (3)
that pitch identification performance degrades only noticeably if
none of the stimulus partials of both tone complexes are aurally
resolved.

INTRODUCTION

The problem .how we perceive the pitch of complex‘tones has
[Sept psychoacousticians busy for more than a century. In par-
ticular the problem of the so called “missing fundamental”, a
well Percept that corresponds with the fundamental frequency
0f a harmonic tone complex while that complex actually has only
pvertones, has been the. object of many experimental and theoret-
ical studies. Various pieces of important empirical evidence and
theories to account for such evidence have been brought forward '

by Seebeck [1], Ohm [2], Helmholtz [3], Fletcher [4], Schouten [5]

““4 Békésy [61- -.
MON recent experiments by Plomp [7], Ritsma [8] and Houtsma
"1d Soldstein [9] have progressively shown that the real cause of
[:9 missing fundamental” phenomenon must not be sought in
[ELPe'FPht-Bral, but rather in the central part of the auditory sys-
of ~ he new experimental evidence has led to the formulation

hmme new central pitch theories, of which the Virtual Pitch
acids? .Of Terhardt [10] and the Optimum Processor Theory of
Vel em [11] are the principal variants. These theorieswere de-

Oped "1d quantified mostly on the basis of pitch perception-
fllta obtained with isolated complex tones or short sequences of
"1d! tones. ' .
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In music, especially in the Western hemisphere, we usually deal
with harmonic or polyphonic sound patterns in which either a
melody is accompanied with chords or several melodies are played
simultaneously against one another. This poses the interesting
problem how our auditory system is able to perceive two or more
simultaneous pitches when it is acoustically exposed to a cluster
of harmonics that belong to several different tone complexes. The

- same problem actually occurs when one tries to track the prosodic
contours of two simultaneously spoken sentences or, more realis-
tically, when one tries to follow the pitch contour of one spoken
sentence against a background of other speech. Although both
central pitch theories mentioned [10,11] are in principle able to
cope with this problem, this has never been worked out specifi-
cally or tested against systematic empirical data. ' >

In this study the Optimum Processor Theory of Goldstein will

be extended and tested with experimentally obtained pitch iden-

tification data for two simultaneous complex tones. The model

extension will be treated in Sect. 1. Descriptions of the experi-

mental procedure and the results are given in Sects. II and III.

Computer simulations of model performance are discussed in Sect.

IV, and conclusions of the study are presented in Sect. V.

I. EXTENSION OF THE OPTIMUM PROCESSOR THEORY

In Goldstein’s Optimum Processor Theory [11] and in a latefex-

tension of that theory [12] it was assumed that :

l. the complex tone input in both ears is spectrally analyzed and

only frequency information of sufficiently resolved partials is kept;

phase and amplitude information is discarded;
2. independent Gaussian random variables rg, of zero mean and

with variance depending on frequency only, are added to each re-

solved frequency to form the noisy frequeny codes 2; = f.- + r.-;

3. a central processor rank-orders all noisy frequency codes from

both ears and performs a maximum-likelihood estimate of the

best-fitting harmonic numbers and fundamental of some underly-

ing harmonic complex-tone template. -

This model, which was originally formulated to describe percep-

tion of a single pitch from a single complex tone, can easily be

extended to accomodate identification tasks of pitches from simul- '

taneously sounding complex tones. In this study we will focus on

the task of identifying two fundamental pitches in an acoustic

stimulus that comprises two simultaneous two-tone complexes, .

each one having successive harmonics. Extension of the model to

other cases, e.g., three or four simultaneous two-tone complexes

or two simultaneous multi-tone complexes, is, in principle, not

different but may be computationally more complex.
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Suppose now that the acoustic stimulus consists of four frequen-

Ciest f1 = mfor, I: = ("1+ l)f01, f3 = "for, and f4 = ("4’
l)foz, and that these frequencies are all peripherally resolved by

the auditory system. The frequencies {1 through _f4 are then

transformed into four independent Gaussian random variables :1

through 24, having means of f1 through f4 respectively, and stan-

dard deviations 0(f1) through a(f4). If we denote a(f,) simply
as 0;, the likelihood function to be optimized by the processor is

given by the expression: ,

' _ 2
LUnfsJd = m.exp[—%]. (l)

i _ z _ 2

_ 2
etPl (35;???)1

Maximizing Eq.(l) is equivalent to maximizing the log-likelihood

function: '

AlinfzJaJd = -(—£1—;—,f1—)2 — W_ (2)

.. _(¢s - fa)z _ (14 - 1'4)2
cg . a} I

In interpreting this log-likelihood function, the knowledge the pro-

cessor has about the make-up of the stimulus and the task to be

performed becomes very important. We will fist discuss the case
(A) in which the‘ processor has full knowledge of the fact that
there are two two-tone complexes, and hence two pitches to be
found, as well as knowledge of the correct parsing, i.e., of the

correct harmonic interpretation of each observed input 2;. We
will then discuss another case (B) where the number of complex
tones present is known, but the correct parsing is unknown to the
processor.
Case A. When the number of fundamental pitches to be identified
and also all parsing information is available to the processor, it
‘makes the following substitutions in Eq.(2): V

. fi = filfor _ (3)
I: = ("f'l'llfor

f3 = M0: I

I4 = (fi+l)foz-

and maximizes the expression-with respect to the (lower) har-
monic number estimates rim and it and the fundamental pitch
estimates in; and fog. Because of the statistical independence ,
of the input variables'zg, the first two terms and the last two

terms of Eq. (2) can be maximized separately. The two indepen-
dent fitting procedures, each one identical to the one described
by Goldstein [l 1], yield the optimum harmonic-number estimates
fit and ii as well as the fundamental pitch estimates in; and fog.
The probabilities PrIr‘h = k] and Pr[ii = I], with k and I being
integers, are discrete probabilities which can be computed from
the stimulus frequencies I.- and the fixed and known frequency
coding noise function a(f,~), and the fundamental pitch estimates
are given by the expressions:

- _' [z /fiz]’+[z /(fiz+1)l’ '
1’“ " W ' ~ (4)
- _ [zs/fiI'Hn/(r‘wnl’
f” ” “bani/(an) '

The probability density functions of the estimates for and fog are

nearly-discrete functions with the main modes at [01 and fog, the

correct fundamental estimates, with probabilities Prlr‘h = m] and

Pr[ri = n] respectively. Correct identification of the two pitches
therefore boils down to two independent correCt identifications of

the respective lower harmonic numbers In and n.

Case B. When. the processor only knows the number of funda—‘

mental pitches to be identified, but does not have any informa-

tion about the proper parsing of the input variables a, it tries;

in principle, all possible interpretations of the as which are, in

this case, 24'permutations. In practice, only the following three

permutations are relevant in most cases because of simple'ordinal

properties of the input variables and their possible interpreter

tions:

(4) (b) (6)
f1 = filial . f1 = fife: f1 = filial

f2 = (m +_1)f01 f2 = fifoz ‘ f2 = fifoz .
f8 = M02 is = (fit + 0/01 f3 = (7‘1 + l)foz

f4 = (a + lilo: f4 = (a + 1)}... r. = (in + 1)}...

Group (a), of course, represents the correct parsing, but the inter-
pretations of (b) and (c) may result in a larger likelihood function
value and therefore in a better fit on a given trial because of the

noise in the variables 23,-. Interpretations (b) and (c) will almost
always. lead to incorrect pitch identifications, however. We will

refer to such mistakes as parsing errors.

It is far from clear whether or not the extension of the Opti-
mum Processor Theory as it has been described so far offers a

realistic account of human pitch perception for situations of si-

multaneous complex tones. Some particular questions remain to

be answered. Are the fundamental estimation processes for each

complex tone in a chord really independent ? Does the processor -
actually have knowledge of the correct parsing and interpretation
of the perceived partials, or can such knowledge be externally
supplied 7 When two partials of different complex tones have ex-

actly or almost the same frequency, are they both unavailable to

the processor because they are peripherally unresolved, or is some

frequency information still transmitted to the processor ? These

questions are investigated in the following set of experiments. '

II. EXPERIMENTS

Musically experienced subjects performed a series of pitch iden-

tification experiments with two simultaneously sounding notes,
each note made with a harmonic two-tone complex. One complex,
representing the lower note, comprised the frequencies f1 = "lion
1': = (m + 1)]‘01, the other complex representing the higher note
the frequencies f, = nfm, f4 = (n + 1) log. The respective fun-

damentals for and f0: were both elements of the note set (do,
re, mi, fa, so} or, equivalently, the frequency set {200, 225, 250’
267, 300} Hz, and could not be the same on any given trial. Both
lower harmonic numbers m and n were independent random inte-
gers beteen 2 and 10. Note durations were 600 ms and intensities
were 20 dB above threshold, with 30-dB SL broadband noise as
a general masking background. Sound stimuli, which were con?
puted and, stored on a Philips P857 minicomputer, were played

'back through a 2-channel, 12-bit D/A converter and presented
through headphones to the subject who was seated in a sound"

Insulated chamber. The task of the subject was to identify both

“multaneWSlY perceived (missing) fundamentals for and for 0“
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each trial by pressing two out of five buttons on a response box

in any temporal order. There was unlimited response time, and

each response triggered presentation of a new trial after a brief

fixed delay. ,

Four stimulus conditions were investigated. In condition 1, which

was diotic, all four stimulus frequencies f1 through f4 were pre-

sented to both ears. In condition -2, which was dichotic, one note .

(comprising the frequencies f1 and f2) was presented to one ear,

while the other note (with the frequencies f3 and I.) went to the

other ear. In conditions 3 and 4, which were also dichotic, the

frequencies of both notes were split up between the ears. In con-

dition 3, one ear received [1 and f3, while the other car received

I; and [4. ln condition 4, one ear received f1 and I4 while the

other car received I; and f3.. "

Since there are ten different combinations of two notes in a to-

tal set of five, and since there were 9 x 9 = 81 different harmonic

representations of each two-note combination, there was a total of

810 physically different stimuli and a total of 10 different response

categories. Each of these stimuli was, on the average, presented

six times to each of four subjects, for a total of 4500 identification

trials per subject for each stimulus condition.

III. RESULTS

The raw data of all experiments consisted of a record for each trial

of the presented fundamentals fm and fog, the lower harmonic

numbers m and n, and the subject’s two responses Ru and R...

A response (Rn) could be an identification of the perceived

fundamentals ([01, fog) or (fog, [01), since the order of pressing

the response buttons was arbitrary. . '

To obtain some insight in the perceptual independence of the iden-

tification processes for each of the two simultaneous notes, the raw

data were processed by two different methods. In the first method

all trials were counted for every (m, n) combination where both

for and fog were identified correctly. The results of this way of

counting yielded half-matrices of ‘percent correct’ scores, Pc(k, I),

for each subject, in which k and l are integers representing the

harmonic numbers (m,n) or (mm). They are half-matrices be-

cause of the built-in symmetry around the main diagonal, which

makes both halves of the matrix mirror images. In the second

method only the correct identification of one of the two simulta-

neous hotes was considered as a function of both (lower) harmonic

numbers but regardless of the identification response to the other

note. The resulting score, designated as Pc(k|l), represents the

PBI'centage correct identifications of [01 for k = m and 1 = 7|. 88
well as thencorrect identifications of fog for k = n and l = m. The

total count for each subject yielded full 9x9 matrices.
Both processed data matrices Pc(k,l) and Pc(k|l) can be used to.

find an underlying processor performance function Pr[lc = k], the
Processor’s probability of correctly estimating the harmonic order

°l any complex tone. This was done with a minimum chi-square

Wins Procedure which looked for those Pr[li: = k] functions that
provided the most likely account of the empirically obtained data

matrices Pc(k,l) and Pc(k|l). The details of this procedure, which
also involved some assumptions about the decision process for the

Paniwlar experimental paradigm that was used, are discussed in
3 recent publication by the authors [13].-

Thefun‘il'ims Prim = k] derived from the matrix Pc(k|l)and.

Pl'zlk = k] derived from Pc(k,l) are shown in Fig. la-d as tri-
angles and squares respectively for the experimental conditlons 1

through 4. One can show that, if Pr1[k = k] > Pl’rik = kl for 10w

' values of k and Pr1[k = k] < Pr2[k = k] for large values of k, the
two fundamental pitch identification processes are mutually de-

pendent in the sense that the perception of the more salient pitch,

i.e., the one represented by the lowest harmonic numbers, inhibits

correct perception of the less salient pitch [13]. Figure 1a~d shows

that in condition 2 only subject JH noticeably exhibits this effect

of mutual dependence of the two identification processes, but in

conditions 1, 3 and 4 all subjects except MZ seem to show a fmall

amount of mutual dependence.
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‘0-2 ' ' , .A
0.0 l l I Q I l I I. .1

02468100.246810
lower harmonic number .

Fig. 1a. The processor’s probability of identifying the correct har-

monic order of a complex tone. The harmonic order is shown on

the abscissa. ’li'iangles designate.Pr1[k = k], squares Pr2[k = k].

Computed from data of condition 1. . .
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Fig. lb. Same as Fig la, but computed from data of condition 2.
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Fig. 1c. Same as Fig 1a, but computed from data of condition 3.

1.0 - . -

0.8 - ' . -

0.6 - -

=
k

(D .p
. i Z N l

y
k

o

p
ro

b
o
b
il

‘t

1 1 1'1k4
'A

o'ollIII

02468100246810

lower harmonic number

Fig. 1d.- Same as Fig la, but computed from data of condition 4.

From either probabilityfunction Pr1[k = k] or Pr2[li .= k] one can

now compute the model’s variance function a(f) which represents

the frequency coding noise and is its only free parameter. A set

of those sigma .functions is shown in Fig. 2. The functions were

computed from the averaged Pr1[k = k) and Prz[k = k] functions-

obtained from the experimental data of dichotic condition 2. The

o(f)/f functions have the typical U-shape which was also found

in an earlier study [11], and have also the same general magnitude. '

The low-frequency. slopes of these functions, however, are much

steeper than the average slope found in that earlier study. We

think this is caused by an over-estimate of 00') at low frequen-

cies in the present experiments. Partial frequencies below 1000

Hz, with fundamentals limited between 200 and 300 Hz, could

occur only for very low harmonic numbers where identification is

close toiperfect and occasional mistakes are more made through
carelessness or poor attention than through insufficient salience

of pitches.
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.Fig. 2. Model variance or “noise” functions'a(f)/f computed

from the averaged functions Prl and Pr: shown in Fig. lb.
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Fig. 3~ Correct identification scores for both simultaneous funda-
mentals ‘as a function ofd defined by Eq. (5) (a) Diotic condition
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tions 3 (circles) and 4 (crosses)
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In order to examine the influence of spectral interference on pitch

identification performance, all 810 different stimuli were mapped

on a frequency-difference measure d, defined as:

d=\/d¥+d§. ' ' . (5)
where d, represents the smallest frequency difference between any

two harmonics and d2 the next smallest difference in the total

four-tone stimulus. Stimuli were grouped‘on this d—scale in bins

of 5 % and, in order to limit the general degrading effect of high

harmonic numbers on pitch identification performance, only stim-

uli were included having lower harmonic numbers m and n of 5

or less. Percentages correct pitch identification of both fundap

mentals as a function of d are shown in Fig. 3a for experimental .
conditions 1 and 2. Under diotic condition 1 values of d below

10 % imply that the partials mf01,nf02 as well as the partials

(m+ l)f01,(n + 1)foz must have interfered with one another

because of limited frequency resolution in the cochlea. Under

dichotic condition 2 such interference was not possible because

potentially interfering partials went to different ears. Figure 3a

shows that only for the lowest d—values, between 0 and 5 %, there

is a noticeable difference between the scores of conditions 1 and

2. The figure also shows, however, that performance for diotic

condition 1, although degraded, is still well above the expected

chance level of 10 % correct, Similar results were obtained with

the data from conditions 3 and 4. They are shown in Fig. 3b.

IV. MODEL' SIMULATIONS

The data presented in the previous section show a general perfor-

mance deterioration with increasing (lower) harmonic numbers m
and n, and also a dependence of performance on the the presen-

tation conditions 1 through 4. The data still provide insufficient

_ Information, however, about the relative contribution of parsing
errors compared with errors caused by interference of partials or~

mutual dependence of pitch identification processes. To study the

influence of parsing errors in more detail, a computer simulation

exPeriment was performed with the model discussed in Sect. 1.

To simulate each subject’s performance, the a( f )/1‘ functions de-
rived from the data of condition 2 were substituted in the model

to sPecify the exact amountof noise to be added to each frequency

cOniponent of the simulation input. For all 810 stimuli 25 compu-

tations were made (with new noise samples added to partials each

time) Of the maximum log-likelihood function of Eq. (2) without
knowledge of the correct parsing, as outlined in Case B of Sect. I.

Sl(Illllations were made on” a Vax 11/780 computer. 'Those stim-

llll for which the correct parsing was always obtained were put

in a stimulus subset PNS (parsing-non-sensitive). The remain-

"18 Stlmuli, for which (occasionally) the likelihood function came

. Wt maximum with the wrong parsing, were put in the subset PS

(paFSing‘sensitive). With the subsets PS, PNS and also with the

:nme set PS+PNS, the simulation experiment was now repeated

or all f0111' stimulus conditioris (1 through 4) and with substitu-
. tion of the appropriate a(f)/f function obtained from the data of
:fhpfiasrtic‘ular subject under that condition with stimulus SUb‘
knowled' Simulation was done with the use of Eq. (3), implying
of all 24ge of .the correct stimulus parsing, and with SUbSt‘t'Utwn
imp] i POSEuble permutations outlined under Case B of Sect. I,

as all :3 the absence of this knowledge. The results, “Pressed
and ;> rcentage correct identifications of both fundamentals (01

for 02' pooled over all values of m and n: are sh°w‘_‘-‘,“ Fig'
stimulus conditions 1- and 2. For each of the three Stim‘
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0
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_H . . .
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B 20
Fl PNS

‘0

Fig. 4. Measured (solid lines) and simultated performance lev-

, els with (dashed lines) and without (dotted lines) knowledge of

stimulus parsing. Columns PS are for the stimulus subset that is

prone to parsing errors, columns PNS for the subset that does not

induce such errors, the central columns for the entire set. Left: ‘

diotic condition 1; right: dichotic condition 2.

nine (sub)sets, the solid line represents the actual performance

of the subject, the dashed line the performance level simulated

with parsing knowledge, and the dotted line the level simulated

without this knowledge. For the PNS-subset one expects all three

performance levels to be identical. The fact that this is not ex-

actly the case is 'not a truncation effect in which the number of

experimental and simulated trials was smaller than required by

the Law of Large Numbers, but represents a small uncertainty

about the details of the simultated decision strategy. Qne also

observes that for the subset PS and for the entire stimulus set

PS+PNS the performance level of all subjects (solid lines) is much

closer to the performance level simulated with parsing knowledge

(dashed lines) than to the level simulated without that knowledge'

(dotted lines). This is true for dichotic condition 2 as well as for

diotic condition 1. Results similar to the ones shown in Fig. 4

were obtained for stimulus conditions 3 and 4. This finding is

important because in the diotic condition 1 no explicit parsing

information was supplied to the subjects, and in conditions 3 and

i 4 an explicit attempt was actually made to supply them with false

parsing information. If this wrong information had been used by

. the subjects, their performance would have been at chance level,

which was easily shown by simulation. Actual performance was

well above chance level for those conditions, however, as is evi-

dent from Figs. l‘c,d. The empirical and simulated results tell

us that subjects somehow do have a fairly accurate knowledge of

the proper interpretation of the various stimulus partials in the

percept of simultaneous complex tones, but that this knowledge

is not obtained on the basis of ear input. It is probably obtained

on the basis of experience with the harmonies of the stimulus set

and a general. tendency to group perceived partials holistically on

the basis of common fundamental. Something similar was also

found by Deutsch [l4] and Butler [15] who used entirely different

musical paradigms.
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V. CONCLUSIONS

From the experimental and simulated results of this study the

_ following conclusions are drawn:

1. The task of identifying two pitches when exposed to two simul-

taneous complex tones is separable into two pitch identification

processes which are to a large extent independent. The small

amount of mutual dependence that is sometimes observed tends

to support the notion that the more salient pitch, represented by

lower-order harmonics, is processed first and interferes with the

processing 'of the less salient pitch. This mutual dependence of

the two processes, small as it may seem, is largely responsible for

the degradation of performance when going from dichotic candi-

tion 2 to diotic condition 1 and finally to dichotic conditions 3

and 4.

2. Information of the correct parsing and interpretation of per- I

ceived stimulus partials is, to a large extent, available to the cen—

tral pitch processor. It is independent of the manner in which

partials are distributed between the ears. This is consistent with

other results on simultaneous-melody perception in the litera-

ture [14,15], and with informal observation of ordinary musical

practice in which both ears are always exposed to all partials of .

simultaneously-playing musical instruments.

3. Interference of spectrally close partials has a surprisingly small

effect on pitch identification for two complex tones, at least.as

long as either tone is represented by harmonics of sufficiently low

order. Although it is known that high-order harmonics of a single

complex tone do not contribute much to fundamental pitch sen-

sation [9] and are as such not available to the central processor

[11], it now appears that aurally non-resolved harmonics belong-

ing to different tone complexes are not entirely discarded. They

may instead be transformed into a single (noisy) percept that can

be used more than once by the processor when filling in the vari-

ables of Eqs. (1) or (2). This idea will be investigated further in

a future study.

4. The human central pitch processor appears not to be hard-

wired or specifically programmed for one particular way of pro-

cessing stimulus tones. [On the contrary, its processing algorithm

appears to be quite cooperative and interactive with the task it

has to execute.
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