VOWEL SHIFT AND LONG-TERM AVERAGE SPECTRA IN THE SURVEY OF VANCOUVER ENGLISH

JOHN H. ESLING

Department of Linguistics
University of Victoria
Victoria, B.C. V8W 2 Y2 Canada

Abstract

To investigate the relationship between long-term (voice setting) and short-term (segmental) components of accent in social varieties of Vancouver English, formant analysis of digitally sampled vowels and long-term average spectral (LTAS) analysis from context-controlled readings are compared. Four contrasting patterns of vowel formant frequency shift result for the four survey groups divided by socio-economic index. LTAS peaks for UWC and UMC subjects are significantly differentiated, paralleling consistent vowel system differences between these groups. Comparisons with articulatorily performed models permit tentative identification of supralaryngeal settings corresponding to each acoustic pattern. An explanation is offered of the potential effect of long-term configuration on the measurement of individual vowel formants.

SAMPLING AND SPEECH ANALYSIS

The objective of this research is to determine whether socio-economic divisions of an urban linguistic community can be distinguished on the basis of voice setting shifts as well as in terms of differences in individual vowels. Sociolinguistic data for acoustic analysis are drawn from the Survey of Vancouver English carried out by Gregg et al. at the University of British Columbia [1] and archived at the University of Victoria, which includes tape-recorded interviews with 240 native speakers of Canadian English. Subjects chosen for investigation are 32 female and 32 male natives of Greater Vancouver, from the youngest of the three age divisions ($16-35$) in the survey. Female and male subjects are divided into four socio-economic groups of 8 subjects each on the basis of social inder scores established in the original survey using the Blishen \& McRoberts [2] occupation scale and other social indicators. Group 1 represents low social index scores (Lower Working Class), and group 4 represents high social index scores (Upper Middle Class).
To compare vowel clusters across the four groups, vocalic nuclei are computed for two tokens of each of ten vowel phonemes for each speaker, from identical environments of the same text in reading style. Using ILS speech processing algorithms to determine formant frequencies, speech samples digitized at 10 K samples per second are analyzed using 12 -pole autoregressive linear predictive coding [3]. The analysis results in 12 reflection coefficients (K 's) per frame (200 points/frame; 50 frames $/ \mathrm{sec}$). The K's are converted to filter coefficients (A's) to represent the vocal
tract's filtering effects, and the filter response of the A's in each frame is calculated and displayed in a spectral array showing up to five resonant peaks (formants) in the $0-5000 \mathrm{~Hz}$ range. The peaks' centre frequencies are calculated based on a -3 dB shoulder and listed. Target vowels are isolated from remaining speech data auditorily, and mean F1,F2 frequencies are calculated and filed by group for statistical processing and plotting. Follow-up vowel measurements and data collection are now performed more expediently on the Micro Speech Lab package developed in the Centre for Speech Technology Research at the University of Victoria on the IBM-PC microcomputer.
For LTAS analysis, a 45 sec sample of continuous speech for each speaker, from the same text used for vowel measurements, is digitized with a PDP-11 time-series data-capturing program. One long-term spectrum is computed for each voice, using a main-frame program accepting only voiced frames while excluding voiceless and low-energy frames. Power spectra of non-overlapping 20 msec windows at 50 Hz resolution and pre-emphasis factor 1 are integrated to obtain final LTAS.

STATISTICAL ANALYSIS

Statistics are performed on \log-mean normalized F1,F2 data for approximately 600 female and 600 male vowels, respectively [4]. To compute distance between group vowel clusters, principal component analysis and canonical discriminant analysis are applied to the four female and four male groups, with the Mahalanobis distance calculated between each group. This yields a probability relating collections of vowels to each other, first as complete vocalic inventories by social group, then as individual vowel phoneme clusters by group.
A generalized squared distance measure is used to classify F1,F2 coordinates, as unknown test values, into one of the four social groups as. known reference cells. Vocalic inventories of the four male groups are also compared with equivalent vowels from texts performed by the author as models representing contrasting articulatory settings. In this case, test values are assigned to known reference models to yield numbers of vowels from each group that associate most closely with each model [5].
In LTAS evaluation, the same procedure is used to compute probabilities and distance relating spectra in the four female and four male groups, although statistics operate 'on unnormalized data. Male LTAS are compared with LTAS of the articulatory models using generalized squared distance to identify clustering patterns and to relate LTAS shift to vowel formant shift.

VOWEL FORMANT ANALYSIS For female subjects, the complete vocalic inventories of
all four social groups are significantly differentiated
(p<0.001), and a majority of individually compared vowel (p<0.001), and a majority of individually compared vowel
phoneme clusters are also separated across socioeconomic group. The acoustic characteristics of each group's vowels match the four corners of the two-dimensional vowe space: Group 1 (high F1,low F2); Group 2 (low F1,low F2),
Group 3 (low F1,high F2); Group 4 (high F1,high F2). The most coherent and best differentiated groups are groups 2
(Upper Working Class) and 4 (Upper Middle Class), illus(Upper Working Classt and 4 4 Upper Midde Class), Cllus-
trated in figure 1. Linguistic contexts are identical; only rated in figure 1 . Linguistic co
speakers vary by group affiliation

Male vowel cluster values follow the pattern of female marginal for speaker-normation between groups 1 and 3 cant using unnormalized data. All other pairing shignifinificant separation ($p<0.001$). As with female groups, male UWC is furthest separated from other male groups particularly UMC. Figure 2 illustrates normalized means of the
four socio-economic groups by sex, and also vocalic means of four comparable model settings.
In the analysis of individual vowel phoneme clusters by group, 77% of all possible pairings for the ten vowels by
significantly differentiated for feme signif suantly differentiated for female speakers across the
four survey groups ($\mathrm{p}<0.05$), and 43% of all pairings separated at the p <0.001 level. Social groups 2 and 4 are
suce successfully differentiated for all ten vowels individually
(p<0.01). For groups 1 and 3 , which are most (p<0.01). For groups 1 and 3 , which are most difficult to
differentiate, only four of the ten vowels show differentiate, only four of the ten vowels show no separa-
tion. This supports the distinctions reported for the complete vowel systems of these groups. The rank order of
most significantly separ most significantly separated vowels across ; groups for
female speakers, $/ \mathrm{v} / \mathrm{e} / / \varepsilon / / \Lambda / / 1 / / 0 / / \mathrm{s}$ suggests no obvious principles, except that mid, front to
central yowels central vowels tend to be better differentiated than
peripheral, especially open vowels. Individual vowels for male
separation than female male speakers' vowels demonstrate less groups. At the p<0.05 level of significance, 62% of all
possible pairings for male vowels are differet

only 27% separate at the $p<0.001$ level. The analysis of individual vowels positively separates male groups 2 and 4
where all vowels differentiate significantly (p<0.001) exceept $/ / / /$, but is not successful in separating the individual
vowels of groups 1 and 3 . The rank order of vowels of groups 1 and 3 . The rank order of socially best
differentiated vowels for male speakers is: $/ \varepsilon / / I / / \mathrm{N} /|0|$
 tion coefficient relating male and female rank ordes
(rho $=-24$) indicates that the (rho=-.24) indicates that the two lists do not correlate,
suggesting that those vowels which function as salient suggesting that those vowels which function as salient
social markers for female speakers are not the same vowels that function as principal social markers for male
speakers in the same social classes speakers in the same social classes.
One possible interpretation
One possible interpretation of the male order is that i/l
functions as a pivotal vowel, virtually identical in ill groups, and that peripheral tense vowels $/ \mathrm{e} /$ and $/ \mathrm{ol} /$ remain more or less the same across groups, while the majority of
shifting occurs on open or shifting occurs on open or mid-open vowels. Greatest dii-,
ferentiation appears in the area of $/ \mathrm{I} / / \varepsilon / / \mathrm{N} / / \mathrm{I} / \mathrm{IO}$, where a decrease in Fl , F accompanies raising and backing for group 2, and an increase in $\mathrm{Fl}, \mathrm{F} 2$ a.ccompanies fronting
with nasalization for group 4 .

LONG-TERM AVERAGE SPECTRAL ANALYSIS
For LTAS analysis, $45-60 \mathrm{sec}$ of the 64 subjects' voices are low-pass filtered at 5 KHz and digitized at 10 K samples/sec remove DC. Digitized data are processed in ormation 200 sample point frames through a Hamming window and FFT routin and silent frames power spectral arrays. After unvoic according to expected harmo swept filter arjuce smoothed spectra accumulated in a single array to repre For the average vocal tract response of the utterance. netic texts performed by the author of three 40 sec pho settings described by Laver [6] and Esling [7] are analyzeel (DEN), retroflexion (CLR), close jaw (CLJ), dentalization tion (UVU), velarization (VEL) , patalization (PAL), uvulariz (LAR), nasalization (NAS), faucal constriction (FAU),
raised laryx (aised larynx (RLX) and lowered larynx (LLX). Ro mean-squared distance measures indicate that each text
resembles more closely
etting than it does identical texts with different settings. Seaker recognition research corroborates that samples of is lengt are relatively text-independent [8].
The first two formants of four settings, LAR, VEL, PAL The first two dominant LTAS peaks ($\mathrm{Pl} 1, \mathrm{PR}$) of these mod is also correspond to $\mathrm{F} 1, \mathrm{~F} 2$ in their relative acoustic orihan Fl, FL. Superimposing laryngo-pharyngalization on a given text increases P1 and decreases P2, which conforms with acoustic predictions for extreme tongue retraction for an (uf-quality vowel; palatalization results in a systemor an ur-quality vowel; palatalization results in a system-
atic shift in mean spectral peaks as for an li]-quality vowel; and a nasal setting results in higher-frequency $P 1$,
with attenuation in the magnitude of $P 1$ relative to $P 2$. In valuating LTAS data for Vancouver survey groups, it is expected that group 1 will demonstrate high P1,low P2; hat group 2 will demonstrate low P1, P2; that group 3 will strate high P1, P2. The relative influence of each of the strate high P1,R2. The relative inflence of each of the
irst four LTAS peaks in distinguishing the social divisions
of the survey will also be determined.

or female groups, LTAS data significantly differentiate social group 1 from group 2 and group 2 from group 4
(p<0.01) as in figure 3 , while other relationships show no significant separation. Spectra are set to zero magnitude mplitude variation. Female LTAS data corroborate amplitude variation. Female LTAS data corroborate groups 2 and 4 are separated by both measures. Due to the presence of voiced obstruents in LTAS, frequencies are
predictably lower than for vowel nuclei. Relative $\mathrm{Fl}, \mathrm{F2}$ orientations are preserved primarily in P1 values and not in 2 , as much of the difference between groups is therefore present in third and fourth LTAS peaks.

Table 1. Female vowel formant and LTAS means.

$$
\begin{aligned}
& \text { Group 1(LWC): } \quad \mathrm{F} 1, \mathrm{~F} 2(\mathrm{~Hz}) \\
& \begin{array}{l}
\text { Group } \\
\text { Group 3(LMC): } \\
\text { Group 4(UMC) }
\end{array} \\
& \text { Group 4(UMC) } \\
& \begin{array}{l}
\mathrm{P} 1, \mathrm{P} 2(\mathrm{H} \\
450,160 \\
350,1725 \\
400,160 \\
550
\end{array}
\end{aligned}
$$

Male LTAS results are also successful in significantly dif-
erentiating group 2 from group 4 and group 3 from group 4
(p <0.05). Other relationships again are not significant.
The relationship between $\mathrm{F} 1, \mathrm{~F} 2$ values and LTAS $\mathrm{Pl}, \mathrm{P} 2$ values is clearer for male groups than for female groups.
Both Fl, FL and $\mathrm{Pl} 1, \mathrm{P2}$ for male group 2 are low, resembling the predicted pattern of velarization, while F1,F2 and $\mathrm{Pl}, \mathrm{P2}$ for group 4 increase, coinciding with the shift pre-
dicted for nasalization. P1,P2 are systematically lower than Fl , F 2 , confirming that LTAS data include voiced speech information which has the effect of lowering average frequencies.
interpretation of results
An articulatory interpretation of the acoustic differentiation of vowels across the social scale of Vancouver English
is proposed which associates LWC vowel clusters with tongue backing and lowering (laryngo-pharyngalization); UWC with tongue backing and raising (velarization); LMC with tongue fronting and nasal voice setting. To quantify these associations, male survey data are compared with equivalent vowel systems of four articulatorily modelled
settings which are included in the male normalization routine. The generalized squared distance algorithm takes the tour models as reference cells and forces tokens from survey data into one of the four cells. Internally, there is
considerable misclassification of vowel tokens a mong the four settings, and the majority of survey values cluster with the velarized model. However, classification of survey data differentiates significantly in the case of groups 2
(UWC) and 4 (UMC) and the VEL and NAS models as tabulated below.

Table 2. Assignments of male vowels by group

	LAR	VEL	PAL	NAS	n
Group 1(LWC):	13%	68%	14%	5%	139
Group 2(UWC):	3%	97%	0%	0%	145
Group 3 3MC)	14%	67%	12%	8%	153
Group 4(UMC):	19%	56%	10%	15%	114
Totals:	12%	72%	9%	7%	582

These distributions reflect the same articulatory pattern as female vowel clusters. Individual vowel phonemes clas-
sify primarily into VEL from group 2, and into NAS from group 4. Chi-squared tests indicate that there is signifi cand evidence for an association between groups 2 and and the four reference models ${ }_{\text {d.f., }} \mathbf{p}<0.001$) and, furthermore, that the two groups are significantly differentiated on the basis of assignment into
VEL. NAS (1 d.f., p<0.001). Broader interpretations of these results depend on variables such as performance conditions of the models and limitations of using only two formants. Nevertheless, they permit identification of the
relative susceptibility of vowels to the shift from UWC to UMC quality, reflected in the acoustic shift from low to high $\mathrm{F} 1, \mathrm{~F} 2$ values. LTAS data support conclusions reached on vowel formant evidence. Tukey's test for variable effect is applied to the
four models, LAR, VLL, PAL, NAS, to assess the relative influence of each LTAS Peak. The result indicates that P1
is a better predictor of VEL or NAS than is P2. P3 is also is a better predictor of VEL or NAS than is P2. P3 is also
a successful variable in separating VEL and NAS settings, and in separating fronting from backing. P4 does not dis-
tinguish PAL from VEL or NAS, but does separate it tinguish PAL from VEL or NAS, but does separate it from
LAR, as does P2. This suggests that P3 adds information
to P1, and that P4 adds to P2, when LTAS,data are used in adjition to F1,F2 to distirguish roices.
Statistical comparisons of male LTAS data with the 12 mocieis indicate that the models as a set are significantly differentiated from the four survey groups (p<0.05). The generalized squared distance function indicates high internal coberence for each survey groc;, and fields similar associations to those greviousiy discovered by vowel for mant analysis, namely the association of tongue-retracted settines UVU, VEL with groups 1 and 2 (LWC/UTC) and of NAS, FAL with group 4 (UMC), shown in table 3.

Talie 3. Distance betweed roice setting models and male Vancourer social grours in ${ }_{7}$.

	1(L而C)	2(TWC)	$3(1)$	4 CMC
07	0.50	0.38	0.02	0.09
VEL	0.51	0.23	0.00	0.25
LAR	0.05	0.06	0.83	0.06
LIX	0.69	0.02	0.85	0.65
FAD	0.03	0.02	0.95	0.00
LEN	0.22	0.17	0.32	0.29
CIR	0.31	0.16	0.02	0.51
CIJ	0.32	0.09	0.01	0.53
LIX	0.69	0.19	0.12	0.57
RET	0.20	0.10	0.02	0.68
PAL	0.17	0.06	0.01	0.7
NAS	0.02	0.01	0.60	0.97

Bearing in mind the significant separation of g-ows 2 and 4 that grocrs 1 and 3 are not disticguished except for cer tain rowels, and that groct 3 LTAS are more cocerent than group 1 LIAS, assisnments to grocp 3 (e.g. LAR) must be treated circumspectiv. Assignent of VEL add ए. to both grocrs 1 and 2 , on the cther kand, frovides sprocring evicence to the vowel formant procedure that these grocrs occriry a different acocstic space frod groct 4 (if not from groct 3) with its cicser association to NAS and PAL Despite the sirgie-speaker Iimitations of the ferformed model afproach the associations suspested bere are a positive indication that socioliogisticaily obtained diaject survey grours can be arairzed, differertiated and tectatively classified using both rowel formant a-airsis anc LTAS aralrsis tectricqes.

EFEECAS ON FCRMAT MEASTEENENT

There is evideace in this stoiy that locrgterin setirgs may infreace formant frequency measuremect, contrinctirg to wty rocaic data rives are cften diffici't to measire. Morsen \& Eagebreisco (9), comparing spectrogezehic with linear prediction techricques of formant anairsis find that "for furdanental frequencies between 100 and 3 CCE . both methocs are accurate to within approximately tocEz for both first and secood formants." They aiso ocserve tiat formant freçuencies can be odscured by masifig from the fuodanectal or ty broacening of tandwidths.

It may be easier or harier to accirateiy recover the resorances of tie rocal tract in the vowel socrd wave dereadirg on ciciective factors suci as tie form damental frequency, the degree of casaination of the vowel, or the position of the artictiators

The IS pean-piciog roctire used bere is ciserved to encouter masiing frociems of just this sort. Croce I roweis prodice greatest loss of second formant. pesuiting in a smailer mumber of tokens that are accertabie for
inclusion, and (pertaps not incidentally) in wider deviation of the tokens that remain. Group 2 is the easiest group to measure, with ail formant peaks and bandwidths clearly distingjisiable, and has correspondingly the most coberent set of formant values. Group 3 is also not difficult to measure, but group 4 begins to demonstrate the appearance of an intermediate peak and widening bandwidths in ail roweis for the largest number of speakers both male ard female. This secoodary, usually higher amplitude peak overlaps in bandmicth with peak 1, and has therefore been areraged icto the computation of F1 since it is distinctly not associated with F2. This phenomenon occurs only rarely in other groups and when it does the voice demonstrates pronounced nasality. It seems likely, therefore, that a geceralived low back position of the articulators in grop 1 , evident in the $F 1, F 2$ values of retained vowels, causes a decreasirg F2 peak to merge with an increasing El peak for many tokens. The fronted and nasalized settirg of grocp 4 , impiied by the damped but increased values of FI die to the combined calculation, and the slightly figieer raives of F2, would not be apparent if these someWiat spectraily confusing tokens had to be eliminated. In this way, the resuits of this study help to isolate those contributions of rocal tract resonance that are of longerterm diration then individual vowels, and also belp to icentify bow coctrasting articulatory configurations affect otierwise icentical roweis.

REFERENCES

[II R. Gresg et ai., An urban dialect survey of the English spiken in Vancourer, in H. Warkentyne (Ed.), Papers from the Fourth Trtermational Conference on Methods in Dieiectology (fp. 41 -ój), University of Fictoria, 1981.
[2] D. Bísien, H MeRoberts, A revised socioeconomic iodex fre occupatiocs in Canada, Canadian Review of Socicicsy and AnthrozoloEy, 13, 71-79, 19:0.
[3] J. harixei, A. Gray, Linear prediction of speech, Springer Veriay, 19:6.
[4_{i} D. Eincie, Aprrcaches to romel normalization in the stivit of catril speech, in D. Sankoff (Ed.), Linguistic Variation Hocels and methods (pp-161-171), Academic Fress 17is.
[5] J. Fiting, C. Dickson, Acoustical procedures for articuLatery se:tisg anaysis in accent, in H. Warkentyre (5.), Pazers fma the Fifth Intermational Conference on Me:tocs in Diaiectoiocy (pp-15j-1.0), Caiversi:y of Fictcrian 170 5.
[6] I. Laver, The pionetic descriction of voice quality, Cankridge Cniversity Fress 19太3.
[7] I. EsTi-E, The identification of features of voice quality in sociai s=ocrs, IPA, 3, 13-23, 19:3.
[1] C. Dicksco, in investigaicn of theories and parameters rertaring $\frac{10}{\text { speaser recognition }}$ University of Victeria. 178%
[9]. K. Howsen, M. Engebretson. The accuracy of formant freçuent meiscrements A comparison of spectrograitic acaipsis and lirear prediction, J. Speech and Eearing Fesearin, 26, 87-97, 1983.

Acincwieciceners. Tha-ks are due to Prof. RJJ. Gresb, Er. SK. Mry, ard I. Cuarards Ibe cooperation of B. Craig Dicison ani the Ceatre for Speech Technology Researct, and grarts from the Fresident's Committee on Researet Liversity of Tictoria, are gratefully acinowl ejged. The fresent investigation was surported by frant +4iv-as-Cikil Evom the Sucial S-iences and Emmanities Fesearci Courcil of Cazada.

