
rase E=ORTi

Lamyage studies urit Estan Criversity,
Rintirgtan, t.x.
remert
The cancest of furctional load ras been used by thas oxiseryently received differing definitions and rethods of calculation. It has not, howerer koen applied to the teaching of prorumciation. In this paper are discussed several aspects of assessicert of the relative inportance of sergental features of leamers' spesch

Introdution
Sudents on you are teaching English to foreion students, on a tight schedule, with no special time for pronunclatich por the following problens you tackie first? Discrimination of $/ \theta /$ and $/ / / /$,
[etc.]. [etc.].]
Her an
wanswer: "When tine is short it is probably not worthwhile spending time on teaching $/ \theta /$ and sure the students find them difficult, but be are /if/ and $/ \mathrm{v} /$ somnds which are acoustically similar to $/ \theta /$ and $/ \% /$ and bear a low functional load in English (i.e. don't distinguish many words), and not $/ \mathrm{s} /$ and $/ z /$, which are acoustically very
different from $/ \theta /$ and $/ z /$ and bear a nuch higher different from
functional load. Many writers have made appeal to the notion of
functional load (FI), and for various purposes.
However, the precise definition qiven to the However, the precise definition given to the
ooncept has varied from writer to writer [2]. King concept, has varied from writer to writer [2]. King
[3] p. 831 writes that 'in its simplest expression fumctional load is a measure of the number o minimal pairs which can be foumd for a given
opposition. More generally, in phonology, it measure of the work which two phonemes (or a distinctive feature) do in keeping utterances apa - in other words, a gauge of the frequency with
which two phonemes contrast in all possible environments.'
It is not clear how ruch thought has been given appeal to the notion. For instance, we could
disagree with Brown above, in that phonenes such as
$/ \mathrm{E} /$ and $/ \mathrm{V} /$ do not have FLs in isolation: it is /f/ and /v/ do not have FLs in isolation; it is
only the contrasts between pairs of phonemes which can carry FLs.
King [4] P. 7 proposes a fornula for the factors: the first measures the groduct of two
frequercies of the two pionenes in the cpocsition the second reasmes the cegree to which the two here ervirornent means, roughly speaking, one honene to the left and right'. Is Vachei [5] p.
points out, although ervirament is of dovious rportance, King's cefinition of this as ore phonene to the left and rig.ti should have bee The rain difference
nd those of othernce between King's formulation onditional probabilities instead it is based \propto information theory approach. Wang [6] (see also [7]) ormares farr infonmation theory measures of FL , measure that is inportant than the develognent of conforms to certain linguistic requirenents is the task of providing empirical justification for the measure' (p.50).
The value of the concept of FL has been recognised in other linguistic fields, including phonology [3], autonatic speech symthesis and recognition [9,10] and spelling reform [11]. It has not, however, been applied to the question of
language teaching. In this paper, I therefore wish to explore certain aspects of FL, which are of use in the teaching of pronunciation. This discussion wes much to the ideas of Avram [12]. For following pairs of (RP) phonemes, which are often

$\frac{\text { annulative text frequency }}{\text { In the table }}$
In the table below, I give the cumulative requencies for these pairs of RP phonenes based on
the figures for connected speech given by Denes [13]. Thus, for examplete, the curulative frequency for the pair $/$ e, $x /$ (11. 058) is calculated by /e/ and 3.89% for $/ x /$. On the basis of these calculations, we may then propose that a pair with a high cumulative frequency (e.g. /e, $\left.x / / 111.05)^{\prime}\right)$
is of greater importance than one with a low (e.g. is of greater inportance than one with a low (e.g.
to, ea/, 1.838). That is, over one in every ten vowels is either $/ \mathrm{l} /$ or $/ \mathrm{x} / \mathrm{J} /$, whereas under one in every fifty vowels is either /ri/ or /ea/. The
risks, as far as loss of intelligibility is concerned, of conflating $/ \mathrm{e}, x /$ may thus be considered of conflating $/ \mathrm{e}, x /$ may thus be
greater than those of conflating $/ \mathrm{ra}$, ee/
$\frac{\text { Probability of occurrence }}{\text { These curnulative freque }}$ that one menber of a conflated disguise the fact more frequently than the other. For example; i: , $1 /$ have a high cumulative frequency (25.578);
one in four of all vowels in connected speech is one in four of all vowels in connected speech is
either $/ i: /$ or $/ 1 /$. Given that a learner has produced a vowel of the [i] type, it is, however, four times more likely that this corresponds to $/ 1 /$ than to $/ i: /$. The basic text
21.028 for $/ \mathrm{I} /$ and 4.55% for $/ i: /$.
The closer to 0.50 , the more equal are the individual frequencies, and the greater is the of the pair. (The probability of the more frequent of the pair. (The minus the probability of the less
menber is on frequent). In this way, we may atstinguish
extrenes:
(i) pairs with a high curulative frequency and relatively equal probability, e.g. $/ \delta, \mathrm{d} /$,
(ii) pairs with a high cummulative frequency
 but unequal probability, e.g.
(iii) pairs with a low ccmulative frequency
but relatively equal probability, e.g. /ıa, eə/
but relatively equal probability, e.g. /ıa, ee
$/ \dagger \dagger$, $13 /$, and
and unequal probability, e.g. /o:, or/.
It would seem reasonable to rank them as above in decreasing order of importance for learners and teachers.

Occurrence and stigmatisation in native accents in this paper, certain of the learners in this paper, cerctain be found in other native accents. /u:, U/ conflation is whaespread
Scotland; /a, ea/ conflation is an increasingly cormon phenconenon in New Zealand, the west Indies
and East Anglia; and $/ / \sigma, d /$ conflation is found, if only sporadically, in the Republic of Ireland although it is heavily stigmatised. We may
conclude that listeners are accustaned to making the perceptual adjustment necessary for intelligibibility
$\frac{\text { Acoustic similarity }}{\text { As Brown quoted above notes, acoustic }}$ As Brown quoted above notes, acoustic
similarity between sounds is a relevant factor. That is, $/ \theta, \mathrm{f} /$ and $/ \Delta, \mathrm{v} /$ are more acoustically similar than $/ \theta$, s/ and $/ 0, z /$ For example, $/ \theta, \mathrm{f} /$ may be difficult to distinguish in bad trens are therefore already familiar with recognising the intended sound fram context. on the other hand, / θ, $\mathrm{s} /$ are more distinct, even on noisy telephone realising that a misinterpretation or conflation may have taken place. Comparable acoustic similarity .
The structural distribution of phonemes that is a phenconenon occurs in syllables containing short vowel phonenes $(1, x, 1,0 /) . / n /$, on the other hand, occurs in syllables with either long or
$/ n, n /$ will not be open to misumderstanding all th time; his conflation may only lead to confusion where it occurs after a short vowel phonene, since
any occurrence after a long vowel must be $/ \mathrm{n} / \mathrm{not}$
$\mathrm{D} /$ In similar vein, it is a feature of English that stressed word-final syllables do not contain short vowel phonemes unless they also contain a final
consonant. Thus, /brt/ is permissible (bit), but consonant. Thus, /brt/ is permissible (bit), but
not $* / b I /$ Long vowel phonemes are not subject to this constraint, e.g. /DI:/, bee. Thus, any vowel in a stressed word-final syllable without Syllable structure constraints therefore limit Syllable structure constraints therefore 1 mit
the potential confusion of coonflated pairs $(/ n, \eta /$
$\frac{\text { Lexical sets }}{\text { Wi mist not }}$
We must not lose sight of the fact that phoneme combine to create the actual words of. the English
lexicon. There are same phonenes which are not contained in many words. For instance, wells [14] p. 133 notes that the lexical set for the phonene N/ is relatively small - around 40 words. The
frequency. of this phonene is a mere 1.95%, and would be even lower were it not for the fact that this lexical set includes a number of words of very.
frequent occurrence, such as put, good, look, would.

The number of minimal pairs The simplest expression of the FI of a phonenic contrast is the number of minimal pairs which this
contrast serves to distinguish. For same English phonenic contrasts, there are plenty of minimal pairs; for others, there are relatively few. For $/ \mathrm{L}:, \mathrm{W} /$, the only minimal pairs involying corman
modern words are pool, pull; fool, full; who'd,
 occurderstanding is therefore these contrasts and on this basisis, we may consider them to be relatively unimportant. The following table shows the relative importance of
all the vowel and consonant contrasts introduced earlier, in terms of the number of minimal pairs exemplifying the cantrasts. .he miterion has been set, somewhat arbitrarily, at
Fever than 20 pairs can be found for those contrasts marked -, while over 20 pairs can be ound for those marked + . Minimal pairs for
consonants in word-initial position and in wordconsonants in word-initial position and in word-
final position have been calculated separately.
he number of minimal pairs belonging to the same $\frac{\text { part of speech }}{\text { Following on from the previous section, we may }}$ note that although there are certain contrasts fo which there are several minimal pairs, sametime
these minimal pairs involve few words from the ame part of speech. These pairs are therefore unlikely to cause confusion in the context of a sentence. For example, there are evevers it is a phenomenon of English that words beginning with / are grammatical words, such as the, those, they
then; though. They are thus unlikely to be confused in context with the corresponding/d/ words, which are virtually all lexical words, such as doze, day,

	1	2	3		4
/1:, $1 /$	25.57\%	0.18	+		-
/Iə, eə/	1.838	0.40			$+$
/ $\boldsymbol{\theta}$, ұ/	11.05\%	0.35			-
/0:, $51 /$	3.28\%	0.07			-
/u:, u/	5.57\%	0.35			+
/p, b/	6.34%	0.46	+	+	-
/8, d/	11.818	0.42	-	-	+
/n, $\mathrm{n} /$	13.72\%	0.15	*	-	-
$1+\int, d 3 /$	1.46%	0.42	-	-	-

Column 1 = cumulative text frequency, expressed as a percentage of the occurrence of all vowels, or of all consonants.
Column 2 = probability of the less frequent member of the pair.
Column $3=$ whether 20 minimal pairs can be found. For consonants, this is given for word-initial and word-final positions. * indicates that $/ \mathrm{h} /$ does not occur initially in English words. Column $4=$ occurrence in native accents.
den, dough).
Consideration ought also to be given to the fact that the frequency of occurrence of members of the closed set of grammatical wonds is higher than for lexical words.

The number of inflections of minimal pairs One problem in counting the number of minimal pairs relying on particular phonemic contrasts is the use which English makes of inflections such as the suffixes for plural, past tense, -ing forms. Thus, for example, for the /io, ee/ contrast several pairs take $/ z /, / d /$ and /in/ endings, e.g. fear, fare; spear, spare; steer, stare. Whether these should be counted as separate minimal pairs or not in the calculation of FL is a somewhat arbitrary methodological consideration.

The frequency of members of minimal pairs Minimal pairs for the English contrast /u:, u/ are scarce. A few examples exist, further to those quoted above, but in which one member is of such infrequent occurrence that the minimal pair can hardly be said to have any importance. Thus, while the /u/words would, could, should, look may be considered frequent, the corresponding /u:/ words wooed, cooed, shoed/shooed, Luke are so infrequent as to be almost contrived.

The number of common contexts in which the members of minimal pairs occur

It is also worthwhile to consider whether the members of minimal pairs belong to the same semantic field or not, i.e. whether contexts can be easily supplied in which both members of a minimal pair are plausible alternatives, both grammatically
and semantically. Such contexts are easily supplied for English pairs such as fate, faith; trek, track; sherry, cherry; shin, chin; cheer, jeer, but this is not possible for the majority of minimal pairs in English.

Conclusion

In summary, it should be clear that more advanced analysis than a counting of the number of minimal pairs is involved in the calculation of FL. Avram [12] summarises this point succinctly: 'if we suppose that one opposition is illustrated by ten minimal pairs and another by twenty, it does not necessarily mean that the second opposition is twice as important as the first. Starting from minimal pairs, the successive application of certain correctives is essential if we wish to establish the actual value of an opposition more clearly' (p.42).

On the basis of the above observations on FL, we may propose that the relative importance of the phonemic RP contrasts discussed in this paper can be ranked as follows, most important first: /p, b_{i} e, æ; I:, I; そ, d; n, ク; tf, d3; u:, u; Iə, eə; 0: , ว1/.

References

[1] Brown, G. (1974) 'Practical phonetics and phonology' in J.P.B. Allen \& S. Pit Corder (eds.) The Edinburgh Course in Applied Linguistics (vol.3: Techniques in Applied Linguistics). Oxford University Press, pp.24-58.
[2] Meyerstein, R.S. (1970) Functional Load. Janua Linguarm Series Minor no.99, Mouton, The Hague.
[3] King, R.D. (1967) 'Functional load and somd change' Language 43:831-852.
[4] King, R.D. (1967) 'A measure for functional load' Studia Linguistica 21:1-14.
[5] Vachek, J. (1969) 'On the explanatory power of the functional load of phonemes' Slavica Pragensia 11:63-71.
[6] Wang, W.S.-Y. (1967) 'The measurement of functional load' Phonetica 16:36-54.
[7] Wang, W.S.-Y. \& Thatcher, J.W. (1962) 'The measurement of functional load' Report no.8, Communication Sciences Laboratory, University of Michigan, Ann Arbor.
[8] Hockett, C.F. (1955) A Manual of Phonology. Memoir no.11, International Journal of American Linguistics, Baltimore.
[9] Fry, D.B. \& Denes, P.B. (1957) 'On presenting the output of a mechanical speech recogniser' Journal of the Acoustical Society of America 29:364-367.
[10] Fry, D.B. \& Denes, P.B. (1958) 'The solution of some fundamental problems in mechanical speech recognition' Language \& Speech 1:35-58.
[11] Wells, J.C. (1986) 'English accents and their implications for spelling reform' Simplified Spelling Society Newsletter no.2:5-13.
[12] Avram, A. (1964) 'Some thoughts on the functional yield of phonemic oppositions' Linguistics 5:40-47.
[13] Denes, P.B. (1963) 'on the statistics of spoken English' Journal of the Acoustical Society of America 35:892-904.
[14] Wells, J.C. (1982) Accents of English (3 vols.) Cambridge University Press.

