3) In working out an integral model of phofrom word-internal consonave proceeded they are more regular than word-initial and word-final consonant clusters. By extending the restrictions of word-internal consonant
sequences to word-initial and word-final consonant clusters and applying a few additional rules we have obtained a unified system of phonotactic restrictions of Ger-
man consonant sequences (cf. $115,16 /$) man consonant sequences (cf./15,16/).
4) Unlike the above studies which have with the analysis of consonant sequences with a view to discovering the rules lying vestigation aims at a synthesis of consonants by means of a generative model, the purpose of which is to obtain an adequate number of rules.
5) Considered in the study are only consonant sequences occurring in native German word and a foreign one has been made on the basis structure (see $/ 6 /$).
ces contains only predominating rules. As the phonological component is constantiy affected by the environment through the adoption of foreign words and the phonetic
peculiarities of other languages, added to its grammar are more and more rules which can be opposed to the existing ones. At the same time the language dislodges part of
the rules to retain the level of homogeneity the rules to retain the level of homogeneity
necessary for its existence. For that reason from the synchronic point of view a language is a complex of rules opposed to
each other and some of them dominate over the others. In the case of opposing rules considered in constructing the phonological generator are the rules which dominate over the others. The choice of rules in this ca-
se has been made with the help of functional oad.
) The present phonotactic description is based on Duden's / /4/ tranccription, conta
hing the following consonant phonemes:

As the consonants $d y$, $t f$ and do not appear in native German consonant clusters, they are not taken into account in
ventory of our generative grammar.
ventory of our generative grammar.
8) The present work is not concerned with consonant sequences generated at compound component junctions, regarding only sequen ces in the words consisting of stem and af-
fix(es), The latter are taken from Duden/4/
3. definitions

A consonant sequence is an arbitrary sequence of different consonants within
the boundaries of one simple word. A consonant cluster is a syllable-internal consonant sequence. A syllable-insequence of phonemes between two successiSyllable boundary is fixed according to raditional German grammar. quence containing stop consonants and or fricates.
A lenis structure is a consonant seA. base stru
erminal symbols A surface structure is
German consonant phonemes
A pronunciation strength structure sequence of non-terminal symbols marking
pronunciation strength classes
4. general principle of the generaton

A generator of consonant sequences represents a formal grammar which determines one phonological subsystem of a language -
the phonotactics of consonant sequences and gives its exact description. According to Chomsky's /2/grammar the consonant sequences generator can be described by the
formula $D=(I, E, T, P)$, where D is the consonant sequences generator, E - the ultimate number of non-terminal symbols (the auxiliary symbols of the base structure), T nant phonemes of the surface structure) different from E, P - the ultimate number of restriction (X) and derivation rules
(Y), which describe the process of gener ting consonant sequences and restrict sequences not characteristic of the language, and I the initial symbol. the first- and second-level base strus of res (M1,K2,M3,K4,M5, $1,2,3,4,5, G, L, N, V, F$,
$K, A, B, R, Q, Q)$. X, A, B, R, Q_{1}, Q_{2}). T comprises the consonant
phonemes occurring in sequences in the surface structure(the 3rd level) of the Ger-

 ted in the description by the symbol (,). The length of a consonant sequence, i.e. the number of phonemes in the sequence be number following the mark of maquation. The
symbil C stands a symbol Costands for any consonant phoneme,
\#is a string of consonants comprising fro *is a string of consonants comprising from sonants comprising from 1 to 5 consonant.
phonemes.
lon phonemes
The
basis of the combinatorical regularities of German consonant sequences
and it constructs the existing consonant
sequences whose structure is acceptable sequences whose structure is acceptable to
the phonological system of the German language as well as the non-existing consonant sequences which are typologically relevan to the existing ones. It also determines
the position of syllable boundary. The wo of the generator is based on the application of the hierarchical character of the phonor stictions are applied on all levels. Thi makes it possible with few restrictions to ain from 5.5 million potential sequences ($\frac{5}{k} \mathrm{c}_{\mathrm{k}}=23 * 23 * 23 * 22 * 21=5621154$) a result that in number approximately corresponds to the one in reality. The generator
does not pretend to psychological reality or "natural" processes in the language, but represents a black-box-type model in which he application of phonological rules pr ides a result close to linguistic reali-
5. FORMAL DESCRIPTION of the generator

The formal description of the generator of German consonant sequences is given in
the form of a grammar where Y marks the de rivation rules and X the restriction rules, and the number following them denotes the hierarchical level. The number in brackets tive operation is presented in more detail. The rules with the number 0 (e.g. $\mathrm{x}-1.0$) point out those consonant strings which do not correspond to the definition of conso
$\mathrm{Y}-1$

$\begin{aligned} & y-1 \\ & (6) \end{aligned}$	$1 \rightarrow 12345$
	${ }_{2}^{1} \rightarrow{ }^{M}{ }_{1},{ }^{\text {, }}$
	$4 \rightarrow \mathrm{~K}_{4}^{3}$,
	$5 \rightarrow M_{5}^{4}$,
X-1.0	$\mathrm{C} \rightarrow \epsilon$
$\begin{aligned} & Y-2 \\ & (7) \end{aligned}$	$\mathrm{M}_{1} \rightarrow \mathrm{~L}, \mathrm{~N}, \mathrm{Q}_{1}$
	$\mathrm{M}_{5}^{4} \mathrm{G}$ G,L,N,V,Q
x-2.1.1	$Q_{1}{ }^{*} Q_{2} \rightarrow$
	${ }^{*}{ }^{1}{ }^{*}{ }^{\text {a }}$ +
x-2.1.4	${ }^{*} \mathrm{FB}^{*} \rightarrow$
	* $\mathrm{AB}^{*} \rightarrow$
	KB \rightarrow
x-2.2.1	$\mathrm{Q}^{*} \mathrm{R}^{*} \rightarrow$
	$\xrightarrow[* R R^{* *}]{ }{ }^{\text {a }}$
	AR
	RK \rightarrow
	$*_{\text {RB }} \rightarrow$

x-3.8	$\underset{* C s m}{\mathrm{~m} \int \mathrm{c}^{*} \rightarrow} \in$	x-3.24	$Q_{1} \mathrm{~s}^{*} \rightarrow \mathrm{c}$
	sp \rightarrow, if *t		ms* \rightarrow ¢
x-3.9	$* \mathrm{ccpn} \rightarrow \epsilon$,		*tss* \rightarrow
	$\stackrel{\text { *cckn }}{\rightarrow}$ -	$\begin{aligned} & x-3.25 \\ & x-3.26 \end{aligned}$	$r \mathrm{rc*}^{\rightarrow}$ ¢, if $\mathrm{C} \neq \mathrm{t}$
x-3.10	kn \rightarrow		mg* \rightarrow
	${ }^{*} \mathrm{pfo}^{+}$	x-3.27	*pfz \rightarrow ¢
	$\xrightarrow{* k p *}$		$*$ tsz $\rightarrow \epsilon$
	tp \rightarrow e		$* \int z \rightarrow t$
			${ }^{\text {fiz }} \rightarrow$
	${ }^{\text {ffp* }} \rightarrow$		${ }^{\text {siz }} \rightarrow$
x-3.11		x-3.28	${ }^{*} \mathrm{pz} \rightarrow$
	$\mathrm{mpC}_{1} \mathrm{C}_{2} \rightarrow \epsilon$, if $\mathrm{C}_{2} \neq t$		*tz \rightarrow
	${ }^{1 p C_{1} C_{2} \rightarrow e, ~ i f ~} \mathrm{C}_{2} \neq t$		*¢z \rightarrow
	$\mathrm{rpC}_{1} \mathrm{C}_{2} \rightarrow \epsilon$, if $\mathrm{C}_{2} \neq \mathrm{t}$		${ }^{*} \mathrm{pfv} \rightarrow$
x-3.12	$\mathrm{mtCC} \rightarrow \epsilon$		$\mathrm{prl} \rightarrow$
	$Q_{1} \operatorname{tcc} \rightarrow \epsilon$		$\stackrel{*}{* v v} \rightarrow$
x-3.13	$\xrightarrow[\text { cpt* }]{\rightarrow}$,		$\xrightarrow{p v} \rightarrow$
	C¢s* \rightarrow ¢		tv
x-3. 14	${ }^{*} \mathrm{tk}{ }^{*} \rightarrow$ ¢	X-3.29	
	pk \rightarrow		$* \mathrm{C}_{\mathrm{n}} \rightarrow \boldsymbol{\epsilon}$
	${ }^{*} \mathrm{ffk}^{*} \rightarrow$ ¢		$* S C Q \rightarrow \epsilon$
	tsk \rightarrow	x-3.30	${ }^{\text {pfis }} \rightarrow \rightarrow \epsilon$, if $\mathrm{C} \neq \mathrm{t}$
			*tsc \rightarrow, if $\mathrm{C} \neq \mathrm{t}$
x-3.15		x-3.31	$\mathrm{rnc} \rightarrow$, if $\mathrm{C} \neq \mathrm{t}$
	${ }_{\text {sk* }} \rightarrow$ ¢, if ${ }^{\text {f }}$ e		$k t \mathrm{C} \rightarrow$ ¢
x-3.16			$\mathrm{ptsC} \rightarrow$
X-3.17	$\mathrm{Cpf*}^{\rightarrow} \boldsymbol{\epsilon}$, if $\mathrm{C} \neq \mathrm{m}, \mathrm{Q}_{1}, \mathrm{r}, \mathrm{n}$		$\mathrm{pftc} \rightarrow$
	$\underset{\text { rpfC }}{\rightarrow} \boldsymbol{\epsilon}$, if $\mathrm{C} \neq \mathrm{l}, \mathrm{r}$	$\mathrm{x}-3.32$	$\mathrm{npC*} \rightarrow \boldsymbol{\epsilon}$, if $\mathrm{C}=\mathrm{s}, \mathrm{n}, \mathrm{Q}_{2}$
	$\mathrm{npfC} \rightarrow \epsilon$, if $\mathrm{C} \neq 1, \mathrm{r}$	x-3.33	$Q_{1} \mathrm{Cn} \rightarrow \epsilon$, if $\mathrm{c}=\mathrm{t}, \mathrm{p}, \mathrm{ts}, \mathrm{f}, \mathrm{b}, \mathrm{d}$
x-3.18	$\underset{\text { Q }}{\mathrm{Q}_{1} \mathrm{pfC}} \rightarrow \boldsymbol{\in} \rightarrow$, if $\mathrm{C} \neq 1, \mathrm{r}$	x-3.34	$\mathrm{Q}_{1} \mathrm{Cl} \rightarrow$, if $\mathrm{C}=\mathrm{t}, \mathrm{d}$
		X-3.35	$n \mathrm{npn} \rightarrow$ ¢
	Ccts* \rightarrow ¢	$x-3.36$	$\mathrm{rmCCC} \rightarrow \epsilon$
$x-3.19$$\mathrm{x-3.20}$	$\mathrm{C}_{1} \mathrm{tsCC} \rightarrow \epsilon$, if $\mathrm{C}_{1} \neq \mathrm{n}, \mathrm{r}, 1$		rmC \rightarrow
	tts \rightarrow	x-3.37	$\mathrm{rmC}_{1} \mathrm{C}_{2} \rightarrow$ e, if $\mathrm{C}_{1} \neq$
	kts \rightarrow		$\mathrm{rnc}_{1} \mathrm{C}_{2} \rightarrow$ c, if $\mathrm{C}_{1} \neq \mathrm{s}$
x-3.21	mts* \rightarrow	x-3.38	$\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3} \mathrm{c}_{4} \rightarrow$, if $\mathrm{C}_{1}=k, t$
	${ }^{*} \mathrm{cr} \mathrm{r} \rightarrow$	X-3.39	$\mathrm{c}_{1} \mathrm{c}_{2} \mathrm{c}_{3} \mathrm{c}_{4} \mathrm{c}_{5} \rightarrow \quad \epsilon$,
			if $1 . C_{n}=n, x, q, f, \eta, m, v, Q_{n}, k$
X-3.22	$\mathrm{c}_{1} \mathrm{c}_{2} \mathrm{c}_{3} \mathrm{r} \rightarrow$ if $\mathrm{c}_{2} \neq S$		$v 2 . C_{1}=s$
$x-3.23$		X-3.40	v $3 . \mathrm{C}_{2}=$
	$* \mathrm{P} \mathrm{S}^{*} \rightarrow \boldsymbol{\epsilon}$	Y-3.2	$\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3} \mathrm{C}_{4} \mathrm{c}_{5} \rightarrow$ c, if $\mathrm{C}_{5} \neq 1$
	t $\int^{} \rightarrow$ e		$Q_{1} \rightarrow$ s,f,nt etc.
	$* ¢ * * e$		$Q_{2} \rightarrow \quad \mathrm{c}, \mathrm{b}, \mathrm{h}, \mathrm{t}, \mathrm{f}, \ldots \mathrm{e}$
	$* t s \int^{*} \rightarrow \boldsymbol{T}$		

