LISTENERS' IDENTIFICACION OF SPEECH SOUNOS IS INFLUENCED
JOHN J. OHALA and DEBORAH FEDER
Department of Linguistics
University of California
Berkeley, California 94720 (USA)

ABSTRACT
When listeners' identifications of speech sounds re influenced by adjacent sounds is it only the
 neighboring sounds that matter or could their
qualitative linguistic identity play a role? He qualitative linguistic identity play a role?
ested this by leading subjects to restore or induce the noise-obliterated medial consonant in
V in
ind $V_{\text {several }} \mathrm{CV}_{2}$ utterances by first presenting them with everal prior utterances where this medial
consonant
could be heard clearly and was consisconsonant could, be heard cleariy and was included as V_{1} were synthetic vowels from the $/ \mathrm{i}-\mathrm{u}$ conti-
nuum! More /u/'s were identified out of this connuum. More the s environment of physically present
 effect (vis-a-vis restored / $\mathrm{b} / \mathrm{s} \mathrm{s}$), thus indicating via physical phonetic features. These results challenge the direct realist' theories of speech perception as well as claims that 'invariant' fea
tures of speech sounds are to be found by normalizing these features with respect to the physica phonetic characteristics of their surroundings.
introduction
There is abundant evidence that listeners identify speech sounds in part by normalizing the
with respect to their phonetic context $[1,2,3,4$ with respect to their phonetic context 1 are the physical phonetic
5 . How is this done? Are parameters of the context used to to $\begin{aligned} & \text { adjust } \\ & \text { recognition threshholds or is it enough for the }\end{aligned}$ recognition threshholds or is it enough for the
istener just to know the (categorized) linguistic istener just to know the (categorized) linguistic
identity of the context? We investigated this questions through a series of perceptual tests involving listeners identification of synthetic
vowel stimuli in isolation and in consonantal convowel stimulin in isolation and in consonantal con-
texts. (In what follows, we collapse descriptions of two of these tests--a pilot study and a main test, which differ in some details. The descrip tion is kept general and
given only where essential.)
identification of vowels in isolation
Eirst, we constructed a 17 -step linear stimulus continuum between the vowels /i/ and /u/; see Fig. The continuum endpoints were modeled on the
first 100 msec of natural /i/ and /u/pronounced in first 100 msec of natural $/ \mathrm{i} /$ and $/ \mathrm{u}$ / pronounced in
isolation by an adult male native speaker of Ameriison English. (Since the 'crossover' from /i/ to /u/ was expected to happen in the middle of this conti-
nuum, some stimuli near the end points were omitted

FIGURE 1
from the study, those steps showing absence of ' $x^{\prime \prime}$'s on the formant parameters.) In a forced-
choice identification task, listeners gave the choice identification task, 1isteners gave the response functicent identification of tokens as $/ \mathrm{M} /$ and the abscissa, the $/ i /--/ u /$ continuum $(1 / 1 /$ at obtained from 28 native American English-speaking isteners for a total of 56 responses per data point.

identification of vohels in consonantal context Second, we sought to replicate the finding that this function shifts when the vowels are put in splicing, we embedded our vowels in nonsense word of the form /iba/, /uba/, /ida/,/uda/--where th /bo/ and/da/ were excised from the same speaker' natural utterances of /aba/ and /ado/. In anothe the earlier response so that more /u/'s were hear in the context of a following /d/--presumably because listeners allowed for and factored out the back vowels [8, 9]. Fig. 3 shows the results from the pilot test which had 14 listeners and a tota of 28 responses per stimulus and Fig. 4, the re-
sults from the main test with 28 listeners and suits from the mam test with 28 isteners and 224 responses per data point.
identification of vowels in context of
restored CONSONANTS
Third, we asked whether this same shift in th ven if the consonants were not physically present in the signal but if the listeners instead just imagined that they were. We attempted to make iisteners believe that the $/ \mathrm{b} / \mathrm{in}$ the /ibo/, /uba/
tokens or the $/ \mathrm{d} /$ in the $/ \mathrm{id} /$ /, /uda/ tokens wer present when they weren't, by using the technique called "phoneme restoration" [10] where high redue dancy of the message induces the listener to "fill
in^{4} missing elements. The redundancy in our case was provided by presenting all our stimuli in two major blocks, one in which the medial consonant was or seemed to be a $/ \mathrm{b} /$, and the other in which $/ \mathrm{d}$ nant. To enhance this priming, we also began each block with a number of tokens in which the consonant was clearly present. In approximately 15 t
00% of the stimuli in each block we completely replaced the medial consonant by white noise (always equal in intensity to the average intensity. of

FIGURE

Vda vs. Vba

The schwa portion of these latter stimuli consisted of several periods from the center of the naturally
spoken schwa, i.e., a portion with minimal, if any consonantal 'coloring' . To insure that restoration
of the consonants did not derive from any residual cues remaining in the schwa, we used the sceidual had originally followed a/b/ in the stimulis wher we wanted a/d/ to be restored by our listeners and similarly, a schwa that had originaliy
followed $a / d /$ where we wanted them to restore /b/. As folls to prepare listeners for hearin noise, another 15% of the tokens also contained noise bursts at various locations, such as during superimposed on (but not replacing) the consonantal closure. Listeners were told that the noise bursts served as distractor to the identification task. The results from the pilot test are shown in
fig. 5 (where only a fraction of the entire vowel continuum was studied). There was an important ifference between the pilot and the main test. In

are those for which the consonant reported was the one we were trying to get subjects to restore.
shift for these tokens is in the same direction as that for the physically present consonants. Eac data point represents the average of 28 responses. For the main test we gave subjects ane the wer with the "b"'s and "d" s aready present, These result are shown in fig. 6 . Here there were 56 judgemen per data point:
stimulus.
The contexts has been shown to be significant b several prel iminary curve-fitting and yet be
However, our statistical findings cannot considered conclusive since the irregular shapes of some of our curves have made it difficult to fit enough of them to any single statistical model to
make comparisons among them possible and make comparingul.

discussion and conclusion

We conclude that since the magnitude of these shifts under the restored or imagined phonemes is ot as great as the case with physically present threshholds in part due to processing of the actual acoustic parameters of the signal and in part-erhaps as a default case--on the basis of the ray in some cases be provided through non-phonetic hannels. In the latter case, one imagines that the listener knows from experience the typical
ffects of one segment on another and uses this effects of one segment on another and uses
information to adjust recognition threshholds. This result should not be surprising: it is well recognized, for example, that in the visual in part by factoring out the distorting influence in part by factoring out the distorting influence knowledge of what the colors of typical objects are and how these colors are modified in various
situations. it would be remarkable if something situations. it would be remarkable if somethe in the case speec perception.

FIGURE 6

We believe that these results present a challenge to the direct realist view of speech percep. tion which holds thended message elements of speec are present in the acoustic signal and can discovered by the listeners without the need forler [11] inferences
claims that
"...[speech] perception must be direct and, in particular, unmediated by cognitive processes of inference or hypothesis testing,
introduce the possibility of error.

Here, listeners showed that their speech sound iere, listeners showed ically present in the signal. Specifically, the
identity of an ambiguous stimulus was resolved by identity of an ambiguous stimulus was resolved by hypothesized, environment. In this latter respect, our results are compatible with those of Mann and Repp [4], who showed that listeners' identificatio as a function of their identification of an another adjacent ambiguous segment.

These results do not actually refute the direct ealist view, though, since in one recent formulaion of it $[11,12]$, it has been allowed that
isteners can sometimes operate on what might be listeners can sometimes operate on by making assumptions, even unwarranted assumptions, about what
is present in the signal. Nevertheless, direct is present in the signal. Nevertheless, direct reasists woust paid closer attention to the speech signal, speech perception would be accomplished
"directly" and they wouldn't make the kinds of directly" and they wouldn't make the kinds of erceptual "mistakes" as they did in our study. our results challenge this view, too, though, by
raising the following question: if 1 isteners are capable of integrating non-phonetic information
into their recognition task, isn't it likely that the speaker knows this and only puts enough energy precision, and detail into the generation of the speech signal as the listener requires? It is our
impression that the speaker often does not in fact impression that the speaker often does not in speed signal to permit decoding of the message in direct way.
These results also bear on the question of Whether there are or should be acoustic invariant
of phonemes (or other message units) in speed of phonemes (or other message units) in speech
[13]. clearly, these results add to the evidence that absolute invariance is not necessary; t vens [14] has suggested that relative invarianc may be more likely than absolute invariance, i.e. a given unit or a distinctive feature characteri zing it may be invariant with reference tic vien
phonetic environment it appears in--in his wion of they physical phonetic environment. The notion of "relative invariance" is compatible with our re-
sults but only if the linguistic identity of the sults but only if the linguistic identity of context, not exclusively its physical properties
are admitted as figuring in the normalizing process. Finally, we think we have demonstrated a potentially quite useful way of inducing listeners restore missing elements in speech which does require construction of semantic, syntactic,

ACKNOWLEDGEMENTS

We benefited from the comments of Klaus Kohler, Bruno Repp, Mary Smith, and Richard Warren on ear lier versions of this paper. Responsibility for the
contents of the paper, inclut contents of the paper, including any errors, is
ours, though. This research was supported by grant from the Sloan Foundation to the Cognitive Science Program at the University of California,
Berkeley.

REFERENCES

[1] Ladefoged, P. \& Broadbent, D. E. 1957. In ormation conveyed by vowels. J. Acous. Soc
] Pickett, J. M. \& Decker, L. 1963. Time actors in perception of a double consonant.

Mann, V. A. \& Repp, B. H. 1980. Influence vi vocalic context on perception of the [ζ] sics 28.213-228.
[4] Mann, V. A. \& Repp, B. H. 1981. Influence of preceding fricative on stop consonant
perception. J. Acous. Soc. Am. $69.548-558$.
[5] Fowler, C. A. 1981. Production and perception of coarticulation among stressed and 46.127-149.
[6] Ohala, J.J, Riordan, C. J., \& Kawasaki, H. 1978. The influence of consonant envi ronment
upon identification of transitionless vowels. D Acous. Soc. Am. 64. S18 2
[7] Ohala, J. J. 1981. The listener as a source of sound change. In C. S. Masek, R. A.
Hendrick, $\&$ M. F. Miller (eds.), Papers from Hendrick, \& M. F. Miller (eds.), Papers from
the Parasession on Language and Behavior. Chicago: Chicago Linguistic Society. 178-
[8] Lindblom, B. 1963. Spectrographic study of vowel reduction. J. Acous. Soc. Am.
35.1773-1781.
[9] Stevens, K. N. \& House, A. S. 1963. Perturbations of vowel articulations by conso-
nantal context: An acoustical study. J. Speech \& Hearing Res. 6.111-128.
[10] Warren, R. M. 1970. Perceptual restoration of missing speech sounds. Science $167.392-1$
393 .
[11] Fowler, C. A. 1986a. An event approach to the study of speech perception from a direct
realist perspective. J. Phonetics $14.3-28$.
[12] Fowler, C. A. 1986b. Reply to commentators
[13] Stevens, K. N. \& Blumstein, S. E. 1981. Th search for invariant acoustic correlates of phonetic features. In P. Eimas \& J. Mille
(eds.). Perspectives on the study of speech Hillsdale, NJ: Erlbaum.
[14] Stevens, K. N. 1986. Models of phonetic recognition II: An approach to feature-based seech Recognition, July 11 , Symposium on University, Montreal. Canadian Acoustical
Association. $67-68$.

