A CLUSTER-SEEKING TECHNIQUE FOR PROSODIC ANALYSIS (with special reference to Russian sentence intonation)

Leonid A. Kanter, Alexander P. Chizhov, Ksenia G. Guskova

Department of Phonetics, Faculty of Foreign Languages
(English Language Division), Lenin Pedagogical Institute Moscow, USSR 107140

ABSTRACT

A cluster analysis algorithm proposed by Sammon is used to identify intonational zones which can be correlated with intonemes of Standard Russian.

INTRODUCTION

The need for cluster analyais arises in a natural way in many areas of phonetic research. The goal of clustering methods is to provide a means to discover atructure within a complex body of data /4/. With regard to intonology the first use of a cluster-seeking technique was reported in $/ 2 /$.

This paper attempts to analyse the manner in which intonation contours of five Standard Russian intonation types are located in the space of acoustic parameters.

MATERIAL

The material analysed consiats of the test phrase OH BHAJ [On znal] = "He knew", pronounced in dialogical contexts by sixteen male native speakers of Standard Russian. The speakers were instructed to read the phrase with context appropriate vocal modifications so that they could be identified as belonging to the following five intonation types, or communicative modes: (1) a final statement, (2) a reply atatement, (3) a general question, (4) an exclamation, (5) a non-final statement. The test phrase was read twice in each mode, whereupon 160 utterances were produced. Used as test stimuli, the utterances were then listened to and categorized by a group of subjects in terms of the set of intonation types under consideration.

The subsequent instrumental (intonographic) analysis was performed to measure fundamental frequency (F_{0}), intensity and duration in 80 utterances selected as a result of the foregoing listening tests.

Fourteen initial parameters of each intonation contour were analysed:
(1) maximum F_{0} value within the
first syllable;
(2) minimum F value within the
first syllable;
(3) maximum F_{0} value within the second syllable;
(4) minimum F_{0} value within the second syllable; (5) F at the starting point of the first syllable (F at the starting point of an utterance): (6) F_{0} at the end point of the first syllable; (7) F at the starting point of the second syliable; (8) F at the end point of the second syilable (F_{0} at the and point of an utterance);
(9) F_{0} at the last turning point of an utterance;
(10) maximum F value between the starting point and the last turning point inclusive;
(11) maximum value of intensity with-
in the first syllable;
(12) maximum value of intensity with-
in the second syllable;
(13) duration of the first syllable;
(14) duration of the second syllable.

METHOD

To reduce variance between speakers the available acoustic parameters were subject to the following normalization procedures. The fundamental frequency parameters were normalized by the formula:

$$
x_{i}^{\prime}()=\frac{x-x_{(}^{(S)}}{x_{1}^{(1)}+x_{2}^{(t)}}
$$

細請

㫛

t上e sface cf accustic para＝eters．
 pessins

Fe regits ci this study are dis－

The is：es in t上e figure delfalt the Cizatery cirgeinta cerrespording to the
 Ereriy sistezert，a Eezeral questicn，an Exes＝es fr questicn car te correlatea －it frivernes ci Sterderd Eussiar．

curassa

ㄱe ci＝ster－seekdrg tectrique ued
 testivis css te rigarest as a develop mencitite aiguritricic mettad reported $=11 /$
zessilia aress of further iffouistic fesespanirivirg the abore tectrique syenen exerifticn of tre intocaticral

395esmess

j．「．

Figure 1．Clustering results reflecting location of intonation contours on a plane．
＊）The intonation contours are iden－ ified The intonation contour

－－final statement
\square－reply statement
（？）－general question
（1）－exclamation
－－non－final statement

