The Timing of Voicing in British English Consonant Clusters as a Function of Medial Boundary Status

Gardar J. Ocherry
Linguistics Department and Centre for Speech Technology Research, Edinburgh University, Scotland

An experiment was performed to examine the timing of voicing during GC sequences, in which C1 is a stop, and C2 is either a liquid or a glide. These sequences were studied with different types of medial boundary ranging from a segmental boundary, to a clause boundary. The frequency of occurrence and the degree of progressive assimilation of voicelessness were measured as a function of boundary type. Progressive assimilation of voicelessness could not be measured consistently when the clause was in syllable-internally, but less frequently when there was a deeper medial boundary. The type of boundary had no significant effect on the degree of assimilation.

1. Introduction

The work reported below is a part of a study of the timing of voicing in southern British English (SBE) obstruents. Despite the work which has been carried out on voice onset time, and on physiological aspects of voicing, there is still a number of gaps in our knowledge regarding the way in which voicing is realised, and its relation to underlying phonological categories. This study has three main strands. Firstly it provides description on the way in which voicing is timed in relation to the supra-phonatory events marking the onset and offset of obstruents in SBE. This will allow experimental evaluation of claims which have been made via auditory assessment with regard to the timing of voicing in SBE. Secondly, the investigation will contribute to the debate surrounding the status of fine phonetic detail within models of vocal performance. An increasing number of reports show that many aspects of the fine detail of articulation are left until universal or automatic. Therefore, it is difficult to attribute them to mechanisms of performance constraints. Attempts to provide alternative explanations are hampered by the fact that many models of speech production do not have the means of incorporating such low level controllable behaviour [29]. Experimental evidence on the timing of voicing in cognate structures will be looked at in this light. Thirdly, increasing need for high quality speech synthesis in accurate speech output applications has led to the requirement for very detailed phonetic knowledge bases to be available, incorporating comprehensive detail of systematic segmental and subsegmental variation in a language or accent [6]. The data gathered in this experiment will be exploited in this way in order to improve the allophonic rule base for a SBE text-to-speech system.

An earlier experiment [45] has shown that in SBE, voice onset time and the occurrence of voicing during obstruents are affected by the phonological category of the segment concerned, and by the nature of the phonetic environment within which it is embedded. The experiment reported below was designed to investigate whether the timing of voicing of GC sequences was affected by the status of the boundary between the stop and a following sonorant, and to test two strong claims that are made in the auditory phonetic literature about SBE, namely that sonorants which follow voiceless stops will only be devocalised if the sequence occurs word internally, or across a sequence of words which forms a close-knit entity - a phrasal word or a rhythmic group [8].

2. Experimental Procedure

The sequences investigated in this experiment were all GC sequences (sequences commencing with a phonetically VOICELESS segment, will be referred to as VOICELESS sequences, those beginning with a phonetically VOICED segment are referred to as VOICED sequences).

VOICELESS Sequences | VOICED Sequences
/p/ /j/	/p/ /w/
/t/ /j/	/t/ /w/
/k/ /j/	/k/ /w/
/fl/ /j/	/fl/ /w/

The sequences were examined under six different conditions:

1. CCV word initial position (i.e. syllable-internally).
2. CSC across a syllable boundary which is also a morphone boundary.
3. CSC across a syllable boundary which is also a morpheme and compound intersyllabic boundary or may involve a word-boundary due to the fact that compound nouns are not consistent in their structure.
4. CVC across a word boundary phrase-internally (between an adjective and noun).
5. CVC across a word boundary phrase-internally (between the subject of a verb and the verb).
6. CVC Across a word boundary which is also a clause boundary.

In conditions 1, 3, 4, 5, and 6, all the initial clusters occur before a stressed syllable. In condition 2, it was not possible to maintain this control throughout the data due to the large number of unstressed affixes which were used in order to produce the correct sequences.

In addition, tokens of [sm] and [sn] occurring under all the six conditions were obtained from all the subjects. The purpose of including these sequences was to investigate whether the delay in onset of voicing which occurs between the fricative and nasal in these sequences was affected by the different boundary conditions in the same way as the delay in voicing onset in the [stop]-sonorant] sequences.

The fifteen sequences were read in random order twice by each of the seven subjects. The conditions by subjects were randomised across seven subjects. The subjects were all male speakers of SBE aged between 18 and 25. The speech waveform was recorded on channel one of a REVOX A77 tape recorder and the output of a throat microphone (FJ Electronics) attached to the neck at the level of the thyroid cartilage was recorded on channel 2. The signals were digitised and stored on VAX 11/750 computer. The two signals were then aligned (using the ISL signal processing package), and manually treated usually for segmentation and durational measurements.

The criteria used for extracting the measurements from each token were as follows. The amount of devocalising of the cluster was measured from the point at which the stop closure was released (visible as a sudden burst of noise in the time-waveform) to the first peak indicating periodicity in the throat microphone signal. It is assumed that at the moment at which the stop is released, the vocal tract would have adopted the configuration required for voicing the following sonorant. Therefore the deviation from the onset corresponds to an interval of devocalised sonorant. In the cases in which devocalising was not observed to occur, speakers used a range of different strategies. These were identified as follows. The stop being struck by a glottal stop and glottalisation of the stop were noted. The release of voice from the stop was taken to be an interval of silence between the release of the stop closure and the onset of voicing for the sonorant. An incomplete stop closure was identified when the noisy voiced signal throughout the period in which the stop was being produced (i.e. there was no silence to mark a complete closure).

The data analysis consisted of two main tests. A Chi² test was used to examine the significance of any differences which occur with significantly greater frequency in any of the boundary conditions. Analysis of variance was used to test if the degree of devocalising was significantly affected by the boundary condition.

3. Results

The measurements presented describe the FREQUENCY with which partial or complete devocalising of the sonorant takes place, and the DEGREE to which it was devocalised.

3.1. Frequency of Occurrence of Progressive Devocalising

The results show that progressive devocalising of sonorants in a stop-sonorant environment occurs with varying frequency according to the status of the boundary which is present between the two components of the GC sequence. Figure 1 shows the number of cases of VOICELESS and VOICELESS sequences in which devocalising occurred in the six conditions investigated (all of the results presented are from data which has been pooled across all the subjects).

In VOICELESS sequences occurring syllable-initially (i.e. with only an intervening segmental boundary), there is always progressive devocalising of the following VOICELESS sound. In syllable-finals with a clause boundary (conditions 2 through 6), devocalising of the following VOICELESS sound occurs less frequently. A Chi² analysis using the Chi² method has revealed no significant effect of boundary condition in the pooled data, or in the individual subject data. There are, however, two tendencies which are consistently present across all the subjects and which are noteworthy. Firstly, there is a consistently greater frequency of devocalising when clusters occur in syllable-initial position compared to when they occur in syllable-non-initial position. This is due to the fact that in the former boundary condition, progressive devocalising always occurs, whereas in the other conditions, a range of different realisations of the stop are possible and progressive devocalising of the following sonorant. The second tendency emerging from the results is that the clause boundary condition produces by far the fewest cases of progressive devocalising.

In the cases in which progressive devocalising did not occur, the most frequent realisation of the stop was the glottal stop or glottalisation of the stop, and an incomplete stop closure. The frequency of occurrence of the various alternative realisations strategies is too low to allow a meaningful comparison. In syllable-initial VOICELESS clusters, devocalising of the sonorant occurs almost as reliably as it does in VOICELESS clusters under the same boundary conditions. Replacement of the stop by a glottal stop or glottalisation of the stop occurred with significantly greater frequency in any of the boundary conditions. Analysis of variance was used to test if the degree of devocalising was significantly affected by the boundary condition.

The problems encountered in segmentation, measurement, and non-monotonicity are discussed in detail in [51].
in the instances in which progressive devoicing did not occur, the most frequent strategy which was observed in its place was continuation of voicing unbroken right through the closure and release phases of the stop (see Figure 2). This occurred in almost one third of the non-syllable-initial VOICELESS clusters (it was also subject to large between-speaker differences, so some subjects used this strategy frequently, others hardly at all).

3.2. Extent of devoicing

The amount of devoicing in VOICELESS clusters is affected by the place of articulation of the stop and the identity of the sonorant, thus confirming the results of [5]. In every case, with the exception of /p/ there is a greater delay in voice onset when the sequence occurs in syllable-initial position compared to when the same sequence occurs across deeper boundaries. There is no consistent trend observable across the remaining boundary conditions. In some cases, the delay in voice onset becomes gradually less as the boundary is deepened, whilst in others the values vary seemingly at random. There is no trend for the shortest values always to occur under the deepest boundary (this is only found in /p/, /d/, and /k/).

The amount of devoicing in VOICELESS clusters is affected by the place of articulation of the stop and the identity of the sonorant, as established in [5]. It is particularly noteworthy that the voice onset times for /t/ sequences are almost double those for other voiceless stop sequences. With regard to the effects of the boundary condition, no clear tendencies emerge from the data. Unlike the findings for VOICELESS clusters, it is not the case that the highest delays in voice onset are observed when the sequence occurs in syllable initial position.

4. Discussion

The results show that fine details of voicing timing in these clusters in SBE are affected by medial boundary status. Specifically, the nature of the boundary between a stop and a following sonorant has an effect on the probability of devoicing of the sonorant taking place. The crucial factor determining this aspect of voicing timing in stop-obstruent sequences seems to be that it should occur syllable-initially when a syllable boundary intervenes devoicing occurs less frequently. It is instructive to compare these results with data, given in Figure 3, concerning the frequency of occurrence of progressive devoicing in /k/-nasal sequences under the same boundary conditions. The frequency of progressive devoicing is approximately the same under all of the different boundary conditions. This suggests that the devoicing observed in these clusters is a different sort of context-sensitivity to that observed in the stop-sonorant sequences (possibly a lower-level form of coarticulatory activity since it is not inhibited by the different grammatical boundaries).

The fact that devoicing of the sonorants has been shown to occur under all of the boundary conditions investigated provides counter-evidence to claims made in descriptions of the pronunciation of SBE. It was not found that devoicing occurred only within words or between words that formed 'closely-knit units'. This backs up the findings of [2] and [3] who both provided a small amount of data on the devoicing of /f/ following stops in English.

A more accurate description of what is taking place in SBE is as follows: VOICELESS sequences, the default CV implementation strategy involves considerable progressive devoicing of the sonorant. In VOICELESS sequences, the default CV implementation strategy is to continue voicing just after the release of the stop (on the assumption that the stop closure is not accompanied by voicing throughout its duration). Across all syllables, in the scV boundary condition (boundary condition 1), the default case is the one which occurs most frequently. In the other conditions (boundary conditions 2-6) a good deal of free variation takes place, and the default case occurs less frequently, the deeper the boundary condition. In both VOICELESS and VOICELESS sequences a range of different realisation strategies is used, apparently in free variation. In both types of sequences, but especially noticeable in the VOICELESS sequences, it appears that there are considerable between-speaker differences regarding the likelihood of one particular strategy occurring rather than another.

The fact that the default case occurs less frequently under deeper boundary conditions may reflect the fact that under those conditions, a greater number of alternative strategies are available to the speaker (e.g. the pause option would presumably only normally be available to boundary conditions 4-6) Alternatively it may reflect a reduction in the perceptual weight which is being carried by the devoicing in the deeper conditions. It will be possible to evaluate whether any perceptual weight is carried by the occurrence of null devoicing, by observing subjects' response to synthetic stimuli which are constructed in such a way as to counterbalance the findings of this experiment.

It is clear that in SBE, this particular feature of interarticulator coordination is not wholly determined by peripheral, motor-inertial effects. Phonetic implementation is subject to a constraint which is introduced at a more central level of utterance planning. These findings can be added to the ever-increasing body of data (see [7] and [8] for further examples) which suggests that there exists a wide range of complex, fine-grained, language-specific, systematic realisation detail which cannot be attributed to universal effects, and yet which so far have failed to be adequately accounted for in models of speech production.

References