A FULL HUNGARIAN TEXT-TO-SPEECH MICROCOMPUTER FOR THE BLIND

G. Kiss(1), A. Arató(2), J. Lukács(3), J. Sulyán(2), T. Vaspóri(2)

1. Hungarian Academy of Sciences Institute of Linguistics
2. Hungarian Academy of Sciences Central Reas. Inst. for Physics
3. Eötvös Loránd Univ. Faculty of Natural Sciences

ABSTRACT

The authors introduce Braille-Lab, a Hungarian-speaking microcomputer developed for the blind. This 280 microprocessor-based personal computer is fitted with a Philips MEA 8000 formant synthesizer, providing for Hungarian text-to-speech conversion. The original version of the machine contains a speaking BASIC interpreter. The new version, Braille-Lab+, is also furnished with a speaking word processor and a speaking database management system running under a speaking CP/M compatible operating system. Braille-Lab has been approved and adopted by the Hungarian National Federation of the Blind, 95 sets have been installed so far.

INTRODUCTION

In the past few decades, intensive research into speech synthesis has been going on in a number of countries including Hungary. This research work has three main types of motivation.

1. Fifth-generation computers are to create a new, humanized type of man-machine-man relationship. Hence one of the main objectives of research is 'viva voce' conversation between man and machine. The various links of the man-machine-man communication chain (each constituting a research area in its own right) and the way artificial speech production fits into that chain are represented in Fig. 1.

2. Another impulse for attempts at speech synthesis was the desire to achieve a better understanding of the acoustics of speech. Indeed the principle of analysis by synthesis is more effective than any measuring apparatus, however sophisticated the latter may be: it shows what the essential components of speech really are [7]. That principle can be best implemented by formant synthesis. These considerations led to the establishment, under Kálmán Bolla's leadership, of a complex acoustic speech synthesizing system in the Linguistics Institute of the Hungarian Academy of Sciences, in the late 1970s. The hardware configuration includes an OVE III (Swedish-made) formant synthesizer [11] and a PDP 11/34 computer. The effective operation of the system is guaranteed by a specially designed interactive program called FOPRO [11]. The utility of the system for phonetic research is demonstrated by a number of scholarly papers [5, 10]. The program was also used for designing an inventory of speech frames for a Hungarian text-to-speech (ITS) system based on the principle of formant synthesis in the early 1980s [13]. The inventory, in turn, was used in HUNGAROVOX, a Hungarian real-time ITS system for speech synthesis [9, 12]. Later, a developing system was also made for a Philips MEA 8000 formant synthesizer [3].

3. The third type of motivation for research on speech synthesis is a desire to develop various appliances to help handicapped people (afflicted with speech disorders, blindness, etc.). The area was
given a vast input by the appearance, in the early 1980s, of speech synthesizers containing in single IC's. As of June 1983, TIS 5200, SC-21, HEA 8000 (2, 4, 6, 8), and other such units could be built into various appliances. These considerations led to the development of Braille-Lab (B-L), a speaking computer to be used by blind people, introduced in the present paper.

The Hungarian-speaking microcomputer fitted with a text-to-speech conversion system effectively helps the education of blind people in computational technology (whence creating high-quality employment possibilities for them). Also, it accelerates their full integration into society.

THE HARDWARE OF BRAILLE-LAB

B-L is a Hungarian-made 288 microprocessor-based personal computer. Its memory is organized on a page basis, and consists of 64 kbyte ROM and 28 kbyte RAM. The card containing the speaking module has been built into the computer with HEA 8000. The TIS software is located on page 2 of ROM. The keyboard of B-L contains every letter of the Hungarian alphabet, arranged in a way almost identical with the keyboard of any other Hungarian typewriter. The built-in small loudspeaker makes it possible for speech to be produced by the system to be heard without the use of headphones. The built-in BASIC interpreter leaves us kbyte free memory capacity available for the user.

The basic version of B-L has been further developed. B-L+, the new version, runs under a CP/M compatible operating system. Along with the 64 kbyte operating memory, it is also furnished with a 160 kbyte hard disk and a 1-mega floppy disk drive. The new version further contains a speaking word processor and a speaking computer, its possibilities of application by the blind have been multiplied.

THE TEXT-TO-SPEECH SOFTWARE SYSTEM OF BRAILLE-LAB

The basis for Hungarian TTS conversion by B-L is a text-to-speech orthography, transformed into speech by a program, containing code numbers for the HEA 8000. The code numbers for each letter designate the elements of a 28-bit frame memory. The TTS conversion is implemented in the following four steps:

1. The text to be spoken is transformed into a series of code numbers of fairly accurate indication of the sequence of single sounds. In the letter-to-sound transformation, the program basically relies on Fig. 2:

 | a | o | i | 1 | 2 | 3 | 4 |
---|---|---|---|-----|-----|-----|-----|
 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |

2. The second step of TTS conversion is the designation of the series of frames that will realize the speech sounds of the text to be uttered. This designation is basically of a diacritic nature. The 216 frame elements utilized are grouped in an inventory in a very special order. Each combination of sound and short sound in the inventory is a distinct unit and consequently has a significant amount of memory capacity. In order to further optimize the utilization of the frame inventory, various sound sequences are realized by overlapping series of frames, as illustrated in Fig. 3.

3. The melody is generated by the program by selecting the appropriate value of the P1 parameter of the HEA 8000 synthesizer frame-by-frame. The first step in the production of the melody is the segmentation of the text into intonation units. The intonation units are marked off by (full stop) -(comma) -(question mark) (exclamation mark). RETURN. Triggered by these punctuation marks, the program will supply the segmental structure produced so far with one of the melody patterns.

4. When the coding of segmental and suprasegmental structure is completed, B-L synthesizes the resulting series of numbers to the HEA 8000 speech synthesizer, and the speech is simultaneously heard.

THE USE OF BRAILLE-LAB

The computer is able to speak as soon as it is switched on. The following words appear on the screen and are simultaneously heard (in Hungarian): "B-L computer, version 3.1. VRM 43 bytes of free memory capacity.

After that, each time a key is pressed, the system utters the corresponding speech sound, in order to make it easier for a blind person to avoid typing errors. Names of non-letter keys, including numerals, are uttered as words. E.g. pressing 1 the machine says "hazadik" (percent), etc. Using the cursor keys, the user can easily check the contents of any character position of the screen.

Basically there are two situations in which B-L actually speaks: 1. during entering and editing BASIC programs and 2. at run-time when any information appearing on the screen is simultaneously said aloud.

1. During program editing, the echoing function is on and B-L echoes each character entered or deleted. In addition, at the end of each line when RETURN is pressed, the result computer reads out the whole line as connected text. Numerals at this point are not read out character by character but as whole (e.g., twenty-five rather than two, five).

2. The English version of BASIC programs is translated according to the Hungarian value of each letter.
letters, rather than in proper English pronunciation. At program listing, the list can be heard as it appears on the screen.

In short, any information appearing on the screen including e.g. error messages, is also uttered without any special command.

2. The information appearing on the screen during the running of BASIC program will also be heard automatically. For instance, as a result of the running of the following short program, all Hungarian numerals between 1110 and 1125 will be heard first with a question intonation and then with a statement intonation (i.e. "Is the next number 1110? Yes, 1110." etc):

```
10 FOR I=1110 TO 1125
20 PRINT "A következő szám" I "?"
30 PRINT "Igen" I "."
40 NEXT
```

BRAILLE-LAB AS THE SPEAKING PERIPHERY OF A READING MACHINE

At an exhibition called "Hungarians in the World" held in Budapest in August 1986, the authors, assisted by researchers of SZKI (Institute for Computer Research) connected B-L with an IBM compatible PROPER-16 computer. On the other side, an MS 300A Image Scanner was also connected with PROPER-16. The image recognition program developed by the SZKI people recognized printed Hungarian text. PROPER-16 forwarded the resulting ASCII code, via a standard RS 232 interface, to B-L which uttered the text real time, with a proper Hungarian intonation, intelligibly.

HOW TO MAKE BRAILLE-LAB SING

One of the special features of B-L is that it can also sing. To make the computer sing, the user has to specify the correct rhythm and the correct sequence of pitches. Rhythm can be represented by lengthening the vowels appearing in the words of the song, by entering vowel letters more than once. The length of the syllable containing the vowel will increase in proportion with the number of identical vowel letters entered. The melody has to be given in relative sol-fa letters, according to Zoltán Kodály's method. The pitch defined by sol-fa letter assigned to a syllable will be superimposed by the program on the appropriate syllable which has been rhythmically defined as above. By that procedure, any Hungarian-text song can be produced. This special feature of the system opens up a novel area of application in the on-line representation and correction of Braille music notation [15].

BRAILLE-LAB AS AN AUTHORIZED APPLIANCE

B-L is an appliance authorized for use by the Hungarian National Federation of the Blind. By March 1987, a total of 95 sets have been installed in the schools of the Federation and by individual users. Based on the speaking BASIC of B-L, the Federation organized two beginners' courses on computation in spring 1986 and 1987. The speaking computer effectively helped the blind participants to acquire knowledge and skill in computation and to put them to creative use. The Users' Manual for B-L has been published on cassette tape and in Braille print as well.

REFERENCES