Institut für Phonetik und

ig Universität Kiel
Universitat Kiel
$2300 \mathrm{Kiel}, ~ F R G$

ABSTRACT Tource perceptual contribution of glottal speaker recognition was investigated in two listening tests. A group of eight female speakers produced sustained $/ \mathrm{e} /$ and and phonated. 500 ms portions of thes vowels were used as stimuli uner
ent filtering conditions
($0-1,2$, ent filtering Conditions neither these filtering conditions nor
vowel quality exert systematic influence upon speaker identification. Glottal source information, however, proved
introduction
Relatively little is known about those
perceptual cues in the acoustic speech
signal that contribute to the recognilion-
of speakers by the human reported in the
iterature, e.g. /1, $2 /$, this paper
$\begin{aligned} & \text { examines the role of glottal source and } \\ & \text { vocal tract information via a direct }\end{aligned}$
vocal tract information idiacation rates
$\begin{aligned} & \text { for phonated vs. whispered vowels. By } \\ & \text { taking isolated vowels spoken on a mono- }\end{aligned}$
$\begin{aligned} & \text { taking isolated vowels spoken on a mono- } \\ & \text { tone speaker-specific supraglottal timing }\end{aligned}$
$\begin{aligned} & \text { tone speaker-specific supraglotal timing } \\ & \text { characteristics and pitch movements are }\end{aligned}$
$\begin{aligned} & \text { ruled out as possible cues. At the same } \\ & \text { time, the question as to whether there are }\end{aligned}$
time, the question as domains of special
$\begin{aligned} & \text { importance was investigated by band-pass } \\ & \text { filtering and by the use of two vowels }\end{aligned}$
$\begin{aligned} & \text { filtering and by the use of two v } \\ & \text { with different spectral composition. }\end{aligned}$
PROCEDURE
A group of eight female German speakers
A group of eight female German speakers
$\begin{aligned} & \text { produced sustained } / \mathrm{e} / \text { and } / 0 / \text { vowels in } \\ & \text { isolation, both whispered and phonated. }\end{aligned}$
They were instructed to approximate vowel
durations of about $1-2$ seconds, a condi-
tion which was fulfilled with ease by all
subjects. A second require had to be pro-
$\begin{aligned} & \text { the phonated mowels, which had to be pro- } \\ & \text { duced on a monotone. The pitch level, } \\ & \text { however, could be freely chosen at an }\end{aligned}$

R RESULTS
For clarity of presentation we will
different firstly with ${ }_{\text {filtering }}^{\text {the }} \begin{gathered}\text { effect } \\ \text { conditions }\end{gathered}$ of upon

[^0]influence of vowel quality and, finally, ith the role of glottal source. The cation results was tested by means of

Filtering conditions The overall spectra of the vowel
portions are differently shaped $\begin{gathered}\text { (cf } \\ \text { Fig. 1), } \\ \text { firstly due to the different }\end{gathered}$ positions of the first four or five formants in /e/ vs. /o/ (vowel quality)
and, secondly, due to differences between the glottal spectra in phonated vs.
whispered vowels (glottal source). hispered vowels (glottal
expect an effect of seem plausible to conditions upon the recognition rates (cf.
Table I). Although in both cases there were sizeable differences between the best and the worst scores (168 and 138 respectively), they
significance.
Table I \qquad
percent correct)
$\begin{array}{llllll}\text { Phonated } & \text { vowels } \\ 0-1 & 1-2 & 2-5 & 0-5 & \mathrm{kHz} \\ 29 & 35 & 35 & 45 & \%\end{array}$
$\begin{array}{lllll}\text { Whispered } & \text { vowels } \\ & \\ 0-1 & 1-2 & 2-5 & 0-5 & \\ 13 & 21 & 10 & 23 & 8\end{array}$
$\frac{\text { Vowel quality }}{\text { The overall }}$
vs. lol amounted to 34% vs. 388 in the case of phonated vowels and to 178 vs. 168
for the whispered vowels. In view of the small differences between the two condi-
ions it is not surprising that they were statistically insignificant. This insighificance also holds when the individual
filtering conditions are treated sepafately.
$\frac{\text { Glottal source }}{\text { In contrast }}$ to both factors discussed above, the identification rates were affected by the glottal source parameter
in a consistent way. At 36 z the overall correct identification rate for phonated vowels lies significantly above that of
178 for the whispered ones $(18$ level). The effect holds for both vowel qualities
over all four filtering conditions) as ell as for the filtering conditions (over the two

There are two aspects of the glottal Source that might be responsible for the consistently higher identification scores in the case of the phonated vowels. In the
first place, it is thinkable that speakerspecific pitch height was used as a
primary cue in the identification task.

Alternatively, the spectrum of the glottal excitation is a possible candidate. With both possibilities in mind the data were examined further. Unlike the glottal spectrum, on which no data were available, mean fundamental frequency could be calculated for each speaker and turned out to vary between ca. 180 Hz and 250 Hz . Subsequently, a rank was given to each speaker, firstly according to their fundamental frequency (where a rank of 1 meant the speakers' own FO, a rank of 2
.. the next nearest pitch value etc.), and secondly according to their perceptual confusion with other speakers lover both vowel qualities and all filtering conditions; a rank of 1 standing for the highest recognition rate etc.). Calculation of Kendall correlation coefficients showed significant relationships (for one speaker at the 5% level; otherwise 18) with values of $r=0.57,0.67,0.69,0.72$, $0.73,0.76,0.84$ and 0.96 . Obviously, speakers with similar fundamental frequencies are far more likely to be confused than speakers showing different pitch height. So it seems that the listeners relied upon the $F 0$ factor to a varying, sometimes rather high degree in their identification of the various speakers.

Following a procedure similar to the one described above, correlations between perceptual confusions in the phonated vs. the whispered condition were calculated. Since the information present in whispered vowels is almost exclusively vocal tract information, it was postulated that high correlation rates might indicate a high perceptual value of such information. These correlation rates turned out to be significant for only two speakers ($r=0.64$ and 0.81 respectively, at the 5% and 1% level respectively). Overall recognition rates for these speakers happened to be the highest ones (48\% and 47% respectively for phonated vowels as against 34% and 28% for whispered vowels). Therefore, it seems likely that vocal tract information served as a perceptual cue in these two cases in addition to the glottal source parameter.

DISCUSSION

Of the three factors investigated in this paper, various filtering conditions, vowel quality and glottal source, only the latter turned out to have a systematic influence upon the speaker identification scores. The enhancing effect of glottal source information on identification can probably be accounted for by the speakerspecific pitch height, which is in line with the findings of Compton /1/.

Further, the results suggested a predominance of the glottal source parameter over vocal tract filtering characteris-
tics. This confirms the findings of Lass, Hughes, Bowyer, Waters and Bourne /3/ for speaker sex identification. Possibly due to the use of synthetic stimuli instead of natural speech Lehiste and Meltzer $/ 4 /$ arrived at the opposite conclusion, whilst LaRiviere $/ 2 /$ found both factors to contribute about equally to speaker recognition. One should note, however, that in the present paper no data about the contribution of the glottal spectrum was available, so that its minor relevance had to be inferred from the data on fundamental frequency and from the mostly weak correlations between perceptual confusions for phonated vs. whispered vowels.

The fact that the four filtering conditions failed to influence the listeners' identification judgements may be due to there being only 16 stimuli in the sample (8 speakers $x 2$ vowel qualities per filtering condition; cf. the clearer effect of 24% for 1020 Hz low-pass vs. 1020 Hz high-pass found by Compton /1/ using considerably more stimuli). However, with vowel quality the sample size (32) is twice as big (8 speakers $x 4$ filtering conditions per vowel quality); this increases the likelyhood of the vowel quality results being representative.

REFERENCES

/1/ A. Compton, "Effects of filtering and vocal duration upon the identification of speakers, Aurally", Journ. of the Acoustical Society of America 35, pp. 1748-1752, 1963.
/2/ C. LaRiviere, "Some acoustic and perceptual correlates of speaker identification", Proc. of the Seventh Int. Congr. of Phon. Sci. (Rigault, A.; Charbonneau, R., eds.); Mouton: The Hague/Paris, pp. 558-564, 1972.
/3/ N.J. Lass, K.R. Hughes, M.D. Bowyer, L.T. Waters, \& V.T. Bourne, "Speaker sex identification from voiced, whispered, and filtered isolated vowels", Journ. of the Acoustical Society of America 59, pp. 675-678, 1976.
/4/ I. Lehiste, \& D. Meltzer, "Vowel and speaker identification in natural and synthetic speech", Language and Speech 16, pp. 356-364, 1973.

[^0]: ig. 1. Power spectra from four different $\mathrm{e} /:$ phonated (a) and whispered (b)
 $10 /:$ phonated (c) and whispered (d)

