```
premysi janota Philosophical Facult Charles University
11638 Frague 1, Czechoslovakia
Departmen
honetics
```


abitract

Two parallel tests containing the same language material and differing using a fairly large number of listeners. The results obtained from speech segments listened to under noise-test conditions reveal on analysis a snift in values in the same general direction, The results appear to reveal trends in the behaviour of the individual phonic qualities the perception of which was constrained by noise. Analysis of erroneous identifications of speech segshes comparative waterial for further research into speech perception with special reference to automatic speech recognition.

INTRODUCTION
The present paper follows on in part from our experiences with testing speech signals masked by noise (cf. /1/; fur-
ther literature ibid.), and in part from an unpublished research report concerning the discrimination of a limited set of comments, also masked by noise, Siven by a group of different speakers.
The investigation was conceived as a
probe to contribute to the problem of automated speech recosnition.
The material consisted of 20 one-word comands performed by 10 speakers, and it was masked by gradually increasing levels of winite noise. The results ob words confused and in terms of the influence of the different speakers. The test was run in two variants, the testees previously knowing or not knowin he speech material to be used.
ignificant differences in the degree of difficulty of the different items, while

ZDENA Palkova
Department of Linguistics and Phonetic
Philosophical Faculty
Charles University
11638 Prague 1, Czechoslovakia
they also pointed to differences in the intelligibility of the speech of the different speakers.
In this paper what we describe are ment which picks up the first range of results from that earlier probe, i.e. we are not looking for differences brought about by the pronounciational idiosyncracies of different speakers, but are speaker whose pronounciation can be treated as standard in terms of orthoepy and speaking technique.
He concentrate on the analysis of errors by a largish number of listeners terial. In our analysis we not only note the degree of deformation, but also attempt to evaluate it qualitatively. The results are presented chiefly in the
form of tables giving absolute figures form of tables giving absolute figures are distributed as handouts.

THE EXPERIMENT

The material for the test consisted of a group of 100 Czech words selected according to preliminary criteria in such a way as to facilitate the compo-
sition of 5 relatively homogeneous subsition of 5 relatively homogeneous subwere as follows:
a) All the words were nouns in the b) bine singular. 0000 Their frequency 10000 zone (see $/ 2 /$).
in the 1000 of The following were excluded: words of visibly foreign origin, emotionally names.
d) Bach subset contained the same ratio of words classified by length in syllables, the words being of from one to five syllables in the ratio 5:7:6
e) each subset contained repetitions,
in individual words, of the same composition of vC elements. The basis for the selection of syllable. structure types
were the statistical data given in $/ 3 \prime$.
 We sought to include. aike high-incidence types, but with some reduction in the ${ }_{\text {CVC. }}$

Each aubset contained a word in ch the syllable peak was r or 1 .
g) Approximately half of the words other half being abstracts
h) It was not possible to standardise phoneme frequency; however, comparison of the overall data with the relative
frequencies for Czech $/ 4 /$ revealed statistically significant agreement, as did comparison of the frequency of phoneme pairs across the subsets (their rank correlation).
by :one speaker-word subsets as realised by :one speaker were ordered into a con-
tinuous test in which the speech signal was masked by noise which was stepped up between the separate parts of the test. Two variants of the test were run, using different steps in the noise level.
(Variant $A:-40,-15,-9,-3,+3 d B$ and variant $\mathrm{B}:-9,-6,-3,0,+3 \mathrm{~dB}$).
Both variants of the test were given to listeners whose nattve language was Czech (100 testees, all students regis-
tered for modern language courses in their first and second years at the Philosophical Faculty of Charles University).

The performance of each testee was assessed by data on the total number of within each group showed the normal distribution (x^{2} - test, 5\%). The average result in test $\mathrm{A}: \overline{\mathrm{x}}=17.8, \mathrm{~s}=3.49$ in test $\mathrm{B}: \overline{\mathrm{x}}=28.3, \mathrm{~s}=4.04$.

Comparison of the frequency of mistakes with individual words reveals factors above all: the level of noise, and the individual characteristics of the different words.

RESULTS OF the EXPERIMENT
Results acquired on the basis of the overall data of the number of errors at different no a) The
lants A and $B r e e ~ o f ~ d i f f i c u l t y ~ o f ~ v a r-~$ ence of different steps in the noise le-
the first two sections were error-free, distributed hroughout
b) The underlying tendency for errors sed in the within the classification the same, irrespective of differences in the difficulty of the test.
a). The stability of words proved dep-
ndent on the number of syllabjes: the endent on the number of syllables: the wrong answers. The highest percentage of errors is within monosvilables.
d) The number of syllables proved to be a relatively stable attribute of a
word. Errors of syllable number ammount only 1% of responses in test A and 2% in test B. The dependence of errors in syllable numbers on words-length does not share the tendency noted in c). Results for individual groups of words
according to the number of syllables are fairly evenly balanced, the least stable words being disyllables (see in particular test B).
e) Failure of testees to respond at all ("0-judgments") is also not directly noise levels the testees resorted to this solution more frequently with diand trisyllables than with monosyllab-
les. The link between a word's stability and its length comes out most strongly in the section, giving the number of yllables remaining the same.
The set of errors where at least the. number of syllables was preserved in
both test A and test B was submitted to urther analysis in terins of their phoneme composition.
Results obtained from analysis of vowel switches
a) Under test conditions vowels remain fairly stable. of the mis-heard words (with the right number of syllables) less than half have the error in a The higher percentage in test $A-1$ is due to the single figure of the higher number of errors in the third syllable of trisyllabic words; in test A-2 this tendency does not reappear. The causes would appear to do with something other ach column: pracovna - pracovnik, horlivost - horlivec.

Errors in quantity are less freuent than changes in the quality of a
c) The vowel in monosyllables is conspicuously stable
d) It may be fimilarly assumed that
: the first syllable of polysyllables will those in the other syllables. This tenthose in the other syllables. In disyllables in test $\mathrm{A}-2$ the ratio of errors in the two syllables is fairly evenly balanced. The reason is the high number of errors in the first syllable Once more the result is based on confusion in two words only, but this time thefe can be no doubting the influence of sound factors. The cases are confusions of dưkaz-vytah (56 out of 83 errors). Insofar as there is a tendency for greater stability in the first syl lable of disyllables, it is not so strong as to outweigh other phonic propstrong as the word.

Hutual substitutions of vowels

 separatelya) The direction of substitution ems not to be arbitrary since there are some discernible tendencies.

However, in interpreting the results consideration has to be given to thos cases where there is a high incidence of substitution in. one word and where th (most is conditioned morpholo ically). 'ihcse are the cases of the above-mentioned substitution if the end ng pracovna - pracovnik (46 instances $\frac{1}{\text { in test }}$ A-1). Similar cases znalec livost - horlivec (45 instances of \underline{e} e) may be explained as changes of grammatical morphemes as well, but a strik ingly similar tendency of this vowel substitution may be pointed out in test
A-2, in which a possible influence of a morpheme change is not probable.
b) The vowel a appears to be relatively stable, especially long 总. By contrast most errors affected the vowels \underline{i} and ${ }^{4}$. These two vowels showed a tendency to mutual substitution in the mate-
rial. Interchange between a and o is also relatively frequent. Syllabic 1 tends to survive better than syllabic r.

Results obtained by analysis

 of mis-heard consonantsThe analysis of mistakes affecting consonants and consonantal clusters was also carried out on the basis of the set of mis-heard words where the number of syllables was preserved. Consonants have overall picture of substitutions having been worked out with respect to certain been worked oupes of errors
6 basic types of change were distinguished.
x_{1} - simplification of consonantal clusters by the loss of one or more consonants (efs dech) x_{2} - loss of a consonant or conso nants, the consequence of which is the loss of the consonantal element in the given position altogether (e.g. for do zor - ozón, for vzdech - zde);
sonants where there was already, i.e creation or expansion of a consonanta cluster (e.g. for ith - mnich, for vzdech - vzhled);
x_{4}-adalition of a consonant where n consonant existed before (e.g. for orech $\mathrm{k}_{\mathrm{x}_{5}}$ - simple substitution of a single consonant (e.g. for ilh - nitu, for střed - strep);
x_{6} - substitution of an entire conso nantal cluster, or one of its elements elements in the cluster (e.g. for ziretel dveře, for blesk - vlek);
x_{7} - syllables with changed open/clocharacter.
liso distinguished positions of consonantal eiements before and after a vowel for various reasons including the infor mation which this offered on the change n the character of a syllable in term To obtain more telling
mparison of the obtained frequencies the following characteristics were ad ded:
y_{1} - number of corre tly heard consoants in erroneousij seceived words; y_{2} - number of correctly heard conso-
nants clusters in erronesouly recetved words;
${ }^{Y_{3}}$ - number of syllables with re usly reoeived words; y_{4} - sums of erron
retained numbers of syllables;
$\underset{y_{5}}{ }$ - sums of erroneous words with On the basis of interpretations mad to date the following may be stated: a) As expected, the number of. misheard consonants is conspicuously higher than the figure for vowels. Among the
mis-heard words with the right number of syllables retained erroneous identification of consonants ammounts to 65% in test $A=1$ and 75% in test $A-2$. Relating these erroneous identifictions to the
simple total of mis-heard words this simple total of mis-heard words
represents 175.6% in test $A-1$ and 195.2% in test $A-2$, i.e. approximatively two errors per word on average affect consonants.
b) By contrast with the foregoing the character of the syllable as close Error ${ }^{\text {open }}$ proves a highly stable property than the frency of this type is results of the two tests are very evenly balanced, whether the ratio of wrong and right Identifications (A-1: 0.14 , A-2
0.13) or the relation to the number of wrong words ($A-1$: 20.6%, A-2: 18.6\%) is used as a characteristic.
The analyses show further the need to distinguish the position of the syllabl In the word. Of particular stability ar polysyllables. On the contrary, endings preserve the character of a syllable to a considerably lesser degree. Again th reasons may be other than phonic. Thi that the destruction of the character of a syllable at the different noise levels does.not rise in proportion to difficulty in listening, but peaks in both tests at the penultimate level.
nterpretation of the test items reveal a clear tendency for a consonant to be more stable before a vowel than after one. This tendency is observed at all
noise levels and applies to words of noise levels and applies to words of
different length. However, it is not tied more to the first syllable. In the material given, the most stable conso nant or consonantal element is at the head of the second syllable of di- and With more
sults of the tailed processing of the of further tendencies there are a number lso to do endencies discernible, some specific substitutions.

For example, with deformation of

- word-initial consonant clusters-cthat consonant whick immediately precedes the vowel is of ten preserved, e.g. in test A-2 the ratio of wrong and right.allable immediately preceding the vowel is 1.5 (for the whole consonantal unit in
this position it is 3.76); a similar tendency is found in monosyllables, in both tests moreover.
In the material used the nasal consonants proved relatively stable, and it is precisely their nasality which survitheir substitution by a different nasal consonant. For example, the ratio of wrong and right solutions in test A-1 at the most difficult noise level is 0.63 (i.e. correct responses are in the majo-
rity), and if we take as correct also those cases where the substitute was also nasal, the value drops to 0.17 ;
similarly for test $A-2$ a ratio of 1.06 similarly for test A-2 a ratio of 1.0 drops to 0.31.
It is expecte
ications expected that additional modifications will be made to the parameters
used in order to ascertain more exactly which of the phenomena discovered contribute effectively to the identification of speech.

REFERENCES

/1/ P.Janota, Z.Palkova: Testing Perceptive and Productive Skills in Language Learning, AUC, Phonetica Pragensia V. 76, 15-28

2/ J.Jelinek, V.Bečka, M. Těšitelová: rekvence slov, slovnich druhủ a tvarủ v českém jazyce, Praha 1961
13/ H. Kučera, G.H.Monroe: A Comparative uantitative Phonology of
/4/ M.Ludvikova, J. Kraus: Kvantitativni lastnosti soustavy českých fonémů, Sloo a slovesnost 27,1966, 334-344

