EUGEN KUNNAP

- -Institute of Cybernetics

This paper reports the results of synions of -synthesizers are described and the ules of synthesis are presen tatistics of spoken éstonian
\qquad and in speech process has some influence quency of occurrence of phonemes, diphonenes and trigrams were investigated. rbitrarily choosed segments of speech wer ymbols and analysed using digital comp er. Analysis was made by syntagmas, ta by pauses in fluent speech. Selection contains
105942 phonetic symbols, which formed 19620 ords and 4923 syntagmes.
In this work 31 phonemes were distinguished, In the Estonian alphabet there are 23. letcan find some other land loan words we letter P appears most frequently. It means that in written Estonian some phonemes wer $11 /, 7 \mathrm{t} /, \mathrm{n} / \mathrm{by}$ the same letters. Consonants lized, which in fig. 2 are marked with an an apostrophe. Estonian $/ \mathrm{s} /$ is pronounced un ween vowels or after voiced consonants, vocal cords are also used. In this case/s/ $\mathrm{IS} / \mathrm{perceived}$ as semivoiced and marked with phonemes have also the property nasal. Thes phonemes have also the property of distin in any phonetic constructions, but nasal
only in /ng/ or /nk/ combinations, It is only in /ng/ or /nk/ combinations, It is
marked with two apostrophes. /b/, /d/ and
$/ \mathrm{g} /$ are used as the indicators of short forms of $/ \mathrm{p} /, \mathrm{t} / \mathrm{t} / \mathrm{and} / \mathrm{k} / \mathrm{k}$. But in some ca by intensity but also by and $/ \mathrm{k} / \mathrm{not}$ only of pronunciation. Therefore $/ \mathrm{b} /, / \mathrm{d} / \mathrm{A}$ and $/ \mathrm{g}$ are taken as different phonemes and conven
tionally named as semivoiced plosives. In this way we have phquemes: $/ a, b, d, d, e_{2} f, g$, $h, i, j, k, 1,1, m, n, n, n, o, p, r, s, s, z, t, t, u, v$,
$0, \dot{x}, \dot{i}$,
in are:/a/(i1,61\%),/e/(11,53\%) and $/ i /(9,88 \%)$. phonemes. The three most frequent are:/st/ ($1,77 \%), / 1 \mathrm{le} /(1,76 \%)$ and $/$ te $/(1,60 \%)$. All in
ali there are 94858 trigrams, 11917 different types. The three most frequent are:
ele/($0,55 \%), /$ ist $/(0,52 \%)$ and $/ \mathrm{sel} /(0,49 \%)$ verage number of phonemes he Estonian language is eq quantitative anguage. There are three ditstinctive de ees of length, while different degrees ext not ill of the degrees are a synthesized speech, in some cases 5 degrea

NNHESIZER WITH ANALOG CIRCUITS
he first version of terminal synthesizer cansists of four oscillators, connected in lay circuits, four amplifiers summator and Pinal amplifier. The frequencies of all os cillators, durations of delay, amplitudes
of formant frequencies and the time of decay of formant frequencies are controlled by means of functional generators, describel elow. All oscillators are excited by pita thpulape generatified noise of diodes was used. Four bandpass filters of noise have the range from 50 Hz up to 10 kHz . By means of
this synthesizer short phrases were syntho sized.
harmonic syivtesizer
The voiced phoneme consist of formants. Each formant has his frequency, equal to the frequencies of fixed harmonics of pitch. As usual a formant is composed of most inten caying in time. To have the oscillation of fundamental frequency and his harmonics, ted. Dividing the oscillation by means of trigger system the desirable harmonics wes obtained. Received rectangular pulses wer tions were used as components of synthesi zed phonemes. The frequency of primary oscillation was obtained multiplying the furr 8,7 and 5. If the fundamental frequency has the value of 100 Hz , then the primary
oscillation has the value of $5,54 \mathrm{MHz}$. Such choise of factors permits us to have all thesize all phonemes inctice needed to sym sists of quartz generator of 30 MHz and ${ }^{\text {go }}$
nerator, controlled by voltage in the rate
of 35 to 40 MHz . When they co-operate, the Mz and is used as primary generator. Synthesis
above.
Pornant synthesizer with bandpass filters For the purpose to study several problems of synthesis of speech, besides synthesisynthesizer, a synthesizer with bandpass
filters was constructed. Central frequenilters. was constructed. $1-200+1000 \mathrm{~Hz}, \mathrm{~F} 2,-400+2000 \mathrm{~Hz}, \mathrm{F3}-\mathrm{F}$
$00+3000 \mathrm{~Hz}, \mathrm{~F} 4-1,0+50 \mathrm{kHz}$, nasals 4 $600+300 \mathrm{~Hz}$, F4 $-1,0+5,0 \mathrm{kHz}$, nasals F4-
$80+400 \mathrm{~Hz}$. Fixed bandwidth of filters were
$80,120,150,180 \div$ and 60 Hz respectively. 80, 120,150 , 180 and 60 Hz respectively entral frequencies of $800+4000 \mathrm{~Hz}$ and 1,2
$6,0 \mathrm{kHz}$ were made. To control the central frequencies of filters the method of puls width modulation was used.
he transfer funnactin of vocal tract can be realised connecting resonators in paralor noise generators. In our synthesizer both methods can be used very easily, as To control the parameters of synthesized sounds and to have the larynx-putse genein any form, corresponding generators were worked out. The form of output voltage can
be easily changed in wide varieties as well be easily changed in wide
as during the experiments.
In our synthesizer 12 parameters were controlled. For this purpose 12 functional ger has the matrix of wave-form oscillation, do cipher with a system of diode keys and is smoothing filter. For all of generators is one common pulse generator and comparator ber of pulses of circular counter was cho sen equal to 100 . Matrix of wave-form os-
cillation has on his surface 32 stripes of foil. Each foil is under tension taken from voltage divider in limits of 0 to- 7,
Across the foils are 100 metallic wires, each of ther has a sliding silver contact. In the time of each pulse from pulse generator, pulses from circular counter were
given to deciphers of all functional generetors at the same time and in succession they switched on voltages from dividers oall function generators to input of smooare used to control the parameters during the synthesis. When pulse generator has 50 Hz , the duration of speech segments can be chosen from 10 to 2 sec .
The larynx-pulse generator has the same frequency of pulse generator is electrically controlled in limits of 8 to 25 kHz , the matrix of wave-form oscillation has
stripes of foil, i.e. the voltage divider has 130 levels. The fundamental fre

COMPUTER SYNTHFSIZER
Further study of synthesis was made on the computer ES 1010 . As usually, the model of second-order digital filters for the first three formants, the fifth formants. The model consists of three branches, connected in parallel. One branch is the filter of of the third, second, first, fourth and fifth formants (fixed to 4500 Hz), connectec in cascade, and the third branch consists of tunable bandpass filter for fricatives
outputs of branches were summed up.As the source of tone the generator of triangleorm out put voltage, and of noise, the geynthesis of nasals the branch of nasals nd for synthesis of unvoiced fricative he third branch were added to second quencies of pitch and first three formants, asal and fricalive for noise generators, transitions, all in all 12 parameters. co control the parameters of phonemes, cation. In fig. 1 the tree of the indication of vowels and in fig. 2 the indication of consonants are show. Every indication into the memory of computer. For example honeme /a/ has indication - VNBS, etc.
table. However, some parametars during the synthesiing process, depending on several circum synthesis are as follows:1) If a vowel stands before plosives, then the first
degree of length must be equal to 40 ms 2) Duration of vowels in diphthongs must be equal to 120 ms ; 3) If a vowel stand before if of v/, then the duration of before $/ \mathrm{r} /$ stands $/ \stackrel{\mu}{\mathrm{a}}$) or $/ \% / \mathrm{l}$ and behind stands $/ a /$, then the frequency of the first formant of $/ \mathrm{a} /$ must be equal to 750
Hz; 5) If before $/ 1 /$ stands $/ a /$ and behind stands /a/, then the frequency of the first formant of $/ \mathrm{a} /$ must be equal to 750 Hz ;
$6) / \mathrm{b} / \mathrm{d} / \mathrm{d}$ and $/ \mathrm{g} /$ in the absolute first position in word must be synthesized as position in word must be synthesized as
p/, /t/ and $/ \mathrm{k} /$ respectiveli 7) $/ \mathrm{b} /$ in
the last position in a word must be synthe last position in a word must be syn-
thesized as $/ \mathrm{p} /$, but AN= 40 units and $F 3=$
 middle position between vowels, then the silent period before the noise burst must
be equail to $60 \mathrm{~ms} ; 9 \mathrm{Tf} / \mathrm{d} /$ is standing
 V-Vowel, L-rounded,N-unrounded

Fig. 1 :

C- consonant
L- labial, $\mathrm{B}-\mathrm{back}, \mathrm{M}$ - medio-língual, F f- front
P- plosive, F- fricative, $T-$ tremulant
voiced
Fig. 2
TRE

In the column DUR (duration) the units are in 10 ms . VA-voice amplitude, NA-noise ampli-
tude, FA-fricative amplitude are are given in the relative units, where the unit 0 corres
ponds to 0 dB and 100 to 40 dB. Frequencies are onds to 0 dB and 100 to 40 dB . Frequencies are expressed in Hz .
in the middle position between vowels, then must be equal to before the noise burs
vowels must dur burtion of owels must be lenghtened to $120 \mathrm{~ms} ; 10 \mathrm{~s} / \mathrm{d}$ thesized as $/ t /[11$) If $/ \mathrm{b} /$ word must be sym /a/, then it is necessary to decrease the AN to 50 units;12) $/ \mathrm{g} /$ in the absolute las position in a word must be synthesized as must be equal to 30 units and the burst of silent period before the noise burst equal to $40 \mathrm{~ms} ; 13$) Duration of $/ \mathrm{f} /$ in the
first position in a word must be equal to 120 ms , and AN= G 0 units; 14) The first degree of length of $/ \mathrm{f} /$ must be equal to 12

equal to $60 \mathrm{~ms} ; 24)$ If $/ \mathrm{m} /, / \mathrm{n} /$ or $/ \mathrm{n} /$ are in
unstressed word, then $\mathrm{AN}=40$ units; 25) If /p/ is in the first position in a word,
then $A N=60$ units; 26) Tf $/ \mathrm{p} /$ is in the last then $A N=0$ in a word, then $F 3=F 4=800 \mathrm{~Hz} ; 27$ If behind $/ 1 /, / \mathrm{m} /, / \mathrm{n} /, / \mathrm{r} /$ or $/ \mathrm{v} /$ in the
middle of word stand $/ \mathrm{s} /$ or $/ \mathrm{h}$, then the must be synthesized only by means of noi
source; 28) If plosives are in the middle position in a word, then the duration of noise burst must be equal to 5 ms ;29) Duword must be equal to 120 ms , in an unword must be equal to 120 ms, in an $\mathrm{un-}$
 word, then $A N=60$ units and $A=10$ units; 31
In compuond words between simple words nust be a pause $10 \mathrm{~ms} ; 32$) Duration of voweb of the first degree of length must be
ms, in an unstressed word -80 ms , second ms , in an unstressed word -80 ms , second tion of word, when word is stressed-300ms;
33) Duration of voiced consonants of the 33) Duration of voiced consonants of degree of length must be equal to 80 ms , second - 180 and third - $240 \mathrm{~ms} ; 34$) puration of nasals of the first degree of ength must be equal to 80 ms , but if n / h
 ms, in a stressed syllable - 240 ms ; 35) Du-
ration of the silent period before noise ration of the silent period degree of
length - 240 ms; 36) Duration of unvoiced
fricatives of the first degree of length ricatives of the first degree of 1 ength
nust be equal to 80 ms , second - 150 ms
or $/ \mathrm{h} /$ and 120 ms for $/ \mathrm{s} /$, third -240 m for $/ \mathrm{h} /$ and 120 ms for $/ \mathrm{s} /$, third - 240 ms etween vowels in an unstressed word, then first degree of length must, be equal
to 60 ms ; 37) The synthesis of $/ \mathrm{n}$, and $/ 1 /$ must begin with synthesizing /i/ with the
duration of 40 ms $; 38$) The synthesis of $/ \mathrm{d} /$, duration of $40 \mathrm{~ms} ; 38$) The synthesis of $/ \mathrm{d}$,
/t and $/ \mathrm{s} 9$ must begin with synthesizing /i/ with the duration of 60 ms .
The durations are given for the middle
SYNTHESIZERS, CONTROLIED BY MICROCOMPUTERS
In the first version of terminal synthesizer, controlled by means of a microcomputer,
zer, described above,were replaced with ere stored into the memory of constants y digital keyboard. Every cell of memory has his address. To synthesize the speech ere fed into the memory of control parameers by means of alphabet keyboard. Both meories were connected together with a conthe control block - to feed the contents of ers of synthesizer by commutator, using an alphabetic keyboard. The contents of all 12
registers of memory (12 controlled parameters) are fed at the same time by D/A converter to synthesizer. By means of indicaor of 7 light diodes it was possible to resses. The table of indicator was formed of 8 diod complexes. The last version of computer is more flexible and perfect. The model of vocal tract is, as described above control the central frequencies of filters the pulse-width•modulation is also used. Central frequencies can be controlled in ficient in practice. The central frequencies of the first and the third formant filters are controlled in the range of bits, the second - 6 and plosives 2 bits. The
 $\mathrm{kHz}, \mathrm{FF}-4,5 \mathrm{kHz}, \mathrm{FN}-200 \mathrm{~Hz}$. The rate of tran
sitions is controlled by 2 bits $(20,40,60$ and 100 ms), frequency of pitch - 3 bits
(from 100 to 154 Hz), amplitudes of tone (from 100 to 154 Hz , amplitudes of tone - ${ }^{2}$ bits each. ASCII - coded Estonian text control signals. The microprocessor system consists of a processor unit (KP580IK80), terface. Digital control signals from the microprocessor are converted into continu-
ous-time analog signals to control the parameters every 10 ms .
CONCLUSION
The synthesizers, described above, allowed us to research several aspect.s of synthespeech sounding close to. natural.

