the phonetic basis of artificial russian speech, its generation b
$\because \because$

Abstract
The authors describe their research experi-
ences and results in their study canalysis ences and results in thair study (tructure of and synthesis) of the recent years. Based on Russian speech findings, they developed a
their research fin
Russian language text-to-speech system, Russian language text-to-speech system,
called RUSSON. Ine paper. discusses some key called
phonetic questions related to RUSSON
rietter-sound-phoneme-microelement, (letter-sound-phoneme-microelement, word
stress, segmental and suprasegmental strucstress, segmental and suprasegmetizalion) and ture, palatalizes the computer program of RUSSON.

Introduction
Production of artificial speech does not Yroduction of artificial spech andich achievement. Lately, attention is focussed rather on the
application of synthetic speech and on application of synthetic speech and on
automatic speech recognition. In Hungary, automatic spech recognition. In Hungary,
the first sound and speech synthetizer systems were developed in the late
seventies, early eighties as a result of seventies, early eighties as a result of
research conducted at the Department of research con
Phonetics of the Linguistics Institute of the Hungarian Academy of Sciences. Their
primary aim was to aid scientific study of the sound structure of speech.
the present paper is an account of our research experiences and results
accumulated in the past few years in the phonetic analysis and synthesis of Russian speech. Preliminary work and earlier
mere reported in our book title results were reported in our bock titled
"A Conspectus of Russian Speech Sounds published in 1981 , as well as papers in the series "Mungarian
No. 1-16. (1978--1986)
The instruments used for the analysis and Synthesis of Russian speech were those
available at the Departments of Phonetics available at the Departments of Phonetics
of the Linguistics Intitute of the Hungarian Academy of Sciences. The most
important ones are as follows: a dynamic important ones are as follows: a dynamic
sound spectrograph, a pitch meter, a intensity meter, a four chanel mingograph, a twelve channel oscillograph. The speach
synthesis was done on a PDP11/34 computer
 synthesizer

The authors first showed the RUSSON The authors in Moscow in 1985 to commemorate th.

RUSSON as a phonetic research ald

RUSSON was meant as a computer model of Russian phonetic processses. It provided means to verify our analysis and to use the izing method enables us to alter any of the izing method enables us to alter any of the
individual acoustic features of speech a individual acoustic features of speech a
will, to extract and analyss its physical and phonetic elements and structures, t
filter out those constituents and features Filter out those constituents and features
which. have no lingistic function; to whtablish the thanguage spacific rules of sound linkage, the concomitance relations and compensatory ways obtaining between
various constituents of sounds, the
combination combination and variability of elements;
analyse the structural relevance of sound analyse the structural relevance of sound
elements and the sound structures made up of these
On some phonetic issues relating to RUSSON We can only touch upon some phonetic
questions which relate directly to eithe the development of the application of
RUSSON. (A more detailed version of thater RUSSSN. CA more detailed version of the
present present paper will appear ${ }^{10}$
Hungarian Papers in Phonetics.)

1. $\frac{\text { Writing. Phonoloaical sustem, sounding }}{\text { speech }}$ $\frac{\text { sueech. }}{\text { perception }}$
The Russian writing system is a syllabic

 speach taking orthographic text in Cyrillic
letters (including puntuation signs). This letters (including punctuation signs.
is the well-known text-to-speech system.
2. Segmental-suprasegmental sound structure The two structures are relatively independent of each other, which means
either can be extracted from the complex either can be extracted from the comple be
acoustic signal alone, or either can be
produced sogater produced separately.
3. Russian wordstress and temporal structure word stress in Russian is quantitative stress with special features of intensity
and melody. The position of word stress is and melody. The position even depending on
frea varying in cases ever accidence.
recidence. Synthesized samples clearly suggested that lengthening always indicate stress, although in certain positions the duration of the stressed vowel (particularly in two syllable words) may be equal to, or even
less than that of unstressed vowels. The less than that of unstressed
reason for this is that stress is tied to the word form and tis present in actual
. The consonantal nature of the sound 4. The consonantal nature of the sound The Russian sound system is consonantal. The Russian sound system is consonartal. In harmony with the consonantal charactor
the articulatory and perceptual basis of
Russian consonants. is dominated by the Russian consonants. is dominated by the
consonants. The sound structure of Russian
speech is basically determined by two
factors: its duration is determined by its stress, its vocalic struct
palatal-pharingal articulation.
4. Intonational structures, prosodemes

The text-ta-speech system RUSSON uses the The text-to-speech to produce the actual intonation forms. If our intonation
experiments so require, the values of the experiments so require,
matrix can be adjusted.
gperation of the Russian lanquage operation of the Russian $\frac{1}{\text { text-to-speech computer sustem RUSSON }}$ The program produces
content ententences of any
ent
in The program produces serrect Russian
content enter in corred
orthography in the following three main orthography
steps. steps.
a) First, using a set of rules the program
maps the letter sequence into a series of maps the letter sequence into a series of
so-called microelements, which will so-called microelements, which will
ultimately form the segmental basis of artificial speech. b) Next, on the basis of the sentence final
punctuation mark the suprasegmental punctuati

Fig. 1. The main steps of the operation of the Russian Po 1.4.2
structure is generated and then integrated
with the segmental structure with the segmental structure. c) Finally, the code sequence resultin
from the above two steps, which now mad the complex acoustic phenomena, is passed to the sy
The operation of the program- ifr-more
detailed steps is illustrated in the flowhart in Fig. 1.

The stock of micro elements
The control program produces the given sentence with the help of a system of rules
and the inventory of microelements. system of rules is of microelements. The and look up procedures. The stock of microelements contains the speech sounds and the pauses. Each sound is built up of 4 the sound structure out of a possible set
of. 37 consonant and 35 vowel phoneme realizations. The pauses between words and sentences are generated out of 5
microelements of
different length. Thus, the inventory of microelements must contain

The letter-ta-phoneme transformation
The Russian text may consist of 31 letters as well as a soft and a hard mark. Going
through - the stiring of letters in the sentence the program selects out of the 21 consonants and 5 vowels those which
correspond to the letters, simultenously carrying out any softening, where requied. At this stage the program also registers worress by storing the ordinal number of the stressed vamel.
Selection of vowel phoneme realizations
The program segment designed to establish
the correct vowel phoneme realizations takes as input data the word to be processed and the vowal phonemes making up letter-to-phoneme as transformation. by the be of the following five types: $A, 0$, U, I E. Taking these five vowels and' their the program selects inside of the given word vowel realizations.In defining the phonetic positions the program considers stress positions as well as the quality of the
preceding and following sound (whether it precesting and
is soft or hard)
$\frac{\text { Selaction of the consonant phoneme }}{\text { cealization }}$
The consonant phoneme number yielded by the letter-to-phoneme transformation is
identical to the phoneme realization identical to the phoneme realization
processing the sequence of consonants may undergo change as a result of the program palatalization.
Voicing and devoicing
The program-extracts the two-member sound
ciusters from the words of the sentence one by ona. from the words of the sentence one
by cluster is made up of two consonants, both members will be checked to
see if either of them belong to the see if either of them belong to the as one undergoing no modification or the
second member belongs to the set of second member belongs to the set of
consonants that do not change the preceding consonant, then the program passes on to the next cluster. When a modification is called for, it is carried out with the help clusters require special treatment. First, the word-final sonorant is devoiced (if
necessary) and then the preceding consoment is processed. ealizations

Execution of palatalization

Hers again, the program first extracts two element sound clusters.If they are bath undergoing then the combinations not Where required, palatalization is executed by changing the number of the initiel

Defining the microelenen
The suprasegmental structure corresponding to the sounds defined earlier is based on
micrelements.Four microelemants ara assigned to every phoneme realization. However, the program dones not make use of
all the four microelements in every instance. There are cases when only the second, third and fourth element is used. to ensure a smoath, enem microilement is

defining the transitions between vowel
ture is aided by the sentence stress typed n the text as well as the sentence final punctuation mark. is modified so that the
the utterance duration of the vowel bearing sentence
stress is doubled. The sentence final punctuation mark definss one of the eight possible intonation contours to be used. The RUSSON program recognizes the foll (fuing senter) : (colon), (comma), ; (semi colon), (exclamation mark), ? (question mark), ? (questie question mark). With this operation completed, the complex

Control of the speech sunthesizer
The sequence of code thus generated is The sequence of code thus generated is
passed on to the speach synthesizer to
control its operation when it sets sound to

