Department of Phonetics, University of Helsinki
vironkatu 1, SF-00170 Helsinki, Finland

METHOD

abstract

The phonetic realization of logical emphasis in different languages (Finnish, Hurgarian, Estonian, Swedish spoken in Finland, Cerman and Italian) is
studied with speech shnthesis by creating short sentences where different words in different sentence positions are accented orre by one, using
the possibilities of our method for-changing the intensity, fundamental frequency, and duration paraneters. In our systen, four quantity degrees can currently be produced with the prosodic rules,
and the general pitch level can be lowered or and the general pitch level can be lowered or
raised from the neutral level, in addition to slowly rising or falling pitch contours and several
types of local modifications in types of local modifications in pitch. The
synthesis rules for logical accentuation in these languages are presented, and the differences anong them are considered.

introduction

In a nommal, neutral utterance there is generally thought to be one nuclear point, which
has the main sentence stress. We use the term
logical accentuation for logical accentuation for utterances where one
constituent that exrestes constituent that expresses a paradigmatic
opposition with sone inplicit alternative(s) gets a special, additional stress. Other terms often used for this kind of accent are e.g. contrastive
sentence stress and emphatic accentuation $[4,5]$. A speaker has at his/her disposal certain phonetic means for actualizing the necessary logical contrast in the acoustic speech signal. The
phenonenon is generally assuned to be universal in phenonenon is generally assumed to be universal in
its phonetic realization, but different languages may, nevertheless, use different phonetic systems for the realization of this kind of logical
accentuation. For instance, the quantity of a logically accented syllable is often lengthened, in some languages especially the vowel and in Finnish
the syllable-final consonant. the syluabe-final consonant.
Our task is to find out languages) the pitch and stress (for a number of changes) of logically accented words in short
sentences and to formulate these results sentences and to formulate these results as
synthesis rules. one aim of the project is to
inprove the quality inprove the quality of symthetic speech by making the prosodic rules correspond more closely to the
prosody of natural speech. The synthesis rules for producing logical accentuation could be implemented in various rule synthesis prograns.

Recordings

As a basis for synthesizing accented variants of a sentence, we have recorded examples of logical
accentuation
in six different languages: Finnish (speaker M.L.), Hungarian (I.S.), Estonian (A.K.), Swedish spoken in Finland (L.N.), Cerman (M.R.), and Italian (G.G.). The affirmative test sentence (see the Appendix) was semantically identical in
all languages, meaning approximately , ouite soan I all languages, meaning approximately 'Quite soon, I
shall be going to a conference abroad.' The first variant was a sentence with neutral sentence stress
distribution. In the other variants distribution. In the other variants a word or word
pair was logically accented. Whe have analyzed the pair was logically accented. We have analyzed the
prosody of the recorded sentences and then
synthesized then symsthesized then. recorded sentences and then
sarye) speakers were all
barytones, with the exception of the Hungarian who barytones, with the exception of the Hungarian. who
was a bass and the Italian who was a tenor. The synthesis, however, is realized in the pitch. range of a bass, in aill languages, and the pitch movenengens
found in the infromants' utterances have been adapted for the synthesis accordingly.

Synthesis equipnent

In our synthesis project we have been using the Speech synthesizer ove IIII controlled by an HP
NX real
tine
computer fran Sovijärvi's beat phase theory for word stress
$[7]$, our [7], our system is based on the use of four-phase
diphones ("kor [8]ones ("keys") stored in the computer's menory
[80. In our system each diphone has four matrix rows, and each matrix row contains 16 parameter
values controllin values controlling the OVE IIIb synthesizer. Thus, paraneter values. The rule synthesis a system was
designed primarily for synthesizing tor designed primarily for synthesizing Hmgarian, 1 and
the whole 'library' contains now of about 1330 keys, 80 of which represent now of about 1330
speciand conbinations
sponstructed for this paper, departing specially constructed for this paper, departing
fran the original 'library'. fran the original 'library'
In the diphones, the In the diphones, the fundamental frequency (FO)
of each unstressed and unmodified vowel varies within a range of one semitone ($82-87-82 \mathrm{~Hz}=\mathrm{E-F}$ -
E). The contors E). The contours of AO ($=$ anplitude of the first
hamonic) are typically different for stressed and
unstressed unstressed vowels $[$ [11], and they for stressed and been initated
in the sentence exanples in the sentence exaluples of all the six languages.
In consonants the values of the paraneters A0, In consonants the values of the paraneters AO, AH
AN, $\mathrm{FN}, \mathrm{KO}, \mathrm{K1}$
mand K , depend on the essential
manner af articulation. The value of FO is onstantly 82 Hz in altion. The value of FO anstressed, unnodified an constantly 82 Hz in 111.
unvoiced consonants [9].

For regulating the optional variations in intonation and/or stress contours we use special
prosodic control symbols [9]. The slightly risial prosodic contro symbols falling basic pattern of the FO contour of a vowel is always preserved, regardless of the application of any prosodic symbols. The prosodic control
symbols are the following [10, 12]: An overall raised Fo level can be produced with
the symbols \# (5 semitones) and (2 semitones) in the symbols \# (5 semitones) and " (2 semitones) in
a sequence delimited by brackets ($\langle>$). a sequence delimited by brackets ($\langle>$
An overall lowering of the An overall lowering of the F0. level (by 2
semitones) is produced with the symbol $=$. The minus sign (-1 produces $=$ a falling
intanation: Fo falls until the slash intonation: FO falls until the slash (/) or the first pause sign () gradually during the three
next sounds (1st sound 2 semitones Iower, 2 nd sound
3 semitones 3 semitones lower, 3rd and subsequent sounds 4 The plus sig The plus sign (+) causes a rising progredient
intonation: FO increases until the slash or the
first pause first pause sign by 1 semitone for each sound until the level of the fifth sound. (This symbol is not represented in the examples of this paper.)
A special interrogative intonation typical of
Hungarian interrogative sentences that presuppose a Hungarian interrogative sentences that presuppose a
yes-ro answer and contain more than two syllables,
is produce with is produced with the question mark (2): FO rises by
7 semitones on one syllable. (This used in the examples of this paper.) used in the examples of this paper.)
stranger and weaker degrees of stress. The former symbol produces a 10% increase in duration, an
increase in FO by 4 senitones, and a rise in AO Herease in
the dB values $3,8,8,6$, and 2 and a rise in the successive
subphases subphases of the stressed vowel; furthermore, in
the vowel of the follo the vowel of the following syllable, FO increases
by 2 semitones, and, in the consonant(s) appearing between the syllables, by 3 semitones above the
bene
level of 82 sy between the sylables, by 3 senitones above the
level of 82 Hz . The latter symbol (i.e. weake
stress) produces an increase in Fo by 2 ssitones stress) produces an increase in FO by 2 semitone
and a slight rise in $A O$ by $0,4,3$ and I dB in the successive subphases of the vowel after the symbol. That is, these two symbols are used to vary both whereas all the symbols mentioned previously only deal with the musical aspect. The colon (:) is used for lengthening a sound
the duration parameter (DR) is increased by 150\% in
the third the duration paraneter (DR) is increased by 150% in of a consonant. An overlong degree of a sound can
be produced by a double colon (::), which causes be produced by a double oolon ((:), which causes
the $D R$ to be increased by 300% in the corresponding phases.
The senicolon (;) is used for shortening a
sound: the $D R$ of the third phase of a vowel is sound: the DR of the third phase of a
reduced to 30% of the original duration.
The corma (,) is used for shortening a sound to a half-long degree: the duration of the third phas The rate of speech is controlled by a special coefficient placed before the input sequence. (In coefficient was sex at at 38 , of this paper the speed In order to at 38.)
In order to investigate the quality of
intonation in our four-phase synthesis system with
material fran the six languages analyzed, we
constructed accentual variants of a sentence on the
basis of the recordings described above basis of the recordings described above, and
experimented with several ways of synthesizing their intonation and stress contours. In our synthesis system wo can change and vary very
quickly the pitch, intensity, and/or duration of the accented words (or word pairs) in the written string, which has, at first, rather arbitrary Appendix in three different manners: (a) the normal orthographic form of the test sentence as used to denote the words with logical emphasis) (b) the input strings for synthesizing these sentences (with the diphone names and all the necessary prosodic control symbols), (c) the (highest) pitch
levels of syllable nuclei displayed as semitones (zero meaning the rest level, negative numbers a lower pitch level, and positive numbers a highe pitch level).

About the Sentence Example

Resurts

Based on our completed 'library' of Hungarian spoech the same vowel and consonant qualities exames 6]. In the Finnish sentences (both neutral and symthesizing the short vowels [a] and [e] are written as A2; and E2;. However, for the relativel written as
dark Finnish [s] [denoted with s3 in the input
s3 strings) we had to construct new keys. The
difference in duration between single and geminate tenuis plosives [p $t k$] is far greater in Finnish than it is in Hungarian, where the geminate plosives are relatively much shorter [2]. For this
reason we have used the symbol :: in the piakkoin 'quite soon'.
The Hungarian (and other) exanyles demand,
ccording to our judgment, sonetimpes either the symbol for the rise of two semitones or the symbol , for the same rise and the weaker or the
Therefore we Therefore we have synthesized the imporer stant words.
hamarosan wuite soon' and kilforldi 'abroad' changing these symbols.
uality [ar] in the words soidan 'I travel vowe quality [2r] in the words sofidan 'I travel ' and ige 'quite' which have the corresponding marks of
3. 'The symbols P3 T3 K3 correspond to the letters b d g.
In the sentences representing swedish spoken in acts as an have very often used the slash (/) which
act of the minus sign (-). The symbol U2 represents the vowel [H$]$, which differs fram the mopre [y]-1ike
corresponding sound in Swedish In the German examples (for instance in wrds werde, einer, and ausladndischen) there are the special vowel symbons E3 I3 uS which correspond special sounds [$\mathrm{sin}_{\mathrm{R} 2}{ }^{i r}$ ur] for the Getrively, and the

In the Italian language we have to employ the half-long duration mainly in the cases of a
stressed vowel and of a syllable ending in a
instance in the word andro 'I shall be going':

The Synthetic Pealization of Logical Accentuation

The logically accented nuclei have almost alwart the SInthesized height or five seaitones above the namely the Italian words fra poco 'quite soon', wo ind the higher intonation of $2 \rightarrow 7 \rightarrow 5$ on the
 altermatives for the peak height - 4 or 7 semitornes - sound rather unnatural, according to aur auditory
experiments with various symthetic versions. experiments with various synthetic versions.
The difference of the highest tonal between the usually and logically accented languages. This neans that the whole in all six languages. This neans that the whole intonational narrover with a phonetic cortainty in a given language than in the same sentences with an logicaly accented word or word pair (5-8.
$8-11$ senitones, depending on the language). We have not yet thorough1y investigated the accentuation point of view from the logical accentuation point of view. However, we have
recently described [13] altogether three cases of logical accentuation, two sentences of which
eepresent different questions (with the highest represent different questions (with the highest
pitch of 4 or 5 semittones) and only one represents an affirmative sentence (with the corresponding height of 7 semitones).
not allow the synthesis of controlling system does not allow the synthesis of intonational phenomena
of those languages which are characterized by an alternating "winding" tonal patterming and often by its relatively variable durative dimensions. The
languages of this kind include for instance American and British English, French, and Swedish spoken in Sweden. In contrast, the language type in
which the intonational pattems are larely nich the intonational patterns are largely based and stress in the concatenation of syllables and/or words is suitable for the synthesis system
presented in this paper.

REfrrencres

[1] Bolla, K. "Magyar hangalbum (A magyar beszédMagyar fonetikal füzetek (Hungarian Papers in Phonetics) 6, 1980 , 1-167. Bolia, K. "A finn beszédhangok atlasza (A
beszéchangok képzési és hangzási
jellemzoii). Magyar fonetikai fizzetek (Hungarian Papers in

Bolla, K. \& Valaczkai, L. "Nénet beszédhangok sajátságai)." Magyar fonetikzési és hangzási rian Papers in mhonetics) 16, 1986, 1-210. Carlson, R. \& Granströn, B. "Word accent, rule schene fors swedish. STL-QPSR $2-3$ and 1973 51-36. P. "Contraste accentuel et contraste
Garde,
intonationnel." Word 23 , 1967
[6] Olaszy, G. "A magyar beszéd leggyakoribb hangsorepitô eleneinck szerkezete és szintézise. szánítógépes beszédelơalliitás néhány kérdése Kkadémiai kiadó, 1985.
[7] sumen yieiskielen sanaraimostaushavaintoja Messungsbeobachtungen über den wortakzent finmischen Hochsprache.)" virittäjä 62, 1958,
351-365.
Sovijärvi, A. "Examples of sane synthesize
Hurgarian sentences. Hungarian sentences." Sprache und Sprechen burtstag. Tübingen: Max Nieneyer, 1979, 113
[9] So phonemic, A. "On the realization of Hungarian phenenic oonbinations and prosody in the light of experiments in speech synthesis." Congressu Quintus Internationalis Fenmo-Ugristarum, Turi
[10] So puhurmosten $\begin{gathered}\text { A. Al lanko, R. "Unkarinkielisten } \\ \text { säantōsynteesijärjestelnăsta }\end{gathered}$
 Phoneticians - Helsinki 1982 (ed. A. Iivonen δ H. Kaskinen). Publications of the Departnent $175-193$.
Sovijärvi, A. \& Aulanko R "Rule symesthesis of 1] Sovijärvi, A. \& Aulanko, R. "Rule synthesis of
intonation and stress based on four-phase diphones." XIII Meeting of Finnish Phoneticians. Turku 1985 (ed. O. Aaltonen \& T. Hulkko).
Publications of the Department of Finnish and Peneral Linguistics of the University of Turk
12] 26, 1985, 217-231.
variable intonation. Acoustical Meeting 20-22 August 1986 in Aal-
[13] borg, Dermark (ed. H. Mø11er \& P. Rubak), Aal-
borg University Press, 1986, 211-214. Sovijarvi, A. \& Autanko, R. "Die autonatische Regelung der Intonations- und Betanumgsef.,
stalten beim Synthetisieren des staiten beim Synthetisieren des Ungarischen."
Gedachtriskolloquium für Eberhard Zwimer (ed.勆 Bluhme). Publications of the Departient press)

Apandike Santence examplet

Finnish. Matkustan piakkoin eräseen uikomaiseen kokoukseen
$=<M^{\prime}$

Hungarian. Hamarosan megyek egy külfaldi osszejovetelre.

[11 st] [11 st]

Estonian. Ma sotidan sige varsti valismaale aihele konverentsile

Jag skall $\quad 00 \quad 20-2 \quad 50$

Talian. Fra poco andro ad una conferenza all'estero.
 Fra poco andro ad una conferenza ${ }^{22} \underset{0}{22} 0020$

501

