A PHONOLOGIC-PHONETIC COMPONENT OF A DYNAMIC LINGUISTIC MODEL

Georgi Chikoidze

Linguistic Modelling Laboratory
Institute of Control Systems of the GSSR Academy of Sciences Tbilisi, Georgia, USSR 380042

ABSTRAC'I

As a basic quantitative criterion for a phonologic description choice, an average phonologic code length of a text is suggested. Capabilities of such an approach are demonstrated on the example of a Georgian phonologic system.

A dynamic linguistic model is a system, which fulfils direct and inverse transformation of a "sense-speech (text)". A phono-logic-phonetic component of the direct transformation (synthesis) produces to the given phonemes corresponding phonetic characteristics, i.e. descriptions, which must serve as an immediate basis for a choice of articulatory commands. A natural basis of a phonetic description is a set of articulatory features (in the case of synthesis), or their acoustic correlates (for analysis).

These processes are essential components of a complete linguistic model, being the basis of many important practical applications. According to this, conditions of simplicity and description economy acquire not only abstract-theoretical meaning but also practical value, stipulated by natural demands, made by technical realization of such systems. Technical realization of a phoneme in a linguistic model is its code, the choice of which, generally speaking, is arbitrary, not taking into account a trivial condition of noncoincidence of different phonemes codes. According to this, a problem of the code choice naturally arises, providing a chance to create simple and economical coding-decoding procedures, which direct and inverse phonologic-phonetic conversion.

Concretizing this code choice criteria, on the basis of quite general consideration we can suppose, that they may be reduced to the conditions of a code structure simplicity and to minimality of its some quantitative characteristics (of average length) and also to demands of simplicity of its correlation with phonetic characteristics. A binary code, for which a structure of coding-decoding procedure is represented by a dichotomic tree, obviously, possesses the
simplest structure. Methods of agreement of such a code with frequency of coded symbols appearance, proviaing the code construction with minimum average length, are well-known. However, these methods are not intended for taking into consideration an additional condition, which is a requirement for simplicity and directness of relation of a phonological code to a phonetic description.

Evidently, this last demand is satisfied more completely by a code, a coding-decoding tree of which can simultaneously be regarded as the basis for a phonological system description in terms of phonetic features. By the tree of such a type, constructed on the basis of acoustic characteristics, a Russian phonological systemis described in /1/. Terminal nodes of such a tree are phonemes; some phonologically meaningful binary features are connected with each nonterminal node, one of the branches, coming from it (in our case -left), is connected with the positive value of the feature, and the other - with the negative one.Now, by attaching a value "1" to each "positive" branch, and " O " to each negative one, for every phoneme can be produced a binary code, which is created in the process of passing the route from the root ("top") of the tree to the terminal noce corresponding to this phoneme. A procedure of passing by such tree routes, leading from the root to terminal nodes, can be performed on the basis of the given code sequence, creating the corresponding phonemic features (a process of decoding). as well as on the basis of the given phonetic features succession, providing the construction of the corresponding code (a process of coding).

A set of phonetic features, associated with nodes of his tree, makes up some subset of a meaningful phonetic characteristics set, enough for distinguishing all the phonemes of the given phonologic system. Sets, possessing such a property, can be chosen by many different ways, and thus, some additional condition of minimality is imposed in order to determine some "marked" sets. In the majority of cases, and particularly, in /1/ and /2/ a requirement for minimum of number of different features, forming a set, serves as a restriction.

Se 24.5.2

However, taking a standpoint of the dynamic linguistic model, it should be recognized, nemes codes average iength, is more essential, because exactly this parameter de-
termines the average number of steps of the coding-decoding procedure and, therefore, characterizes time expenses, connected with the fhonologic-phonetic component of the ment for this set of features is convenient to determine by a value Q :

$$
Q=\frac{L-H}{H} 1008
$$

where L - is the average length of the pho-
neme code in the text, and H - is entropy neme code in the text, and H - is entropy representing a theoretical lower limit of values I. Thus, Q is the redundant average length of the code in percentage of its theoretical minimum H, and hence, a system with
less Q value must be prefered. As the less Q value must be prefered. As the
orientator let us note, that for the Russian phonologic system, constructed in $/ 2 /$ the value Q was 218 .

A tree of dichotomized articulatory features, describing a variant of the Georgian phonologic system, for which Q has the value of 108 , is attained on the basis of the
given in $/ 3 /$ distribution of Gergian phogiven in $/ 3 /$ distribution of Georgian pho-
nemes frequencies in the text, to which the meaning of entropy $\mathrm{H}=4,31 \mathrm{~b} . \mathrm{u}$. corresponds. The phonetic material used in the system construction almost entirely is
taken from $/ 4 /$, though in the choice of the definition for correlation of air passage common features, corresponding to the upper taken from /1/ and /5/.
Vwe top feature of the tree on Fig. 1 is Vw vowelness, positive value of which corresponds to vowel phonemes a,e,o,u. Set of
vowels, in their turn, is structurized by usual features of minimum (Mn) and mean (Md) raising of the tongue. Phonemes characterized by the negative value Vw, i.e.
consonants, first of all, dre divided into two subset by the sonority feature, (S). With cominon representative of sonors ($1, r$, $\mathrm{m}, \mathrm{n})$ a phoneme V is included in this class,
that corresponds to the contemporary point of view on the Georgian phoneme, and also to separate remarks from / 4/. First of all, from the class of sonors are distinguished sonors are divided into fricatives (Fr) and noniricatives, coinciding with the class of stops; the last in their turn-into affrica-
tives (Afr) and nonaffricatives, representing by them a class of pure stops. Configuration of the upper part of the
tree and distribution of the corresponding nodes, almost entirelly reproduces gradaMn corresponds to the sixth gradation, Md the fourth; then liquids (Lq) are character-
ized by the third degree of the opening nasals (N) - by the second, fricatives (Fr by zero. Exception is the phoneme v, com bining characteristics of a sonor and a
fricative; on the scheme of cupies a sonor position near nasals, bein a single representation of the additiona to them class, that defines a degree of it opening, as an intermediate between the last of them. General structuralizing features in this zone are a top feature Vw dividing a set of gradations of opening degrees into three upper and four lower gra-
dation, and also S feature, dividing these last ones in two.
Below the
Bel the considered zone there is a two level zone of features of the formation feature Fn with meanings "front" - "non ity Lb, and the next level - by abilabialAnalogous to the scale of opening degrees regulates common features of air passage, features of the formation place correlates o the following consequent regions of the
ocal tract: labial (Lb), dental $(\overline{\mathrm{Lb}} \stackrel{\mathrm{D}}{=})$, alveolar ($\overline{\mathrm{D}}$), velar (V1), and transvelar ($\overline{\mathrm{V}} \mathrm{l}$), which can be realized as pharyngeal (the phoneme q) or larynyeal (h). Note, one, we shall be able to say, that not only the positive but also the negative meaning of these features always points to one and the same region of the formation. The same meaning of which always corresponds to the set of bilabial dental, alveolar and palaand transvelar. Joining a palatal zone to the positive region of Fn also justifies this feature utilization for the opposition of front and back vowels, that conforms to
the corresponding remark in $/ 4 /$ about the equivalence of this opposition to the op-
position: palatal-velar position: palatal-velar.
Two lower levels create
voiceness (V) and aspiration features of Let us note some alternative.
ities of the tree structure choice, illustrating considerations, which have led us example, the phoneme V is related to fricatives on the concluding scheme of the Georgian phoneme classification in /4/. Equally choice of a position V was stipulated by the circumstance, that its inclusion in the class of fricatives rather deteriorates the particularly, in this case $Q=11 \%$. Further deterioration of the value Q is connected with the accepted in /6/variant of the tree $/ 1 /$. In $/ 6 /$ firstly vowels and liquids are opposed to other phonemes by the feature of
msonants to nonconsonants. In this case Q eaches 16%. On the contrary, concession to the traditional approach, apparently, is a refusal from the variant, opposing firstly fricatives and affricates to simple stops, and then fricatives - to affricates, since this variant provides lower value of the criterion: $Q=8 \%$.

At the same time, economy of description basically defined by the value Q, must not conflict with its completeness, i.e. on the basis of the accepted scheme of the phono-logic-phonetic transformation all the characteristics, necessary for the functioning of phonetic, phonologic and morphological rules, must be produced. So if the synthesis of the sound is provided by the modelling of the speech tract configuration in the process of the sound articulation, then it is necessary to enlarge, for example, the sonor characteristics by information about, common to them voiceness and their formation place, and also - to note such specific features as laterality of l and vibrantness of r; voiced consonants deafening in front of voiceless stops needs, differentiating of q by a voiced-unvoiced feature; finally, the formulation of the morphological rules of a stem truncation and contraction will be simplified by the feature, common to a and e, and so on. The most natural is including of all useful characteristics creation into the process of decoding. This can be expressed graphically by adding their symbols to the corresponding branches, for aims of minimizing a number of repetitions; such adaditions must be made on the maximally high level,
for which they are relevant; so the addtional feature of voiceness must be created, according to the above adduced examples, when passing the positive (left) branch, coming from S. Let us emphasize, that these additional symbols will be simply ignored when coding.

REFERENCES

1. M. Halle. The sound pattern of Russian, 's-Gravenhage, 1959, p. 19-46.
2. C. Cherry, M. Halle, R. Jakobson. Toward the logical description of languages in their phonemic aspect. "Language", vol. 29, in 1, 1953, p. 34-47.
3. D. Tzkitishvili. Statistics of binary letter combinations (digrams) in the Georgian language. Col. of Proceedings of the Institute of Control Systems of the GSSR Acadeny of Sciences "Machine Translation", XI-XII; 3, publ. "Metznierevan, Tbilisi, 1974, p. 141-146.
4. G. Ahvlediani. General Phonetics Foundation, publ. TSU, Tbilisi, 1949.
5. F. de Saussure. A course of general linguistics. "Satzekgiz", Moscow, 1931.
6. G. Chikoidze. A system of articulatory features and Georgian phonemes coding. Froceedings of the Institute of Control Systems of the GSSR. "Machine Translation", XII: 3, publ. "Metzniereba", Tbllisi, 1975, p. 5-37.
