
-a.- "It" is well-known that English morphology has two classes ofaffixes: " + " morphemes such as in + , $a d+, a b+,+a l,+i t y$ and "\#" morphemes such as un\#, \#ness, \#ly. The two classes differ in a number of respects, including: (1) Etymology: " + " morphemes are (often) historically correlated with Latin; "\#" with German and Greek, (2) Stress Assignment (e.g., parént+al vs. párent\#hood), and (3) Word Formation: + morphemes can attach to bound morphemes (e.g., crimin- as in criminal); \# cannot (*criminhood). This paper will extend this reasoning in dividing the first class into three parts, Ia, Ib and Ic (see table).

Class Ib contains what we generally think of as "typical" + boundary forms (e.g., parënt + al, divin+ity), both with respect to stress assignment and word formation. It will be argued here that Class Ia obeys a different set of word formation rules and that Class Ic obeys a different set of stress assignment rules.
The notion of compositionality provides a unifying theme across classes. Just as it is often observed that "\#" forms have compositional semantics and stress assignment (e.g., divine\#ness means "the state of" composed with "divine"; the stress of the whole is the concatenation of the stress of the parts) unlike "+" forms (e.g., divin+ity has religious implications that cannot be attributed to its parts; the stress of the whole is not the concatenation of the parts because of stress retraction), we would want to say that Class Ia is less compositional than Ib which is less than Ic which is less than II.

1. Word Formation Rules (WFR)

Aronoff proposed two distinct types of word formation rules in his thesis [Aronoff]: stem based wfr and word based wfr.

- Stem Based WFR: subsume/subsumption, consume/consumption, resumelresumption, expenselexpensive, conducelconductive
- Word Based WFR: nominate/nominee, nominatelnominat, femininelfeminism.

Stem based wifr rules relate pairs of worts sharing one of a short (100-1000) list of latinate stems, e.g., fer, mit, sume, duce,
scribe, whereas word based wfr apply to a large (possibly open) class of forms, often ending with -ate or some other archaic affixes such as: -ine, -uli, -us, -um that may be stripped off or "truncated" as part of the word formation process. Aronoff distinguished the two types of word formation rules in order to account for the fact that some generalizations, especially productivity and allomorphy, are clearly associated with stems, whereas other generalizations are associated with words.
This paper will use Aronoff's distinction in order to separate Class Ia from other " + " boundary forms. First, though, it may be worthwhile to review Aronoff's reasons for hypothesizing two types of word formation rules.

1.1 Productivity

The contrast in productivity between stem based and word based wfr is very striking. Note that there are very few gaps in stem paradigms:

	0	0 (pp)	-ion	-ive
duce	adduce deduce conduce educe induce introduce produce reduce seduce transduce	adduct deduct conduct educt induct product reduct	adduction deduction conduction eduction induction introduction production reduction seduction transduction	deductive conductive eductive inductive productive seductive
scribe	describe prescribe subscribe	conscript nondescript prescript subscript	conscription description prescription subscription	descriptive prescriptive subscriptive
ceive	conceive deceive perceive receive	concept percept recept	conception deception perception reception	conceptive deceptive perceptive receptive
here	adhere cohere inhere		adhesion cohesion inhesion	adhesive cohesive inhesive

	+ Boundary Class Ib			
Examples	Class Ia ion, ive, ent, or, ory	ity, ic al, ian	ize, ee, itis,ism, ist istic, ment, mental	\# Boundary hood, wise Class II
Etymology	Productive in Latin	Norman French	Scientific Literature and Enlightenment	Anglo- Saxon
Stress Retraction	+	+	-	-
Attaches to	stems	bound/free	bound/free	free

In contrast, word based alternations are full of gaps. For example, the word based -atel-ee alternation (e.g., nomthe vast majority of words ending with -are do not have variants ending with -ee.
1.2 Allomorphy

Stem based. word formation rules attempt to capture both productivity and allomorphy generalizations. In stem based
forms, allomorphy (e.g., scribe vs. script) is purely a function of the stem and the suffix, and is independent of derivational history (cyclicity), prefix, part of speech, semantics, phonology, etymology, dialectical variation, etc. In-contrast, alhomorphy
may have more complicated sources in word based forms.: may have more comple, the word education which does not follow the stem based pattern found in adduction, deduction, conduction, eduction, induction, introduction, production, reduction, seduction and transduction, because education is derived from the word educate, not from the stem duce. This example illustrates that derivational history can play an
important role in explaining allomorphy, but only in word based derivations, and not in stem based derivations.
Mark Aronoff noticed that stem based allomorphy depended only on the stem and
mythical) Ben Moshe

The form of the suffix is never determined by a specific word. It is never the case that one verb in a given root will allow one variant, and other verb in the same root a that is, morphologically governed. There are no excertions to this. It is the first law of the root originally discovered by the great Semitic grammarian ben-Moshe (ms) [sic] and called Ben-Moshe's First Law.
We will illustrate ben-Moshe's first law in (28) with the root sume. The variant of ion which appears after sume is
(28) subsume

sume	subsumption	*s
consume	con	*cons
	re	*resumati
presume	p	*presumation

Aronoff uses Ben Moshe's Law to cover both cases like sume/sumption above where the allomorphy alternation is extremely clear as well as cases like vertiversion and sert/sertion where the allomorphy is somewhat more subtle. Note that the corresponding " s " in insertion is realized as $/ \mathrm{sh} /$. Aronoff attributes this distinction to the allophorphy of the stems -ver and -sert, and then observed that Ben Moshe's Law correctly predicts that this voicing contrast is maintained in related form such as diversion, conversion, perversion which contain / /2h/ as in as in insertion
Ben Moshe's Law can also be used to cover quantity changing allomorphy as in confidelconfidence. The "Confidence Puzzie" is intriguing because -fide is heavy in confide (as evidenced by
the long vowel) but light in confidence (as evidenced by the
stress retraction before the weak retractor suffix ence). Other tems also use allomorphy in order to change quantity (se table). Consider -side and -pel. Both change their underlying quantity before the suffix -ent. - side is underlyingly heary, bu acts light in resident, whereas -pel is underlyingly light, but act heavy in repellent. Noic The same light -side found in resident also appears in preside and dissident; the same heavy -pel found in repellent also in expellent and propellent.

	Acts Light	Acts Heavy
Tense	-fide, -side, -spire, -tain, -stain, -cide, -pare	-hale, -grade, -plain, -flame, -vade, -praise, -rade, -suade, -place, -claim, -rive, -vive, -dign, -mise, -scribe, -quire, -vise, -prise, -fice, -pugn, -clude, -prove, -sume, -lude, -trude, -fuse, -plode, -close, -mote, -pose, -void, -join, -plore
Lax	-fer, -cel	-pel, -mit, -gress,

1.3 (Almost) No Exceptions to Ben Moshe's Law

Ben Moshe's Law, according to Aronoff, is exceptionless. After some computer assisted investigation, it appears that the rule is, in fact, nearly exceptionless, if not completely so. Many apparent counter-examples can be dispensed with by atribe to stem
the counter-examples to word based wfr, as opposed to based wfr as we did in order to account for education which problematic since most combinations of duct and -ion yiel duction, not ducation. Aronoff himself uses the word based escape hatch in order to dispense with consummatation, whit would ordinarily be a problem for Ben Moshe's Law, sin sume plus -ion normally produces sumption, not summation.
"Note that the form consummation, as in Shakespeare, is not an exception. Raution." [Aronoff, p. 102]
Compensative is very much like consummation; compensative formed from compensare via truncation, as opposed to expensin Friction/frication also demonstrates the contrast between stem based and word based wfr. Preventivelpreventative and interpretivelinterpretative illustrate another class of (apparen) counter-examples to the law. Again, these apparent count xamples can be accounted for by showing that one of the formo

A dictionary search for orthograptic sequences taxing both ation and
produced: legation (legion), domination (dominion), oration (orion), duraiain

has an alternative source. In this case, preventative is from the atin frequentativ,
confused with -ive.
In general, forms obeying Ben-Moshe's Law shoẅ up with a large number of latinate prefixes, as opposed to form like compensative, expectation, education and preventative, which violate the Law. Thus, for example, conducive, another exception to Ben-Moshe's Law (cf., conductive, deductive, inductive, productive), is not found with very many other
prefixes (e.g., *educive, *deducive, *producive). Exceptions are unlikely to show up with very many prefixes because prefixes are only productive on stems and these exceptions are word based

1. 4 Class Ia and Stem Based WFR

This paper provides additional evidence in favor of Aronoff's wo types of word formation rules by proposing that some affixes (namely, Class Ia affixes) are (generally) associated with stem base wfr and that other affixes (namely, Class Ib and Ic)
are associated with word based wfr. 'Note that Class Ia affixes (e.g., -ion, -ive, -ent, orr) are often found after latinate stems (e.g., permission, permissive, confident, conductor) but not generally after truncated morphemes (e.g., *nominion, nominive, *nominent, *nominor). Similarly, Class Ib and I affixes (e.g., al, -ee) are often found after truncated morphemes (e.g., nominal, nominee), but not generally after
latinate stems $*$ subsumal, *subsumpral, *subsumee, $*$ subsumptee.
-The Distributional Claim: Class Ia affixes (e.g., -ion, -ive ent, -or) attach to latinate stems (e.g., fer, mit, sume, duc
cribe) whereas Class Ib and Ic affixes (e.g., al, -ity, ee, -ism, -ist) attach to words (possibly via truncation).
One of the consequences of this claim is that feral, feric, ferity, uce because Class Th affixes such as -al ic in and ot attach to latinate stems. This observation may be importan or practical computer applications of morphological analysis to
a addition, this distributional claim forces a form of level ordering [Kiparsky], [Mohanan]. Note that Class Ia affixe affixes can be found inside Class Ib affixes (e.g., festivit,
conventional) but not the other way around (e.g., *fest + ity + ive convent $+a l+i o n$), because Class Ia affixes (e.g., -ive, -ion) must be attached to latinate stems and therefore, they canno

5 Multiple Class Membership
he distributional claim is somewhat weakened, unfortunatel y the fact that some affixes such as able share membership in more than more class. Just as others (e.g., [Aronoff, sectio 6.2] have assumed that -able belongs to both " + " and "\#", and Ic. The difficulty is that -able may or may not feed allomorphy, truncation and stress retraction:

- Allomorphy: (with) circumscriptible, extensible, defensible, perceptible, divisible, derisible (without) circumscribable le, deridable
- Truncation: (with) educable, irrigable, navigable, regulable,
rigatable, navigatable, regulatable, demonstratable, operatable, separatable
- Stress Retraction: (with) cómparable, réparable, prêferable ${ }^{3}$ (without) compárable, repárable, preférable
Aronoff assumed that forms which feed allomorphy, stres retraction and/or truncation contain a " + " boundary and tha The present proposal would assign contain a "\#" boundary to account for the observed allomorphy, demonstrable and coómparable to Class Ib in order to account for 'the observed stress retraction, and comparable to class Ib in order to accoun for the observed lack of stress retraction.

2. Class Ic

The introduction suggested that Class Ib contains what we generally think of as "typical" + boundary forms (e.g. parént + al, divin + ity), both with respect to stress assignment and wfr. Section 1 argued that Class Ia obeys a different set of
stem based wfr. This section will argue that Class I stem based wrf. This section will arg
different set of stress assignment rules.
Within words, one expects to find stress clashes resolved by a rule which forces stressed syllables to alternate. Thus, for example, degräde plus -ation yields dègradátion with alternating clashing stresses. This prohibition against stress clwashes applies to most " + " boundary forms (Classes Ia and Ib), but notlies to most " + " boundary forms (Classes Ia and Ib), but not to
Class Ic. Note, for example, that departmental and employée do Class Ic. Note, for example, that depàrtméntal and emplayée do
not become *dèpartmental and *employée, as would be predicted if these stress clashes had to be resolved.
Class Ic forms are also exceptions to most so-called " + " boundary rules. Note, for instance, the contrast between concain+ism and profan + ity. Tri-syllabic laxing, a typical " + " boundary rule, forces the tense vowel in profane to become lax Class Ic and therefore the tense vowel in concain dpes not become lax in the Class Ie form concainism.
It will be assumed here that Class Ic forms are stressed much like compouids. Assignee, for example, is formed by combining the two pieces assign and ee with a right dominant foot [W S] so that the main stress falls on eee. Othier Class Ic forms such as cocainism are combined with a left dominant foot so
hat the main stress falls on cocain. ${ }^{4}$ In both cases, the internal metrical structure of the left piece is kept intact. Note that the

3. By reasoning employed above to account for the Confidence Puzzle, comparabie, reparable, prerable may be considered examples of allomorphy

4. Just as with compounds, it is extremely difficult to decide when to use a
left dominate foot and when to use a right dominant foot. We will not
stress on sign in ossign is preserved in assignee and the sress on cain in cocain is freseved in cocainism; assignee does no: beonne "àssignée, ${ }^{5}$ cocainism does not become *cóccinism, employee does not becone *èmpioyée, and so on. Similarly, the internal sixature of the left piece is kept in:ad in generalise, minerai:ze and federaize, which do not become *erératize, *minérciize and *fedéralize, respectively.
The following table is presented as firther evidence for the claim that Class Ic boundaries do not desioy metrical structire. The table lists a number of words ending in -ist, ism and -ize. Notioe that the stress pattern of the left piece is fixed across all three forms; for exsmple, romantic has 010 stress in romansicior (010-0), romarticion (010-20) and romanticize (010-2).

-ist	-icm	-ize	Stress
romanticist	romanticism	romanticize	010
exorcist	exorcism	exorcize	10
humanist	bumanism	humanize	10
antagonist	antagonism	antagonize	010
unionist	unionism	unionize	10
communist	communism	communize	10
militarist	militarism	militarize	100
terrorist	terrorism	terrorize	10
systematist	systematism	systematize	100
stigmatist	stigmatism	stigmatize	10
dogmatist	dogmatism	dogmatize	10
hypnotist	hypnotism	hypnotize	10

In this respect, Class Ic affixes differ from most other " + " boundary affixes which induce stress retraction. Sirong retractors (e.g., -ate, arion) often mung metrical structure: design (01) / designate (102). Even weak retractors (e.g., enr, -ant, ence, able, ance, al, ous, any) can modify metrical structure: confide (01) / confident (100). Class Ic affixes are unusual, because they do not induce either mode of stress retraction. ${ }^{6}$
Many so-called cyclicity arguments can be used as further evidence that Class ic boundaries do not destroy merrical stracture. Consider copitalistic and militaristic, where it has been noted [Withgort] that the $N /$ an flup in capitaistic but not in militarific, presamably becanse capionlictic comes from capital where the A Ilaps, wheress miliurisric comes from military where the $/ 4$ does not flap. These facts are completely consistent with the observation that -irsic is a Class Ic affix and that Class Ic affixes do not destroy metrical structure. The same flapping facts hold across a wide number of Class Ir affixes; capitalis, capitalism, capisalistic, capitalize, capitalization, capiralitis and capitalite all flap, nalike militarist, miliarisn, militaristic, militarize, militarization, militaritis and militarite.
In conclusion, this section has argued that Class If cannot be stressed the same way as other " + " boundary forms and therefore they should be assigned a separate class. The previous section argued that Class ib requires its own word formation rules and therefore, it, too, should be assigned its own class.
5. Designee might be cocosidered a counter-example to the chimin that Class ic boundaries do nor destroy metrial structure. The cantrast between designée zod ascignée is accounted for by moting that designee is truncated from dexignate (and keeps that structure), whereas assignee is formed from escofs (sad keeps that structure).
6. Adraitredty there are a few forms ending in -in, ism asd -ize, where the affix does mot appear to be stress neurif (e.g., invancize). These forms we extrenely problematic for our proposal since they uppear to disphy

References

Aronoff, M., Word Formation in Generative Grammar, MIT Press, Cambridge, MA., 1976.

Chomsty, N., and Halle, M., The Sound Partern of English, - Harper and Row, 1968.

Kiparsky, P., Lexical Morphology and Phonology, unpublished me., MIT, 1982.

Liberman, M., and Prince, A., On Stress and Linguistic Rhythm, Linguistic Inquiry 8, pp. 249-336, 1977.

Mohanan, K., Lexical Phonology, MII Doctoral Dissectation, avaliable from the Indiana University Linguistics Club, 1982.

Withgotr, M., Segmertal Evidence for Phonotogical Consmiments, unpublished Dissertation, University of Texas, Austin, 1982.

Appendix: Lexicon of Stems and Amires

- Archaic Affixes (Victims of Trunctation): ate, us, um uli, ii, ae, ine, ar, ure
- Class Ia: ion, ation, ive, ative, ent, ence, ency, ant, ance, ancy, or, ory, atory, able, ible
- Class Ib: ity, al, ality, ation, ative, ator, atory, ic, ian, able, ous, osity
- Class Ic: ist, ism, istic, itis, oid, ine (scientific), ate (scientific), ite (scientific) ite (non scientific), ish, able, ability, ee, eer, eite, ify, ize, ization, ification, ment, mental, mentary, mentarian, mentation, er, ery, ectomy, ology, olysis, ometer, imeter, ographer, oscopy, esce, ique, ess
- "\#" boundary: wise, less, ness, hood, ship, way, land, fal, most, ly, man, ward, ling, like, dom
- Latinate Stems: sat, buie, carp, cast, cave, cede, ceed, teiv, oll, cent, cept, cern, cess, cess, cide, cinct, cise, cite, chim, clam, cline, clive, close, clude, cluse, coct, crease, create, crete, cult, cumb, cur, cure, arse, ause, cuss, dic, diat, dite, duce, duct, dure, empt, ept, face, fact, fame, fect, fend, fense, fer, fess, fest; fice, fide, firm, fir, fix, flame, flate, flect, flex, flict, flu, flux, form, fort, found, fract, front, funct, fuse, fute, gest, grade, gress, habe, here, hes, hibit, hort, hume, ject, join, joint, junct, lapse, late, lease, lett, lege, licit, lide, lige, line, lise, loc, lude, hume, huse, mand, mend, mense, merge, merse, miss, mit, mote, mount, mune, mute, nate, note, nounce, opt, pact, pand, panse, pare, part, peal, pel, pend, pense, place, plain, plan, plant, plaud, plause, plead, plete, plex, plic, plode, plose, plose, ply, pone, port, pose, posit, pore, pound, press, prise, prizt, prove, puga, pulse, puact, puage, pure, quest, quire, quiuit, quit, rase, rect, rode, rog, rose, rups, scend, sciss, scribe, script, sect, sense, sent, sert. serve, sess, sever, side, sign, sist, sole, solve, sorb, sorpt. spect, spense, sper, spirt, spoind, sponse, stance, stant. strim, straint, strate, stria, stroy, struct, strue, suade, suase. sult, sume, sumpt, sart, surge, tact, tail, tain, teat tempt. ieni tense, tent, test, tent, tin, tinct, tire, tone, tort, trac: wain, treat, trice, trite, trorse, troverse, trovert, trude, truse, rurb, twine, vade, vail, vase, vene, venge, vent, verge, verse, vert, vest vice, vide, vince, vise, vive, voc, voke, volve, vulse

