USE OF THE ERB SCALE IN PERIPHERAL AUDITORY PROCESSING FOR VOWEL IDENTIFICATION

D: H. DETERDING*
Department of Linguistics
Sidgwick Avenue
Cambridge CB3 9DA
England

ABSTRACT

Some previous systems for using knowledge of peripheral auditory processing in speech recognition have used the Bark scale. Here, the use of the ERB scale is compared with the Bark scale.

Vowel spectra are transformed in the manner suggested by Bladon and Lindblom. The resulting vowel representations using the two different scales are then compared for a whole-spectrum approach to speakerindependent vowel recognition.

The success rate for correct identification is quite high with either scale; but it is unlikely that the remaining errors could be overcome using this kind of whole-spectrum approach.

INTRODUCTION

In recent years, many researchers have investigated the use of models of the peripheral auditory system as the first stage in automatic speech recognition sys-

Figure 1. Plot of Bark scale against log Hz scale.
tems. It is argued that, if the speech can be transformed in a manner similar to the processing of the ear, the task of recognition will be made easier.

If such a transformation is to be used, it is important that it be as accurate as possible. In their suggested auditory transform, Bladon and Lindblom [1] use a Bark scale. Moore and Glasberg [2] suggest that their ERB scale (standing for Equivalent Rectangular Bandwidth) is more accurate. In this paper, a comparison is made of the effectiveness of using these two scales in producing auditorilytransformed spectra for speakerindependent vowel recognition.
bark scale vs erb scale
Plots of the two scales against a log Hertz scale are shown in Figures 1 and 2.

The principal differences between the two scales are: the width of the critical band estimated by Moore and Glasberg is smaller, so there are more ERBs below 5000

Figure 2. Plot of ERB scale against log Hz scale.

Hz than there are Bark; and the ERB scale deviates les
below 50 CHz
One consequence of these differences is that, when voowel spectra are transformed to simulate aspects of peripheral aud to be
processing, the lower harmonics tend to resolved on an ERB scale, where
smoothed out on the Bark scale.

auditory transforms

In the experiment reported here, frames of
25.6 msec of speech were extracted from 25.6 msec of speech were extracted from
vowels uttered by a number of speakers. vowels of these frames of speech then
FFTs of
of underwent transformations derived from
models of the peripheral auditory system models of the peripheral auditory system,
and the final representations were used and the final representations were use
for attempts at automatic vowel recogni-

Figure ${ }^{3}$. The effect of the various
stages of the Bark transform for one token stages of who'd".

For the Bark scale representations, th
various stages of the Bladon and Lindblo various stages of the blacion and $\begin{gathered}\text { transform were performed according to the }\end{gathered}$ transform were
formulae in [1].

To derive comparable representations for the vo:vels on the ERB scale, the formula for calculating excitation patterns fro
Moore and Glasberg (2) was used in place Moore and Glaserg
of the convolution of the masking filter of the Bladon and Lindblom model; but
in the Moore and Glasberg provide no formulae for
db-to-phons or phons-to-sones conversions so these were taken directly from the Blaso Lindblom model

Examples of the various stages of the two
transforms on the FFT spectrum of a frame transforms on the FFT spectrum of a frame
of speech are shown in Figures 3 and 4 . It can be seen that the final ERB scale representation is less smooth than the
final Bark scale representation. This is final Bark scale representation.
a consequence of the narrower masking

fiter suggested by Moore and Glasberg that has not been smoothed out could interfere with been smoothed out could wider masking filter was also tried with the ERB scale. However, the success rate
for vowel recognition using this wider filter was worse, so the results this wider
nere for the ERB scale ared here for the ERB, scale are for the nar-
rower filter.

nORMALIzing auditory representations

Blomberg et al [3] find that, for vowel
identification, identification, the various for vowel
their auditory
transform are actuag in tructive except for the actually des-
stage; but stage; but they investigate recognition
for each speaker independently for each speaker independently, without
attempting any kind of cross-speaker nor-
malization malization. It is possiblespeaker nor-
tory representation an auditory representation only becomes important
when speaker-independent recognition is
attempted.

In the experiment reported here, identification of the vowels of each of thirteen
speakers was bas speakers was based on templates derived
from the vowels of the other spe from the vowels of the other speakers, so
If speaker normalization can be achieved
by a simple shift along an auditory scal by account shift along an auditory scale
to fifferent vocal tract
lengths [4], the shift lengths [4], the shift required for adapt-
ing to one speaker from a set of templates
 appropriate shift. can therefore be of an an
the basis of a single calibration on the shift that angle calibration vo voel:
the two representamost similar can ce used for normalizing
all the other vowels. This is comparable
ath in all the other vowels. This is comparable
to the normalization scheme proposed by
Nearey Nearey [5], though it uses an auditory
scale instead of the logarithmic scale
that he suggests.

Various vowels
calibration vowel were tried as the normalization, the
the vowel from hard" the vowel from "hard" was found to provide presented, cthe calibration vorel was results

OWEL RECOGNITION EXPERIMENT

Eight male and five female speakers, all
using a Standard southe using a standard Southern speakers, all
each produced the with accent each produced the words "heed", "hid"
"head" "had", "hard", "hud", "hod"
"hoard" "had", "nol "hoard", "hood"', "who'd", and "hud"' "hoard",
isolation. The frame of speech for use in
the reconnition was extracted from about
one third of the way along each wout
The to one third of the wayated from use in
The 1ocation of this way
manually each vowel. manually, by examining the speech mined
speech editor

Por identification of the vowels of each seaker, templates were derived by averag-
ing the vowel representations of all the ther speakers. cation was done by finding the template by the normalizing shift) er displacement that of the vowel. Thift) most similar to
thimilarity of two vowel representations was determined by

survs

The percentage of correct vowel identifi-
cations under various conditions in rable 1. It is hard to draw clear conclusions about the superiority clear con-
auditory scale from these results. from these results.
The success rate for vowel recognition
after each of the various transforms is shown in the varions stages of the figures suggest that each of the stase improves the recognition success rate, stage. These findings differ of from those
of Blomberg et al $[3]$.
-
The results in Table 1 show that the
recognition performance for the female

	bark	ERB
Normalized		
male only	89	
Female Only	76	78
All	86	86
Un-normalized		
Male Only		
Female Only	74	78
All	84	83

Table 1.
cations
Percentage of correct identifi "normalized" conditions, a narions: in th shift was derived as described; in the "un-normalized" condition no normalizing
shift was used; in the "male" conditing the vowels of the male speakers wer recognized using templates derived from
the vowels of only the other male sper the vowels of only the other male speak-
ers; similarly for the "female condition
in the all" condition, the vow in the "all" condition, the vowels of each
of the speakers were used for identifica-
tion of all the of the speakers were used for
tion of all the other speakers

$$
\begin{array}{lrr}
& \text { BARK } & \text { ERB } \\
\text { FFT } & 64 & 64 \\
\text { auditory scale } & 74 & 73 \\
\text { masking } & 81 & 86 \\
\text { phons } & 83 & 87 \\
\text { sones } & 86 & 87
\end{array}
$$

Table 2 . Percentage of correct vowel of the stages of the trans of each
vowels was considerably worse than for the male vowels. Examination of the pattern of misidentifications showed that on both scales many of the vowels of one female speaker had been incorrectly identified. The possibility that the normalizing shift for this speaker was not optimal was then investigated..
All possible normalizing shifts, from minus 40 to plus 40 points, were tried. (One point represents $1 / 256$ of the total spectrum, ie 0.075 Bark or 0.11 ERBs.) No shift allowed more than six (out of eleven) correct identifications on the Bark scale or seven on the ERB scale.

Even if, for this speaker, the templates were derived from only the other female speakers, the success rate was not perfect: no normalizing shift allowed more than eight correct identifications on either scale.
It seems that no simple normalizing shift will allow all the vowels of this speaker to be identified correctly.

It might be argued that the perception of some vowel distinctions lies mostly in the duration of the vowel, so, for example, for many speakers of Standard Southern British one cannot expect / a :/ and / $0 /$ to be differentiated on the basis of a single extracted frame. But, with the best shift for this speaker using the female only templates, the remaining errors on both scales included:

/ae/ identified as /3:/ /u:/
 /I/

These errors could not be resolved by considering the duration of the vowel.

DISCUSSION

Many of the vowel representations looked like that in Figure 5, with much less distinct peaks than those of Figures 3 and 4.

Given the amorphous shape of the vowel in Figure. 5, the high success rate of the recognition was surprising. If a single normalizing shift is used with a whole spectral matching, it is doubtful if the success rate could be improved much beyond its present level.

Figure 5. A Bark scale vowel representation of one token of "had".

Psychophonetic experiments [6] indicate that whole-spectrum-based vowel recognition is not likely to succeed because it retains spectral information that is relevant to the speaker's voice quality relevant not to phonetic identity of the but not to tral tilt, formant bandwidth, and even. substantial changes in relative formant amplitude have little effect on phonetic vowel identity, but they have drastic effects on whole-spectrum matching scores. In obtaining better phoneme recognition scores than achieved here, Suomi [7] attempts to factor out the effects of spectral tilt from his wholespectrum representations.
It is clear that some attempt must be made to find important features, principally the location of the formant peaks, and to use these for vowel recognition.

ACKNOWLEDGEMENTS

This paper is based on work carried out as part of the Linguistics Department's component (SERC grant GR/D/42405) of Alvey research project MM1/069 on Automatic Speech Recognition, which involves Cambridge University, the MRC Applied Psychology Unit, and Standard Telecommunication Laboratories Ltd.

REFERENCES

[1] R.A.W. Bladon and B. Lindblom, "modelling the judgment of vowel quality differences", JASA 69 (5) pp. 1414-1422, 1981
[2] B.C.J. Moore and B.R. Glasberg, "Suggested formulae for calculating auditoryfilter bandwidths and excitation patterns", JASA 74 (3) pp. 750-753, 1983
[3] M. Blomberg, R. Carlson, K. Elenius, and B. Granström, "Auditory models as front ends in speech-recognition systems", in "Invariance and Variability in Speech Processes", (ed. J.S.Perkell and D.H.Klatt) Lawrence Eribaum Assoc. pp. 108-114, 1986
[4] R.A.W. Bladon, C.J. Henton and J.B. Pickering "Outline of an auditory theory of speaker normalization", Proc. of 10th Int. Conf. on Phon. Sciences, Utrecht, pp. 313-317, 1983
[5] T.M. Nearey, "Phonetic Feature Systems for Vowels", Indiana University Linguistics Club, 1978
[6] R. Carlson and B. Granström, "Model predictions of vowel dissimilarity", STLQPSR 3-4/1979 pp. 84-104, 1979
[7] K. Suomi, "Whole spectrum vowel normalization", Speech Communication 3, pp. 199-209, 1984

