Diana Krull

Institute of Linguistics University of Stockholm
Department of Phonetics
S-106 91 Stockholm Sweden

ABSTRACT

In recognition algorithms and certain theories of speech perception the process of signal interpretation is modeled in terms of distance metrics comparing the signal with stored references. In order to evaluate such metrics, listening tests were performed. The stimuli were short (about 26 ms) fragments derived from the consonantal release of Swedish $\hat{V}_{1} C: V_{2}$ "words". A stop (b,d,d,g) appearedic:V systematically varied context of phonologically short vowels (i,e, a,o,u). The test yielded confusions which appeared to make qualitative sense in terms of the acoustic properties of the stimuli.

The spectrum level of the stimuli was measured at two time points after the stop release. Euclidean distances were calculated using spectra derived by means of $1 / 4$ octave filter analyses. Two kinds of distances were calculated: static, based on spectra sampled at the first time point, and dynamic, based on the differences in spectral change between the two samoling points. Linear regression analyses performed on symmetrized percent confusions versus stimulus-reference distance produced correlation coefficients of -.85 (static), -. 83 (dynamic), and -.92 (static and dynamic combined.)

INTRODUCTION

This investigation is based on the conception of a perceptual space for speech sounds where the distance between different sounds reflects the degree of their perceptual similarity. The greater the similarity between two sounds, the smaller the distance between them. Similar sounds tend to be confused with each other, therefore the number of confusions between sounds can be used as a measure of their perceptual distance. A further assumption is that correct identification of a sound indicates minimal distance from a stored reference.

For both theoretical and practical reasons, it is often desirable to be able to predict perceptual similarity from
acoustic data. Such predictions are important especially in automatic speech recognition. To implement such a model, it is necessary, on the one hand, to find a realistic transforration of the speech signal, e.g. in terms of a realistic auditory model, and, on the other hand, an empirically calibrated distance metric.

ELICITATION OF PERCEPTUAL CONFUSIONS

The aim of this study is the evaluation of such a prediction model for Swedish voiced stops. It has been shown for S wedish /1/ that there are considerable coarticulation effects for such stops in intervocalic position. To make use of these effects, stimuli of the form $\stackrel{\rightharpoonup}{v}_{1} C: \vec{V}_{2}$ were prepared, where the consonant was $i b, d, q, g$! and the vowel [s, $x, a, 2, y I$. The resulting one hundred nonsense words were read in random order by a male speaker of the Central Swedish dialect. The Swedish grave accent was used in order to give both syllables about equal prominence.

From these "words" shorter stimuli were prepared by cutting out ca 26 ms long segments beginning at consonant release. For simplicity, these stimuli will henceforth be referred to as "Burst" although they can contain also the beginning of the vocalic transitions. Notwithstanding the fact that the duration of the noise burst varies with place of articulation, all stimuli were given the same length in order to avoid letting stimulus length constitute an extra place cue.

A tape was prepared where each "Burst" stimulus appeared three times. The order of the stimuli was randomized. 20 native speakers of the central Swedish dialect listened to the tape, their task being to identify the consonant.

The results of the perception test are shown in 25 confusion matrices, one for each vowel context (Fig.l). In each row of matrices the preceding vowel changes from front to back while for each column of matrices it is the following vowel that changes in the same manner. Comparing the results by vowel contexts and consonants,

Fig.1. Confusion matrices for "Burst"
Fig.l. Confusion matrices
stimuli in 25 vowel contexts.
it can be seen that the confusions form a regular pattern. For example, [g] in frant
vowel context was often confused with the dental and the retroflex, but seldom with the labial. In back vowel context, on the other hand, the velar was often confused
with the labial but almost never with the dental or the retroflex. The consonants
seem to have been easiest to seem to have been easiest to identify in
the context of $/ a /$. The influence of the the context of $/ \mathrm{a} /$. The influence of the
preceding vowel was less pronounced than prect of the following one. (For more
that on than
details see $12 /$). Perceptual details see /2/). Perceptually more the
distance between the velarand the dental is thus small in front vowel context and large in back vowel context, while the

USING PHYSICAL DISTANCE MEASURES TO PREDICT a qualitacive conpari

A qualitative comparison of stimulus
spectra showed that there are pronounced coarticulation effects and, also, that these can have influenced the direction and
number of the confusions. With such effects in mind, three models were chosen for correlated to the perceptual confusions. The first model was based on formant frequencies at the moment of consonant release, and the second on sone-Bark The third model was based on bandpass filtered spectra sampled at two points in time: t_{l}, integrated over the first 10 ms later. The measurements were carried out with 14 digital $1 / 4$ octave filters, covering a frequency range from about .4 kHz,
to about 4.5 kHz . The measured sound pressure levels were plotted as a function prestequency. The resulting spectra showed similarities and differences not only the consonant but also according to the following vowel, thus forming 12 groups: labial, dental, retroflex, and velar stops read, in the context of a following front within groups being small, mean values were calculated for each group, both at t_{1} and
at t_{2}. The t_{1} spectra were normalized with at t_{2}. The t_{1} spectra were normalized with
respect to their mean SPL in order to avoid including differences in overall intensity into the distance measure. Two examples of
the resulting spectra are shown in Fig.2. Distances between spectra Distances between spectra were then
calculated for t_{1}, the result was called calcutic" distance, using the Euclidean
"stric: static

$$
\operatorname{Dstat}_{i, j}=\sqrt{\sum_{n=1}^{24}\left|L_{i, n}-L_{j, n}\right|^{2}}
$$

Dstat ${ }_{i, j}=$ the distance between stimuli $L_{i, n}=$ the level ${ }^{1}$ in band n The changes in spectrum level that occur
after stop release show characteristic
differences These dynamic differences of articulation. years bynamic investigated especially in connection with the question of acoustic invariance for stop consonants /4/. of the twelve spectra, in spectrum level that at low frequencies the spectrum level rises during the interval between t_{1} and t_{2} for all spectra, and is comparatively above ${ }^{2.5} 5 \mathrm{kHz}$ that the amount and direction of the change varies in a systematic way: before front vowels the level goes up for
the labial, remains unchanged for the dental, and drops for the retroflex and the velar. Before /a/ the level also rises for
the labial, but in contrast to the front the labial, but in contrast to the front dental and the retroflex but is stable for

BACK VOWEL

Fig.2. Examples of spectra sampled at two
time points after stop release time points after stop release. $1 / 4$ octave
band-pass filters were used. remains stable for the labial, while
dropping with all other places of
articulation, although the drop is comparatively small for the velar. It is thus seems that although the change in level is
dependent on place of articulation, the dependent on place of articulation, the
following vowel must be taken into accunt following vowel must be taken into account
too. There tends to be less change if the
then too. There tends to be less change if the
spectra of the consonant and the following vowel are relativelysimilar as is the case for the dental and front vowels, for the
velar and $\ell a l$ and for the labial and back vowels.
dynamic distances were calculated in a similar way as the static ones with non-normalized spectra and only for the six ilter bands above 1.5 kHz , that is in the ifequency range where there were systemati

$$
\operatorname{Ddyn}_{i, j}=\sqrt{\sum_{n=1}^{6}\left|c_{i, n}-c_{j, n}\right|^{2}}
$$

Where Ddyn ${ }^{\text {in }} \mathrm{dB}$ from $\mathrm{t}^{=}$difference in level change
 Before performing regression analyses correlating acoustic distances alyse perception test were manipulated of th ways: first, the answers were divided into and mean values were calculated for the spar group; second, the answers were symmetrized according to a method described by Klein, analyses were then calculated between the of acoustic measures: difference between spectra at t_{1}; i.e. dirnamic, i.e. difference in the amount and static and dynamic distances combined

$$
D_{i, j}=\sqrt{\left(\text { Dstat }_{i, j}\right)^{2}+\left(\text { Ddyn }_{i, j}\right)^{2}}
$$

 The resulting correlation coefficients
are shown in the table below.
$\mathrm{r}(\mathrm{tl})$-- static:
Front
-.78
$\underset{\text { Front vowel }}{\text { r(t2-t })}$ - dynamic
$\begin{array}{cc}\text { Front vowel } \\ -.78 & -.94\end{array}$
$\underset{-.14}{\text { Back vowel }}$
static + dynamic
Front vowel
/a/

It can be seen that good predictions can be made only for consonants before the negative for the back vowel context. What could be the reason for this? A possible answer could be that the listeners, if the
could not recognize the following vowel
used a strate used a strategy somewhat different from that assumed here. Even if we are correct stimulus with that. a comparison of the indeed take place in the listeners processing, we might be wrong in supposing actually associated with the specific VCV
word from which the stimulus had been derived. Conceivably, a given stimulus might lead the listener to postulate a reference spectrum fron a "neutral" vowel context in cases where cues for V_{2} were weak or absent. In order to obtain information on these questions, an additional test was carried out with the "Burst" stimuli using eight subjects, .their task now being to identify the vowel. The results showed, first, that a back vowel could be identified only after a labial or velar consonant. After a dental or a retroflex listeners heard either a front or a neutral vowel. When the original vowel was a front vowel or /a/, listeners either made few errors or heard a neutral vowel.
with the above considerations and the preceding results in mind, acoustic distances for all stimuli (except labials and velars before back vowels) were calculated using consonants read before /a/ as references. The new correlation coefficients are shown below.

r(1) -- static Front vowel /a/ $-.89 \quad-.93$	Back vowel $-.96$	$\begin{aligned} & \text { Contexts } \\ & \text { poolea } \\ & -.85 \end{aligned}$
$\begin{gathered} \text { r(t2-ti)--dynamic } \\ \text { Front vowel } / a / \\ -.94-.94 \end{gathered}$	nack•vowel $-.72$	$\begin{aligned} & \text { Contexts } \\ & \text { pooled } \\ & -.83 \end{aligned}$
static+dynamic Front vowel /a/ -. 90 -. 98	Eack vowel -.89	$\begin{gathered} \text { Contexts } \\ \text { poole3 } \\ -.92 \end{gathered}$

References (1966): "Coarticulation in 7lf Unman, S. (1966): spectrographic measurements", JASA 39(1), 151-168
/2/ Krull, D. (1984): "The role of vowel context on the perception of place of articulation of stops", PERILUS, Report III, University
of Stockholm
/3/ Krull. D. (1985) On the relation between the acoustic properties of S wedish voiced stops and their perceptual processing",
PERILUS, Report IV, University of Stockholm
/4/ Kewley-Port, D. (1983): "Invariant cues for place of articulation in stop consonants $=$, JASA. 73(1), 322-335
/5/ Klein, W., Plomp, R., and Pols, L.W.C. (1970): "Vowel spectra, vowel spaces and vowel identification". JASA 48(8), 999-1009

