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ABSTRACT

Computational modeling of the auditory periphery has

become an integral part of hearing and speech research in recent

years. This reflects the importance of computers and computa—

tional models as a research tool for experimenting flexibly in the

domain of complex auditory phenomena. Both our general un-

derstanding and the fragmental knowledge of details known from

hearing research can be reconstructed and tested in the form of

functional models.

This paper approaches the auditory models primarily from

another aspect: their applications within speech processing. Al-

though there are almost no existing practical applications where

.systematic modeling has proven to be superior to traditional

methods, the approach as such is seen as promising and neces-

sary. Several approaches to auditory modeling are viewed in the

paper with the main emphasis on functional and psychoacoustical

properties, including some principles proposed for higher-level

processing. Potential areas of applications are discussed with

examples taken from our own studies.

INTRODUCTION

- The theories, models and applications of speech percep-

tion are without any doubt lagging behind the level of knowledge

in speech production. The main reasons for this are due to the

complexity of the hearing system and the diffiCulties in experi—

menting with it, the lack of basic understanding of the higher-

level processes and the problems in the implementation of

experimental models to simulate the auditory system

What is (or could be) auditory modeling?

The development of computers and software-based

simulation makes it more and more attractive to experiment with

principles of hearing. To some extent electronic and even

mechanical models have been tried but the computer has become

a superior tool for the task. The concept of auditory model is

used normally to refer to a computational model of the peripheral

hearing system. The physiological functions of the basilar

membrane and other cochlear processes up to the neural levels

arggonsidered as the primary subject to be simulated by the

m els.

Another theoretical and experimental basis for auditory

modeling comes from psychoacoustlcs, where the correspond-

ence to the underlying physiology is not direct anymore.

Perception thresholds and psychophysical "transfer functions"

are more central to the approach. Psychoacoustical concepts like

pitch and loudness that are related to the peripheral hearing are

well developed and exact to a high degree. They have been

verified by subjective listening experiments. More abstract

properties exhibit fuzziness and random behaviour but can be

included in computational models if they are stable enough.

The third approach to modeling is to hypothesize

functional principles that possibly could be found in the hearing

system. They may not be verified by direct physiological or

psychological experiments. Most auditory models concerning

higher levels of hearing will probably be of this type because the

physiological basis is too complex and hard to access, and even

the psychological approach does not test and validate the models.

The borderline between auditory modeling and general informa-

tion processing principles is not very clear at these levels.

Why auditory models?

Auditory modeling is attractive as a research tool because

it presents the possibility to test hypotheses and experiment with

new ideas flexibly in a proper context. The hearing system

consists of complex subsystems that tend to be nonlinear and

contain feedback loops, which makes it practically impossible to

apply analytical modeling methods except to small subproblems.

Computational models are useful also in conceptualizing the

signal and information processing aspects in hearing apart from

the underlying physiology.

The basic research of hearing is only one of the motiva-

tions for auditory modeling. Major challenges for future work

are to be found in potential applications, especially in speech

recognition. The human hearing system is the best processor to

recognize speech messages; why not to try to duplicate it in

technical form. The results so far show that this will not be done

easily. In principle, however, this approach is promising and

necessary, at least to gain a deeper insight into the many

problems of speech recognition.

This paper reflects the point of view of the author towards

auditory modeling. Physiological models are not seen as the

only, and even not the major subject of research, when it comes

to applications. Especially for speech processing we need

flexible functional models based on signal processing and

artificial intelligence. The rest of the paper‘will tie together a

number of subproblems in auditory modeling along with some

applications and experiments performed by our own research

gr°“P-.

MODELS OF THE PERIPHERAL HEARING SYSTEM

External and Middle Ear Models

Computational modeling of the hearing system begins

from the acoustics of the external ear. Localization of sound and
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the frequency sensitivity of‘the ear are greatly influenced by the

-. acoustical details of the pinna and ear canals. The experimental

studies and measurements [1] that have been made have led to

successful results in computationally reconstructing an authentic

sound environment sensation [2]. In combination With cochlear

and neural modeling this could lead to better directional

selectivity and sound localization [3] e.g. in speech recognition

devices. Otherwise the role of the external and rrnddle ear_is a

relative simple, almost linear filter as a part of a complex auditory

model, contributing to the frequency sensitivrty properties. .

Cochlear Madeling -- . _

The physiology of the inner ear [4] - [8] is a main source

of knowledge providing a concrete basis for present auditory

modeling. This area of research is fairly rich in results and

approaches, see [9] - [14], but no comprehensrve and systematic

cochlear models exist in computational form.

Modeling of the inner ear can be divided into several

subproblenis. The mechanics of the basilar membrane has

received considerable attention since the studies of von Békésy

[7]. The mathematically elegant principle of the nonhomogene-
ous transmission line must be enhanced with nonlinear processes
and complex interactions with hair cells and neural processes
[15] - [17]. Some recent results propose interesting computable
models of interaction to improve the sensitivity and selectivity of
the inner ear, Zwicker [18] and Lumer [19]. The acoustic

emission, see Kemp [20], [21], should also be included into a

full-scale model. The mechanical to electrical and neural trans-
duction takes place in the hair cells and can be modeled in
physiological detail or functionally including the random nature
of single cell firings, e.g. Schriider and Hall [22], Lyon [23].

Towards Higher Levels

As the computational modeling domain moves towards the
neural levels, more functional principles must be used instead of
physiological facts. Mixing of physiology, psychology and
highly hypothetical ideas in the form of computer programs is an
important approach. Some models are more oriented towards the
study of advanced computational implementations and applica-
tions than the hearing process as such, e.g. Lyon [23] - [25].
Reaching higher abstraction levels in relation to physiology by
computer programs may prove to be valuable when studying the
representation of speech and complex stimuli in the hearing
system. -

The problem of neural representations of speech signals
has become a subject of remarkable research in recent years.
[10], [26] - [28]. There are different explanations of how the
spectral and temporal information is coded into the neural signal.
The saturation effect of a single nerve fiber iti sending amplitude
data must be takeninto account. The computational models uy to
capture the essentials of this process in different ways: e.g. the
synchrony model proposed by Seneff [29], [30] is based on thefiring synchromsm pnncrple found in the auditory nerve to avoid
the spectral structure from being flattened. Seneff also made a

eneral' ti ' ' ' - .55teetio15a on of the pnncrple so that it can be applied to pitch

Psychoacoustical Models
Some existing computational models find their 'and experimental basis primarily in psychoacous‘:i:(s’m'tll'haeJconcepts of Bark scale (critical band scale), loudness andloudness densrty spectrum, masking curves, temporal timeconstants etc. [31] cannot be entirely reduced to the physioloof hearing. Examples of auditory models that are closely relatgedto psychoacoustics are given e.g. by Schroder et a1. [32] andZwicker [33]. Both of th ' '

applications in mind. cm were developed With technical

Including'l’honetic Aspects . - _

Some research groups have worked by experimenting and
modeling the perception of speech and its phoneticafly relevant
features. Peripheral models of hearing tend to be nonspecificin
relation to speech. How should the formants and formant
transitions be processed by auditory models, and how should the
phonetic features and categories be reflected in them? These

problems are important from the point of view of applications,
especially speech recognition.

Carlson: Granstrr'im et al. have discussed these questions
and proposed several models for auditory speech analysis [34] - -
[36]. Klatt has a similar approach and he suggests a phonetic
distance measure for comparison and classification of phonemes
[37] - [39]. Principles and models relating auditory concepts to
higher-level perception of speech are studied by Chistovich et
a1, [40] - [42]. Among them is the concept of center of gravity.

Auditory Modeling and Traditional Speech Processing

Many technically oriented systems for speech processing
contain features that model the human hearing to some extent but
some widely used methods do not exploit auditory features at all.
It has been shown that linear predictive coding (LPC) in the
original form is not optimal because it is based on a linearly
weighted frequency scale. With Bark and loudness scaling its
performance could in principle be considerably better [43] - [45].
Hermansky et al. have presented novel modifications of LPC
analysrs to include many important auditory features that can be
applied to speech recognition [45] - [46].

AUDITORY SPECTRUM COMPUTATION

Most auditory models analyze audio signals by returning
something we could call an auditory spectrum. This is natural
because the inner ear (basilar membrane, hair cells) also forms.
somekind of a spectrum analyzer, even if it is different from
technical devices and algorithms for the Fourier transform.

. The models for auditory spectrum analysis can be divided
into two classes according to the processing of temporal
dynamrcs. If we are not especially interested in the detailed time
constants of the resulting (short-time) spectrum representation.
we can first apply the Fourier transform and then warp the
frequency scale to the Bark scale. Otherwise, we need a trans-
mission-line or filter-bank type analyzer to allow more freedom
in the desrgn of temporal features.

Auditory Spectrum by Fourier Transform
The human auditory system may be seen as a spectrum

analyzer that differs from Fourier analyzers in many ways. The
most important differences are:
l . spectral emphasis by the inverse of the equal loudness

curves,
. use of the Bark scale (critical band scale) instead of the Hertz

frequency scale,
frequency domain resolution of about one Bark.
masking effect in the frequency domain and spreading Of a“
spectral components, and .time dcmarndynamics: temporal integration and mafikmg
effect in the time domain (forward and backward mash“)

(
"
A
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N

b th All these properties are known from psychoacousdcs [3.1]at _ere have not been very many attempts to apply ‘hem m
practical applications. Schroder & al. have used a computationmodel when evaluating signal-to-noise ratios in Speech ms-mission [32]- We adopted their mathematical formulation with
minor modifications as follows:
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* Computation of the Fourier transform with a 35 ms

Hamming window.

* Emphasis of the spectrum by an approximation of the

frequency sensitivity curve of the ear (inverse of the equal

loudness curve).

* Transformation of frequency f fo Bark variable x by:

x = 7 arsinh(f/650Hz) . ‘ ' ‘

* So called “excitation function" E(x) is found by smoothing
the Bark-scaled pre-emphasized power spectrum S(x) with a

"spreading function" E(x):

E(x) = S(x) * E(x), (* indicates convolution)

where E(x) in our model is a piecewise linear approximation
of the Schroder et a]. spreading function

1010g(B(x)) = 15.81+7.5(x+0.474) - 17.5" 1+(x+0.474).2

by linear slopes (+ 25 dB/Bark, -10 dB/Bark) and power
series approximation for the top of the curve (see Fig. lb).

* dB-scaled E(x) is the final auditory spectrum used in the
study. Two examples of such spectra of simple signals are
shown in Fig.1. The spectrum of an impulse (1a) has a form
which is similar to the frequency sensitivity of the ear. The
auditory spectrum of a sine wave (1b) gives the masking
curv)e and an approximate form of the spreading function
30: .
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' Fig. l. Auditory spectra of simple test signals; (a) impulse
spectrum and (b) sine wave spectrum.

Some examples of auditory spectra with corresponding
Fourier spectra for speech sounds are plotted in Figures 2 and 3.
The Finnish vowel lal shows clearly how the harmonic structure
in a Fourier spectrum is smoothed'out but the main formants are
retained in an auditory spectrum (Fig. 2). In the fricative Is] the
random variation of the Fourier spectrum is also smoothed and
the "fricative formant" shows up in the form of a normal vowel
formant (Fig. 3). ' , '

/

Auditory Spectrum by Filter-bank Modeling/

It was found to be difficult to include proper temporal
dynamics when using the Fourier transform )echniques. The

filter—bank principle is well suited to audit vSpectrum analysrs

because the human auditory system — basil, membrane and hair

cells - also consists of a multi-channelyralyzcr. The bandwidth
of the overlapping channels is abouta critical band or 1 Bark.

Instead of thousands of hair cells in the biological system it is

enough to have 1 - 4 channels pet one’Bark in a computational
' model. This means 24 - 96 channels covering the 24 Bark audio
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Fig. 2. Fourier spectrum and auditory spectrum for a
Finnish vowel /a/.
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Fig.’ 3. Fourier spectrum and auditory spectrum for a

Finnish fricative /s/ (in context lassal).

range. With 0.5 Bark spacing our model has 48 channels, which

seems to be a practical compromise between good resolution of

spectral representation and a low amount of computation. ‘

Each channel consists of a bandpass filter, a square-law

rectifier, a fast linear and a slower nonlinear lowpass filter, and a

dB-scaling stage (Fig.4).

7 .Pl 2.1.3
13



w

Baseleuel

xi fast "‘ slow *5 '09
3.9. x2 + LP. LP. (an)

_-- 48 channels "'_ Auditorg
m m "'— Spectrum

--_ bandwidth lBARK "'— output.

BL
"‘ test *4 slow "5 log

B.P. x2 * LP. t—fi ((13).)

Fig. 4. A 4"3-channel filter-bank model for auditory spectrum

computation. B.P.=bandpass, L.P.=lowpass filter,

x2“ square-law detection, LOG = dB-scaling.

Bandpass filter bank

Bandpass filters with 0.5 Bark spacing and about 1.3

Bark bandwidth give the desired frequency selectivity to the

model. Each bandpass is a 256th order FIR-filter, carefully
designed to have a frequency response which is the mirror image

of the spreading function B(x) given by Schroder et al.

This filter bank design gives a good approximation of the

desired masking properties in the frequency domain. Computa-

tion of the filter bank was implemented as a matrix multiplication
in an array processor (Floating Point Systems FPS 100). Even

an array processor could not run it in real time. By a proper lIR-

filter design the speed of the computation could be more than 10

times faster but accurate design of these filters is a difficult task.

Not only frequency selectivity but also the frequency
response (sensitivity) of the car must be built into the filter bank.
The simple way we used is to let the relative gains of the
channels be proportional to the inverse of the equal loudness
cm've (60 dB-level).

B .fi . , \\

. The rectification effect in the hair cells of the inner ear is
primarily of the half-wave type. Since a square-law element was
needed for temporal integration in our model, we ended up using
it Without any half-wave rectifier. We-found that in the auditory
spectrum analysis of speech this makes no noticeable difference.
A constant level is added after the rectification to simulate the
threshold of hearing. -

E] E l . . l E l l .

The remaining two filters are for smoothin the on ms of
the rectified bandpass filters. The faster one is a fg’irst-ordtg’r low-
pass With a time constant of about 3 ms. The second one is more
important. Its purpose is to implement many effects: temporal
integration and pre- and postmasking effects.

Temporal. integration is realized by linear first-order low-
pass filtering (time constant of about 100 ms) applied to the
output of the square-law rectifier. Premasking is not a very
important and critical phenomenon. No additional modeling was
necessary to match it well enough.
. Postmasking was found to be more difficult to irn
in sufficient detail. A linear lowpass filter with a 100 r511:ItIiIrcnli'.t
constant yielded postmasking effect that was many times too
long.We used a nonlinear (logarithmically linear) behaviour of
the filter for masking conditions (X4 < X5). The form of the
temporal masking pattern is now close to the actual one found in
psychoacoustical studies [31] but a delay of about 10 ms present
in the real masking effect is lacking in the model. The overall
response of the slow nonlinear lowpass can be stated now:

\

= K1*x4 + (1-K1)*X5(n-1). if X4 2 xs,
$83 = x5(n-iggzxp(K2*log(X4(n)/X5(n-1))). if X4 < x5,

where X4 and X5 are the input and output of the filter, K1 and

K2 the filter coefficients, and n the discrete time variable. A good

value for K1 was found to be 0.0005, and 0.0007 for K2 When

the sampling frequency is 20 kHz.

Auditory short-time spectra computed by the model can be

displayed in many forms: spectral series, spectrograms, etc.

Examples of these are given later in this paper.

AUDITORY FORMANTS AND FORMANT SPECTRA _

The auditory spectrum, as was analyzed by the models

above, is not a speech-specific representation. Attempts to utilize

it or other similar preprocessing methods in speech recognition

have shown only moderate results, see e.g. [47]. It is obvious

that some further processing of auditory spectra is needed to

exhibit speech-specific features and more "phonetic—like" audi-

tory representations of speech.

Some hints and guidelines can be found e.g. from the

studies of Klatt [37] - [39], paying special attention to the

formant peak regions in the auditory spectra. Global properties

such as the slope of the spectrum have only a minor effect on the

phonetic quality of a sound. Klatt suggested the use ofphonetic

distance measures [39] based on local properties of the formants‘

in auditory spectra. Another concept that is closely related to

ppgitory formants is the center of gravity by Chistovich et a1.

Emphasizing and Sharpening the Auditory Formants

Possible conclusions that may be drawn from the results
of using short-time auditory spectra in speech recognition could
be that the perceptually important formant peaks are excessively
smoothed and the local properties of the formants are not prom-
inent enough. Is it possible to compensate for these effects?
There are neurophysiological principles that are candidates for
the spectral sharpening effect: lateral inhibition is one such
candidate. A strong excitation at a certain place along the basilar
membrane tends to suppress the neighbouring channels.

, The formant features can be .sharpened or emphasized
computationally in many ways. We can perform highpass or
bandpass filtering of the auditory spectrum in the Bark domain to
supress the global forms (e.g. spectral tilting) and to emphasizc
the local formant peaks. This can be realized by convolving the
loudness-scaled auditory spectrum by a proper spatial (Bark

. > domain) bandpass filter impulse response. Figures 5 and 6 show
original auditory spectra for a vowel /a'/ and fricative-ls/ along
With the resulting auditoryformant spectra, as we call them.

\ In both cases the auditory formant spectrum exhibits
derail)! the formant peaks so that the global spectrum structure
does not have a major dominance. Serial displays of auditory
spectrum and audito forma t - F' .7 for

the vowel combinaticliyns /aiai/_n sl’¢<3tr'um are shown in 1g ‘

The Concept of Auditory Formant
. . The perceptual relevance of the eaks in audito spectra
implies the usefulness of the concept afiditory formanrz It must
be rec°Enized as different from the acoustic and articulatory
$36018 0f formants even if there is a clear corresP°ndence
. tween them. A useful characterization of the auditory mm”!
15 ‘9 state 1} as any peak or relatively localized high-loudness
region, a kind of landmark in an auditory spectrum.

Several studies have been done on th e tual behavior
of auditory formants and formant groupsfspfemeg. Chistovich

PI 2.1.4
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Fig.5. Finnish vowel /tt/: (3.) auditory spectrum,
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Fig. 6. may. /s/: (a) auditory spectrum. (b) auditory
formant spectrum. -

[40]. The integration of closely spaced formants, the concept of

center of gravity, etc. are principles that should also be imple-

mented in computational models.

Is it possible to extract auditory formants and to describe

them as discrete units? The auditory formantspectrum above is a

good data source for this extraction. In Figures 5, 6 and 7 a

spatial bandpass filtering with a one Bark resolution was applied

to give a proper pie-emphasis to the spectrum. A peak-picking

algorithm easily finds the formants as the local maxirna of the

curves. Fig. 8 illustrates how the short-time auditory spectrum of

the utterance [kuusi/ (Fig. 8(a) dB-scaled, Fig. 8(b) loudness-

scaled) is transformed to an auditory formant spectrum, Fig.

8(c). The formant peaks are finally plotted and shown in a

spectrogram-e display (Fig. 8(c)).

The one Bark resolution does not always work. Closely

spaced forrnants may give a better response e.‘g. to a 2 Bark

resolution filtering, Fig. 8(d). (See also the 2 Barkformant

spectrogram in Fig. 8(f)). This finding shows the need for

different resolutions in different contexts. According. to

Chistovich the auditory system can integrate neighbouring

forrnants up to a distance of 3.5 Barks [40]. 'I'hiscorresponds to

about a 2-3 Bark resolution in our bandpass filtering. - —

Since there is no single optimal resolution a better strategy

is to use multiple resolutions in parallel. This means that the

formant peaks are picked to form several formant lists. Later on

it is possible to utilize the data that seems to be the most reliable

based on the context.

We can also visualize the multiple resolution auditory

formant data in a spectrogram form by using different gray levels

or colors for the formant trajecwries of different resolutions. Fig.

9 shows the mixed result of 1 and 2 Bark auditory formant

analyses for the word /kuusi/. The general principle of multiple

resolution analysis is discussed below.

Fig. 7. Spectral series for the vowel combination Mail:

(a) auditory spectrum, (b) auditory formant

spectrum.
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Fig. 8. Auditory spectrum presentations for the word /kuusi/:

(a) original dB-scaled spectrum, (b) loudness-scaled
spectrum, (c) auditory formant spectrum with 1 Bark
resolution, (d) auditory formant spectrum with 2 Bark
resolution, (e) formant spectrogram of l Bark resolu-
tion and (f) formant spectrogram of 2 Bark resolution.
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Fig. 9. An auditory formant spectrogram with two overlayed
((igplagys for resolutions of l Bark (black) and 2 Barks

ay .

Local vs. Global Features of Auditory Spectra
. Both the auditory formant spectrum and the 'grscrete formant parameters emphasize the prom‘ijriéfiiulgtflfeatures in auditory spectra. We could also analyze and charac-terize the global properties. An average spectral slope and thcenter of gravrty over the whole audic range are good exam 1 eof such global attributes. From the point of view of speleglst

perception the absolute values of these parameters are not as
important as the relative changes they exhibit. For instance, large
static spectral tilting is allowed with only minor change in the
phonetic quality of a vowel [39].

Spectral tilt or center of gravity can also be computed over
any limited range in the Bark domain. An interesting special case
is to analyze closely the effective movement ranges of the lowest '
forrnants, e.g. over 2 to 6 Barks for F1. The values of these
parameters describe the average slope or the approximate posi-
tion of the formant in the defined range. Fig. 10 shows the
results of such an analysis for the full audio range, F1, F2, and
F3&F4 range, along with the loudness function and a two-
resolution auditory formant spectrogram for the Finnish word
/viisi/.

LOUDNESS

i

L

"$1 SLOPE

SLoPE

T39» SLOPE

Fig. 10. Several different analyses for the Finnish word
/vust/: (a) formant spectrogram, (b) loudness func-
tion, (c) global slope and the local spectral slopes
for the formant ranges F1, F2 and F3&F4.

Analysis of Formant Movements
Itis known that the hearing system is especially sensitive

to changes in sound. It is also known that the auditory system
contains specralrzed analyzers for frequency sweeps and formant
movements [48]. Such detectors may have an important role in
the perception of speech signals and they should be included in
ccfimputational auditory models. To some degree, the derivatives
$11the slope funuons above represent this kind of information.

e output of an advanced detector could be a series of "formant
movement events" similar to the time structure analysis method
in the followrng section.

TIME STRUCTURES AND
MULTIPLE RESOLUTION ANALYSIS

dimensfgfils one of the most difficult and least understood
real S ech n Speech srgnal analysrs. The rhythm and tinting ll’l

straigllictfoI-wmes Wldely accordmg to the context and therefore

The transfo methOdS 0f s‘igtnentation do not work reliably.

discrete u grim?“ frOm continuous-time representations to
ti “1.5 In time should be studied more carefully so that

me resolution rs seen as one parametric scale. _
Let us consider a set of - .

. parametnc or feature functions as

i333: gem a Speech S‘gnal. Fig. 11 shows the total loudness
(relative hum of all the filter-bank channels), nonstationarlty

c ange 1n short-ume auditory spectrum) and the global

PI 2.1.6
16

TIME»

(0)

(b)

(C)

TIME ~>
' 4 I - u I n

126 241 356 470_ 585 700 015 929 1044 m

Fig. 11. Auditory formant spectrogram and multiple temporal

feature functions for the Finnish word /yksi/:' (a) total

loudness function, (b) nonstationarity function and

(c) global spectral slope. '

spectral slope as a function of time, along with the formant

spectrogram for the utterance /yksi/. What is a flexible and

reliable way to do "segmentation" based e.g. on the loudness

function?

If proper bandpass filtering is applied to the loudness

function the "events" that match best to the impulse response of

the filter are emphasized. The same principle is used as was for

the filtering of forrnants in the frequency domain. An example of

a useful impulse response for a resolutionfilter is shown in Fig.

Iii {am

" 12.

1W RESOLU‘HON
-t,o . SPAM

Fig. 12 An example of an impulse response for a resolution
filter.

Any single filter emphasizes the events of its correspond-

ing time resolution the most. The extrema (maxima and minima)

of the response are easily picked up .as prominent events in the

time structure of the signal. To be more flexible (I set of resolu-

tion filters can be applied to the loudness function in parallel. In

this multiple resolution analysis each resolution filter channel

produces a list of potential loudness events. Other parametric
unctions like the global spectral slope create their own event lists

and list structures. The idea of multiple resolution analysis has

some resemblance to the scale-space filtering proposed by Witkin
[49].

"‘ ” A's'an example of using the principle, nine filters with time
resolutions ranging from 10 to 320 ms were applied to the
loudness function of Fig. 11. The convolution results are plotted
in Fig. 13. A continuous scale of resolutions is in principle the
ideal case but a series of filters with resolution ratios of about
1N2 was found to be practical. The method of multiple resolu-

tion analysis leads to an excessive amount of computation in
comparison to single resolution (single window, frame, etc.).
This is the cost to be paid for more flexibility. In highly parallel
neural networks such computational redundancy is easily
achieved but with present digital signal processing hardware it is
a problem.

Loudness

ms

585 700 815 929 1044 ms

Fig. 13. Resulting curves from the multiple resolution

analysis of the loudness function. Vertical lines
indicate potential event positions.

Event-based Approach to Auditory Speech Analysis

Each feature to be used in a speech analysis system and

each resolution of feature produces a corresponding list of
events, containing much redundant information. In Fig. 13 e.g.
the maxima of the neighbouring channels are closely interrelated.
By a proper method we can discard many of the peaks as masked
by more prominent neighbouring peaks. The potential events can

be organized into the form of complex event list structures and
processed further by rule-based and other artificial intelligence

methods. This approach is discussed in‘ more detail by Altosaar

and Karjalainen in [50].

The event-based approach may be useful at several levels
of auditory modeling. We could apply it at the auditory nerve
level by picking up the most prominent peaks from the multiple
resolution filtering of a single critical band channel in the model
of Fig. 4, point X4. Here the range of interesting time resolu‘
tions is within a typical pitch period of speech. At the output
level of the model (point X5) the resolution range corresponds to
typi- cal speech segments of 10 to 300 ms. The prosodic features
reveal still longer event objects. By parallel processing and
concurrent programming techniquesa realization of this approach
could be undertaken.
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TEMPORAL FINE STRUCTURE ANALYSIS

OF SPEECH SIGNALS

It is still a common belief that the temporal fine structure

of speech signals within a pitch period (below 10 ms span) and

the phase properties are irrelevant to speech perception. This

belief is mostly due to the interpretations of the studies by

Helmholtz [6]. Even if thisis true as the first approximation

several findings suggest a more important role for these detail!.

For example, the success of the so-called multi-pulse LPC [51]

in comparison to the simple impulse source and all-pole

modeling shows how much the detailed time structure may affect

the sound quality. In our Finnish speech synthesis studies we

found that a careful zero—phasing (i.e. setting the phase of all

harmonics to zero) of a natural utterance /illi/ changed it to be

heard sometimes rather like [inni/.

Concepts Related to Temporal Fine Structure

The auditory spectrum output in our filter-bank type

auditory model (Fig. 4 ) does not represent the temporal fine

structure of speech signals at all. It is therefore possible to obtain

identical auditory spectra for a voiced and an unvoiced sound
from this model. The degree of voicing and pitch for voiced
sounds are certainly concepts with close relationship to the
temporal fine structure. This information should be analyzed

from the fast response of the auditory filter bank, i.e. the point
X4 in Fig.4, corresponding to the first neural stages of the
hearing system.

Lyon [23] has presented computational auditory models to
analyze the periodicity properties of speech signals by following
the principles proposed by Licklider [52]. The models rely on
correlation and coincidence functions from neural firings.

The phase properties of speech signals are difficult both to
analyze and to interpret meaningfully. A traditional way of
looking at phase has been by the Fourier transform of the signal.
The phase in this sense is, however, very sensitive to noise,
reverberation and other disturbances in speech. If any concept of
auditory phase can be formed, it must be defined in a totally
different way. i

'A step towards auditory phase could be to interpret it from
the pornt of vrew of the modulation envelope in different critical
band channels (Fig. 4). The fast response corresponding to the
output of the hair cells in the hearing system carry this informa-
tion. In the case of voiced speech sound these outputs exhibit the

.fundarnental frequency of the speech. The relative phase shift'of
these pitch modulations between the neighbouring channels

‘ could be useful as the auditory phasefunction. The same data
could be expressed also in the form of auditory group delay.

Sound Separation

The role of auditory analysis of temporal fine structure 1
takes on a new appearance when we set the 'goal of modelin to
be the phenomenon of sound separation. People can eaEily
followa srngle speaker in a high noise environment (e.g. the
cocktail party effect). To make machines recognize speech at or
below the level of back ound n ‘ .
sound separation is needig. 0186, a successful modeling of

This is a fairly new subject for serious co '‘ ' m utat
modeling. Weintraub [53] has made remarkable conuigutiorligrbirl
studying some peripheral processes of auditory analysis in sound
separation. He has em hasi ed ‘to solve this problem. p z the need for a multilevel strategy

Some special cases of sound se '- . paration can be '-
Enlentebd wrth easrly. We used the fast reSponse outputsegtP221-
;] ter- I1:}nk model (Fig. 4) and computed the cepstrum for each oft em. there was a vorced speech sound that dominated a Bark

channel, the corresponding pitch period was easily found as a

dominant peak in its cepstrum. By‘summing the cepstra of all the

channels the pitch periods of the individual sounds in a mixed

signal were possible to be separated. After this it is feasible to

estimate the spectrum of each speech sound in those frequency

areas where the signal is not totally masked by other sounds.

Such methods tend to be computationally so excessively heavy

that it prevents their use in any real-time applications now or in

the near future.

APPLICATIONS OF AUDITORY MODELS

There are very few if any practical applications of compu-
tational auditory models. This is quite natural because the subject
of research is complex and relatively new. Some preliminary

results of using them e.g. in speech recognition have shown
poor or at best only marginal results. This has been discouraging
but it has not stopped either basic research or application-oriented
work in the field. If the human hearing system performs as the
best as a speech recognizer, why couldn't a good model of it be
the best speech recognizer as well.

Speech recognition has been an explicit motivation in the
development of several practically oriented auditory models [33],
[36], [46], [54] and implicitly in many other cases. One of the
earliest works was documented by Zagoruiko and Lebedjev [55].
Only recently has there been signs of obtaining better results than
wrth traditional methodology, see e.g. Cohen [54]. It is pre-
mature to draw conclusions about the real status of auditory
models in speech recognition. It seems to be evident that no
fundamental problems can be solved without models covering
many or_ even all essential levels from acoustic signals to liguistic
processrng. One area of preprocessing where auditory models
could help is in high background noise conditions.

Speech analysis in phonetics and basic speech research
can gain from applying computational models of hearing. For
example, auditory spectra give a picture of the important spectral
features in speech signals from the point of view of perception.
Carlson and Granstrom [35] and Klatt [38] among others have
discussed the development of an auditory spectrograph. Tradi-
tionally the articulatory and acoustic aspects have been more

dominant in speech analysis because of better instrumentation
and tools for experimental work. With modern signal pro
cessors, personal computers and new programming techniques it
was possrble to develop a speech research workstation called
18A [56] that utilizes many of the representations described in
this paper.

Speech synthesis is a process where auditory models can
not be used directly. In the development of speech synthCSisi
however, we have been succesful in applying them. The micw
phonemic method by Lukaszewicz and Karjalainen [58] showed
how the auditory formant spectrogram exhibited just the infomia-
tion needed for extracting pitch period prototypes from real
speech. The use of the Bark scale was essential.
h In speech coding the auditory models could be applied in

t e analysrs phase, as a design tool, and in performance analysis.
. see Schroder et al. [32]. It is shown that the compactness of

LPC-analysis could be impoved if auditory features could b6
. integmted into the coding [43] - [45]. Unfortunately the auditory

analysis tends not to preserve the ro ' needed for
easy resynthesis of speech. p perties that are

_ Measurement of sound uali es eciall nonlinear diS'
[01110“) }n speech transmissionzvas gubield by usyto find a better
correlation between subjective and objective measures, Karjalfli'
3:311 [58]. [59] and Helle and Karjalainen [60]. We have show“
_ at an auditory spectrum distance of 2 dB corresponds to the
just noticeable level of nonlinear distortion in speech signals"
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prototype of a microprocessor—based distortion measurement

system was also developed.

Technical audiology and phoniatrics are other areas of

potential applications. In the delopment of hearing aids and

cochlear implants it is evident that some kind of auditory models

will be used in the future. In phoniatrics the'properties of

pathological voice can be analyzed based not only on articu-

latory and acoustic measurents but also on advanced auditory

models [56].

CONCLUSION

This paper has presented an overview of auditory

modeling from the point of view of speech processing research

and applications. Both physiological, psychoacoustical and

higher-level functional models are needed to gain a deeper under-

standing of the underlying phenomena and to be able to apply

this knowledge to speech technology. Auditory modeling is a

difficult area of research where progress is not always rapid. It

also takes time to transfer the results into practice. Within the last

ten years the interdisciplinary studies of computational auditory

modeling have shown trends to expand and grow. Without any

doubt this tendency will continue as the computational capabili-

ties of modeling rapidly develop.
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