STANFORD UNIVERSITY

The open CV syllable is the basic, 'unmarked' syllable type in the world's languages and in the phonological development of children. This paper charts the course of acquisition of final consonants by children acquiring a language rich in such consonants and proposes four major characteristics: (1) The number of different consonant phone types in final position is equal to or less than the number in initial position; (2) fricatives and liquids are more likely than stops and nasals to be acquired first in final position; (3) final velars are more likely to be attempted than non-final velars or final non-velars; and (4) final voiced consonants pose a special problem for children, and some children may make use of nasals in attempting to produce them. These characteristics are systematically related to the occurrence of final consonants in children's babling, to the distribution of final consonants in the world's languages, and to strength hierarchies proposed for consonants.

INTRODUCTION

The open CV syllable is the basic, 'unmarked' syllable type in the world's languages ind in the phonological development of children. ieflecting on the vocalizations of their l3-month-old subjects, Kent and Bauer [1] comment on the "primacy" of the CV syllable shape, which may be viewed as a "simplest form...or a kind of atom in the formulation of speech" (p. 527). Although many languages have syllable-final and word-final consonants and even consonant clusters, these final consonants are much less frequent than initial consonants (both types and tokens). Also, final consonants are of very low incidence in babbling, regardless of the language spoken around the child. The acquisition of final consonants can thus be expected to pose a phonological challenge for children, from either a linguistic-universal or a biological-developmental perspective.

The identification and explanation of constraints on types of consonants occurring in final position in the world's languages constitute a significant part of the total characterization of the phonological structure of human languages ('phonological universals'), and analysis of the phenomena of final consonant acquisition can contribute to this 'universal phonology' ([2]).

Word-initial position is typically the position of greatest consonantal diversity in phonological inventory, though medial position in some languages for some classes of segments may be greater; final position is typically the position of least diversity, though preconsonantal position may be even more limited. These constraints may be expressed in terms of strength hierarchies of optimal syllable-initial segment classes and their mirror image for syllable-final position: stops, fricatives, nasals, liquids, glides, vowels ([3], ch. 10). Such hierarchies are intended to show universal relations, but admit of some language-specific variation. Whatever perceptual, articulatory, cognitive processing, and social/conventional constraints account for those hierarchies may be expected to result also in developmental patterns of order of acquisition and types of substitution and assimilation. Thus it may be expected that final fricatives, nasals, and liquids will not only be more frequent than final stops and occur in languages without final stops, but will also be acquired earlier. The present paper explores the actual phenomenon of acquisition of final consonants in the light of this expectation. English is an especially appropriate language for the investigation since the incidence of initial, medial and final consonants in running text is virtually identical (36% initial vs. 32% each medial and final: [4]). We will restrict ourselves here to the analysis of word- (or vocalization-) final consonants, since syllable-final consonants which are not also word-final are extremely rare in children's early productions.
Final consonants in babbling
Several careful accounts of the phonetic characteristics of babbling have documented the relative rarity of final consonants $[1,5-8]$. on the other hand, in an analysis of consonant frequency in the babbling and word production of 10 English-learning subjects, Vihman, Ferguson and Elbert [8] found the mean proportion of final consonants to increase gradually with growth in the children's use of words, ranging from a mean of 6% final consonants early on to 17% when 25 or more words could be identified.

Differences have also been reported in the incidence of different manner categories in initial vs. final position in babbling. oller et al. [5] reported a 10 to 1 ratio of stops to fricatives and affricates in inftial position and a 3 to 1 . ratio of final fricatives to stops (based on tokens).

Similarly, deBoysson-Bardies et al. [6] reported a 9 to 1 ratio of initial stops to fricatives and affricates and an 8 to 1 ratio of final fricatives
to stops in the babbling of their French subject. In inventories of consonant types used in babble only a slightly higher proportion of fricative and liquid segments were found in final position
(29%) as compared with initial position (22%), based on the true consonant categories of stop and nasal (non-continuant) and fricative and liquid (continuant): [8]. Overall, only 19% of all ini-
tial consonants were continuant, while 32% of all tial consonants were continuant, while 32% of a 11
final consonants were continuant. As increasing numbers of final consonants began to be used in words, the slifht initial bias towar
in final position was strengthened.
Recent work on the transition from babbling to in phonetic tendencles across that transition $[5,9,10]$. Accepting Locke's assertion that the beginnings of phonological development antedate
the child's first use of adult-based words [9], it is important to consider the process by which final consonants are incorporated into the system In the course of acquiring a language
ized by heavy use of final consonants. Final consonants in early word use
In general, final consonants are rare in early words, as the finding of continuity from bab-
bling to speech leads us to expect, and the range bling to speech leads us to expect, and the range
of occurring segments is correspondingly small. In her longitudinal study of the phonetic inventories of early words for 33 children StoelGanmon
initial phones tended to be about twice as large as the typical inventory of final phones.
The total incidence of initial and fin The total incidence of Initital and final consonant segment types in words and babble reported
in Vihman et al. [8] for two lexical points is given in Table 1. Only 10% of the inventory consonants occurred in final position. While the verall proportion of consonants occurring in wor
was smaller (40%) than the proportion occurring in babble, a somewhat higher proportion of all final consonants occurred in words (48%). Some
growth of consonant use as the children "enter into" growth of consonant use as the chidren ent in the breakdown by lexical stages: At the earliest stage of word use final consonants accounted for only 9% of all consonant segments used, while at the later stage analyzed
they accounted for 11%. There are no data available at present comparing consonant incidence in babble and words for other languages. However, the emergent influence of an adult language rich in
final consonants appears to underlie these tendenfinal
$\frac{\text { Focus }}{\text { Recec }} \frac{\text { word-final }}{\text { nt }}$ work in $\frac{\text { consonants }}{\text { child phono }}$
Reent work in child phonology has emphasized the individual differences among children learning
the same language (e.g.; 12 l). Differential attention to consonants in final position is one such
individual characteristic. Menn [13] described individual characteristic. Menn [13] described
her son Daniel's early phonological strategy as a her son Daniel's early phonological strategy as a
decision "to disregard almost all information about the initial segments of a stop-f final monosyllable" (p.226). Daniel seemed to select his eariiest words so as to avoid those with contrasting initial and
final consonants; after the first 30 words, he attempted many more words with such a contrast but

Table 1. Incidence of initial vs. final consonant
types in babbling and words (based on $[4]$, Table 5).

Initial consonants		
stage ${ }^{1}$	babble	words
4 -word	123	59
15-word	94	79
Total	217	138
Final consonants		
$\text { stage }^{1}$	babble	words
4 -word	11	7
15-word	10	12
Total	21	19

$1_{\text {"Stage" }}=4$-word point ($4+$ words used in one session: 10 subjects) and 15 -word point ($15+$ words:
7 subjects). The figures represent the sum of different consonants used 4 or more times by any child in any one of three weekly half-hour sessions.
applifed regressive consonant harmony, adapting the applied regressive consonant harmony, adapting the
initial consonant to the place of articulation of the second. A very similar pattern of development is described for one of
Ganmon and Cooper [14].
Vihman and Hochberg [15] found that of 550 early words used by 7 children, a mean of 25% were
sometimes produced with a final consonant. Only sometimes produced with a final consonant. Only
two children exceeded the mean. An analysis of the two children exceeded the mean. An analysis of the
early phonological patterning of one of those children, Molly, is presented in Velleman and Vihman
[16] . 16], supported by acoustic data. At 12 months Molly began to produce a number of obstruent-final
words with heavily aspirated final stops or even wifds with heavily aspirated final stops or even
offricates (e.g., oops, up, hot, book, peek, teeth)
In the following In thates (e.g., oops, up, hot, book, peek, teeth
In the foing month she began $\frac{\text { bo }}{\text { to produce nasal- }}$
final words final words as well, developing an idiosyncrat1c
pattern in which the final nasal of the adult form pattern in which the final nasal of the and
was lengthened and followed by [i] or $[\rho]:$ bang
$[$ ben : i] was engthened and followed by
Cwn $0: i]$, down
to $t \mathrm{t} \boldsymbol{x} \mathrm{n}: a]$. This pattern appeared
to oo represent a phonetic rapprochement between the
obstruent-final words, with their heavy aspiration, and the nasal-final words. Both word patterns subsequently proved highly productive, even attracting
new words with nasals or affricates in other posinew words with nasals or affricates in other posichildren described in $\frac{\text { cheese }}{[13 j \text { and }[14] \text {, Molly focused }}$ her attention on final consonants, developed a workable production strategy or "word recipe" and
then used the patterns arrived at to add large numbers of new words to her lexicon. At present it is not possible to estimate the proportion of normally
eveloping children who focus on final position, but it is probably not large. $\frac{\text { Continuants and }}{\text { final position }}$
ricatives is easiest to acquire in post-vocalic, final position or intervocalically, and may precede
the acquisition of stops in these positions" (p. 661) the acquisition of stops in these positions" (p.661).
We have seen that there is some association of conWe have seen that there is some association of
tinuancy with final position in babble. In an exhaustive longitudinal study of fricative acquisition by 6 subjects (aged $1 ; 5$ to $2 ; 3$ at the outset)
ddwards $[18]$ found that, as in earlier studies, the fricatives were generally acquired relatively the fricateves were generalls. Most of her subjects tended to produce fricatives. correctly most often in final position (especially the interdentals,
voiceless sibilants, and $/ v /$), though there was considerable individual variation.
Similarly, Stoel-Gammon [11] noted that the
nventories of her 15-to 21 -month old subjects inventories of her 15 - to 21 -month old subjects
typically included stops, nasals and glides only with fricatives and liquids appearing only in the 24 -month inventories. Comparing initial and final phones within each manner class, Stoel-Gammon found tory implied the presence of an initial stop or nasal. Fricatives and afiricates showed great individual variation. Nine subjects had inventories while 7 subjects had inventories with final fricatives preceding initial ones. However, liquids showed a clear-cut association with final position. only 5 had a licquid in initial position before they had one in final position.

In summary, the evidence (from English data) suggests that lquids are thely to be acquired
first in final position, that stops and nasals are likely to be acquired first in initial position, and that fricatives may be too variable for a definite statement
$\frac{\text { Velars }}{\text { Velar }} \frac{\text { and }}{\text { final }} \frac{\text { position }}{\text { obstruents tend to }}$ to acquired later than labials and dentals by most children. A few children make relatively high use of velars in their early words, however, and these same children may
favor final position. Ingram [19j hypothesized that consonants appearing early in a (chili's) word are likely to be anterior, while consonants
occurring later in the word will be back. Vihman and Hochberg [15] examined this hypothesis on the basis of data from 7 children. They found that one child used a high proportion of both velar and
consonant-final words bat consonant-final words, but there was no overall
correlation between velar and consonant-final word correlation between velar and consonant-final word
use. Considering stops and nasals only, the chill dren as a group were found to favor initial posifor labials and alveolars, though in veneral the Child bials and alveolars, though in general the
chavor of initial consonants was very strong. Lastly, the children were found to attemp more word-final velars than labials or alveolars,
and also more velars in medial and final position and also more velars in medial and final position
than in initial position. However, fully 73% of the adult word-final velars targetted were either produced in non-finai position (e.g., $\frac{\text { dog }}{}\left[\mathrm{g}^{\text {r: }}\right]$)
or were spread to non-final position as well by
onsonant harmony (e.g., book[kuk]). Word-final labials and alveolars were less often subject to
these changes. Vihman and Hochberg concluded that "while children are attracted perceptually to particular preference for producing velars word-
finally" (p. 46).
Stoel-Ganmon [11] found that while the presence Stoel-Gammon [11] found that while the prese
of labials or alveolars in an inventory of final phones implies their presence in initial position in 7 out of 31 cases (25\%) velars were present onl in final position. As in the case of fricatives among manner categories, velars were found to
involve the most indvidual differences among place ategories.
Final voiced steps The acquisition of voicing appears to present problems for children in general $[20,21]$. Some
unusual production strategies have been identified unusual production strategies have been Identified
for voiced stops in final position. Clark and for voiced stops in final position. Clark and Bowerman [22] noted that a typical progression in
the acquisition of final consonants is (1) omission, (2) production of voiceless stops and nasals, and only later (3) production of voiced stops. Viced tops may be devoiced in early production attempts ometimes with distinctive lengthening of the pros eding vowel. Clark and Bowerman documented for 3), in which final voiced stops were systematica followed by the corresponding voiceless stop: rug $\mathrm{r} \wedge \mathrm{nk}]$, bib $[\mathrm{bIm}]$ (Damon, aged $1 ; 8-1 ; 10) ; \frac{\mathrm{egg}}{\mathrm{got}}$
 both initial and final position and at all three places of articulation before making use of this trategy. It is perhaps worth noting that both o velaí-final words, Damon so producing only vel-ar-finais for the firs. three weeks thal egy was recu:ded.
Fey and (Gandorr [23] reported that their twoed betwes:i, voteed and voiceless obstruents only in the cass of finai stops. Final voiceless stops
wire consistentiv produced with an aspirated rewire consistentiy produced with an aspirated re
lease, withe final voiced stops were regularly promees witin anasal release: bad [badn], pig and [fitgil Poy ard candour nnte further that the Wy worcont inuants to ofcyr finally were nasals,
nat that the cuitrasts between stops and fricatives nd hetween alvenless and velars were first made word-finally. Thus Lasan p.ovides another example icn as he expanded his system of contrasts. It is striking that nasals or nasal release should be used as part of a strategy for producing final voiced stops. This lends further support to in a given syllabic position. That is, nasals may in a give "natural" in final position than stops,
hough less so than the
SUMMARY AND CONCLUSIONS
Study of the acquisition of word-final
Sng izations.
(1) Word-final consonants are acquired later than initial consonants. At any point in development, the number of different consonant phone types in final position is equal to or less than the number in initial position. However, a few children utilize a strategy of making final position more salient than initial for consonant variety and stability.
(2) Continuants are more likely than noncontinuants to be acquired first in final position. Of the continuants, liquids are most likely to be acquired first in final position; fricatives are more variable.
(3) Velar consonants have a special affinity for final position. Final velars are more likely to be attempted than non-final velars or final non-velars.
(4) Final voiced consonants pose a special problem for children, and some children adopt unusual strategies for producing them (e.g., nasai and stop clusters, nasal offglides, vowel lengthening.

These characteristics are sytematically related to the occurrences of final consonants in children's babbling, to the distibution of final consonants in the world's languages, and to strength hierarchies proposed for consonants. This systematic relationship is the essence of Jakobson's influential model of phonological development [24,25]. The child language data give further specification to the relationship and also in effect extend the Jakobson model to pre-speech: where he denied its relevance, and to final position, which he did not consider. The evidence for final consonants also strongly suggests that where there is relative infrequency and variability in phonological systems world-wide we may expect to find corresponding patterns of individual variation among children acquiring a particular language.

REFERENCES

[1] Kent, R.D. \& H.R. Bauer, "Vocalizations of one-year-olds." Journal of Child Language, 12 (1985), 491-526.
[2] Perts, D.L. \& Bever, T.G. "Sensitivity to phonological universals in children and adolescents." Working Papers on Language Universals, 13 (1973), 69-90.
[3] Hooper, J.B. An Introduction to Natural Generative Phonology. NY: Academic Press, 1976.
[4] Mines, M.A., Hanson, B.F., \& Shoup, J.E. "Frequency of occurrence of phonemes in conversational English." Language and Speech, 21 (1978), 221-241.
[5] Oller, D.K., Wieman, L.A., Doyle, W.J. \& Ross, C. "Infant babbling and speech." Journal of Child Language, 3 (1976), 1-11.
[6] De Boysson-Bardies, B., Sagart, L. \& Bacri, N., :Phonetic analysis of late babbling: a case study of a French child. " Journal of Child Language, 8 , (1981), 511-524.
[7]. Oller, D.K. \& Eilers, R.E. "Similarity of babbling in Spanish- and English-learning babies." Journal of Child Language, 9 (1982), 565-578.
[8] Vihman, M.M., C.A. Ferguson, \& M. Elbert. "Phonological development from babbling to speech:

Common tendencies and individual differences. " Applied Psycholinguistics, 7 (1986), 3-40.
[9] Locke, J.L. Phonological Acquisition and Change. NY: Academic Press, 1983.
[10] Vihman, M.M., Macken, M.A., Miller, R., Simmons, H. \& Miller, J. "From babbling to speech: A re-assessment of the continuity issue. " Language, 61 (1985), 397-445.
[11] Stoel-Gammon, C. "Phonetic inventories, 15-24 months: A longitudinal study. " Journal of Speech and Hearing Research, 28 (1985), 505-512.
[12] Leonard, L.B., Newhoff, M. \& Mesalam, L. "Individual differences in early child phonology." Applied Psycholinguistics, 1 (1980), 7-30.
[13] Menn, L. "Phonotactic rules in beginning speech: A study in the development of English discourse. "Lingua, 26 (1971), 225-251.
[14] Šoel-Gammon, C. \& Cooper, J.A. "Patterns of early lexical and phonological development." Journal of Child Language, 11 (1984), 247-271.
[15] Vihman, M.M. \& J.G. Hochberg. "Velars and final consonants in early words." In J.A. Fishman et al. (Eds.), The Fergusonian Impact, I: From Phonology to Society. Amsterdam: Mouton de Gruyter, 1986.
[16] Velleman, S. \& Vihman, M.M. "Phonological reorganization: A case study. " In preparation.
[17] Ferguson, C.A. "Fricatives in child language acquisition.". In V. Honsa \& M. H. Hardman-Bautista (Eds.), Papers on Linguistics and Child Language. The Hague: Mouton, 19.78.
[18] Edwards, M.L. Patterns and processes in fricative acquisition: Longitudinal evidence from six English-learning children. Jnpublished PhD thesis. Stanford University, 1979.
[19] Ingram, D. "Fronting in child phonology." Journal of Child Language, 1 (1974), 233-241.
[20] Smith, B.L. "A phonetic analysis of consonantal devoicing in children's speech." Journal of Child Language, 6 (1979), 19-28.
[21] Macken, M.A. "Aspects of the acquisition of stop systems: A cross-linguistic perspective." In G.H. Yeni-Komshian, J.F. Kavanagh, \& C.A. Ferguson (Eds.), Child Phonology, vol. 1. NY: Academic Press, $1 \overline{980 .}$
[22] Clark, E.V. \& Bowerman, M. "On the acquisition of final voiced stops." In J.A. Fishman et al. (Eds.), The Fergusonian Impact, I: From Phonology to Society. Amsierdam: Mouton de Gruyter, 1986.
[23] Fey, M.E. \& Gandour, J. "Rule discovery in phonological acquisition." Journal of Child Language, 9 (1982), 71-81.
[24] Jakobson, R. Child Language, Aphasia and Phonological Universals. A.R. Keiler (Tr.). The Hague: Mouton, 1968. (Original title, Kindersprache, Aphasie und allgemeine Lautgesetze. Uppsala: Almqvist \& Wiksell, 1941).
[25] Hawkins, J.A. "Implicational universals as predictors of language acquisition." To appear in Linguistics, 25.

