Dept. of Applied Linguistics
Tartu State University

ABSTRACT The paradignatic as well as the syntag-
matic (positional) relations between the phonemic units of the Estonian language are examined from the quantitative point
of view. The results of the investigation are compared with analogical data from some other languages (particularly Finnish

THE INVENTORY

 guage contains 17 consonants $/ \mathrm{p} t^{t} t^{\prime} f \mathrm{~h} j 11 \mathrm{~m} \mathrm{~m}$ $n^{\prime} r s$ s $s v /[1 ; 2]$. All these phonemes may be short or long. The long monophthongs and long consonants are considered to be single phonemes, There are 36 diphthongs
in Estonian [3] but phonologically they are treated as sequences of two vowels. All nine Estonlan vowels contrast in stressed position but in unstressed
tion only four of them (/a e i $u /$) occur in the normal system (the literary language). The first component of an Estonian
diphthong may be any of the nine vowels but the second component has to be chosen out of the first five vowels /a e i $\mathrm{o} u /$,
not all of these combinations being acnot all of th
ceptable [3].
In orthography the long vowels are marked with two graphemes representing the sarked seme quality (e.g. maa /mā land, country).
The long consonants may be marked with The long consonants may be marked with
two graphes (e.g. linn $/ 1 \mathrm{in} /$ town $)$ or somettimes with one
/11nlane/ town-dweller'). All stops in Estonian are unvoiced, the Alistinction is made between short and long stops (1enis and fortis on the phonetical
level). The short stops may be marked with level). The short stops may be marked with
the graphemes b, d, g or p, t, k (e.g.
 order') The long stops are usually marked
with two graphemes (pp, tt, kk) or in with two graphemes (pp, tt, kk) or in
some positions Mith ony one grapheme
(pikk pik/ long and piklik piklik/
(pikiong ${ }^{\prime}$). For more detailed analysis the
quantity alternation of the Estonian language has to be considered (short, long The phonology of a language cannot be regarded as complete if it does not take in
to account some basic quantitative (statistical) features of the system and th functioning of its units in speech (text). For instance, the number of vowels in
phonemic system indicates the degree of phonemic system indicates the degree of regarded as a typological characteristic of a language [4; 5]. But even more impor
tant for the phonostatistical study of tant for the phonostatistical stuay of frequency of occurrence of phonemic unit in text.

TEXT FREQUENCIES
Our study is based on a corpus of texts of of fiction and 45% of non-fiction) with total of about 45% of non-fiction) with The results of the statistical investiga the will be given in a simplified form the frequencies of short and long phoneme and so are the frequencies of the nonpalatalized and palatalized forms of the consonants $/ \mathrm{t} 1 \mathrm{n} \mathrm{s} /$. In this case th If we group these phonemes according to their occurrence we can distinguish three main groups constituted by phonemes of relatively high frequency $(p \geqslant 6 \%)$,
$(6<p<2)$ and low frequency $(p<2)$:

In full accord with other linguistic levels text reveals the tendency of concentration and dispersion of its units: we can dis-
ystem, the intermediate part, and the "peris phery". The three most frequent pho-
nemes $/ \mathrm{t}$ / cover 35.1 \% of the Estonian ext, the eight most frequent ones 73.1%, and the ten most frequent phonemes
81.7%. The phenomenon of concentration and dispersion is well-known in lexical statistics unita may be expressed analytically by the so-called Zipf's law in the porm of a power function. ith a very large number of units the pho not submitted to Zipf's law but to logarithmic or exponential law of growth or experimental material (Fig. 1): there is evidently a linear relation between the logarithm of probability (relative fre-
quancy) of a phoneme and its place (rank) uency) of a phoneme and its place words, it means exponential dependence

$$
\begin{equation*}
p_{i}=a e^{-b i} \tag{1}
\end{equation*}
$$

where p_{i} is relative frequency, is - rank, natural logarithms. In our example a ≈ 1 and $b \approx 0.15$.

Fig. 1. Linear relation of rank (i) and the logarithm of occurrence
The concrete form and the values of the
constants in the formula approximating the empirical curve may serve as typologica characteristics of a language. It may b and dispersion of units in any concret manifestation is considered to express universal lam which is peculiar to certa selp-regulating systems in social life. of
Another method of estimating the state of
the functioning system as a whole is the the functioning system as a whole is the

The entr
fined as

$$
\begin{equation*}
H=-\sum_{i=1}^{K} p_{i} \log _{2} p_{i} \tag{2}
\end{equation*}
$$

where H marks entropy, p_{i} is the probability (in the empiricalicase - the relaof k phonemes; $\log _{2}$ means logarithm with base 2 .
For the simplified Estonian system with 22 phonemes we get $H=3.9063$. In terms of the entropy per phoneme, occurrence is entropy measures the degree of "equidistribution" of the phonemes in text. For comparison with other resul

$$
\mathrm{H}_{\mathrm{reI}}=\frac{\mathrm{H}}{\mathrm{H}_{0}}
$$

where $H_{i}=\log _{2} \mathrm{k}$. It is necessary in cases where the compared systems have dif
ferent numbers of elements. For instance, we can compare our results with the re-
sults of other investigations [6] (Table 1).

Entropy				
Language	k	H	H_{0}	H_{r}
Estonian	22	3.9063	4.4594	0.8760
Hungarian	39	4.6028	5.2854	0.8709
German	33	4.4435	5.0444	0.8809
English	39	4.7098	5.2854	0.8911
Russian	41	4.8257	5.3576	0.9007

The smaller the value of ${ }^{\text {H}}$, the more against that of equidistribution. In this respect Estonian and Hungarian, having relatively amination. However, if we compare the statistical distribution of the Prequencies of con-
crete phonemes e.g. in Estonian and crete phonemes e.g. in bsth resemblances
Hungarian, we may find both and essential differences. In Hungarian
the eight most frequent phonemes in texts the eight most frequent phonemes in texts
of fiction are /e a t n I k In If [7]. Five
of them coincide in Estonian and Hungarian of them coincide in Estonian and Hungarian same (/a e t/). But there are differences in the distribution ond in phoneme systems on the whole.
h it must be noted that there As to Finnish it must be noted that there are some pecularinnish texts that make the difference between the two close cognates The most frequent phonemes in Finnish
 most striking difference the phoneme freIn Finnish it occupies the second place
with the relative frequency of about 10%
(in Estonian /n/ is on the 9th place with great extent due to the high frequency of occurrence of final $/$ n/ in common words where Estonian has 10 st the final conso-
nant in the course of historical development, e.g. Finnsh nin - Estonian nii
 e. G. Finnish jalan, jalkgan - Est tonian jol dependence wich exists emong separate language hevels where a quantitative change or motivated by the structural needs and
demands of some hi her level of the same demands of some higher level of the same
language, viz. of its morphological level ${ }_{(c f}^{\text {langus }}$ [9]).
phoneme classes
At the first stage of
phonemes are
classification the
into classes: vowels (V) and consonants (C), In phonostatitistical works the ratio Civ
is considered to be on important typologiIs considered to be an important typologi-
cal oharecteristic or in onguges
Estonian texts the ratio is $54.5: 45.5$
 the vowels by 20% This value (1.20)
can be compared with
the corresponding can be compared with the correspondin

As to the
further divide them into
p
phonemes
several
we can
classes according to their phonetic properties. according to their
The frequencies of
occurrence classes in Estonian texts are given in

The	Front	Back	Total (\%)
	unr ro	unr ro	
High	$\begin{array}{cc}10.8 & { }^{\text {u }} \\ 20\end{array}$		38.9
Mid		8.8	31.4
Low	2.9.9	$\stackrel{\square}{26.8}$	29.7
$\begin{gathered} \substack{\text { Total } \\ (\%)} \end{gathered}$	$\frac{47.9 \quad 2.4}{50.3}$	$29.7{ }_{49.7} \mathbf{2 0 . 0}$	100.0

As can be seen, the front and back vowels

In Estonian texts are equally distributed (about $50: 50$ \%). In Finnish and Hungerian talian, but for instance in slovak it it 43:57, and in Sanskrit texts 20:80. ne relation of the frequency of short
rowels to the frequency of long vowels stonian texts is 92 to 8% The same relation characterizes Finnish texts, whereas in Hungarian the long vowels occur 30:20 (\%) The classification of consonant nd are brought together in the symoptic Table .
The consonant system: frequencies in ${ }^{\text {Table }}{ }^{3}$ tex

	Tabi	Alveodent	alatal		
Stops	${ }_{4}^{\mathrm{p}} 8$	$t^{t} 1.8 t^{\prime}$	-	${ }_{13.4}^{k}$	40.0
Fricat	0. ${ }^{\text {P }}$	${ }^{s}{ }_{16.5} \mathrm{~s}^{\mathrm{s}}$	0.1	h 3.1	19.8
Nasals	7.3	${ }^{n} 8.5^{n^{\prime}}$	-	-	15.8
erals	-	${ }^{1}{ }_{11.4} 1^{\prime}$	-	-	11.
Trills	-	5.3	-	-	5.3
Semivowels	$\stackrel{\mathrm{v}}{4.2}$	- -	3.5	-	7.
$\underset{\substack{\text { Total } \\(\%)}}{ }$					

Two parallel sets of alveodentals (except /r/) can be distinguished: non-palatailized and paianized consonants. it has been
ascertinine that except in case of auto
matic palatalization before $/ 1 /$ and, $j / /$
 cover only 0.15% of all running phonemes The Estonian texts ${ }^{\text {in }}$ [11] ${ }^{[1 / i f i c a t i o n ~ l o n g ~ c o n s o n e n t ~}$ honemes in a running text is proboematio
in some cases. We estimate that about 17% of consonants are long and 83% short. As a whole, the quantitative distribution. of phonemes in Estonian texts ce
trated in the following manner:

Vowing manner:
Vowels 45.5$\}^{\text {Resonents" }}$
$\underset{(45.5)}{\text { "Consonants" }}\left\{\begin{array}{c}\text { Sonorants } 21.9 \\ \text { Obstruents } 32.6\end{array}\right\}(67.4)$
100.0 (\%)

POSITION ANALYSIS
The phonemes occur with different frequenies in different positions of the word. In principle, initial, medial
positions can be distinguished.

In the Orthological Dictionary of the the most frequent in it i al phoneme
 r/ $5.4, \mathrm{~h} / 4.2$. Among the ten most fre(/a/). On the whole, the vowels make up
15.5 and the consonants 15.5 and the consonants 84.5 per cent 0 on the text level the most frequent ini
 in, $1, h, r$, i, u, õ, u, a, \quad and and the "foreign phonemes ind and phequent initial phonemes are all consonants and they cover about 50% of all word initial phonemes in the text. The over-all distribution of phoneme classes in
in Trable 4.

100.0

In Finnish the vowels cover 20% and th sitions in the text. The most frequent initial phonemes are $/ \mathrm{s} \mathrm{skh} \mathrm{k} \mathrm{m} \mathrm{movp} \mathrm{e} / \mathrm{d}$ and $/ \mathrm{h} / \mathrm{are}$ with Estonian the phonemes currence in initial positions.
As the structure of the stressed syllable is somewhat different from that of the unamine the frequency distribution of vowels rately nuclei of stressed syllables sepa labic words) inding the nuclei of monosyl short and 11:5 \% long) and diphthongs (i.e. -vowel sequences) 12.0%. The frequencies
of single vowels: $/ \mathrm{a} / 20.3$, /e/ $19.0,10$

 The distribution of word final phonemes reflects the morphological structure of the language and therefore the frequen cies of final phonemes are considered to texts the most frequent final phonemes are texts the most frequent
/a/ 1.1% (of all final phonemes in the
text $), 1 / 20.5$. $/ \mathrm{e} / 13.6, \mathrm{~s} / 13.4,1 / /$ 12.9'These five phonemes cover 81.5% of lowed by the less frequent phonemes: $/ 1 /$
in the $0.6 / \mathrm{v} / 0.4$. Due to the restrictions in the distribution of vowels in unstressed tremely rare in word endings (total 0.3 ex and so are the phonemes $\mathrm{h} /$ and $/ \mathrm{f}$ s/ (the last two occur only in foreign or recent loan words); the three phonemes have a total frequency of 0.1%. The distribution struents 38.0%, sonorants 9.7%, and vowels 52.3%.
In Finnish the most frequent phonemes in word final position are: /n a a it es all word final /n/ covers almost 30% o On the basis of the frequexcies of phonemes in thitial and final positions their relative Prequencies in medial positions ca be calculated.
Some other traditional problems in phono-
statistics, such as the valency fields of phonemes, phonotactic features and fre quencies of phoneme sequences and sylla-
bles, word length, etc., as well as a more detailed quantitative analysis of phono ress and quantity - require special discussion.

REFERENCES
[1] T--R. Viitso. Läänemeresoome fonoloogia [2] A.Eek. Kvantiteet ja rơnk eesti keeles A. Eek. Kvantiteet ja rôk eesti keeles
(II). Seisukohavôtt.
Keel ja Kirjandus 1987, nr. 3, 153-160.
H Piir. Acoustics of the Estonian diphthongs. - Estonian Papers in Pho G-96. Aitmann, W. Lehfeldt. Allgemeine Sprachtypounchen: W. Fink Verlag, 1973.
[5] U. Strauß. Struktur und Leistung de vol. Ayseme.. Boantitative Brockmeyer, 1980 .
vochum
[6] P. Zörnig, G. Al tmann. The entropy of
 tative Linguistics, vol.
[7] jazyk. - Acta et Commentationes Uniski jazyk.-Acta et commentationes Univer-
sitatis Tartuensis, vol. 518, Tartu. 1980, 15-37. V. Setala: Suomen 1972 . 9] J. Vachek. Prague phonological studies today. - Travaux Academia, 1966, 7-20.
[10] Yu. Tambovcev. Konsonantnyj Koeffici-
] ${ }^{1986}$ Hint. Hää1ikutest sônadeni. Tallinn:
[12] Oigekeelsussỗnaraamat./Toimet. R. Kull,
E. Raiet. Tallinn: Valgus, 1976.

