English Instruction Committee

SMBM Campus, Rajbira
Tribhuvan University, Nepal
abstract
In the present paper an attempt is made to put forward the results of an electroaspiration on vowel duration in Maithili a modern Tido-Aryan language spoken by a
total of about 21 million people both in total of about 21 million people both in
Nepal and India. The main aim of our stud was to investigate whether phonation type other than voicelessness and voicing also
affect the length of vowels preceding a consonant. Our results clearly show that the aspiration of the following consonant does affect vowel duration in Maithili. I
fact, in Maithili the features of both ract, in Maithilit the features of both ncrements of length to the preceding

Introduction

There have been in the past quite a few anguages of the world. One of the mas findings of most of these studies has been toweis are longer before voiced same, than before voiceless ones. This
phenomenon has usually been considered [o.g. 1; 2; 3] to be due to an inherent
property of the speech production nechanism. And a number of differen proposals have so far been made as to what prectise mechanism is responsible for this g. 4; 5] aim only to account for the [o. lenethening of vowels before voiced oiceless consonants, while others also aim to account for such factors as: the ;7; 8]; place, manner and force of articulation [0.g.9; 10; 11] of the
following consonants; the strueture syilable in which the vowel occurs [e.g 2], the nature of the phonemic contrasts. 13], and the degree of glottal opening [$0 \cdot$
 g. is; 16] of the following consonants.
it has to be admitted that comparatively It has to be admitted that comparatively
little has so far been published on the litt1e has so far been published on the
offect of aspiration on vowel duration. Relatively recently, Maddieson and Gandour

Table I:

Vowels	Words with glosses
1/1	[bi:č] "centre"
	[bi:ch] "pick up (imp.)"
	[bi: $\}$] "seed"
	[bi: ${ }^{\text {h }}$] "rust"
/e/	[se:p] "saliva"
	[se:ph] "safe (n)"
	[se:b] "to serve"
	[se: ${ }^{\text {h }}$] "shave"
/a/	[sa:t] "seven"
	[sa:t ${ }^{\text {h }}$] "together"
	[sa:d] "longing"
	[sa:dh] "capacity"
1/1	[$\mathrm{ga}: \mathrm{p}]$ "talk"
	*[ga:ph] (a nonsense word)
	[go:b] "seedlings made ready for
	[ga:bh] "pregnaney -a meta-
10/	[so:k] "sorrow"
	[so:k ${ }^{\text {h }}$] "swallow"
	[so:g] "distress"
	*[so:gh] (a nonsense word)
/u/	[ku:t] "amount of grain given by tenants to landlorde"
	[ku: $\left.t^{\text {h }}\right]$ "push breath out of lungs
	[ku:d] "jump"
	*[ku:d $\left.{ }^{\text {h }}\right]$ (a nonsense word)

pparatus Use

Cach test utterance was afterwards put in a normal conversational sentence context, the frame of the sentence beine
pronounce again". Each test utterance was said in the same frame so as to make sur that the differences are not due to . The variations in the rate of uttoran and then spoken in a relaxed informal style at a
normal conversational speed, without putnormal conversational speed, without put-
ting any contrastive stress on the test utterances. The pronunciation represented in this work is entirely the author's Stxteen tokens of each test utterance,
rame, were recorded in a soundproor tudio of Essex University. All recording he glottal a Revox B 77 tape-recorder. lectrogiottograph F-J Electronics Type EG 830. Oscillomink tracings of waveform neadings were obtained using a Mingograt Type EM 34 T . Calculations relating to the Type EM 34 T . Calculations relating to the the 'coofficient of variation' (v) of all tokens of each test utterance wer
using a Tektronix 31 calculator.

Duration Measurements of the sixteen tokens of each test utter-
ance, the first two as well as the last two tokens were ignored, and all the remaining twelve tokens of the middle vere of all the vowels investigated in this study. The rirst measurements of vowel duration were made from the start of the vowel in question to the closure of the foliowing conth voiced stops and even
beginning with
voiceless unaspirated stops and fricatives the measurement was begun at the
of the concerned initial stop or fricative.
Afterwards, a simple arithmetic mean of the actual measured values of all the 12 out. In order to ascortain the relifability of the arithmetic mean as a quantified abstract the speaker's intention, the range of the variability occurring in all the 12 tokns of every tost utterance was
also taken into account. For this, the standard eviation of each test utterance was worke out. To relate the variati botween in this papar, the duratio values of all test utterances were normalised by obtaining a coofficient of variation of each rest utterance, th
equation used being: $v=$ SD x ioo.

Results ind discussions
Since from a preliminary survey of some pubished sources [e.g. 19; 13; 10; 8;
$6 ; 7$ procedine consonants exhibit no
readily discernible patterns of readily discernible patterns of
environmental influence on the duration of environmental influence on the duration of
the following vowels, in the present study we have restricted ourselves to the influence of the following consonants on the duration of proceding vowels. Table II
presents the results of this study [seo presents the results of this study
20 , pp. $344-45$, for more details]. It shows the mean duration values of the six
oral vowels as obtained from the 12 tokens or each test utterance, the standard doviation of the 12 tokens of each tost doviation of the 12 tokens of each test

Table II: Mean duration values, standard $\frac{\text { deviation, cooffictent of }}{\text { dent }}$ $\frac{1}{\text { variation, and the duration- }}$
$\frac{\text { ratio of the six Maithili oral }}{\text { rat }}$
vowels followed by voiced and $\frac{\text { voiceless, aspirated and un- }}{\text { spirated consonants. }}$

Vowel	Word	Mean	sd	v	Ratio
/i/	[bi:č]	165	5	3	1.00
	[bi: x^{h}]	183	5	3	1.15
	[bi:j] ${ }^{\text {[}}$	210	5	3	1.27
	[bi: ${ }^{\text {br }}$]	224	5	2	1.35
/e/	[se:p]	174	5	3	1.00
	[se:ph]	195	5	3	1.12
	[se:b]	218	4	2	1.25
	[se:bh]	240	5	2	1.37
/a/	[sa:t]	202	6	3	1.00
	[sa:t ${ }^{\text {b }}$]	226	7	3	1.11
	[sa:d]	240	5	2	1.18
	[sa:d ${ }^{\text {h }}$]	275	6	2	1.36
121	[go: s]	104	4	4	1.00
	*[$\left.\mathrm{ga}: \mathrm{p}^{\mathrm{h}}\right]$	120	5	4	1.15
	[ga:b]	134	6	5	1.28
	[ga:bh]	159	4	3	1.52
10/	[so:k]	166	5	3	1.00
	[so:k ${ }^{\text {h }}$]	180	8	4	1.08
	[so:g]	204	8	4	1.22
	*[sc:gh]	239	6	3	1.43
/u/	[ku:t]	155	5	3	1.00
	[ku:th]	175	4	2	1.12
	[ku:d]	220	5	2	1.41
	*[ku:d ${ }^{\text {h }}$]	240	5	2	1.54

of every utterance as well as the ratio of of every uttorance as woll as the ratio and aspirated consonants to the duration consonants. A diagrammatic representation of the mean duration values of this table is given in Figure 1. The horizontal axis affricate consonants of various places of articulation, while its vertical axis of shows the duration of the six oral vowels Both Table II and Fip
that all the six vowels investify show this study have longer mean durations in as affricate consonants than before thoir
voiceless unaspirated counterparts. The diagrammatic illustrations and thoir II and Figure 1, respectively, amply show that the aspiration of the following consonant does affect vovel duration in
: aithili. The present data sufficiently reveals that the overall pattern found

figure 1: The mean duration of the
Ma1thili oral vowels as spoken in mono-
sylabic minimal word pairs each word of
the pair differing only in the final
etween the relative durations of the six althili oral vowels - each vowel preceding consonants of four different
phonation types - is very similar, and hat in this language:
vowels are relatively longer in
duration before voicel consonants than before voiceless un-
asirated consonants; aspirated consonants;

- vowels preceding volced unaspirated consonants are relatively longer in voiceloss unaspirate proceding either
. aspirated consonants; vowels are relatively longer in duration before voiced aspirated consonants than before voiced un
aspirated consonants; and
in general, other things in general, other things being equal,
open vowels are relatively longer that close vowls.
our results of the present study suggest hat two rules, perhaps llow-1evel honetic rules operate in (1) bolow
(1) a. vowel adds 1 increment of length
before aspiration; and
b. vowel adds 2 increments of length
before voicing.
pplying these rules gives the results shown in (2) below:

$$
\begin{aligned}
& \text { vowel before voiceless } \\
& \text { vaspirates: } \\
& \text { unawe bofore voiceless }
\end{aligned} \text { increment }
$$

$$
\begin{aligned}
& \text { vowel before voiced } \quad 3 \text { increments } \\
& \text { aspirates: }
\end{aligned}
$$

These findings offer support for the
traditional grouping of the Maithili traditional grouping of the Maithili
obstruents - like perhaps the obstruents of most other Indo-Aryan languages - not only into voiced and voiceless categories
but also into aspiratod and unaspirated. but also into aspiratod and uaspirated. is the challonge prosented to the various proposed ' 'xplanations' $[\theta . g .4 ; 5 ; 9 ; 1$
$21 ; 22 ; 23 ; 19]$ $21 ; 22 ; 23 ; 19$] of the cause of the in-
trinsic length of vowels before consonants of different phonation types [see 20, pp. $163-67$, for more discussions in this respect].

> CONCLUSION

To conclude, the present study clearly shows that phonation types other than voicelessness and voicing also affect the
rolative duration of the vowel proceding consonant. We have found that the features of both voice and aspiration in
dopendontly lend increments of length to the preceding vowels in Maithili. This cloarly means that the 'explanations
proposed in the 11terature so far to proposed in the 11 terature so far to
account for vowel lengthening before voiced and voiceless obstruents cannot be oxtonded to account also for vowel leng
oning bofore both voiceless and voiced aspirated obstruents. We therefore hope that the rosuits of our study wil
rothinking of recent and current rethinking of recent and current
explanations of the interaction of phonation type and vowel duration, and whil assist in the formulation of new theories predicting the influence of the on the relative duration of preceding vowels

Roferences

[1] H. Hollien, "On vowel registers", pournal of Phonetics, $125-143$.
[2] W.J.Hardcast1e, The Physiology of 1976

3] J.Laver, The Phonetic Description of
4] $\frac{\text { Voice Quality, CuP, }}{\text { N.Chomsky \& M. Halle, The Sound pattern }}$
5] $\frac{\text { Of English, }}{\text { M.Chone }}$, Harel length variation as a function of voicing of the consonant
pp. 129-159. ' Fairbanks, "The in-
6] fiuence of consonant onvironment upon the secondary acoustical character istics of vowels", Journal of the $\frac{1}{25(1953), ~ p p . ~} 105-113$. G. E. Poterson \& I.Lehiste, " Durr
of syllable nuclei in English", of syllable nuclei in English'
Journal of the Acoustical socioty of $\frac{A^{2}}{\text { America, vol. } 32 \text { (} 1960 \text {), pp. } 693-70}$ Engishn', Journal of the Acoustical pp. 1174-1177. S. Bolasco, "The influence of force duration", Journal of the Acoustical $\frac{\text { Society of America }}{\text { pp 1015-1016. }}$, vol. 25 (1953),
[10]
and the place of articulation", Zeitschrift fur Phonotik $\frac{\text { Sprachwissonschaft und }}{\text { Kommunikationsorchung }}$, vol. 17
[11] B.Mohr, "Intrinsic variations in the
speech signal", Phonetica, vol. 23 T.Balasubramanian, "Duration of vowels in Tamil", $\frac{\text { Journal of }}{(1981), \mathrm{Pp}} .151-161$.
Phonetics, vol.
[13] vovel duration senn cross
vorngistically", Acoustical Socioty of America, ,
[14] F.Ingemann \& R.Yadav, "Voiced aspirated consonants", In papers from $\frac{\text { the } 1977 \text { Mid-American Lingutstics }}{\text { Conference (D.M.Lance }}$ -ditors), pp. ${ }^{3}$
[15] MAssourl, "On the autonomy of the
C-W.Kim,
tensity feature in stop classification", Word, vol. 21 (1965), pp. 16] P.Nihalani, Mair flow rate in the production of stops in sindhi",
Phonetica, vol. $31(1975)$, pp. $198-205$.
[17] I. Maddieson \& J. Gandour, "Vowel
Iength before aspirated consonants", $\frac{\text { UCLA Working Papers in Phonetics, }}{\text { Vol. } 31(1976), ~ p p . ~} 46-52$.
[18] I. Maddieson, "Further studies
vowel length before aspirated vowel longt
consonants", UCLA Working Papers in
phonetics,
[19] Phonetics, vol.38(1977) pp. 82-90. $\begin{aligned} & \text { Pattre, Nome factors of vowel } \\ & \text { duration and thoir cross-linguistic }\end{aligned}$ validity", Journal of the Acoustical

Society of America, Vol. 34 (1962), pp. 1141-11143.

[20] S.K.Jha, "A Study of Some Phonetic and Phonological Aspects of Maithili", Unpublished PhD thesis, University of Essex, U.K., 1984.
[21] M.Halle \& K.N.Stevons, "On the mechanism of glottal vibration for vowels and consonants", Quarterly P=ogress Report, No. 101 (1967), pp. 198-213, Research Laboratory Electronics, MIT.
[22] I.H.Slis \& A.Cohen, "On the complex regulating the voiced-voiceless distinction 1 ", Language and Speech, Vol. 12 (1969),' pp. 80-102.
[23] I.Lehiste, "Temporal organization of spoken language", Working Papers in $\frac{\text { Linguistics }}{\text { Vol }}$ (Ohio Stato University $)$, Vol. 4 (1970), pp. 96-114.

