# F. PERTURBATIONS IN HINDI

## LIESELOTTE SCHIEFER

## Institut für Phonetik und Sprachliche Kommunikation der Ludwig-Maximilians Universität München, FRG

### ABSTRACT

F. perturbations were measured for Hindi voiceless, voiceless aspirated, voiced, and breathy voiced stops combined with the phonemically long vowels /a e i o u/ in wordinitial position and isolated word production. The analysis revealed: (i) signifi-cant differences between the stop manners of articulation for about 90 ms after release, (ii) significant influence of the tongue height of the vowel, and (ii) less influence of the place of articulation of the stop.

#### INTRODUCTION

F. perturbations after stops have been thought of as unavoidable by-products of the stop articulation and have been treated as a secondary cue for the perception of stop's manner of articulation. Ohde's studies [3] for example revealed a falling F. contour after voiceless and a lower F. onset but still falling contour after voiced stops. It was shown by Lea [2] and Umeda [5] that the influence of the prece-ding stop had disappeared in non-tone languages like English after 75 to 100 ms. These analyses of F. perturbations focused on voiced and voiceless aspirated stops; thus voiceless unaspirates and breathy voiced stops were rarely included in these studies. Moreover, little attention has been paid to the influence of the vowel on the F. perturbations. Hence, the aim of our the F. perturbations. Hence, the aim of our investigation is threefold: (i) to provide data from a language with a four-way contrast within the stop categories, (ii) to present results from breathy voiced stops, (iii) to test the influence of either the place of articulation of the stop and the tongue height and tongue position of the vowel on the F. trajectory after stop release.

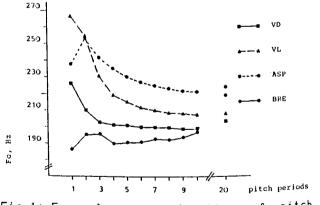
#### MATERIAL, INFORMANT AND PROCEDURE

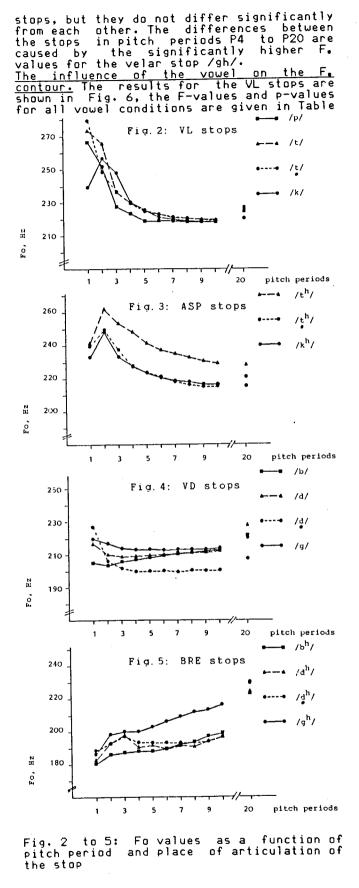
A list of words was prepared containing the voiceless, voiceless aspirated, voiced, and breathy voiced stops in four places of articulation (labial, dental, retroflex, and velar) combined with the phonemically long vowels of Hindi in word-initial position

randomized order. There were some gaps in the material as only common words were chosen (cf. Table 3). One subject (female, 35 years) born in Simla (Himachal Pradesh) and raised in Simla and New Delhi served as informant. The material was tape-recorded in Munich (for further detail cf. Schiefer in Munich (for further detail cf. Schleter [4]), digitized on a PDP11/50 computer (sample rate 20 KHz) and filtered with a cut off frequency of 8 kHz. The periodic portions of the initial CV syllable were segmented manually into single pitch periods cf. [4], starting with the first visible period. The analysis was based on the first ten pitch periods after stop release. This covers a period of approximately 40-50 ms. F. was measured additionaly for pitch period 20, which is about 80 to 90 ms away from the burst. Separate two-factorial analyses of variance were conducted for the stop and vowel (ii) the voiceless, (iii) aspirated, (iv) voiced, and (v) breathy voiced stops over the first ten pitch periods. The results for the 20th pitch period were calculated separately.

### RESULTS

The influence of stop-manner. Fig. 1 displays the results for the stops in general. All F-values and p-values for the main effects of place (A), vowel (B) and interaction (I), P1 to P10, and P20 are





Fig.1: Fo values as a function of pitch periods and stop's manner of articulation

listed in Table 1 for the stop conditions. The difference between the stops remains significant till pitch period 20. All stops differ in respect to the F. onset and F. contour. The onset is highest in voiceless stops (henceforth VL), lower in aspirated (ASP) and voiced stops (VD), and lowest in breathy voiced stops (BRE). VL stops have a falling, ASP a rising-falling, VD a falling, and BRE stops a rising pattern. The fall is steepest in VL, less steep in VD stops. All stops differ significantly from each other in respect to the onset (P1). At pitch period P20 the stops fall into two groups: VD and VL with lower F. and BRE and ASP with higher F. values. The influence of the place of articulation in VL stops. Figure 2 shows the results for the VL stops. The [+apic] stops /t/ and /t/ show the highest F. onset, whereas the [-apic] stops /p/ and /k/ have lower F.

TABLE 1: Effect of place of articulation on F. as a function of the number of pitch periods. A represents the overall effect of place, B that of the pitch periods, and I the interaction.

| VL stop                     | ASP stop          | VDstop               | BRE Stop             |
|-----------------------------|-------------------|----------------------|----------------------|
| FΡ                          | FΡ                | FΡ                   | FΡ                   |
| P1 77.0 ***                 | - <u>1.2</u> n.s. | 33.3 ***             | 4.2 *                |
| P2 13.7 ***                 | 3.1 *             | 13.8 ***             | 9.4 ***              |
| P3 17.1 ***                 | 7.0 **            | 10.4 ***             | 10.2 ***             |
| P4 2.7 *                    | 8.7 ***           | 12.4 ***             | 8.4 ***              |
| P5 2.4 n.s.                 | 6.3 **            | 12.6 ***             | 12.8 ***<br>19.7 *** |
| P6 0.9 n.s.                 | 5.4 **            | 12.1 ***             | 19.7 ***<br>22.8 *** |
| P7 0.3 n.s.                 | 5.6 **            | 15.2 ***             | 22.0 ***             |
| P8 0.3 n.s.                 | 5.1 **<br>4.4 *   | 13.4 ***<br>14.7 *** | 26.9 ***             |
| P9 0.2 n.s.<br>P10 0.1 n.s. | 4.4 *<br>3.5 *    | 16.3 ***             | 28.7 ***             |
| P20 0.7 n.s.                | 1.9 n.s.          | 3.9 n.s.             | 2.7 *                |
|                             | 23.2 ***          | 27.5 ***             | 44.1 ***             |
| B 89.4 ***                  | 10.3 ***          | 4.2 ***              | 9.4 ***              |
| I 3.7 ***                   | 0.2 n.s.          | 2.6 **               | 1.5 n.s.             |
|                             |                   |                      |                      |

frequencies at the onset with an overlap between both groups. The contour is falling for all stops except /k/ which shows a rising-falling pattern. Fig. 3 shows the results for the ASP stops. All stops have high F. values at vowel onset. F. increases from pitch period P1 to P2, and decreases continually from P2 to P20. Only /th/ differs significantly from the other stops. VD stops show a different pattern (cf. Fig. 4 and Table 1) from either the VL or ASP stops as F. is lower at the vowel onset, where the [-ant] stops /d/ and /g/ have higher and the [+ant] stops /d/ and /b/ lower F. frequencies. But only /b/ differs iuwer F. frequencies. But only /b/ differs significantly from the other stops. The difference remains significant till pitch period P10. At P20 the difference fails to reach significance. All stops except /d/ show a slightly falling F. contour from P1 to P2/P3 and a slightly rising F. from P4 to P20. /d/ has a steeper fall from P1 to P2 and a falling/level pattern towards the P2 and a falling/level pattern towards the end of the trajectory. In breathy voiced stops (cf. Fig. 5 and Table 1) the F. is low at vowel onset and shows a rising pattern from P1 to P20. The differences at the onset are small; [+ant] stops have slightly higher F. frequencies than [-ant]



Se 7.4.2

151

2. The F. at vowel onset is a function of the tongue position of the vowel: central and back vowels have higher F. frequencies than front vowels. The F. trajectory for the vowels differs: /a/ shows a steep falling, the mid vowels /e o/ a falling, and the high vowels /i u/ a rising-falling pattern. The difference between F. onset and endpoint of the trajectory is again a function of tongue height: it is greatest

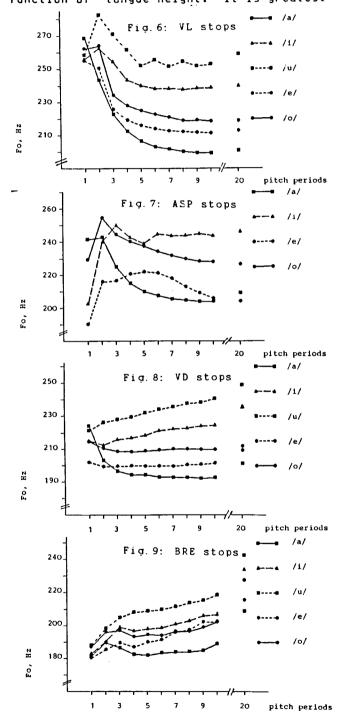



Fig.6 to 9: Fo values as a function of pitch period and the vowel

for /a/, less for the mid vowels, and smallest for /i u/. These results thus reflect the well known effect of "intrinsic pitch". Fig. 7 displays the results for the

TABLE 2: Effect of the vowel as function of the pitch periods.

| VL stop                                                                                                                                                                                                              | ASP stop VD                                                                                                                                                                                                          | stop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BRE stop                                                                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F P                                                                                                                                                                                                                  | F P F                                                                                                                                                                                                                | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | F P                                                                                                                                                             |
| P1 9.8 ***<br>P2 71.3 ***<br>P3 140.6 ***<br>P4 130.7 ***<br>P5 112.6 ***<br>P6 141.7 ***<br>P7 132.6 ***<br>P8 153.6 ***<br>P9 146.2 ***<br>P10 155.1 ***<br>P20 61.1 ***<br>A 252.2 ***<br>B 87.0 ***<br>I 5.2 *** | 75.5 *** 50<br>35.3 *** 13<br>33.8 *** 115<br>26.1 *** 135<br>26.2 *** 157<br>35.7 *** 190<br>37.6 *** 207<br>41.7 *** 219<br>48.3 *** 235<br>49.0 *** 252<br>20.0 *** 355<br>82.0 *** 355<br>8.0 *** 2<br>6.0 *** 6 | 88234634045<br>88234634045<br>88234634045<br>88234634045<br>8834045<br>8834045<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405<br>883405 | 3.9 *<br>9.4 ***<br>18.9 ***<br>34.0 ***<br>34.3 ***<br>32.8 ***<br>34.2 ***<br>40.0 ***<br>42.8 ***<br>40.0 ***<br>14.8 ***<br>14.8 ***<br>13.3 ***<br>1.8n.5. |

ASP stops. The differences between the vowels at F. onset are greater in ASP stops compared to the VL ones. F. is obviously determined by the tongue position of the vowel: central and back vowels lead to higher F. onset than do front vowels. All vowels differ significantly from each other: /a/ shows a nearly level contour for the first two pitch periods, and a falling contour from P2 to P10, whereas the mid vowels have a rising-falling and /i/ a rising-falling-rising pattern. In VD stops F. at vowel onset (cf. Fig. 8) is determined by the tongue position of the vowel: F. ist lowest for mid, higher for high, and highest for low vowels. But only /e/ differs significantly from the other vowels. The vowels differ, too, in respect to the F. trajectory: /a/ shows a steep fall, /e o i/ a short fall followed by a rising contour, whereas /u/ has a rising pattern throughout. In BRE stops (cf.Fig.9), the F. onset is low. The influ-ence of the vowel is smallest but signi-ficant at vowel onset. Back vowels show a slightly higher F. than non-back vowels. For detailed discussion cf. [4].

Interaction between place of articulation and vowel. In order to compare our results with those from Ohde's studies we have calculated the F. difference between the first and second pitch period (cf. Tab. 3). Concerning the stop manners in general a F. fall was measured in VL and VD stops, whereas ASP and BRE stops show a rising pattern. This can be explained by the different timing and width pattern of the glottis for these two groups of stops (cf. [1]). The effect of place of articulation in general shows a falling pattern in VD and VL stops (with the exception of /k/). and again a rising pattern for the ASP and BRE stops. Concerning the interaction between place of articulation, vowel and stops manner of articulation the results can be summarized as follows: (i) ASP stops cause a pice free for the content of the stops cause a rise from P1 to P2. There is no interaction between place of articulation

and vowel. (ii) The F. is rising after BRE stops with only a few exceptions which can be neglected due to the minimal differences between P1 and P2 in these examples. The results for /bho/ cannot be explained. (iii) VL and VD stops show similiar patterns and large interactions between place and vowel. In labial position [+back] vowels cause a rising F. contour, whereas in dental position the same effect is caused by [+front] vowels. In combination with the VL stop /u/ leads to a rising F. pattern, too. F. is falling in the retroflex position for both stop manners with the exception of /i/ after VL stops, which cause a rising F.. The differences between both stop manners are greatest in the velar position: F, rises after VL stops, whereas after VD a rise can be observed only with [+high] vowels.

#### GENERAL DISCUSSION

Concerning the stop manners of articulation in general our results verify those found by Lea and Umeda, as the differences remain significant for about 90 ms, and they are in good agreement with those found by Ohde: VL, ASP and VD stops cause a falling F. after vowel onset. The F. onset is higher for VL than for ASP stops. The overall F. is on the other hand higher after ASP than after VL stops. The places of articulation do not influence the F. onset pattern in a systematic way. The stop manners form two different sets: (i) ASP and BRE stops on the one side and VL and VD on the other side pattern differently with respect to the F. onset and contour. Whereas ASP and BRE stops cause a F, rise from P1 to P2 (with only few exceptions within the BRE category) the VL and VD stops reflect similiar interactions between place of articulation and the vowel. This can be explained by the underlying difference in the laryngeal behavior during the production of these stops. In VL as well as VD stops the glottis is almost closed during the moment of articulatory release of the closure, whereas the glottis is open in BRE as well as ASP stops. Thus the F. onset is less affected by articulatory movements during the production of ASP and BRE stops, but is subject to greater influences in VL and VD stops. Some general differences between our results and Ohde's are obvious: (i) ASP stops cause a rising-falling pattern across all place and vowel conditions. This difference is systematic without any exception. It can be assumed that the different methods applied in these studies may be responsible for this effect. (ii) VL and VD stops do not cause a falling F. pattern in all place or vowel conditions. The pattern is a function of the place of articulation and the tongue height and tongue position of the vowel. (iii) Concerning the interaction between place of articulation and vowel we found, in contrast to Ohde, a similiar pattern for the VD.and VL stops. This interaction is comparable to that of Ohde only in respect to the VD category.

Se 7.4.3

TABLE 3: Interaction between place of articulation, vowel, and stop manner: diffe-rence between P1 and P2 in Hz. Positive values indicate a F. fall from P1 to P2, negative values a F. rise.

|        |                                      | VD                                                                                                       | VL                                                 | ASP                                                | BRE                                                |
|--------|--------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|
| means  |                                      | 7.9                                                                                                      | 8.7                                                | -14.8                                              | - 7.9                                              |
| labial | /a/<br>/e/<br>/o/<br>/i/<br>/u/<br>x | $ \begin{array}{r} 11.2\\ 3.3\\ -3.4\\ 1.8\\ -4.2\\ 1.5 \end{array} $                                    | 50.5<br>31.0<br>-14.6<br>2.8<br>-35.8<br>13.7      |                                                    | -11.3<br>- 6.4<br>6.9<br>- 5.3<br>-11.5<br>- 6.1   |
| dental | /a/<br>/e/<br>/o/<br>/i/<br>/u/<br>x | $ \begin{array}{r}     13.8 \\     - 0.5 \\     11.4 \\     - 3.9 \\     1.7 \\     6.6 \\ \end{array} $ | 49.0<br>-14.1<br>9.3<br>- 9.4<br>-12.5<br>7.7      | - 5.0<br>-27.8<br>-35.0<br>-19.3                   | -15.3<br>-10.6<br>-14.6<br>-10.1                   |
| retr.  | /a/<br>/e/<br>/o/<br>/i/<br>/u/<br>x | 42.7<br>3.7<br>8.4<br>25.2<br><br>20.8                                                                   | 51.7<br>46.8<br>36.7<br>- 9.2<br><br>30.8          | - 0.8<br>- 9.4<br>-23.0<br>-24.0<br>               | - 5.4<br>1.7<br>-13.6<br>2.1<br>- 6.7<br>- 4.1     |
| velar  | /a/<br>/e/<br>/o/<br>/i/<br>/u/<br>x | 14.4<br>4.3<br>1.1<br>- 2.2<br>-12.9<br>2.9                                                              | -20.5<br>-26.1<br>-31.1<br>-11.6<br>-17.4<br>-17.4 | - 1.5<br>-37.2<br>-26.1<br>-42.9<br>-32.1<br>-15.0 | -16.3<br>- 4.4<br>- 5.0<br>-34.2<br>- 4.2<br>- 3.0 |

### REFERENCES

- Hirose, H.; Lisker, L.; Abramson; A.S.: Physiological aspects of certain laryngeal features in stops production. Haskins Lab. Status Rep. Speech Res., SR-31/32, pp.183-191 (Haskins Laboratories, New Haven 1972)
- Lea. W.A.: Segmental and supra-[ 0 ] segmental influences on fundamental frequency contours; in Hyman, L. Consonant types and tones, pp.17-70 (Linguistic Program, University of Southern California, Los Angeles 1973)
- Obde, R.N.: Fundamental frequency as ΕЗ. an acoustic correlate of stop consonant voicing, J. acoust, Soc.Am. 75: 224-230 (1984)
- Schiefer,L.: F. in the production and [4] perception of breathy stops: evidence from Hindi. Phonetica 43:43-69 (1986)
- Umeda. N.: Influence of segmental [5] factors on fundamental frequency in fluent speech. J.acoust.Soc.Am. 70: 350-355 (1981)

Se 7.4.4