L.V.BUNDAKKO

Dept.of Phonetics, Leningrad State University

ABSTRACT
Ine goals of the phonetic analysis of speech activity are determined by the properties of the language as a means of communication. Production and perception of speach under normal conditions of communcation can only be underston the characteristics simple acoustic signals, representing a
set of allophones and the rules of their processing.
uf great importance is also a detailed study of phonetic variance of a particular language as well as information on the language: morphemes and words. A pho netic fund of the Russian language has been described that combines the informa-
tion specified above. The fund provides phonetic information for speech analysis and synthesis as well as for liguistic
study of Russian sound system.

Phonetics as a science dealing with speech sounds can proceed along two tinct paths: one parallels phonology,
whose concern is distinctive function whose concern is distinctive function of physiology, studying mechanisms of production and perception of sound sequen Phonology has already devised rather uists. to study any sign system. Phonology's traditional refusal to analyze phone tic reality has become now a universal charac teristic of phonological studies,
where the authors either absolutely deny the importance of physical properties of speech sounds or are satisfied wit
er primitive phonetic information.
During the I6 years separating us from the YIIth Congress of Phonetic Sciences when Dr D.B.Fry accused linguists of neg been changed. Up to now, experimental phonetic studies of speech activity have been non-essential for phonologists
because it is assumed that by contrast because it is assumed that by contrast
with the systematic character of languag speech is individual and, as a consequen-
ce, unsystematic. wiany present-day phonoce, unsystematic. weny presentely indeper dently of phone tic knowledge, are nourished" by their own postulates, and it eems that no new phone tic information hake the stability of those postulates Another approach to speech sounds is epresentin studies dealing with the last decades a wealth of research work has been done, where the properties of man, allowing him to use speech so most importance. Interest in this information is shown first of all by those reguistics, may be called representatives of neighbouring sciences - physiologists, sychologists, research workers in speech ommuni nition, as well as those studying prob trend using the most perfect experimental methods and statistical analysis has made an important contribution to our concepts,
ooth in the physiology of speech production and in psychophysiology of speech perception, beginning with peripheral processing of speech signals and ending ral parts of the hearing system for a detailed account of a similar approach and extensive bibliography on this subject see, for example, the work by Bernard used in most of these studies maems to be rather limited, if considered from stance, in studying speech perception such simple sound sequences. as CV or VC are of ten used. Many researchers, on the whole, prefer using synthe tic speechate the parameters under study, no matter how far their characteristics are from
of real speech signals
As a result of the development of such diametrically opposed sciences as the phonology and psychophysiology of
methods and having specific areas of application, the speech activity of man, who used speech signals for communication, is beyond the interests of both the
former and the latter trends. Phonoloformer and the latter trends. Phonoloted in the real manifestations of speech. The psychophysiologists' concern, on the other hand, is limited to the phoneti properties of simple becomes expedient, therefore, to study speech activity on the basis of both phonemic concepts and the knowledge that such studies should be more intenseve than they are today. From a perceptu-
al point of view, information contained al point of view, information contain in the auditory system of any native
speaker may be ccmpared to a curious "puff-pastry", in which without fail there are the following layers:
(a) Certain universal properties wi audiand animals.
For example, the ability to classify synthetic speech-like vowels according to the values of $F I$ and $F I I$ and ascertain phoneme boundaries"/i6/ was found in exessume ${ }^{n}$ dogs, which allows us to vowels are determined by some fundemental properties oi man's auditory system,
b) by his linguistic competence" / / / (b) Some properties of the auditory systic abil
These are properties enabling speakers
of various languages to discriminate be tween the vowels of the basic triangle, to use on-and offi-glides of vowels for
the identification of adjacent consonarts to define the accentual structure of a
sound sequence, etc. To these abilities, sound sequence, etc. To these abilities
common to all people, one might add sound symbolism, i.e. the presence of certain psychological and sound associations /22, 24/.
(c) Some specific properties of the audiown sound system.
These properties are determined not only by. the number of phonemes and their allophonic variation but also by the whole on Kussian subjects estimating the distance be tween pairs of sounds it was
found that Z vowels were similarly rat found that ${ }^{2}$ vowels were similarly rated
on the basis of the reguler alternation on the basis of the regular glternation - /aamaj), rather than on closeness of their Fl and Fll values difficult, or even impossible, to find the exact boudaries of the layers. As has been said above, the abllity to identify adjacent consoa common feature of man (we may assume
that animals can acquire this abılity as well). However, Kussian subjects easily basis of on-glides, because in Kussian hard and soft consonants are in phonological opposition, but they show poor disrimination of the place of hard consonants $/ \mathrm{p}, \mathrm{t}, \mathrm{k} /$ and b , d , $\mathrm{g} /$. French and american subjects, on the other hand, as of the egrly 'jus i i d do this very well, but the i/-glides of russian vowels are correct identification of preceding consonants/ $/ 7$ because sof tness in the se lan-
guages is something unknown and phonolofically irrelevant.
in any case, investigation of speech activity should be based on the results of experimental psychophysiological stui.e.conveying meaning, should also be properly considered. This very function allows or even provokes variation of speech signals and hinders successiful mo-
delling of man's perceptual properties in automatic speech recognition.
To demonstrate the degree of divergence between physiological and psychophyresults of speech activity, on the other hand, two figures are given. In Fig. 1 a and b) Kussian consonants are shown in two different feature spaces. Fig. La dethe consonants in a space of articulation features/ Ib f , which seemed to be a convenient way to show the relations be-
tween nussian consonants and their feat tween. Kissian consonants and threangement of Russian consonants in a space of pychological features comparable with such
oppositions as hard-soft and continuousoppositions as hard-soft and continuous ence between the geometrical linguistic pattern and the real arrangement of consonants in the perceptual space! presentation of the vowels used as stimu li in experimental phonetic sturies: Fig. $\langle a$ demonstrates synthetic tour-form ant stinuli used in numerous works aime Fig. 2 b shows Russian stressed and unstressed vowels. As can be seen from the com(400 ison of steady-state synthetic vowe vowels(varying in duration from 200 to 50 msec), the differences be tween them are so great that one cannot assume that in processing and identification of the two groups

Fig. I. Russian consonants in a space of (a) Russi
articulatory fonsonants in a space of the arrangement of the consonants with(b) phonemic system/liく/;
(b) Russian consonants in a space of perceptual features related to the discontinuent" $/ 24$ /.
Thus, in investigating speech activi-
y, when natural languages apee studiv one should consider the following: (I) (2) how these properties are realized in 2) how these properties are realized' a particular phonetic system, (3) in the upper levels of the linguistic structure effects speech activity.
Such an approach to the study of speech activity will undoubtedly cause the disapproval of both phonologists and representatives of the natural sciences. let us take courage and borrow what
need from these opposite provinces!

Fig. 2 The scheme of formant characteris
(a) tics of the experimental vowels.
(a) synthetic vowels stressed and unstressed, both occur ring in different phonetic contexts.

Fhonemic terminology, due to thorough laboration of the main concepts of the ield, is more precise than psychophysithe terms.

1. The Phoneme is the minimal unit of the expression aystem which is able to constitute and distinguish meaningful term "psychophysiological phoneme", as used by psychophysiologists, is less preise: psychological phonemes are defined as units corresponding to non-overlapameters of the speech signal. The number of these phonemes exceeds that of linguistic phonemes in any language. Howthis excess is $/ 16$, p. $82 /$. Fig. 3 presents the phoneme boundaries of psychological vowel phonemes in relation to the plane (Fig. 3 a), as well as data on posible changes in FI and FiI of the voadjacent consonants(Fig. 3b). Comparison of these figures shows that psychologial phonemes, as revealed in experiments on synthe tic vowels, do not correspona based on their acoustic and perceptual
characteristics.

Fig. 3 areas of F-values of natural Kussia
daries
a) arrangement of kussian vowels in FI-FII plane and as related to experiment with synthetic vowels;
b) possible Fi_{1} and Fil values of glides with respect to stationary
segments of the vowels:/a, o, e, segments of the vowels:/a, o, e, /cia; etc. -i-glides of the vowels preceded by soft consonants; pal, etc.-glides of the vowels
hat are the correlates of phonemes in speech activity? From the viewpoint of pronunciation is an open syllable($\mathrm{CV}, \stackrel{\mathrm{CCV}}{ }$) in which the information about the consonant(s) and the vowel is contained nearly ther is it the minimal unit from the view point of speech perception, because some phonemes and classes of phonemes canno be identified without minimal phonetic main function of phonemes, which is to constitute and distinguish meaningful linguistic units, the phoneme does not appea well-known fact that it only seems to a subject that the two words differ in some
sound segment $/ \mathrm{J} /$; it is also known that
man can hear" the sound in a sound sequman can if it is not present at all.
we may speculate that the phoneme as the minimal unit the expression syst em is only necessary to put in good or-
der conceptions about the structure (arrangement, set-up) of meaningful units, and such a conclusion gives grounds for the very bold but false claims that the istic analysis bears no relation to speech activity of native subjects. Kesearchers studying speech activity have
already gone througin the period when the already gone througn the period when the
concept of the phoneme seemed to be a logical device which did not have ayy/ correspondence with speech material/
Now one can safely say that the phoneme Now one can safely say that the phoneme structure, such as the morpheme, the word, etc. Evidence of its reality for native subjecta is quite plentiful experimental phonetic studies. let us consider some of the facts in the sequence that seem to be the most natural
phonemic system is represented in the stmicture $14,17 \%$. Phonemic classification is used by native subjects for systematization of sound units in speech parameters, and for coding programs of essential articulations (in speech production). Yhonetic realization of a phof any late ig regulated by a whole set of rules (the articulatory basis) and eads to certain peculiarities of perceparl processing of acoustic signals the 2. The phoneme and
eatures. Since the middle of the \downarrow th entury, this problem, due to the schohas become central inphonological discus ions and experimental phonetic studies. Linguists concern themselves first of all feature as an independent unit of the expression system $/ 3$, $14 /$. Uf utmost import ance for phoneticians is the study of articulatory and acoustic correlates distinctive features, as well astaining information about disures fine features in speech perception
Taking this opportunity to acquaint wid circles of phoneticiens with studies will mainly mention here the results of studies of Soviet phoneticians.

No less important, however, is the linguistic and proper phonetic characteubjects speech activity. is the phoneme cepresented by a constant set of distinontext to another? As a matter of fact the answer to this question is closely
onnected with a different problem: is neme based only on the reatures of a phoons existing in a given language or the phonemic system itself effect the procedure of attributing distinctive feaphonemes phonemes? For example, are the rúk'i/ "hands", /g'imn/ "the wor" ${ }^{\prime \prime}$ and ness an allophonic vort or is their softy the character of the are the affricates $/ \mathrm{c} /$ and $/ \mathrm{c} /$ ing voiceless or are they lacking characteristics of nts on speech activity of Russion subjects demonstrate that the set of distinctive features of each phoneme is ascertined on the basis of knowledge of the honemic system as a whicle, end if the most phonemes, it is also attributed to the phoneme which is not opposed to othingual nasal phoneme, though in Russian here is no opposition of forelingual and backlingual nasal consonants; backlingual soft phonemes but not the given above ar hard $k, g, x /$. This conclusion is suppor ted not only by numerous experiments wheof such sounds, phoneme discriminations able ability of the subjects to indisputunnaturalness", "anomaly" of those stimili which satisfy our phonological connot meet the phonetic requirements concening the correlates of the distinctive eatures. It is noteworthy that distinctinctive feature has tractions: each disphonetic correlates, and native subjects can use any combination of these correla tive feature in question. The the distin nature of distinctive features is also supported by the fact that the character by the degree of of distinctive features but by phonemic relations proper. For example, kussian nasal and soft consonants having distinct phonetic characteristics are in phonemic marked members, the fact having been definitely confirmed in perceptual experi-

It follows from what has been said jects, that, on the one hand, native sub conceptions about phonological operation (which have been developed in phonology) n the other hand, being tolerant to the varying charateristics of speech sounds, rules allowing them to proceed from a variable phone tic picture to a sequence of phonemes, thus constituting the expremeans that native subjits. This, in turn, phonemics, which only partly coincides
with that of a phonologist,
3 . The Phoneme and the Morpheme
From the viewpoint of classical phono logy one of the main functions of the phoneme is its Ebility to discriminate
morphemes. worphemic criteria are als used both in determining the are also status of a phoneme and in making decisions as to mono- or biphonemic interpreclassifying phond sequence, as well as in classifying phonemic oppositions. Indeed linguistic unit and the ability of the phoneme to function as the morpheme's exponent is a very important evidence of tic continuum into minimal segmental units, i.e. phonemes.
It is necessary to point out that expely based on conceptions that very raboth phonemic and morphemic levels of analysis.
But it
tiont it is quite clear that a description of human speech activity dealing not ignore the principal rules that govphemes. Russian language studies of mor phemed Russian anguage studies have ex problem. Every chain of sounds can be re presented phonetically, for Russian at and fros a morrhological viewpoint, as a sequence of norphemes: affixes, roots the utteriace into open syllables is of in appli.ed studies and is confirmed by experimente? data/2/.

Fig. 4 a sound sequence segmented into open syllables (at the top) and morphs k-root, p-prefix, s-suffix, F-flexion

In order to gain an understanding of how this segmentation can be rendered morphologically, that is, how to trans-
forma sequence of syllables into a sem:form a sequence es, a special study was carried out.
Each syliable was considered from the point of view of its morphological segmentation, producithe structure made it possible tu formalize the transfer from syllable seg mentation to morphemic segmentation/ 21 the relation between the "morphemic structure of the syllable" and the "syllabic structure of the morpheme" has psycholinguistic correlation and it can be experi. mentally investigated
human spesech activity. of morphemes revealed certain facts which are important in the evaluation of morphot of all, not every morpheme is a meaningful unit. Secondly, many morphemes differing in their sound pattern haNe the same grammatical meaning (we are course). These facts challenge the exclusiveness of morphological criteria in phonology.
Nevertheless, rules governing the combination of phonemes(sounds) into morphemes and their arrangement into word-forms are language specific; they form one of
the building blocks of what is meant by the building blocks of what is meant by about higher levels" in constructing
speech recognition models
Systematic studies of the Kussian Lanpuage Dictionary where each word is rehave made it possible to obtain quantitative data for linguistic interpretation
of the predictability of phonemes both in the predictability of phonemes bot 10 thousand word-families having the same basic root.
basic root. The phonetic analysis ${ }^{x}$ of these roots revealed the following: 1.Approximate s a hased vowel.
2. The probability of the occurrence of 2. The probability of the occurrence of a
stressed vowel in the root depends on its quality:

stressed vowel	Number of syllables in the root					
	1	2	3	4	5	6
1	2	3	4	5	6	7
$\begin{aligned} & \text { a } \\ & \text { é } \\ & 0 \end{aligned}$	$\begin{aligned} & 10200 \\ & 6299 \\ & 0845 \end{aligned}$	$\begin{array}{r} \times 3868 \\ \times 340 \\ 3371 \end{array}$	$\begin{array}{\|c\|} \hline 1032 \\ 072 \\ 097 \end{array}$	$\begin{aligned} & 126 \\ & 67 \\ & 55 \end{aligned}$	$\begin{aligned} & 22 \\ & 7 \\ & 3 \end{aligned}$	2

xThe data presented below were obtained
by computer analysis of the dictionary.

I	2	3	4	5	6	7
i	3866	I46I	64 I	75	I	
\pm	1427	360	22	1		
u	4i0:	1049	27.5	26		

The absolute number of roots containin
this vowel
The table shows that there is a conof syllables in the root and the frequency of roots: the longer the roots, the fewer their number. Of frequent occurrence in
3. The probability of occurrence of unstressed vowels in the root morpheme
varies: the more frequent are varies: the more frequent are $/ /$ and 4. The description of root morphemes in terms of generalized phone tic structure(C and V) revealed
combinations, the more
frequent of combinations, the more fice quent of
them being CVC, CCVC, CVCC and CVCVC. 5. historical alternations of vowels(i. \dot{e} changes in the phonemes of the root phonetic rules of modern pronunciatiphone occur in approximately 3% of all roots, alternations of consonants - in nearly 6%.
revealed, prefixes, as our investigation Thealed, contain an unstressed vowel in a prefix is an exception rather than the
rule, which any Russian speaker can use in rule, which any Russian speaker can use in
phonemic identification of a vowel in a prefix (the prefix dec $=b$ is for ex ample, occurs in the dictionary 409 tim-
 times, whereas of $=/ o t /$ is found only 3 times).
The conputer based dictionary has
made it possible to determine the frequency of cases in which considerable vowel reduction occurs and, as a consequence, the simplification of the phonemic sequen found in post-tonic parts of the word. A special computer programme enabled usto extract all unstressed fragments givcontain such fragments in their structure; every 311 fragments out of the 1200 which are possible occur in 90% of all word-forms having post-tonic parts. relationship between the phonetic and morphological properties of these frag ments.
These studies may seem to have no dihuman speech activity, but this is not so. The "language competence" of a speaker
implies not only his ability to make use
of phonemic and phonetic distinctions of his language, but also to understand the meaning of the phonetic complexes. The mechanisms of recoding sounds into meaningful units includes also the comprehension of rules of word-formation which ennatical interpretation of a vague series of sounds.
the study of regularities governing the formation of the phonetic structure o one of the necessary constituents in the investigation of human speech activity. The study of speech perception, exhaustive as it might be, will give us informatiof human speech activity, whereas information about the predictability of occurrence of phonetic patterns of meaningful
unita makes it possible to put forward a reasonable hypothesis about the mechanisms which enable the listener to predict one lement of speech by the other and the speaker can rely when he allows himself certain deviations from the "ideal" pho etic patter of the utterance he produ es.
In fact, the problem of defining the the acoustic continuum into a succession of discrete elements in speech perception cannot be solved wi thout reference to ald possible modifications of the whole word. These modifications are governed by certgive a thorough and comprehensive phonetic description of the sound system of a particular language, it is necessary to take into consideration both allophonic vironment and modifications due to tempo variation, the intonation pattern and the placement of the word in the phrase (vadard pronunciation is the subject of a special study).
So the problem is to create a phonetically representative speech material that
will enable us to obtain necessary information.
We will use the Russian language to il ustrate how it can be done.
data on the above, there are statisti200 most frequentiy syllable in Russian: cconnt for about 80% of any syllables 9cconnt for about 80% of any Russian text CCCV, both stressed and unstressed.
Fig. $5(\mathrm{a}, \mathrm{b}, \mathrm{c})$ shows the relative frequncies of syilables with various vowels (in per cent) and the relative frequencies $\mathrm{CCV}^{\text {and }} \mathrm{CCCV}$ sequences
it is evident that syllables with the
the vowels /a/, i/ and /u/prevail in the group of most frequently occurring syllastressed /o/ and /e/ is considerably greater than that of syllables with untressed vowels; other vowels were more requently found in unstressed syllable
$\%$

Fig. $\dot{\circ}$ Relative frequencies of syllables in Russian:
(b) and (c) contang various vowels or unstressed vowing either stressed filled circles). Dat (filled and unare given in $\binom{b}{$ syllables in } , and on CCv and CCCV

The occurrence of consonants and their clusters in these syllables is in accord with the known statistical data for the phonetically representative text is necesaary not only for experimental studies of speech activity but rather it should netic data obtained for the bank of phoarious computer techniques forg procesing and storage of phonetic information sequences like CV and CCV, will provide necessary information both for theoretical research and applied studies of peech signals, following four blocka (Fig.6): tion proper, which characterized distriof acoustic parameters at the all within a. word-form
II. Block of phonetic properties of inal constituents of the word-form(i.e. III.Block ord-form as a combination properties of the it allows sequences of sounds which are mpossible wi thin a morpheme. ext of any length.
The first of these blocks seems to be orded text into it transforms the reand performs segmentation of the computer rersion into "fragments" in accordance With the prescribed transcription. One of ber of informants necessary for obtaining a statistically adequate and reliable corpus. They may be few, but a preliminary honetician is necessary, since he is ab le to assess both the standard of pronumciation and the degree of its individual ariability. The computer version of pho in any information which may be interesting for a phonetician and also makes possible accurate comperison of data obtained by The second block
about phonetic proper stored, also requires the use of the computer based dictionary segmented into morit possible to obtain the necessary information.
The
The realization of the third block is ed dictionary. Une of the best examples of such dictionary is the above mentioned Russian Derivational Dictionary by Dean S orth et al.) which gives information tional morphemes in kussian.
and finally, the block of phonetic the algorithm for an automatic transcri tion which converts any orthographic recording into a sequence of phonetic symsigned its possible acoustic realization in the first block, such a transcriber should provide an optimal synthesis of the the re
tic data as it is described here is ane very difficult and reaponsible task. Only a few fragments of each of the four blocks have been realized up to now. But
our confidence in the necessity of this our confidence is justified by the interest arous ed by this idea in linguists and representatives of applied sciences. In some despect, means to construct a model of huma speech activity.

Fig. 6 a scheme of phonetic base data 1, i1, ill and LV - blocks of phonetic properties.Upper lines with arrows indicate the most closely tied block of speech. Lower lines with arrows in dicate the direction of information transmission in linguistic processing of speech.

Fig. 6 shows the structure of the bank phonetic data and the relations tha seem important both from the linguistic oint of The block of acoustic data which conains information about the realization of sound units may provide data for a acoustic cues of the distinctive featues and for the description of standar pronunciation. Segments from this block symbols, since each of them is assigned nformation about the position of the orresponding allophone. Yhonetic transcription provides information about po-
tential phonetic variability of each phoeme. It is important that these segme ts can also be used for comparison as ideal" models
of word-forms - morphemes constierms of honetic and phonological units is exremely important for linguistic analysis proper, since we know very lict of the relationship of the two types of linguis
tic units, the phoneme and the morpheme.

How of ten does a phoneme perform its dismes are distinguished by the phoneme alothis respect and are the more active in often do the morphemes which liffer in make-up? How many morphemes with the same grammatical meaning differ in their phonemic make-up? Even the listing of these problems makes it clear that information canter be obtaine without the use of com just beceuse of fashion but as vital research necessity.
formation about the phonetic of view, inof a word-form as a combination of emes is also of some interest, since it enables us to obtain quantitative data that characterize processes of forming a occurrence of definite classes of phonemes in definite positions within a wordform is a universal phenomenon, but only perties of sound units with their functions within the word-form and the mortpheme can we obtain new data in this resthe word-form may even give apecialists in the field of diachronic phonetics something to think about.
performally, an automatic transcriber terms of the first three blocks, and thus not only verifies the various properties of sound signals but also enriches the content of
In conclusion, I would like once again to draw your attention to the nececific aspects which are pertinent to human sppech activity. The development of new and reliable methods is only beginning. To these we may refer the inlanguage sounds (familiar and unfamiliar to the listener), the comparison of re-
sults of the identification of the same sults of the identification of the same example) by speakers of different languages, the analysis of perceptual abilithes of speakers of those languages which bination of phonemes into meaningful units (Russian compared to Turkish, with its law of vowel harmony). The modificathe speakers of different languages is a good model of the influence of one's native language on one's speech activity in a foreign language.
ese fine mechanisms tem on human speech activity is the tem on human speech activity is the
of all specialists interested in obtain ing new data about properties of speech production and perception.

KEFERENCE

I. Baru A.V., "Slukhovy je centry i opoznaiije zrukovyh signalov" (Ear Centers grad, 1978 . IY2 p.
2. Beliavskij V.K. Algoritm avtomatičeakoj segnentatsii reti na otkrytyje
slogi ${ }^{\text {n }}$ (nlgorithm for Automatic Segn tation of Speech into Open Syllables),
3. Benvy ARSO-9, Minsk, 1976 , P . Dinguis tique gennerale" (Problems of General
4. Linguistics), Paris, IY66. je jazyka i fonologixeskoje opisanije rexi" (Phonetic Description of Languageand Phonological Description - Bondarko L.V. Nekotoryje zamexanija po povodu markirovannosti-nemarkiropostavlenij" (Some Remarks on wiarked Unmarked Members of Phonetic Oppositions), in: Issledovanija po fonologii,
. Bondarko L.V.? NThe Syil
oondarko L.V.' "The Syllable Structure Phonemes.", Phonetica, $1969,20, p p . I-$ 7. Bond

Bondarko L.V., Kiushkina O.M. Pertse netiCeskoj informatsii ${ }^{\text {obrabotka fo- }}$ Principles of language and Processing 19 Language Information), I vanovo,
Bondarko L. - Bondarko L.V., Lebedeva G.N. "Mopyt sluha" (Some Principles of Description
of Phonological Perception), Voprosy jazkoznanija, fyerception), Voprosy
Gondarko L. V., Verbitskaya L.A. Fact ors underlying phonemic interpretatiIn: Auditory Analysis and Perception
O. Bondarko L.V.; Svetozarova N.D. vosprijatii bezudarnyh slogov (On
Perception of Unstressed Sylable in: Fonetica, fonologija, grammatika, I. Bondarko L.V., Zinder L.R.,Stern A.S Nekotoryje statistiðeskije harakteri tiki russkoj redi(Some Sjatistical Characteristics of Kussian Speech),
in: Sluh i ree
 Borst $\mathrm{J} . \mathrm{M}$. ,Gerstman L.J. Some Experi
ments on the Perception of Synthetic ments on the Perception of Synthet
Speech Sounds, JASA, 1952, voiz4,
p. $597-606$.
［3．Delgutte B．，＂Codage de la perole dans le nerf auditif＂，These de docto－ rat d＇etat des sciences liaturelles， Fresentee a Luniversite pierre et Marie Curie pour obtenir le grade de docteur des ذciences， $1 y<4$.
14．Ďaparidze L．N．U merizmatičeskom urovne lingvisticeskogo analiza（Un the merismatical level of linguistic analysis），in：Zvukovoj stroj jazyka， Moskva，p．98－103．
15．Jolkina V．N．，Judina L．S．Statistika slogov russkoj reci（Statistics of Kussian Speech Syllables）．In：Vycis－ litelnyje sistemy， 10 ，Novosibirsk， 1964，p．08－78．
16．Fiziologija rexi．Vosprijatije reci Celovekom（Speech Ariculation and Fer－ ception），L．A．CistoviC et al．，Lenin－ grad，1476， 386 p．
17．Galunov V．I．Issledovanije subjektiv－ nogo predstavieni ja gruppy russkih soglessnyh metodom semantiteski protivopolozhnyh par（Research on Sub－ jective Perception of a Group of Rus－ sian Consonants by means of Semanti－ cally upposed Pairs）．In：Analiz rece－ vyh signalov Celovekom．，Leningrad， 1971.

Lc．Moisejev A．I．Sootnositelnost＇sogla－ snyh zvakov v sovremennom russkom ja－ zyke（Correlation of Consonantal Sounds in Modern Kussian）．In：Studia Slavica（Hungary），196Y，t．XV，p． 207 － 218．
19．Problemy i metody eksperimentalno－fo－ netičeskogo analiza reci（Problems and Methods of Experimental Phonetic Analysis of Speech），Leningrad，I974， 151 p．
2．ReX．Artikulacija i vosprijatije． （Speech，articulation and Perception L．A．Xistoviと et al．，hoskva－Leningrad， 1965， 241 p．
2L．Urovni jazyka v retevoj dejatelnosti． （Language Levels in A Speech activity L．V．Bondarko，Leningrad University ヶress，え̄̄yp．
22．Voronin S．V．Oanovy fonosemantiki （Foundations of phonosemantica），Le－ ningrad， 1982.
23．Worth D．S．，Kozak A．S．，Jahnson D．B． Ruasian Derivational Dictionary， New York，1970， 747 p ．
24．Zuravi＇ov A．P．Foneticeakoje značeni－ je（Phonetic Meaning），Leningrad， 1974， 160 p．
25．Zinder L．R．Obščaja fonetika（General phonetics），Moskva，1979， 312 p．

ARTICULATORY MEASUREMENTS BY MAGNETIC METHODS

GEORGIOS PANAGOS

HANS WERNER STRUBE

Drittes Physikalisches Institut, Universität Göttingen, Bürgerstr. 42-44, D-3400 Göttingen, Fed. Rep. of Germany

Abstract

We present two methods, which use alternating magnetic fields, for measuring articulatory activities. The first method uses homogeneous magnetic fields and as induction coils a flat flexible rectangular coil and a magnetic potentiometer. The second method uses inhomogeneous magnetic fields and small dipole receiver coils. Some examples of comparative measurements of various articulatory movements during speech production are presented here in order to demonstrate the applicability of the system.

INTRODUCTION

One of the most important problems in the phonetic sciences is the measurement and theoretical modelling of the articulatory motions and their relation to the acoustic speech signal.
For the direct registration and measurement of the articulatory motions several methods have been developed in the past. However, most of them are very expensive or/and have some undesirable bioeffects [2]. Some other techniques, based on pulsed-echo ultrasound [3], are not tissue invasive but disturb the articulation a little, and they are not suitable for measuring all the articulatory parameters. We developed two magnetic methods, by which we are able to measure the tongue and jaw movements. These methods hardly disturb the speech production, are
biologically safe and not expensive. We also present here some comparative investigations between various quantities related to the articulatory movements.

METHODS

Homogeneous fields

The first magnetic method uses homogeneous fields, generated by three orthogonal Helmholtz-coil pairs with different frequencies ($15,17.5$ and 20 kHz) surrounding the head of the subject. One of the coil pairs is not quite "Helmholtz", but serves only for correcting purposes. The homogeneous fields do not allow to measure absolute positions, but vectorial distances can be measured more exactly. We used two types of receiver coils: a magnetic potentiometer (MPM) and a flat flexible coil (FC).
By the MPM, i.e. a long, thin and flexible coil, we can measure the vectorial distance between its ends with the help of the voltages induced by the three fields in the coil. These voltages depend only on the position of the MPM's ends (Fig. 1). We place and fix the coil's ends on the upper and lower incisors. Thus we can measure the distance of the upper to the lower jaw in the midsagittal plane.
The FC (with one or two rectangular windings, which are embedded between two flexible plastic sheets) is attached to the tongue surface in order to measure the tongue "curvature" and the angle of the
tongue tangent relative to the Frankfort horizontal line in the midsagittal plane. By the induction of the same homogeneous fields as above, a two dimensional vectorial distance of the short edges can be measured (Fig. 2), which can be interpreted as the curvature and the tangential direction of a tongue surface element. An outline of the vocal tract with the positions of the coils is shown in Fig. 3.
A longer flat coil allows us to measure the distance palate-tongue, if one edge of the FC is attached to the immoveable palate and the other to the tongue. Thus we had the possibility to obtain measurements relative to the head of the subject. But this technique may be too disturbing during speech production.

Dipole fields

The second method uses four dipole transmitter coils placed on the edges of a square in the median plane of the subject's head (Fig. 4). The opposite coils are driven at the same frequency but opposite phase, so that the field strength equals zero at the centre of the square. Each coil has 22 cm distance from this centre. Another pair of transmitter coils with their axes perpendicular to the median plane are used for correcting purposes. This (circular) coil pair generates a nearly homogeneous field about the centre of the above-mentioned square, which is approximated with a 4th-order polynomial [4]. These coils correct the induced amplitude for a possible deviation of the receiver-coil axes from the normal of the median plane. The receiver coils attached to the tongue surface are about 1 mm thick and 3 mm long, with a ferrite core and about 400 windings. With such miniaturized dimensions of the coils no disturbance during speech is given (they are smaller than the pellets in [21). They are pasted on a plastic strip, which is
then attached to the tongue. This facilitates obtaining the proper orientation and position of the coils, protects the coil's leads and enhances reproducibility. Another receiver coil is placed on a immoveable point of the head (e.g. upper incisor) used as reference point. Since we use synchronous demodulators for the detection of the receiver signals, we can distinguish the sign of the field strenghts, unlike [1]. The field strengths are converted into Cartesian coordinates by a zero-detection iterative technique. The calibration constants can also be estimated by a similar iterative technique.
The electronic section of the apparatus consists of a transmitter (three sinewave oscillators) and a receiver lock-in amplifier, which separates the three induction voltages of the receiver. coils by a synchronous demodulator and three 4th-order Bessel filters. The advantage of the lock-in circuit is that it keeps the disturbing voltages to a minimun and allows the distinction of the sign of the induced voltage.
The errors of both methods are below 1 mm . Simultaneously with the motions of the coils the speech signal is picked up by a Sennheiser microphone (MKH 105), in order to compare the signal with the articulatory parameters. For preventing any acoustical disturbances all the measurements have been done in an echofree chamber. All the signals (speech and those from the lock-in amplifier) are digitized and fed into a laboratory computer.

MEASUREMENTS - DISCUSSION

With the homogeneous-field apparatus tongue and jaw movements have been measured in VCvCV utterances. Comparative investigations have been done of the time which is required from the start of the
movements until the onset of phonation and the maximal velocity or the maximal amplitude of the movement; between the latter two quantities we found a roughly linear dependence of the data (Fig. 5). We measured the coordination between the jaw and tongue movements. Specifically, we did some investigations about the repetitive production of $/ \mathrm{d} / \mathrm{l} / \mathrm{t} / \mathrm{l} / \mathrm{p} /$, combined with /a/, /u/, $/ 0 /$ and /au/. In the comparisons of tongue and jaw movement we found a positive correlation (an example is shown in Fig. 6). Jaw and tongue measurement examples by the dipole-field method will be presented at the Congress.
These methods have the following advantages: negligible disturbance during speech, they are inexpensive, and they are biologicaily safe. The disadvantage of the homogeneous-field method is that it is impossible to registrate parallel displacements of the coils (thus no absolute positions can be measured). This disadvantage is avoided by the second method (the inhomogeneous fields). Unlike the first method, we can thereby measure absolute positions in the mouth, with the transmitter coils, having fixed positions about the head of the subject, as reference frame. In further development of these methods we combine them with optical methods (measurements of the lip opening area [5]) and collect a large amount of data for application in articulatory and speech modelling.

References

[1] van der Giet G. "Computer-controlled method for measuring articulatory activities", J. Acoust. Soc. Am. 61, 10721076 (1977).
[2] Fujimura 0. "Modern methods of investigation in speech production", Phonetica 37, 38-54 (1980).
[3] Keller E., Ostry D.J. "Computerized measurement of tongue dorsum movements
with pulsed-echo ultrasound", J. Acoust. Soc. Am. 73, 1309-1315 (1975).
[4] Nagaoka H. "Magnetic Field. of Circular Currents", Phil. Mag. 41, 377-388 (1921). [5] Kretschmar J. "New method for fast continuous measurement of the lip opening area", J. Acoust. Soc. Am. 62, 474-476 (1977).

Fig. 1: Schematic of the magnetic potentiometer; dashed line indicates the vectorial distance between MPM's ends.

Fig. 2: Schematic of the flexible flat coil. The hatched planes indicate the projections normal to the fields. The dashed line indicates the measured vectorial distance.

Fig. 3: Positions of the flat coil and the magnetic potentiometer in the vocal tract.

Fig. 4: The dipole coil system. Transmitter coil pairs with frequencies f1, f2, f3; r: three receiver coils on a plastic strip in the middle of the system.

Fig. 5: velocity v_{C} of tongue's "curvature" in dependence of the maximal amplitude s_{c} of the "curvature" of the vowels /a/. /o/ and /u/ combined with the consonant $/ \mathrm{d} /$; \mathbf{x}, \square, : the measurement points of the three subjects.

Fig. 6: Velocity v_{j} of the jaw movement in dependence of the velocity v_{c} of tongue's "curvature" (velocity: maximal velocity at the beginning of the vowel /a/); \mathbf{x}, a, : the measurement points of the female and the two male subjects respectively.

ELECTROMAGNETIC ARTICULOGRAPHY *

A New Approach to the Investigation of Palatalization in Russian

Gabriel HONG, Paul W. SCHÖNLE, Bastian CONRAD

Department of Clinical Neurophysiology University of Göttingen
3400 Göttingen, Federal Republic of Germany

introduction

Palatalization is a linguistic phenomenon of wide occurrence. In a slavic language such as Russian, it is especially prevalant and has a (mor)phonemic significance. There are some theoretical linguistic investigations $[1,2,4,5,7,8,9]$ and experimental studies $[3,5,6]$ on palatalization in Russian. However, a direct recording of articulatory movements of the tongue, which modulate the vocal tract configuration underlying palatalization, is still lacking. EMA offers the possiblity of routinely sampling large amounts of speech data for empirically testing theories of palatalization specifically, as well as modelling speech production in general.

METHOD

EMA (Fig.1) is based on the physical principle that a magnetic field of an oscillating dipole decreases as a cubic function of increasing distance from its center [$10,11,12$]. The distance between a receiver and a transmitter coil can be determined by measuring the voltage induced in the receiver if the axis of both coils are parallel. Use of two transmitters allows calculation of the x / y coordinates of the receiver if the receiver does not tilt or twist. A third transmitter corrects falsification of the signal due to tilting or twisting of the receiver and enables precise localization of the receiver by iterative solution of nonlinear equations.

The three transmitters ($4 \mathrm{~cm} \times 2 \mathrm{~cm}$) are fixed on a helmet and positioned around the head of the subject in the midsagittal plane. The receiver coil ($2 \mathrm{~mm} \times 4 \mathrm{~mm}$) can be attached to the tongue with a tissue adhesive (Histoacryl blau). The signals from the receiver are fed into the analog circuitry via a thin copper wire (0.13 mm).

Fig.1. Electromagnetic Articulography. Fig.1a. Three transwitter coils (T) are fixed around the subject in the midsagittal plane. Fig. 1 b . Tilting of the detector (receiver) coil (D) weakens the signal and the radius (r) seems to be greater. A third transmitter corrects this effect and the unique solution of the non-linear equations is iteratively approximated.

The temporal resolution depends on the sample rate (up to 1 kHz), which was 125 Hz for the present experiment. The spatial resolution of the system is 0.5 mm in the major working range.

A physiological frame of reference is necessary for a reasonable orientation and localization while examining the movement trajectories of the tongue. One reference selected is the profile of the palate, which is obtained by sliding a receiver coil in the midsagittal plane along the palate (Fig.2). The overlay plot of Fig. 2 demonstrates the reliability of the recordings. Another physiological reference is the occlusion plane of the subject, which is close to the resting position of the tongue. All data are presented in a coordinate system in which the x-axis is parallel to the occlusion plane of the subject.

In the present experiment two receiver coils were positioned upon the central furrow of the tongue, one about 2 cm from the tip of the tongue and the other at the dorsum of the tongue. The subjects, who are native speakers of Russia, were then requested to repeat various types of syllables in Russian, including: 1). non-palataized consonant plus vowel <CV>, 2). palatalized consonant plus vowel $<\mathrm{C}^{\mathrm{V}}>$ (the palatality is indicated by an "apostrophe"), 3). syllable with $\left[\mathrm{jj}\right.$-insertion between consonant and vowel $\left\langle\mathrm{C}()^{\prime} \mathrm{j} \mathrm{V}\right\rangle$.

Fig.2. Three consecutive recordings of the midsagital profile of the palate of a subject facing to the right. Fig.2a-c: Single plots. Fig.2d: Overlay plot.

results

The Russian vowels $<\mathrm{i}>$ and $<y>$ deserve special attention with respect to palatalization in Russian: the consonant which precedes the vowel <i> is always palatalized, while the consonant which precedes the vowel <y> can never be palatalized. It is disputed precedes the vowel < $y>$ cher they should be treated as allophones. Fig. 3 compares the tongue positions of these two vowels.

For articulating the vowel <i>, the forward and upward movement occurs mainly at the front of the tongue, whereas for the vowel $\langle y>$ the backward and upward movement occurs mainly at the back of the tongue. In order to determine the precise tongue position at a certain point in time, acoustic signals and movement signals, which are recorded synchronously during the experiment, are compared. For both vowels, the baseline of the tongue position shows the resting position of the tongue, which is approximately in the same plane as the occlusion plane, and is therefore parallel to the x-axis of the coordinate system. As a rule, both vowels are pronounced when the tongue reaches its highest position. The tongue position of $\langle\mathrm{i}\rangle$ differs from that of < $y>$ in that the tongue as a whole lies further forward. This is in accordance with the phonetic description that $[i]$ is a high front vowel and [y] is a somewhat high and relatively back vowel. It is noticeable that the distance between the two receiver coils changes not only from vowel to vowel but also from time to time during speech movement.

In traditional static phonetics, the tongue tends to be simplified as a rigid mass, which moves at the same time in the same direction. In fact, the tongue is a heterogeneous mass so that different parts can move at the same time with different amplitudes and in different (or even opposite) directions.

Fig.3. Tongue Positions of Russian Vowels. Fig.3a: <i>. Fig.3ib: <y>. Fig.3c: $\langle i>$ and $\langle y>$.

Since palatalization is closely related to high front vowels, it is generally treated as a regressive assimilation through high front "vowels", especially through the vowel [i] or the glide [j]. But the formulation of such a rule of palatalization is opaque in Russian, because, in Russian, palatalized consonants do not occur exclusively before high front vowels, and, furthermore, non-palatalized consonants also occur before high front vowels. Neeld (1973) suggested an addition of rules to solve the problem of opacity [8]. This means - in the case of Russian - an insertion of the glide [i] must be postulated. Yet the Russian phonology requires a fine distinction between palatalization and [j]-insertion, e.g.: < s'em'l> (gen, sig. of "seven") and < s'em() jir (gen. sig, of "family") are a minimal pair. This dilemma of static phonology can be solved by investigating the dynamic aspects of palatalization with EMA. Fig. 4 and Fig. 5 demonstrate the distictions between palatalization and [j]-insertion.

In the case of the palatal fricatives, the front of the tongue moves to a greater extent in comparison with the back of the tongue. The articulatory movements of the front of the tongue for the nonpalatalized palatal fricative $<\mathrm{Sa}>$ are the parts of the trajectories, in which movement from the position for the palatal fricative $\langle S>$ at the top directly down to the position for the vowel $<\mathrm{a}>$ occurs. The curred trajectories forward and upward are the preparatory movements
of the tongue for pronouncing the target syllable. During the silent period, the tongue first returns to its resting position and then the front of the tongue moves backward and upward in order to reassume the initial position of the palatal fricative $\langle S\rangle$. The trajectories for the palatalized $\left\langle S^{\prime}\right.$ 'a> are loops which differ from those of the nonpalatalized <Sa> in that the initial position for the palatalized consonant <S'> already lies more at the front at the very beginning of the articulatory movements.

Fig.4. Palatalization of the palatal fricative $\langle S\rangle$. Fig.4a. NonFig.4. \langle Sa>, Fig Non-platalized $\langle\mathrm{Sa}\rangle$ vs, palatize $<S^{\prime}$ 'a $>$. Fig.4c. Non-palatalized $<\mathrm{Sa}_{\mathrm{a}}>$ vs. $<\mathrm{S}^{(}$') ja $>$(with [j]insertion). Fig.4d. \langle Sa $\rangle,\left\langle\right.$ 'ra $\left.^{\prime}\right\rangle$ and \langle S(')ja \rangle.

Although $\left\langle\mathrm{Sja}>\right.$ and $\left\langle\mathrm{S}^{\prime} \mathrm{ja}>\right.$ are written differently in cyrillic orthography, acoustic and articulatory investigations do not show any difference between them. Phonologically, the palatalized consonant and the corresponding non-palatalized consonant are neutralized in the position before an inserted [j]. The articulatory movement for $<\mathrm{S}^{(}$()ja $>$is no longer a nearly "straight line" but becomes a very bent curve. This indicates that the syllable contains three segments instead of two. Before the front of the tongue reaches its final goal, which is the area for the vowel [a], it passes an intermediate station, which is the
area for the glide [j]. The initial position and the final position of the articulatory movements and even the preparatory movements of the trajectories of $\left\langle\mathrm{Sa}>\right.$ and $<\mathrm{S}$ (${ }^{\prime}$) a > coincide with each other. When we compare the trajectories of all three syllables, we find that the trajectories of the palatalized < 'a $>$ lie just between those of the nonpalatalized <Sa> and those of $\left\langle\mathrm{S}^{(}\right.$()ja>

All these three syllables $\langle\mathrm{Sa}\rangle,\left\langle\mathrm{S}^{\prime} \mathrm{a}\right\rangle$ and $\left\langle\mathrm{S}\left({ }^{\prime}\right) \mathrm{j} \mathrm{a}\right\rangle$ have the vowel [a] in common. The turning points at the bottom of the trajectories of the articulatory movements of these three syllables lie fairly close to each other. Yet at the same time there are still some deviations. A detailed study of the trajectories together with the acoustic signals shows that the vowel [a] is pronounced before as well as after the turring point is reached. Thus, there is not a single point but a whole area in which the vowel [a] may be produced. This means: speech production requires on the one hand precise tongue movement when sounds are to be differentiated, but allows on the other hand a certain degree of freedom when sounds are not to be differentiated.

Fig. 5. Palatalization of <r>. Fig.Sa. Non-palatalized <ra>. Fig.sb. Palatalizcd <r'a>. Fig.5c. <r(') ja $>$ (with [ji-insertion). Fig.Sd. $\langle\mathrm{ra}\rangle,\left\langle\mathrm{r}^{\prime} \mathrm{a}\right\rangle$ and $<\mathrm{r}$ () ${ }^{\prime} \mathrm{ja}>$.

The situation is similar when we compare <ra>, <ra> and $<\mathrm{r}$ ()) ${ }^{2}>$ (Fig.5). For articulating $<\mathrm{ra}>$, the front of the tongue moves from its resting position first backward and then upward in order
to form a constriction with the palate. Through interaction with the air flow, the tip of the tongue is set into vibration. Then it moves down to the area of the vowel <a> and then forward to its resting position. The trajectories of <r'a> differ from those of <ra> in that firstly, the constriction point of $\left\langle r^{\prime} a\right\rangle$ lies (about 5 mm) more to the front and secondly, the front of the tongue moves somewhat forward in the direction to the position of the glide [i] after the tip of the tongue begins to vibrate. This forward movement is even greater for $\left\langle r\left({ }^{\prime}\right) \mathrm{ja}\right\rangle$. The difference is about 5 mm . On the whole, the trajectories of $\left\langle\mathrm{r}^{2} \mathrm{a}\right\rangle$ lie again between those of $\langle\mathrm{ra}\rangle$ and $<\mathrm{r}(') \mathrm{ja}\rangle$ and are more similar to those of $\langle\mathrm{r}($ () ja \rangle than to those of $\langle\mathrm{ra}\rangle$. This can be confirmed by data for many other consonants. Acoustically, palatalization and [j]insertion resemble each other so much that most non-native speakers of Russian have difficulties distinguishing them.

DISCUSSIONS

The EMA investigation of the trajectories of tongue movements shows that there are similarities as well as differences between palatalization and [j]-insertion. It also shows that there are constants as well as variants in speech production. On the one hand, each sound requires a certain vocal tract configuration in order to be able to be distinct from other sounds in the language system. On the other hand, the various articulators are able to compensate for each other, so that each articulator has a greater degree of freedom. This speech-physiological interpretation of polymorphism supports the assumptions of generative phonology that even among distinctive phonemes in a language, there are still some overlapping of articulatory and acoustic elements.

In this sense, palatalization means the partial take-over of the acoustic and articulatory elements of the palatal glide [j] and, at the same time, differentiation from [j]-insertion. This means more exact spatial and temporal coordination between various articulators. Spatially, the trajectories of the palatalized consonant reach only the peripheral area of the glide [j], whereas those of the corresponding syllable with [j]-insertion pass through its center. The whole vocal tract is so configured for the palatalized consonant that it acquires the partial acoustic effect of a palatal fricative. At the same time, it is temporally so coordinated that the trajectories of the palatalized consonant pass the area for the glide [j] in approximately $20-30 \mathrm{msec}$ less than the trajectories of the corresponding syllable with []]-insertion. Thus, under certain circumstances the consonant and the short glide is uld be treated as a new consonant rather than two segments of a \therefore. iable.

In a broader sense, palatalization is a reduction of "extravagant" speech movements in the motor realization of the whole speech sequence. Since velar consonants and dental consonants require a
greater extent of speech movement from the neutral position of the tongue than palatal consonants, they tend to be reduced to palatal consonants. This extended interpretation of palatalization can offer a unified explanation for palatalization at the phonetic level as well as palatalization at the historical, morphonemic level.

CONCLUSION

EMA investigation shows that palatalization can be treated in a wider framework of dynamic speech motor planning as an optimization of speech movement in the total planning of the whole speech sequence. This optimization of speech movements in various speech environments may result in a differentiation of the structure of a language.

REFERENCES

[1] Baudouin de Courtenay, J. 1894. Einiges über Palatalisierung (Palatalisation) und Entpalatalisierung (Dispalatalisation), Indogermanische Forschungen, 4, 45-52.
[2] Chomsky, Noam \& Morris Halle. 1968. The Sound Pattern of English. Harper \& Row: New York etc.
[3] Fant, C. Gunnar M. 1960. Acoustic Theory of Speech Production. Mouton: 's-Gravenhage.
[4] Fegert, Hermann. 1986. Die Formenbildung des Verbs im Russischen. Winter: Heidelberg.
[5] Halle, Morris. 1959. The Sound Pattern of Russian. Mouton: 's Gravenhage.
[6] Koneczna, H. \& Zawadowski, W. 1956. Obrazy rentgenograficzne glosek rosyjskich. Panstwowe wydawnictwo naukowe: Warszawa.
[7] Lightner, Theodore M. 1972. Problems in the theory of phonology. Linguistic Research, Inc.: Edmonton, Champaign.
[8] Lunt, Horace G. 1981. The Progressive Palatalization of Common Slavic. Macedonian Academy of Science and Arts: Skopje.
[9] Neeld, Ronald. 1973. Remarks on palatalization. Ohio State University working papers in linguistics, 14, 39-49.
[10] Perkell, J. S. \& M. H. Cohen. 1985. Design and construction of an alternating magnetic field system for transducing articulatory movements in the midsagittal plane. J. Acoust. Soc. Am., Suppl. 1,77, S99(A).
[11] Schönle, P. W., P. Wenig, J. Schrader, K. Gräbe, E. Bröckman, B. Conrad. 1983. Ein elektromagnetisches Verfahren zur simultanen Registrierung von Bewegungen im Bereich des Lippen-, Unterkieferund Zungensystems. Biomedizinische Technik. 28, 172-9.
[12] Schönle, P. W., K. Gräbe, P. Wenig, J. Höhne, J. Schrader, B. Conrad. 1987 . Electromagnetic Articulography: Use of Alternating Magnetic Fields for Tracking Movements of Multiple Points Inside and Outside the Vocal Tract. Brain and Language (in press).

[^0]
A BIBLIOGRAPHY OF X-RAY STUDIES OF SPEECH

SARAH N. DART

UCLA Phonetics Laboratory, Dept. of Linguistics, Los Angeles, CA 90024-1543 U.S.A.

ABSTRACT

This paper reports the compilation of a bibliography of all studies of speech which include some x-ray data. The bibliography has been entered into a data base program for implementation on the Apple Macintosh computer and is currently being used by the UCLA Phonetics Lab Group.

Over the years, we at the UCLA Phonetics Laboratory have been compiling a bibliography of speech studies which contain some x-ray data. This has primarily been to gather a large data base of x-ray tracings and photographs for use in our research. During the past two years we have expanded this bibliography tremendously and entered it into the Microsoft File database program for implementation on the Apple Macintosh computer. This enables us to search entries with certain specific characteristics, such as language, author, or a certain segment of interest.

As a point of departure we took the existing bibliographies of Macmillan and Keleman (1952) [1] and Simon (1961 [2] and 1967 [3]) and reviewed each entry that we could locate, putting it into our database format. In addition, we have searched and reviewed many more sources not listed in those previous bibliographies and are still adding to the collection. Presently our bibliography consists of over 335 entries from 270 different sources (sources involving more than one language are listed in separate entries for each to facilitate searching).

FORMAT

We have organized each entry in our data base into
ten "fields" according to the format shown below. These fields are: 1) author 2) year of publication 3) bibliographical reference 4) language involved 5) type of x-rays (i.e., still or cine-x-ray and if the latter, the frame speed) 6) segments covered (in the IPAPlus phonetic font developed at UCLA) 7) number of speakers filmed 8) location in our laboratory of the full publication 9) other data provided in addition to x-rays 10) a short abstract giving more specific information as to the type of data provided and the usefulness thereof, but not intended to be a summary of the author's claims or intent.

Figure 1. Blank format for each entry in the database.

A sample entry is given below to clarify the format.

Charbonneau, R.
1970
Le phonème $/ \bar{\varepsilon} /$ en français canadien. In B. Hala, M. Romportl and P. Janota (eds.), Proceedings of the Sixth International Congress of Phonetic Sciences (Prague 1967), pp.253-264. Prague: Academia.

French (Cdn.)	36 fps
$\overline{\mathrm{E}, \mathrm{p}, \mathrm{t}, \mathrm{k}, \mathrm{t}, \mathrm{s}}$	2
	X

spectrograms

Describes in detail the realization of $[\bar{\varepsilon}]$ in Canadian French. Two speakers were filmed at 36 frames/sec saying phrases consisting of 4 syllables, the last one containing $[\bar{\varepsilon}]$. 33 composite tracings are given, showing successive frames of the syllables [$\overline{\mathcal{\varepsilon}}, k \bar{\varepsilon}, f \bar{\varepsilon}, s \bar{\varepsilon}, p \bar{\varepsilon}: t, t \bar{\varepsilon}: t]$. Spectrograms are also given of the same phrases and of the corresponding oral vowels.

Figure 2. Sample database entry.

APPLICATIONS

Each of these "fields" can be searched independently. Thus, for example, one can search for all entries from a particular language, or all those containing palatograms as well as x-rays, or those involving a particular segment. We have found this to be a useful tool in our research for easily locating articulatory data to compare segments or languages and check hypotheses. As an example, one of the laboratory members, Dr. Patricia Keating, was able to quickly perform a comparison of the differences between fronted velar consonants and true palatals by comparing x-rays from
several different languages brought together for her by the x-ray bibliography database. Without this easy location of the relevant sources and the immediate knowledge of whether there even existed an appropriate body of data to examine this question, this study would have been tedious and time-consuming to the point of perhaps precluding the investigation altogether. With the exception of the location field, which refers only to our laboratory here at UCLA, this bibliography can also be useful to other phoneticians, either as a simple printout for reference or as a computer database program. We have no doubt that many participants at this congress know of sources of x-ray data that we are not aware of as yet. We look forward to widening our_database from the contributions and suggestions of the other participants.

REFERENCES

[1] Macmillan, A.S. and G. Keleman (1952) "Radiography of the supraglottal speech organs: a survey". A.M.A. Archives of Otolaryngology 55:671-688.
[2] Simon, P. (1961) "Films radiologiques des articulations et les aspects génétiques des sons du langage". Crbis 10:47-68.
[3] Simon, P. (1967) Les consonnes françaises: mouvements et positions articulatoires à la lumière de la radiocinématographie. Bibliothèque Française et Romane, Série A, No. 14. Paris: Klincksieck.

ETUDE AERODYNAMIQUE DU SOUFFLE PHOMATOIRE UTILISE DANS LA LECTURE D'UN TEXTE EN FRANCAIS

Bernard TESTON et Denis AUTESSERRE

Institut de Phonétique de l'Université de Provence 1

U.A. 261 du CNRS, Aix-en-Provence, France

RESUME

La respiration vitale comporte une alternance de phases d'inspiration et d'expiration qui se produisent avec des durées et des amplitudes bien connues.
Comment la respiration est-elle modifiée chez un sujet soumis à une tâche de lecture ?
Les résultats obtenus montrent que la répartition des pauses respiratoires est en grande partie guidée par la ponctuation du texte.
Quelles sont les nouvelles relations qui s'établissent entre les durées et les volumes d'air des phases successives d'inspiration et d'expiration ? Nos résultats démontrent plutôt un contrôle souple qu'atteste une grande plasticité d'adaptation du système respiratoire aux contraintes d'organisation linguistique de l'énoncé.

INTRODUCTION

L'étude instrumentale des phénomènes aérodynamiques mis en jeu lors de la respiration et modifiés lors de la production de la parole, s'inscrit en France dans une longue tradition, plus que centenaire, jalonnée par les travaux d'Etienne MAREY, de l'abbé ROUSSELOT, de Marguerite DURAND et de Georges STRAKA. La présence, à la Faculté d'Aix, d'un kymographe acquis par Georges LOTE, a permis, dès la création d'un enseignement de phonétique expérimentale par Georges FAURE et Mario ROSSI, d'initier plusieurs générations à la recherche en phonétique physiologique. Dans un passé plus récent, la mise au point d'appareils de plus en plus perfectionnés nous a conduit à entreprendre de nouveaux travaux, avec une orientation plus quantitative, mais concernant toujours les modifications à court terme des phénomènes aérodynamiques : variations des débits d'air buccal et nasal, pression intra-orale (1).

La réalisation, toute récente, à linstitut de Phonétique d'Aix, du dernier pneumotachographe appelé "Aérophonomètre III" élargit notre champ d'investigation aux phénomènes aérodynamiques de plus grande extension temporelle, plus directement en relation avec la ventilation pulmonaire : débits et volumes d'air inspirés et expirés lors de la respiration en phonation, durées relatives des prises d'air et des groupes de souffle (2).

Avant même d'entreprendre une analyse détaillée de la parole spontanée, but essentiel de ce programme de recherches, il nous a paru plus prudent, dans un premier temps, d'éprouver les possibilités de l'appareillage nouveau, en partant de l'étude de plusieurs lectures à haute voix d'un même texte : les marques de ponctuation y constituent autant de jalons susceptibles d'orienter le nombre et la répartition des prises de sंōūfte. Nous aurons, alors, à répondre à trois questions essentielles :

1. Quelles sont, par rapport à une respiration calme, les modifications de durée, de débit et de volume apportées aux phases successives d'inspiration et d'expiration, pendant la lecture d'un texte suivi ?
2. Cette réorganisation de la ventilation pulmonaire est-elle dépendante, et jusqu'a quel point, de l'organisation linguistique et du contenu du texte?
3. Par là-même, et en dépit de la variabilité interindividuelle, est-il possible de prévoir les besoins en souffle nécessités par la lecture de ce texte ?
Nous n'avons pas la prétention de fournir des réponses définitives à ces questions : nous apportons plus simplement des résultats, ayant trait au français, et susceptibles de s'ajouter à ceux déjà obtenus pour d'autres langues (3) et (4). Ainsi, nous contribuerons à améliorer la connaissance des processus de production du langage articule, dont les phénomènes aérodynamiques constituent le point de départ obligé : au commencement était le souffle !

PROCEDURE EXPERIMENTALE

CHCIX DES CRITERES D'INTERPRETATION

1. - Appareillage et paramètres enregistrés

L'aérophonomètre III (Fig. 1) se distingue des autres pneumotachographes utilisés dans les études de la respiration par sa très faible constante de temps : ceci a pour effet de fournir une bonne définition des variations à court terme des débits et des volumes d'air pendant la phonation.
De plus, et contrairement à la procédure habituellement suivie, les signaux aérodynamiques buccaux et nasaux ont été recueillis séparément à la sortie des orifices correspondants (Fig. 1). Ils sont donc représentés sur des lignes différentes lors de leur enregistrement oscillographique (Fig. 2). Ainsi, on recueille le débit d'air buccal (DAB) - ligne 1 -

1. Embouchure buccale. - 2. Pneumotachographe buccal. - 3. Capteur de pression buccale $(+-2 \mathrm{mB})$. - 4 . Conphone buccal. - 7 . Conditionneur du signal du phonograme buccal. - 8. Conduit de prélèvement nasal. - 9 . Pneumotachographe nasal. -10 . Capteur de pression nasal (+-2 mB) 12 - 11 . Conditionneur du signal du débit d'air nasal (DAN). - 12. Intégrateur du volume d'air nasal (VAN). - 13. Microphone nasal. - 14. Condition-
neur du signal du microphone nasal. - 15 . Sonde nasale de prélevement de la pression intra-orale (P10).neur du signal du microphone nasal. -15 . Sonde nasale de preevement digal pressession intra-orale.-18.
2. Capteur de pression intra-orale $(+-70 \mathrm{mB}) .-17$. Conditionneur du signal de press Laryngophone. - 19. Conditionneur du signal du larynx. -20 . Sonde trachéale de prélèvement de la pression sous-glottique (PSG). -
pression sous-glottique.

Figure 1

et le volume d'air buccal (VAB) expiré (VABE) - li-
gne 2 - ou inspiré (VABI)-1igne $3-\mathrm{a} 1$ 'aide d'une embouchure buccale souple, spécialement adaptée à la morphologie faciale de chaque locuteur.
o'autre part, deux embouts, introduits dans les orifices narinaires, assurent l'enregistrement du débit d'air nasal (DAN) - ligne 5 -et des volumes diair nasal (VAN) expiré
piré (VANI) - ligne 7 .
Les signaux acoustiques sont captés à l'aide d'un microphone placé à 1 'intérieur de l'embouchure buccale : le phonogramme buccal correspondant (Ph.B.) - ligne 4 - ${ }^{\text {- permet }}$ la délimitation temporelle des
séquences phoniques (la vitesse de défilement est de $50 \mathrm{~mm} / \mathrm{s}$).
En plus de cet enregistrement oscillographique, deux enregistrements magnétiques simultanés sont
conservés sur les deux pistes d'un magnétophone Revox: le "son buccal" et le "son laryngé". Ce dernier est recueilli à l'aide d'un laryngophone (en
2. - Sujets et corpus

Dix sujets adultes, cinq hommes et cinq fermes, dont 1 'âge est compris entre 25 et 45 ans, ont étee enregistrés. Une fois les embouchures buccale et
nasales mises en place, il leur est demandé de se
relaxer au maximum puis d'effectuer plusieurs cycles de respiration calme (RC). Lorsqu'its se sentent tout à fait détendus ils peuvent aborder la
lecture à haute voix d'un passage du roman de lecture a haute voix dun passage "u roman de
Claude simon "La route des Flandres" (Editions de Minuit, 1960 , p. 63). Ils terminent (${ }^{\text {epreuve en }}$ revenant graduellement à leur respiration calme. L'extrait choisi comprend deux longues phrases sé-
parées par un point: "Ils regarderent le cheval \ldots retroussées. Il n'y avait que 1 'œil ... humide". Al'intérieur de ces deux phrases le lecteur st en partie guidé par la présence de deux points phrases principales. Ces virgules individualisent des memberes de phrase encore trop longs et le lecteur sera conduit à ménager des pauses et des pri-
ses de souffle supplémentaires, en dehors de ces marques de ponctuation. Ceci va introduire une assez grande diversité dans les lectures (cf. plus bas: résultats), chaque sujet ayant à répéter le
texte cinq fois et toujours dans les mêmes conditions, précédé et suivi de cycles de respiration calme.
Les sujets sont convoqués, à quelques jours d'intervalle, pour réaliser plusieurs respirations pro-
fondes (RP) dabord a lue convenance, puis à 19 demande et, successivement : buccale, nasale, nas0-

bouche)
inspiration dernière epreuve consiste à prendre une inspiration forcée puis à émettre la voyelle /a/
tenue à intensité et hauteur constantes, pendant oute la phat deirater constantes, pendanc tée dix fois, seuls les meilleurs résultats sont pris en compte. Ils permettent de déterminer la capacité vitale en phona
num de phonation (TMP)
3. - Dépouillement des données et mesures
3.1. - Délimitation temporelle :

La délimitation des phases alternées d'inspiration et dexpiration, lors de la respiration vitale (calme et forcée) ou en phonation, est effectuée a partir des lignes de base des tracés de debit dair
buccal et nasal (DAB et DAN). Ceci présuppose un bon repère des zéro correspondants. Lorsque l'expérience en phonation se poursuit plus onguement
(lecture d'un texte ou parole spontané) lecture uncessaire de contrôler le zéro du DAB en se référant a de nouveaux repères tels que la partie finale de la tenue des consonnes occlusives non voisées (/p/ et/t/), de préference en initiale de ouverte. De même, le zéro du DAN, plus difficile encore à stabiliser sera ajusté de proche en proche Sur le tracé correspondant, durant la réalisation
de séquences orales de type CV comportant des conde séquences orales de type CV comportant des con-
sonnes non voisées et des voyelles fermées telles 1/ 1 . Le début de toute phase d'inspiration, ou prise de souffle, est déterminé par la première in-
sont pas simultanees. La fin de la prise de souffle est définie par le dernier retour a zéro du DAB ou
du DAN. Les phases d'apnée intercalées entre inspi ration et expiration, sont prises en compte avec 1 phase d'expiration qui suit (puisqu'elles en in De nombreux problèmes de délimitations des groupes de souffle (GS) peuvent surgir lors de la respira-
tion associé à la phonation. Il convient de distion assocíee à la phonatir lu signial de dis (Ph.B) le temps de phonation et le volume datair exhalé correspondant, ainsi que les durées et les
amplitudes des phases d'expiration. Ceci revient amplitudes des phases d'expiration. Ceci revient a
isoler les segments silencieux a partir du signal isoler es segments siencieux a partir du signal repérer les pauses silencieuses internes, opération délicate en présence de consonnes ou d'agrégats

3.2. - Mesure des paramètres temporels :

Nous procédons à des mesures manuelles opérées sur des segments precéderment isoles : dinspiration (TI). phases (TEP) Durées partielles des temps de des pauses silencieuses (S). le début de la phase
Durées qui s'écoulent entre le d'inspiration et le moment d'inflexion maximale du DABI et du DANI, (TIMB) (TIMN)
Durees totales des voyelles /a/ tenues : temp

3.3. - Mesure des paramètres aérodynamiques :

Deux séries de mesures sont effectuées manuellement. Celle des débits en litres/sec et celles des volumes en millilitres BTPS ("Body Temperature and Pressure Saturated" condition corporelle de température et de pression pour un gaz saturé en vapeur d'eau). Ceci pour tenir compte des facteurs de correction thermodynamique entre l'air inspiré et expiré (5).
Les débits sont :

- le débit d'air buccal inspiré (DABI) et expiré (DABE).
- le débit d'air nasal inspiré (DANI) et expiré (DANE).
Les volumes sont :
- en fin de phase d'inspiration; volume d'air total inspiré (VATI) sorme du volume d'air buccal inspiré (VABI) et volume d'air nasal inspiré (VANI).
- en fin de phase d'expiration; volume total expiré (VATE) somme du volume d'air buccal expiré (VABE) et du volume d'air nasal expiré (VANE).
- durant la phonation; volume total d'air expiré (VATEP) somme de VABEP et de VANEP.

ANAL YSE DES RESULTATS

La répartition des pauses avec prises de souffle pour les 5 réalisations des 10 sujets se distribue comme suit :
-Ils regardèrent le cheval toujours étendu sur le flanc au fond de l'écurie (1), on avait jeté une couverture dessus (2) et seuls dépassaient ses membres raides (3), son cou terriblement long (4) au bout duquel pendait la tête (5) qu'il n'avait plus la force de soulever (6), osseuse (7), trop grosse (8) avec ses méplats (9), son poil mouillé (10), ses longues dents jaunes (11) que découvraient les levres retroussées (12). Il n'y avait que 1 'œil qui semblait vivre encore (13), énorme (14), triste (15), et dedans (16), sur la surface luisante et bombée (17), ils pouvaient se voir (18), leurs silhouettes déformées comme des parenthèses (19) se détachant sur le fond clair de la porte (20) comme une sorte de brouillard légèrement bleuté (21), comme un voile (22), une taie (23) qui déjà sent blait se former (24), embuer le doux regard de cyclone (25), accusateur et humide".

La répartition des prises de souffle varie d'un sujet à l'autre mais également entre les cinq réalisations d'un même lecteur. Certaines pauses silencieuses ne deviennent jamais respiratoires, d'autres en revanche, se transforment en prises de souffle lors d'une nouvelle lecture. Les prises de souffle les plus fréquentes sont synchrones avec les marques de ponctuation. Lorsque celles-ci font défaut, les prises de souffle sont organisées sur des frontières syntaxiques. Il existe une hiérarchisation des prises de souffle, en fonction de leur durée, de leur volume, et de leur débit (rapport fort débit / durée brève). Les groupes de souffle suivis d'une importante prise d'air comportent à leurs frontières des phases silencieuses d'expiration buccale et nasale.
L'étude des données aérodynamiques ne peut être menée qu'en comparaison avec la respiration calme. Chez tous les sujets elle fait apparaitre une durée plus longue à l'expiration qu'à l'inspiration, ce qui caractérise une expiration freinée (5). La lecture fait apparaître les différences suivantes :

- La durée de l'inspiration se raccourcit dans un rapport de $1 / 2$ à $1 / 20$ de la RC.
- Le volume d'air inspiré VATI varie dans un rapport de là 30 , sa moyenne étant de la moitié de celui de la RC.
- La répartition VABI, VANI est dans un rapport moyen de 4 fortement variable d'un sujet à un autre.
- Les valeurs les plus fortes de débit sont corrélées avec la brièveté des prises de souffle.
- Toutes ces mesures laissent apparaître une très grande plasticité des volumes et durées des prises de souffle en relation avec les groupes de souffle des différentes réalisations, relations atténuées sur les durées restreintes. Nous nous proposons d'approfondir tout ceci dans un travail futur.
En conclusion, nous pouvons affirmer que les échanges respiratoires en cours de lecture sont fortement corrélés par la ponctuation et les marqueurs syntaxiques. En revanche on remarque une grande variabilité d'amplitude et de durée des prises de souffle, tant entre différents sujets, qu'entre les différentes réalisations d'un même sujet. Tout semble se passer comme si, le tempo étant fixé, les coordinations pneumo-phoniques se réalisent d'une manière très souple au gré de l'"humeur" de l'individu.
(1) TESTON, B. et AUTESSERRE, D., "Réalisation d'une unité d'analyse polyphonométrique", CLOS, 5-6, Hormage à Georges Moun in, 415-437, 1975.
(2) TESTON, B., "A system for the analysis of the aerodynamic parameters of speech : The Polyphonometer model III", Abstract of the 10th International Congress of Phonetic Sciences, Foris, Dordrecht, Holland, 457, 1983.
(3) HORII, Y. and COOKE, P., "Some airflow volume and duration characteristics of oral reading", JSHR, 21, 470-481, 1978.
(4) ANTHONY, J., "Breathing and speaking. The modifications of respiration for speech". Ph.D. Thesis, University of Edimburg, 1982, 386 p.
(5) DEJOURS, P., Physiologie de la respiration, Flammarion, Paris, 3e éd. 1982, 315 p.

MEASUREMENT OF THE GLOTTAL IMPEDANCE WITH A MECHANICAL MODEL,

HANS WERIJER SriRUBE STEFAIJ RÖSLER
Drittes Physikalisches Institut, Universität Göttingen, Bürgerstr. 42-44, D-3400 Göttingen, Fed. Rep. of Germany

Abstract

ABSIRACI' The glottal impedance is measured at acoustic frequencies, using a mechanical model with adjustable slit width and air flow. The glottis is inserted in a measuring tube with subglottal absorber, supraglottally excited by periodic wideband pulses. The complex reflectance of the glottis as function of frequency is directly computed from the incident and reflected waves, which are separated by a two-microphone directional coupler. The measured curves are compared to theory and are expressed as functions of frequency, slit width, and air flow.

INTRODUCI'ION

The knowledge of the glottal impedance is essential for the understanding of the source-tract coupling, e.g., the variation of formant frequencies and damping during the glottal cycle, and of the oscillation mechanism itself. The resistive part of the impedance consists of a linear, viscous component R_{V} and a nonlinear, flow-dependent component R_{k} due to kinetic effects (turbulence, beam formation, etc.). These components were measured for $D C$ flow by the pressure drop across a glottal model [1]. For nonstationary flow, the air mass causes an additional, reactive part of the impedance, so that the electrical analogue (pressure $=$ voltage, volume velocity $=$ current) is an RL series circuit. ihis form was also used in a simulated self-oscillating glottal model [2].
llowever, it can not be theoretically expected that the values for R measured at $L X$ still hold at acoustic frequencies, since the viscous boundary layer and the turbulence formation are frequency-
dependent. Further, the inductance should be somewhat larger because of the approximately radial flow close to the glottal slit and also slighty frequency-dependent (see below), and turbulence effects on the inductance are unknown. As the theoretical treatment of all these effects, including nonzero DC flow and turbulence, is highly difficult, an experimental determination of the impedance as function of frequency, air flow, and glottal slit width appears desirable. Such measurements have previously been performed by means of the resonances of a tube attached to a glottal model [3]. Our approach is more direct, immediately yielding the complex reflectance as function of frequency.

THEORY

The impedance measured by us is a differential (AC) impedance. As the acoustic amplitudes are small, all terms of the Navier-Stokes equations nonlinear in AC quantities are neglected. Especially, if the total kinetic part of the pressure drop is $\mathrm{KU}^{2}(\mathrm{U}=$ instantaneous total volume velocity), the kinetic part of the AC pressure drop is $2 \mathrm{KU}_{D C} \mathrm{U}_{A C}$, so that $\mathrm{R}_{\mathrm{k}}=2 \mathrm{KU} \mathrm{DC}$ (vanishing for no DC flow!). According to [1], $K=0.44 \rho / A^{2}(0, A$ see below). At higher frequencies possibly this might not hold.

The linear (viscosity and mass) parts of the impedance, $Z_{v i}$, can be theoretically derived in good approximation. The glottis is assumed as a rectangular slit of length 1 , width w, area $A=l w$, and depth d. If $w \ll l$, and w and $d \ll$ wavelength, the impedance is
$z_{v i}=(i \operatorname{cod} / A) g /(g-\tanh g), \quad g=(w / 2) \vee \overline{i n p / n}$,
$0=$ air density, $n=$ dymanic viscosity. For $\omega \rightarrow 0$, $z_{v i}=12 d \mathrm{n}^{2} / \mathrm{A}^{3}+\mathrm{i} \omega(6 / 5) \mathrm{cd} / \mathrm{A}$,
which is the classic expression except for the factor $6 / 5$ in the inductance. For $\omega \rightarrow \infty$, on the other hand, $\mathrm{z}_{\mathrm{vi}}=\mathrm{i} \omega \mathrm{od} / \mathrm{A}$. Thus the inductance is also slightly frequency-dependent.
As the slit is contained in a partition across a tube, the impedance has to be supplemented by an end correction due to the approximately two-dimensional radial flow near the slit. This yields a additional inductance of roughly

$$
L_{\mathrm{rad}}=(\rho / 1 \alpha) \ln (\mathrm{D} / \mathrm{w}),
$$

D - tube diameter perpendicular to the slit, $\alpha=$ sum of opening angles of sub- and supraglottal baffles. Also some additional damping will result which we will not derive.

METHOD OF MEASUREMENT

The same principle, suggested by M.R. Schroeder was used earlier at this Institute for measuring the lip radiation impedance with a model head [4].) Apparatus
A fairly realistic larynx model was formed of metal (Fig. 1). The glottis itself is a slit between two adjustable parallel plates tightly inserted in the larynx model. The slit measures are: $1=18 \mathrm{~mm}, \mathrm{~d}=3 \mathrm{~mm}, \mathrm{w}=0$ to 3 mm . The larynx model is extended on both sides by thick-walled uniform brass tubes of 10 mm inner diameter Subglottally, a funnel with sound absorbing material is attached through which a DC air flow can be supplied. Supraglottally, the tube ends at a pres-sure-chamber loudspeaker and an air outlet with a plastic hose filled with cotton wool (Fig. 2)
The loudspeaker emits periodic wide-band pulses (68-5000 Hz), chirp-like with Schroeder phases [5] for a low peak factor. They are generated by a TMS 32010 signal processing system and D/A converted at 20 kHz sampling rate, with 2048 samples/period to facilitate FFT processing. By two $\frac{1}{4}$ condenser microphones (Bruel \& Kjaer 4136) coupla to the tube some 22.5 cm "above" the glottis, the incident and reflected waves can be separated computationally and thus the complex reflectance be determined. The microphones are screwed into th tube walls without grid caps and coupled through
holes of 1 mm diameter. Disturbance by the additio nal volume was estimated to be completely negliible. The signals are low-pass filtered at 5 kH with $96 \mathrm{~dB} /$ octave and digitized at 20 kHz rate by two A/D converters in the TMS 32010 system. Sam pling is period-synchronous with the excitatio pulses. The blocks of 2048 sample pairs are transferred to a large laboratory computer (Gould $32 / 9705$), where 100 periods are averaged for nois reduction and the further evaluation is performed Channel crosstalk is less than -80 dB .

Evaluation
Let b be the distance from the centre between the microphones to the reference plane in which the reflectance is to be measured, $2 a$ the microphon distance (Fig. 3), $R=R(\omega)$ the reflectance, and $\mathrm{k}_{\mathrm{i}}, \mathrm{k}_{\mathrm{r}}$ the complex propagation "constants" for the incident and reflected waves. If c is the sound velocity and v the DC-flow velocity,
$k_{i}=(i \omega+q \sqrt{\omega}) /(c-v), \quad k_{r}=(i \omega+q \sqrt{\omega}) /(c+v)$, where $\mathrm{q} \sqrt{\omega}$ (small; $\mathrm{q}=0.8 \mathrm{~s}^{-\frac{1}{2}}$) represents the combined viscous and heat-conduction losses. Then the microphone signals $F_{1}(\omega), F_{2}(\omega)$ are proportio nal to $\exp \left(k_{i}(b \pm a)\right)+R \exp \left(-k_{r}(b \pm a)\right)$, where $+a$ an -a belong to $\mathrm{F}_{1}, \mathrm{~F}_{2}$, respectively. Solving for R_{1} we obtain
$R=\exp \left(\left(k_{i}+k_{r}\right) b\right) \cdot\left(F_{2} \exp \left(k_{i} a\right)-F_{1} \exp \left(-k_{i} a\right)\right)$

$$
\left(F_{1} \exp \left(k_{r} a\right)-F_{2} \exp \left(-k_{r} a\right)\right)
$$

From R, the glottal impedance follows as

$$
z=z_{0}(1+R) /(1-R)-z_{S G},
$$

where $z_{0}=\rho c / A_{t u b e}$ is the characteristic impedance of the tube and z_{SG} the impedance of the subglottal system. The latter is measured before by replacing the larynx model with a uniform tube piece.
As the computation of R fails at the zeros of the denominator and becomes rather inexact at low frequencies, two different microphone distances 2 (24.6 and 120 mm) may be used.

Calibration

As the microphones and the connected amplifiers, filters and A/D converters are not identical for both channels and differences would cause detrimen tal errors, the channels must be calibrated rela tive to each other. For this purpose, the signals are recorded for each microphone screwed into the same fitting in the measuring tube. The conplex

Fig. 1. Larynx nodel; two perpenàicular sections.

Fig. 2. Schematic of measuring apparatus.

Fig. 3. Schematic of directional-coupler principle.

Fig. 5. Resistance and inductance for flows $\mathrm{U}=0$ (top) and $164 \mathrm{~cm}^{3} / \mathrm{s}$ (bottom). Glottal width $\mathrm{w}=$ $0.2,0.4,0.8,3.0 \mathrm{~mm}$ (1 to 4).

Fig. 6. Resistance and inductance for widths $w=$ $0.2,0.4$ and 0.8 mm (top to bottom). Flow $\mathrm{U}=0$, $38,109,164,245 \mathrm{~cm}^{3} / \mathrm{s}$ (1 to 5).
quotients of the corresponding DFI values are taken as calibration factors for one microphone.
As a test, the result for completely closed glottis should yield $R(\omega) \equiv 1$, apart from some high-frequency deviations due to the nonuniformity of the tube close to the glottis. This allows to determine the exact reference distance b from the linear phase trend of R. Inexact assumptions of a and q will cause periodicities of R with frequencyperiod of $\mathrm{c} / 2 \mathrm{~b}$; minimizing their amplitudes thus permits better adjustment of the a and q values.

RESULIS

All results shown here are preliminary and will hopefully have been improved at the time of the congress. So far, only one microphone distance $2 \mathrm{a}=$ 24.6 mm has been used. Calibration
Fig. 4 displays magnitude and phase of the reflectance for closed glottis. The trends in the phase and the residual $c / 2 b$-periodicities show that we have not yet fully reached the required exactness; better calibration methods are under development. The average $|R|$ cannot be raised above 0.98 ($q=$ $0.88 \mathrm{~s}^{-\frac{1}{2}}$) without distorting the curves.
The subglottal impedance $Z_{\text {SG }}$ was found very close to Z_{0} except at the lowest freguencies. Measurements
The periodicities are presently smoothed out by a triangular moving average of the reflectance of length c / b in frequency. Figs. 5 and 6 show the glottal impedance (with $\mathrm{z}_{\text {SG }}$ subtracted out) for various openings w and flows u. The dashed curves are the theoretical ones,
$R_{g}=\operatorname{Re} Z_{v i}+R_{k}(U), \quad L_{g}=\left(\operatorname{Im} Z_{v i}\right) / \omega+L_{r a d}$, see THEORY. For $U=0$, the agreement is fairly good, except for a too low (even partly negative) resistance at large glottal openings and a too low inductance at low frequencies. The reason for these (unphysical) deviations is presently not yet clear but probably related with the calibration problems. For nonzero flow, the inductance is considerably decreased at low frequencies and the resistance is increased, especially for narrow width w where the velocity U / lw in the glottis is large. A similar effect for the inductance was also found by Laine
and Karjalainen [3] around 1 kHz . Discussion
A direct comparison of our results with [3] is not yet possible since our frequency range lies above that ($\leq 1.5 \mathrm{kHz}$) considered in [3]. For useful results in the low-frequency range, we shall apply the microphone distance $2 \mathrm{a}=120 \mathrm{~mm}$ and a lower sampling frequency.
The results at higher frequencies show a very strong dependence on the choice of the reference plane (distance b). Actually, as the "exact position" of the glottal impedance is somewhat arbitrary, so is the impedance itself. We define b so as to yield no linear phase trend for closed glottis, and the closeness between theoretical and measured curves seems to justify this procedure.
The flow effects on the inductance are presently not yet expressed by a theoretical or empirical formula. The relevant parameter appears to be the velocity in the glottis, U / lw, rather than the flow U. The kinetic resistance R_{k} at large U should be somewhat higher than according to [1]. The frequency dependence of R_{k} seems to be small.
As for the effect of the glottal impedance on the vocal-tract acoustics, the subglottal impedance must not be subtracted out. If the actual $z_{S G}$ is close to ours (our tube has roughly the diameter of the trachea), the real part for not too small openings w is entirely dominated by $Z_{S G}$.

REFERENCES

[1] J. van den Berg, J.T. Zantema, P. Doornenbal, jr.; J. Acoust. Soc. Am. 29, 626-631 (1957).
[2] J.L. Flanagan, L.L. Landgraf; IEEE Trans. Audio Electroacoust. AU-16, 57-64 (1968).
[3] U. Laine, M. Karjalainen; Proc. ICASSP 86, 1621-1624 (1986).
[4] J. Kretschmar; Fortschritte der Akustik DAGA'75, 429-432 (Weinheim: Physik verlag, 1975).
[5] M.R. Schroeder; IEEE Trans. Inform. Th. IT-16, 85-89 (1970).

A.P.Belikov, V.D.Makhnanov, N.V.Mulyukin, K.V.Tunis

Naurice Thorez Institute of Foreign Languages

In the work dynamic properties of the speech signal are investigated. To describe speech dynamica a function is developed and calculated which integrally reflects the quality change of the speech signal. Algorithm of processing the acoustic speech signal is given and possibilities of an automatic segmentation of continuant speech are estimated.

At present linguistics and first of all phonetics, have got a social order from specialists in automatic speech recognition to study the speech signal structure. The fact of the existence of such a structure alongside with the language structure is originally set by the language and speech opposition, first well-founded by Ferdinand de Saussure. The urgency of the speech structure study may be explained by the fact that the practice of linguistic research in the first part of the 20th century did not stimulate intensive development of the problem and did not suggest any fundamental solutions of the speech segmentation problem and development of a well-based speech unit system.

Most researches consider syllable to be the minimal speech unit. In this case it is very important to avoid the mistake of using language notions in speech. From the point of inguistics the syllab le is a linear combination of phonemes. Attempts to express the syllable with
the help of parameters to extract its boundaries in the actual acoustic signal have not given reliable results.

In the decision of the principal task of speech segmentation psycho-physiological analysis of speech activity is often used. Two approaches are possible in that case: from the standpoint of speech production and speech perception. The approaches are not congruent between each other.

In /1/ the syllable is interpreted as an articulatory speech unit which is a realisation of a single articulatory act. As in the solution of the speech segmentation and speech recognition problems researchers first and foremost deal with the acoustic speech signal it is more reasonable to base oneself on the phychophysiological analysis of speech perception. It should be noted though that the periphersi mechanisms of perception are less studied than the effector mechanisms of articulation.

In /2/ an attempt was made to describe adequately the process of speech perception. It was suggested in the work that the speech signal should be presented as a flow of acoustic events detected in the signal by the auditory system. As an example of possible acoustic events increase or vice versa, decrease of energy in a certain part of the spectrum, the ahift of the spectrum maximum in a certain direction, a short-time pulge or, vice versa, silence in the signal were pointed out. However, such a multidimensional and fuzzy description of an acoustic event cannot gerve as a basis for the modelling of its automatic extruction procedure. Acoustic events are consideral real in the sense that without them it is diffin cult to model phonetic interpretation. At the same time they are unreal in the sense that it is not yet possible either to describe or enumerate them $/ 2 /$.

A speech signal is given naturally in the acoustic form. In connection with this the following questions arise: in what way is that form organised? What shall we be guided by in the analysis and

reslisetice of the＂quality furction＂，
i．e．a perionic oinge in the guality of i．e．a
the sreect sizal reeds a cyolic process
inich co：ld provide the＂filing of time Hich co：ld provide the＂filling＂of t
witi singe dreaic cycles．Rrom the ＂ity single dresic cycles．prom he Vye
cjcie isagingie speeci act at the altoma－
tis lerel ion realisation of a speech
 eie＝en．（ミj ensiralen speech act we Muersiad a eryactionsd juamis cycies sionj ze Fezanded es peculiar techical verysas．the to look at the dranic
 Siprosize tiee rie of iepictire and i－itation principieg of forming the Tes greet the d
 torisigel faction．accortance Mita I－azeoering semanticuntit．Iater as a resit of ine lanzuage evolutio：
 sizn stste（inclating tie semantic

 Yere ss the dmanio cycle taving antere
Ee class of sinosits continue to

 2：to－atio．tis the dereioped sjsem speratucture ofer prissaracoustic－ Fipsiosicei lajer inch ievelopedin t－e process of piziosenesis and zenatic－
ally consolidated en exclugive fexibility of the spech amaratizs．In the process of ontogeze
tha leyer forned wider imediate
Fivece of social ains．
a skificcot step on
syeech crantics description is the searci
of a pirsicial correlate of the q quality c＝aracteri coics of the altermatirs c－aracterisitics of the altermating speed
sitseal are deffeed by the sum total of its yinsicel co＝porents．In the procedure of tie speeci gignal processing ne chose
tia Taj of vaximintegration and tried to cerelop and calculate a function itić coald，Withall its gereralised ckages in tirs of all reflect the gignal．The speeck signal spectria give ractically complete information about its quallty．The arelity of the sigenal anplitude－frequency structure of the restant spectrua．The instant spectria of speech is a miltiparametrical descrip
function．It seems reasonable to us to use the time function of root－mean－square frequency of instant speech spectrum as
a correlate of the＂quality function＂，

$$
w^{*}(t)=\frac{\sqrt{\omega^{\infty} / \omega^{2}, S^{2}(c, t) d u}}{\sqrt{0 / S}{ }^{2}\left(w^{2}, t\right) d w^{\prime}}
$$

where the amplitude－frequency spectrum She（ t ）is regarded as a weight function． with the frequency intructure of the speech signal spectrum，in frequency unit shows its qualitative changes， which are conditioned by＂pumpingov domains to others．
nal＂quality function＂the one－dimensio－ nal＂quality function＂may by expressed the dimension of the initial function which describes the process． In the ${ }^{\text {realisation of the device }}$ forming $\mathrm{V}^{*}(t)$ ，a certain inconveniency
is presented by the integration opera－ tions of spectrum functions in frequency． Tith the help Rayleigh theorem and spectrum we managed to pass over from spectrum we managed to pass over from tion and ${ }^{\text {to }}(t)$ get a more convinient formu－
where $f(t)$ is the function of the acoustic pressure of the speech wave， T is an intergration interval in the The use of the time dependence root－ mean－square frequency of speech instant spectrum far the integral description of qualitative changes in the speech sis known that devoid of relationship single parameters are characterised by a high
entropy．In fact，they insert noise in the useful information if the inner struc ture of their relationships is not revealed．That is why striving for a more signal under research with the help of number of single parameters often leads
ties．masking or the anamio resulan
The one－dimensional time function $\mathrm{WV}^{*}(t)$ can effectively characterise the general dynamics of the speech process
at this function has got a number of use－ ful properties：it is continuant and use－ invariant in relation to the level of the sperch signal and insensitive to statio nary noises． structure，in general，and the segmenta－ tion of the continuous speech，in parti
which realises the above described algo－ rithm wi
schemes．In the study of the properties of the function tion point of viemplex from the segmenta－ tion point of view test phrases were used
composed of the combinations of vowels and sonants．Developed on the base of the speech signal the function $\nabla^{*}(t)$ consi ted of repeated cycles with distinct In the study of the above－mentioned test phrases we got equal number of dynamic cycles and syllables．Meanwhile the
synchronically registered speech signal intensity envelope had more extremums which were less explicit as compared with the ${ }^{*}$（ t ）envelope．It enables us
to conclude that the chosen system of speech signal operations minimises the number of extremums and makes them more The eq
syliablequal number of dynamic cycles and obligatory，as it was supposed，is not of the speech material．In the character case differences were observed：hissing and hushing fricative sounds，as well as rate extremum of the＂quality function＂ cycle should be noted that the dynamic cycle is not used instead of either the the language system．The other units of is organised in a specific way－it cannot be treated as a language model． （unlike the propits of the language system） consists in its possible quantative esti－ analysis of its quantitative characteris－

References
／I／Н．И．̈иннин．Механизмы речи．М．，
$72 /$ Физиология речи．Восприятие речи
человеком．Поп ред．А．А．чистович．

лемын．Поп ред．А．А．Пирогова．．．ССвязБ，

WIGNER DISTRIBUTION - A NEW METHOD FOR HIGH-RESOLUTION TIME-FREQUENCY ANALYSIS OF SPEECH SIGNALS

W. Wokurek, G. Kubin, F. Hiswatech

Institut fur Nachrichten- und Hochfrequenztechnik, TU Wien Gusshausetr. 25/389, A-1040 Vienna, Austria
abstract
Two mothods for the time-frequency analysis of speect signals are compared: the tradionally used Spectrogram
and the Smoothed Pseudo Wigner Distribution (SPWD). It lis shown that the time and frequency resolutions of the Spectrogram are restricted by the uncertainty relation while SPWD allowe arbitrarlly high resolutions. If the analysis parameters are chosen carefully SPWD yields more accurate signal ropresentations than the Spectro vowels and unvolced stop consonants.
2. distortion of time-frequency analysis due TO LIMITED RESOLUTION

The aim of a time-frequency representation of any signal is to show the stucture of the signal and not that
of the analysis method. One of the basic distortions of any analysis method is One of the basic distortions of the nature of time resolution consider an impulse in the time domaln as shown in Fig. 1 .

$\left.\right|_{t-\tau} ^{\int_{t}^{x}}$
 Fig. $1:$ I Impulise of length :
 Fig.2: Representation of an impuiss with a time resolution of Δt.

we represent this impulse with a time resolution Δt) t the impulse will be widened to the duration Δt (see Fig.2). The mathematical model of this effect is the convolution of the signal x with a window function w of time width Δt :

$$
\left[x_{i}^{* w](t)}=\int_{\mathbf{R}} x(t-\tau) w(\tau) d \tau\right.
$$

(1)

A second interpretation of (1) is lowpass filtering. If the signal contains oscillations of periods less than the time resolution Δt, these components of the signal will be supressed in the representation.

All simar effect is caused by the frequency resolution Δ. All signal components will be widened by Δf in the frequency direction. On the other hand all signal changes within a frequency range of Δf will be canceled.
3. Coupling of the resolutions of the spectrogram
The Spectrogram is defined as the square magnitude of multipied by a window w(τ) that is shifted to the instant of analysis t . The Fourier Transform of this product is associated with the instant t.

$$
\begin{equation*}
S_{x}(t, f)=\left|\int_{\mathbb{R}} x(\tau) w(\tau-t) e^{-12 \pi f \tau} d \tau\right|^{2} \tag{2}
\end{equation*}
$$

Uing elementary signal theory, we can recast eq. (2) in
form containing a convolution with the window w(t)

$$
S_{x}(t, i)=\left|\left[e^{-12 \pi f t} x(t)\right] * w(-t)\right|^{2}
$$

or with its spectrum $\mathrm{W}(\mathrm{t})$

$$
S_{x}(t, f)=\left|\left[e^{j 2 \pi f t} x(f)\right], w(f)\right|^{2}
$$

This shows us the simultaneous determination of both the time and the frequency resolution of the Spectrogram window satisfies the uncertainty relation (5), where c is a constant that depends only on the definitions of Δt and Δf and is of the order 1 .
$\Delta t . \Delta f \geq c$
The uncertainty relation (5) restricts the allowed values of the time and frequency resolutions of the Spectrogram to the region U shown in Fig. 3.

Fig.3: Restriction of the Spectrogram resolutions by the uncertainty relation

Because the product of the Spectrogram resolutions $\Delta t . \Delta f$ cannot be less than the constant c, it is impossible to choose both resolutions arbitrarily high (i.e. Δt and Δf arbitrarily small) at the same time. This implies the necessity of trading-off between these two resolutions. If the
time resolution is increased (smaller Δt), the Spectrogram must have a poorer frequency resolution (greater Δt, see Fig.3: movement from point A to B). The dual case is the choice of higher frequency resolution (Fig. 3: point C), thus decreasing the time resolution.
4. Independence of the resolutions of the spwd The Wigner Distribution (WD) of a signal $x(t)$ is defined by (6)

$$
W D(t, t)=\int_{\mathbb{R}} x\left(t+\frac{\tau}{2}\right) x^{*}\left(t-\frac{\tau}{2}\right) e^{-12 \pi f \tau} d \tau
$$

and its features are described in $[1]$ extensively. The WD does not show any effect of limited resolution, but in the is quite fairiy complex signals such as speech the result ference unreadable owing to the occurence of inter Therefore we consider the SPWD of the signal which is defined as a WD with arbitrary smoothing:

$$
\operatorname{SPWD}_{x}=W_{x} * u(t) \geqslant v(f)
$$

moothing in both the time and frequency direction is erformed by two Independently chosen arbitrary windows of the smoothing functions, the resolutions of the SPWD Fig 3: point D). 3: point D).

Yet, from a practical point of view, the resolutions of the SPWD are restricted by the occurence of interference lerms and depend on the structure of the signal in that way. The analysis of speech signals shows that with equal frequency resolution (e.g. 100 Hz), the SPWD allows a substantially higher time resolution than the Spectro-
gram (e.g. 1 ms instead of 10 ms .

An interesting insight into the relation between the Spectrogram and WD is obtained from the following equation:

$$
S_{x}=W D_{x} ;{ }_{i} W D_{w}
$$

(8)

This equation proves that the Spectrogram is the WD of the signal smoothed in both directions with the WD of the spectrogram window. In contrast to (7) the time and
frequency smoothing is determined by one and the same window $w(t)$ as we have seen already in (3) and (4) and this is why Spectrogram resolutions are bounded by the
uncertainty relation (5) ([1] p.382).
5. ANALYSIS OF VOWELS BY SPWD AND SPECTROGRAM

Figure 4 shows a contour plot of the SPWD of three succesive plitch periods extracted from the German vowella:] spoken by a male subject. This representation displays the following features:

Quasi-periodic excitation of the vocal tract by wideband narrow-time impulses every 10 msec . The time resolimtion of approx. 0.5 msec is sufficient to prove
impulses have a time width of 1 msec or less.
(2) Exponential decay of three formants at the frequencies $F 1=0.7 \mathrm{kHz}, \mathrm{F2}=1.25 \mathrm{kHz}$, and $\mathrm{F} 3=2.6 \mathrm{kHz}$.
The frequency resolution of appprox. 100 Hz is sufficient to separate the individual formants and to measure their bandwidths during the intervals outside the excitation impulses.
(3) Besides these signal terms (formants, impulses), the SPWD contains interference terms. They are governed by a simple geometrical rule [2], i.e. they always lie half-way between two signal terms and oscillate in the direction perpendicular to the ine connecting the two signal irems. plane that is inverse proportional to the distance of the signal terms. The oscillatory nature of interference terms is the key to their suppression in any bilinear time-frequency representation. In SPWD, this is achieved by smoothing with the two independent window functions matched to the signal structure:

The frequency resolution $\Delta f=100 \mathrm{~Hz}$ is just great enough to damp interferences between successive pitch periods (remember interference oscillations to occur perpendicu lar to the line from one excitation impuls to the next, i.e. parallel to the frequency axis!). The time resolution $\Delta t=0.5 \mathrm{msec}$ is great enough to damp most of the inter oscillations in the time direction can only be observed between F1 and F2, the two formants closest to each other.

Figure 5 shows a Spectrogram of the same signal seg ment with resolutions $\Delta f=300 \mathrm{~Hz}$ and $\Delta t=2 \mathrm{msec}$. Note $300 \mathrm{~Hz} \cdot 2 \mathrm{msec}=0.6$ which is more than ten times the product of resolutions of SPWD in Figure 4 $(100 \mathrm{~Hz} \cdot 0.5 \mathrm{msec}=0.05)$. The Spectrogram's resolucions are already chosen so as to achieve a signal representation as close as possible to SPWD. A simultaneous improvement of the Spectrogram's resolutions is imposmuch broader excitation impulses in the time dimension as well as much wider formants in the frequency dimension than SPWD. The inherently stronger smoothing of the Spectrogram renders better suppression of interference terms (though they are st11! perceivable between F1 and F2) ference terms are predictable from the above geometrical rule. SPWD is better suited to the analysis of vowels thati the Spectrogram.

One may conjecture that a change of the Spectrogram window function $w(\tau)$ in (2) may improve irs resolutions. Figure 6 , the time resolution of the Spectrogram is Im proved to $\Delta t=1 \mathrm{msec}$, thus approaching the value of Δt for SPWD in Figure 4. Due to the uncertainty relation (5), the frequency resolution goes up to $\Delta f=600 \mathrm{~Hz}$ so that the two lower formants F1 and F2 are merged into a single unstructured lump stretching over several hundred Hz . is improved to $\Delta f=100 \mathrm{~Hz}$ as is the case for SPWD in Figure 4. As time resolution has to go up to 6 msec , excitation impulses are broadened drastically and spilled over the for mant structure even into the interval of the pitch period without glottal excitation. Therefore, for mant band SPWD, inspite of the high frequency resolution of Figure 7 .

Summarizing we observe that the Spectrogram is not suited for simultaneous display of both the excitation and he formant structure of owes whereas sfo has this property notw
6. ANALYSIS OF UNVOICED STOP CONSONANTS BY SPWD AND SPECTROGRAM

Figures 8 and 9 show the explosion interval (60 msec) of the first $[t]$ in the German word $[$ ta: $t]$ making use of SPWD and Spectrogram, respectively. For the sake of com-
parison, both displays have a frequency resolution of

100 Hz and associated time resolutions of $1 \mathbf{m s e c}$ (SPWD) and $6 \mathrm{msec}($ Spectrogram). The explosion interval consists of three more or less separable phases: 1. An impulse-like transient (about 4 msec) due to the resure (plosion phase P).
2. A noise phase extending from approx. 4 kHz to 8 kHz $(25 \mathrm{msec})$ due to the turbulent air flow at the opening constriction (frication phase F).
3. A noise phase with a formant structure (30 msec) due to the resonances of the open vocal tract excited by tur

The adavantges of SPWD over the Spectrogram for the analysis of this type of sounds can be summarized as follows
(1) The short impulse of the plosion phase P is readily seen in SPWD whereas the Spectrogram is not able to resolve this temporal fine structure lat the given (2) The boundary between frication phase F and aspiration phase A is more pronounced in SPWD than in the Spectrogram. Noise-like excitation of the vocal tract manifests clearly distinguishable from deterministic excitation as seen infigure 4. With the Spectrogram, noise-like excitation induces no significant changes in the texture if the contour plots when compared to deterministic exitation as seen in Figures 5, 6, and 7.

7. CONCLUSIONS

From the above discussion, it should be clear that SPWD is superior to the Spectrogram for the time-frequency given in sections 5 and 6 . It should be kept in mind, however, that the comparison was made on the basis of very short signal segments so as to emphasize SPWD's character as a time-frequency "microscope". If the analysis interval is extended to second or more both become insufficient to realize the differences of the two methods. Anyway, these long-time displays are only useful for the compressed visualization of slowly time-varying and global features characterizing whole syllabies or words. For the detailed high-resolution study of rapidly ime-varying speech ph
given to the new method.
8. REFERENCES
[1] T. Claasen, W. Mecklenbräuker, 1980; The Wigner Distribution - a Tool for the Time-Frequency Signal Analysis;
[2] F. Hawatsch, 1984; Interference Terms in the Wigner Distribution; International Conference on Digital Signal Processing; Florence, Italy
A.N. Sobakin

MOScow, USSR

авттаст
The generalization of speech analysis nethod on the basis of inear prediction reveals unused potential possibilities of this rethod and peraits to develope neen algorithes of evaluating speech
signal paraeters.
inteonction
Modern achieverents in the sphere of speech analysis and syythesis are nainiy connected with the use of algori ithes of speech signal paranetrization, that take into consideration in soe degree the
nature of speech producticn. ature of speech production.
Accordino to Fant's nodel
xcitation signal transtoreation by the linear dynatic systea (ics) which paraseters correspond to the state of vocal tract at the sorent of articulation.
The change in the
The LDS pandereneters nodifification
The tracing of these changes is nalysis mindo nithin which the Los paraseters ay be considered to sufficiently stable. The transter function of such los ith zeroes sind poles.
The signal at the Los input is looked woon as a ternating intervals, corresponding to voice or noi se excitation. The thale excitation signel in that case is modulated by the tire envelope of the speech signal.
Cinear prediction [2-6) as a aethod of speech signal analysis mas
worked out on the basis of ed
at Workect out on the basis of acth nore sieplified pattern of speech
 the 105 parateters according to the speech signal estimates, ignoring
transfer zeroes within the analysis sinterval. The oost sinple calculation foraulas are obtained in the etrical space.
The quali ity of obtained
The quality of obtained LDS paraneters esti inates sill essentially
depend on the location of the andysis windon at the tioe axis depend on the location of the analysis window at the tive axis.
If the interval of analysis corresponds either to in in se excitation or to an interval of tree Los oscillations lof example, he interval of vocal cords ciosure) then it is possible to shon,
But in case menen the analysis intervel contains itch inpulses, 105 paraneters estinates will be biassee., It is ed by the ti isareeanent between the analysis ethassed. it is explaignal structure, for example at the yoiced intervals of speech. Thus, the probien of oore conplete agreesent between the andylysis aethod and the spoech for ation pattern is an urgent issue. According to the said above, it seems perspective to exasaine possible linear orediction neneralizations, introducing additional pa
antetess and characteristics of the sethod. Additional degreas of treedco mar he used for nore couolete agreement between the eethod of

The eegerization of liear prediction leds to the aloorithe odifictions of speech signal paranaters esti anates, and, in the long cognition.

enefral isamion of Linear prenction

 nal enn), using weight coefficients (A

$$
\begin{align*}
& \left.\right|_{k=0} ^{A k}
\end{align*}
$$

$A=1$,
B
where y $[n]=r^{k}(x[n])=x[n-k], \quad k=8,1, \ldots, p ;$ (3)
*
(1) k-power of the delay peerator

When andyssing speech optimal coefficients of filter (1) a $=$ (A ..., 4) are deterained from condition of nininusa residual signal deviation $\{$ en (n) a from the coordinate beginning in the eetric space 2 within the analyes interval $t e$, n3:

Hhere $F(\bar{a})=-{ }^{-1}{ }^{-1}{ }^{2}(n)$ $\overbrace{n=8}^{n=0}$
(5)
is a squaree quality criterion.
Suggested linear prediction generalization concerns two filter it is forteed : 13 it ind pen oferaerstor class, on the basis of which coetficients 12).

Quaity functional is alto generalized (5), that allows to chocse different aetric spaces for estiastion of analysis paraneters.
As seen fron (3 , the origical trans foration (1) nac formed near delay operators, that represent the class of ohsicullir on ilzabie linear systees with constant paraneters. Priccipally, it is possible to substitute the original delay operators for a set of any
the class indicated
Then proportion
iore as follows:

$$
\underset{k}{y[n]=\|(y)}(\ln)), \quad k=8,1, \ldots, p ;
$$

where $\quad y\left[\begin{array}{l}{[n]=x[n] \text {. }} \\ \text {. }\end{array}\right.$
Each 1 inear operator (6) is deternined in the frequency sphere by the transfer function of fraction - rational type.
According to the speech signal physical character istics, the choice of transter function paraneters allows to change in neesessary di-
rection the structure Thanks to that, the aqreement between algorithe analy yses and dyna-
aic speech characteristics will be achieved.
The cafcrade form (16 of of transformation in) also allows exsaine
the corresponding generalized structures of lattice filters 771 on he corresponding generalized structures of lattic
the basis of linear operators specificitily chosen.
It it is worth-wrile to
onte It is worth-while to note , that besides cascade form (6), the be easily forned on the basis of indicated set of linear operators.
Each of the output signals y n n is obtained as the result of appli-
cation the corresponding aperator directly to the input signal k ind. The condition (2) influences
fer (1) not to a lesser degree.
This linitation for parateter ininaste zero solution durring the search for quality functional nimua. In essence it can be considered as the constraint on vector a coordinate agnitude in ($p+11$-diaentional space of par asestres.
In geneeral, this constraind tay be written domp as follows:

$$
\begin{equation*}
f(\vec{a})=f\left(A, A, \ldots, A_{p}\right)=A, \tag{7}
\end{equation*}
$$

where $f(1)$ is an arbitrary function of ($\mathrm{P}+1$) variable.
The only condition of choosing the function is zero solution eli-
 the coordinate beginning.

The serch for on optial yector of coefficients a with con straint (7) nay be realised on the basis of generalized quality functionai $F(\bar{a}, b)$;

$$
\begin{aligned}
& \dot{a}, b)=i^{-\cdots}:\left(\ln ()^{r}+b \neq(\bar{a})\right. \\
& +b=1 \overline{7},
\end{aligned}
$$

Where b - the Lagrange factor froe the set of real numbers,
 ${ }^{\text {ce }} \mathrm{L}_{2}$, where the search for opti eal vector of parineters ${ }_{\text {apt }}^{\text {op }}$ cartied out.
Lagrange factor B increases by one the amount of target unkoon values and retuces the problen of conditional extreesue searching to values and retuces the proben of of conditional extereme searching to
the search for uncondit:onal extremuf for qual ity (unctional (8).
as
of functional (5), detersines vector a and factor b in expanjed

Procerding fros condition (4) of the quality functional sinimus (81), the task of searching filter (1) paraneters nay be presented as generali iation of linear prediction nethod.
(7) and chartacterer istical constant deteranines in each case different al gorit thes of speech signal analysis and different parasetric spact for their description

OW THE CHOCCE OF BASIC LiveAR Opferators,
Anong three components, that deteraise the particulare fora of analy sis algori the in the forevilated tesk, the nost prooissing and the aost difficult at the same tine is the problea of the best cheice of basit
linear operators (16). 1 inear operators (
As
in clastical
ty of this probles for the cist ingtal filters design (BJ, tine complex responce (1IR- fil ters) is cincreasing as compared to the choise of linear operators troe the cliss of liner systens with finite ievise respose filters).
Let's confine to setting a aathenatical problen of choosing opeIn thats case the thasten p-lengt. In that case the set of transforations (b) is represented by a linear
equation systen, that
is forned
with the help of syure B aitrix of

A satrix lines are the ievise responses of the basic operators, derived froe the above entioned class of the FiR-systens.
In that c cese, the set of of onertors In that casp, the set of pperators (6) in parallel fors is expres-
sed by delay operators (3), and the correspondi ing vectors of coefticients a and c for both variants are reiated to each other by the following linear equation systea;

$$
\bar{c}^{\prime}=\mathrm{a}^{\prime} \neq \mathrm{a}^{\prime}
$$

(an accent neans transposition).
In case of B atrix inversion, parataters ${ }^{\text {a }}$ and \bar{c} are equivalent according to the information theory.
Honever, the latter doess't eean their equivalence from the vienpoint of their optimut coding for speech transhisssion and recognition.
Thus, the problee of the best choict of basic If-systeens is foriutated as the problea of trans oreration search (9) (i.e. B-atrix), that brings about the i i provereent of estinated para aeters in the systecs of speech transsission and speech recopnition. The B atrix choice allons to take
re and features.
Using the linear operator theory in Gilbert spaces [9] it is pos-
sible to approxi iate any linear ogerator troe the IP -systea sible to approxisiate any linear operator fron the IIR -systen class

reduced to the above for enlated task of fir-systeas. It doesn't seen possible to examine ditferent variants of condition (7) fuly enought. Let's confine ourselves to 2 types of functien For predicting vethods, the choice of function f1.) in the forn of calar product of neight coefticients a by parasaeter vector a is natural generalization of constraint (2):

$$
f(\bar{a})=(\bar{a}, \bar{a})-1=0 \text {. }
$$

Equation (181 with ainus one in the left part deteraines a hyperpane in the space
dinate beginning.
Interesting results are obtained if a square fort of the paraetee vector is taven as the second liaiting function:
$f(\bar{a})=(\overline{\mathrm{a}} \dot{\mathrm{a}}, \dot{\mathrm{a}})-1=\mathrm{a}$.
(11)

Equation 1111 deteraines the second order plane in the paraeter (1) the help of Δ natrix of $(p+1)+(p+1)$ size.

In both cases, the choice of ei ther particulare vector a for condi-
tion (10) or D adtrix for condition (11) pives adition tion (18) or D atrix for condition (11) gives aditional degrees of
freedon, helping to deteraine the structure and features of the corresponding estiontion al gorit the of the speech signal paraneters.
The choice of eetric space L, i.e. the choice of characteristical
nuaber r, aliso deterinines the structure and fedures of the obtaned
algorithas. algorithes.
The lost developed and exanined algorithas are the estination algo-
rithes for squared Rhis for squared quality criterion in eetric space $\left.L_{2}^{(r}=2\right)$
Honever, the results of theoretical calculations and experinentalcio
 speech signal analysis. For ex anple, single excitation puises ion th
distore the target values of the Los parateters and the obtained par neter estiantions are nontiassed.

It seans interesting to examine the eininiax quality criterion for Cond sens interesting to exanine the eininix quality criterion tred though there ari ses the necessity to use copplex Retel aloorith III for estiating paraseters.

THE Examples Df akalysis alborithms

In practice the detersinating of functional extreman may be carried out in two nays: either on the basis of the equation systea that is der
 neters.
Lied researches. lied researches.
systes of adaptive equations for deterining the LDS parameter estinates in case men n-th coordinate of vector \bar{q} is equal to one and
other coordinates are equal to zero,will look as foll onss

where $g(n)$ is norenalizing astiplier.

The eouation systea (12) reminds of the systen of adoptive equar
 Corward bineas pediction is obtained, when the last coefficient is
 equal to one ta =1
Thus, there exists a principas possibility to work out filters $\mathbf{t 1}$ on the basis of generalized dinear operators.

$$
\text { : }: \text { a }: 11=1 \text {. }
$$

(13)

Equation (13) in paranetrical space detersines a spheric surf face of in antried out.
The corresponding adaptation equations look as foll ous?
$A[n+1]=A[n]-g(n)\langle E(n)+y[n]-b[n]+a[n-1])$

The estieation of coefficient vector, obtained on the basis of equations (13) and (14) is an approxi wated latent vector value of
 classical vethod of linear prediction.
Function e (n), used in equations (12) and (14), is identically equal to residucl signal for squared quality criterion $1 r=22$ and is of the sane sign as the residual signal for nodular quality crite-
tion $(r=1)$. In these equations nor salizing wultipliers $g(n)$ and g (n)
secure the convergence of successive iterations ainn to the Los Tarasters popti ial value, determined by condition (4). algorithas 0 and (14) nay be equal zero.
concusioks
Suggested generalization of linear prediction allons to develope Introduced constants
constraint of coefficients and t zed sethod, of the stage transte ations as mell, provide adocitional decrees of freesion, that allow aore completely take into consideration the current speech signal rateristics.
The given examples of the adaptive algori thas show the potential解 of linear predictic paranetrization is not solved yet.

EFEGENES
115. Jaht.

B.S. Atal and M.R. Schroeder, Adaptive predictive coding of speech signals.
Bell. Syst. Thechn.
B.v. 49 , pp. $1973-1986$, oct. 1978. 31 $B .5$. Atal and J.R. Hañuer. Soeech analusis by linear prediction of the specch mave. 41. A.H. Cobaxur.

5] Ary vakitacta.
. Netla. nustic speech of the Yocal Iract Shape by Inverse Filtering of coustic Speech Mavefor.
[6] Dr. Maxkon.

7]. 5. Мрийдандвер.

101 1. Ра. пинер, Б. Sone.

 Lineat prediction of spech mith a least absolute error criterion, IEEE Trans.on Acoust, Speech, Signal Processing, vafssp-33,n.6,

 "Heyxa", M., 1966.

Institute of Cybernetics Kiew, Ukraine, USSR 25220

ABS'IRACT

A formal approach to attributing of the phonetic units is offered: the limits of the elements are rigidly connected with the behavior of the structural characteristics of the signal regardless of its phonetic essence. The segments obtained form a class of phonetic unite of limited capasity. Their concrete linguistic characteristics are useful for speech recognition.

The choice of the unit of the phonetic analysis is of great significance for automatic speech recognition: it influences the means and extent as it is one of the basic stages of speech signal processing. Usually the procedure of speech segmentation is orientated towards the concrete speech units such as phonemes and their variants in speech, diphones, syllables and pseudo-syllables, moreover the advantages of choice either of the units are not obvious. Segmentation is carried out according to the changes of time-paramet-
res with the help of threshold methods. The analysis devoted to this problem shows that this procedure is essentially combined with the process of verification. Segmentation is carried out while speech recognizing being realized as a hierarchical prosedure simultaneously with attributing of the groups to which the phonemes belong.
However the process of segmentation may be also considered as a preliminary stage of speech analyais. In this case simplified ways of cutting speech are possible that are more rigidly connected with behaviour of the structural characteristics of the signal. This supposes more free determining of the limits of the segments in regard to their phonetic essence.
As an example we may consider the possibility of the phonetic units use limited in the speech flow by means of the characteristic behaviour of stationary or non stationary time function of speech signal for recognition of speech communication. The method of automatic segmentation was tested on the feedback educating system model. It showed that the choice of this
feature as a segmentating function makes possible to determine the limit of the segment within speech flow taking into account the end of the vowel or the contact before the plosive phonemes with accuracy of 0.93 .
Thus we get speech segments including one or more phonemes and building the following phonetic structure: the separate phonemes (C, V), the sequence of the consonant or vowel phonemes (C...C,V...V); the open type pseudo-syllable sequences (C... CV). The number of the like linguistic elements in each language is limited, so it is possible to express any vocabulary by means of alphabet composed of original elementary phonetic segments (EPhoS), posessing identical contents and differing from each other by a phoneme, number of phonemes or their sequence order. The usage of the EPhoS as elementary recognition units makes it possible to distinguish their most distinctive characteristics in comparison with phonemes, because the structure of the EPhoS being more informative, ensures "effectiveness and independance" from variations. Besides, it is possible to use the law of construction of words through the EPhoS within a certain vocabulary. For example, in case of lack or definiteness of information while recognizing a selected element, it may not be identified, and recognition may proceed from the structure of the word on the whole at the following
stages.
This approach to determination, of the EPhoS makes possible to get a wide spectrum of the variants of segmentation depending on the choice of the corresponding system of the indications. The use of larger number of indications naturally enables to get such class of the EPhos which is not so numerous but its elements contain less information. If the number of indications is smaller, a greater number of the original shoS is segmentated, though they are more informative representing a larger fragment of the data. Besides segmentation is more effective thank to the choice as segmentating function of the indications revealed at the first stage of the process with a sufficient stability.
There are some 3000 EPhoS in the Russian Language. They are the result of segmentation according to the signs of the stationary structure of the signal within a given time-interval. For nrocessing the authors used: the frequency Russian dictionaries, scientific vocabularies and articles, extracts from newspapers and fiction. On the whole the texts comprised 20000 words. A special complex of algorythms was developed and brought to the programe realization to process the printed texts. The complex comprised the algorythm of automatic transcribing, segmentation, selecting the set of the EPhoS, their statistic processing and coding.

Table
The quantitative components of the EPhoS for different groups of texts

The group The of texts of lar	The problem-orientated vocabulary of SAPR	The frequent vocabulary of scientific lexics	The frequent Russian dictionary	Various texts	Texts and frequent Russian dictionary
The total number of the words	s 1001	2084	8647	7913	16560
The number of the original EPhoS	730	1013	2070	1945	2845

In the table the results on the quantitative components of the EPhoS for the various groups of the texts are summed up. The dynamics of appearing of the original EPhoS ($\mathrm{N}_{\mathrm{eph}}$) depending on the capacity of the processed texts $\left(N_{w}\right)$ is shown in Fig. 1 (dependence 1). Here are shown: dependences of the accumulated frequence of appearing F_{a} (curve 2) and the accumulated time of existance \mathbb{F}_{a} (curve 3) of original EPhoS from the total number of the EPhoS with regulated frequence $\left(\Sigma_{\text {eph }}\right)$: they indicate uneveness of distribution of informative stress of the EPhoS - the

Fig. 1. The dynamics of appearing (1),accumulating of frequence (2) and duration (3) of the original EPhos.
most active element, amounting 20% of the EPhoS, covering some 90% of the texts being analyzed and more than 80% of the duration of their pronounciation. It is interesting that the composition of the EPhoS is practically independent on the ana lyzed texts, especially for the active (the most frequent) EPhoS. It enables using one set of standard EPhoS or its main part for automatic recognition of different concrete vocabularies. A special type of the EPhoS is of some interest. It was selected during the following experiment: when a group of free texts was being analyzed it was supposed that the end of the word did not limit the EPhoS. The amount of the elements exceeded the previous figure of the quantitative contents of the EPhoS on account of speech segrents, appearing at the border of two words but not appearing inside any word. This class of the EPhoS named disjunctive appeared to make 30% of their total number and determined about 30% of the words from the analyzed free texts. I.e. the disjunctive EPhoS enable to formal speech segmentating into words without drawing
the results of sence analysis for that purpose.
The study of the results of statistical processing of the EPhoS and their distribution in words, especially for small vocabularies, enabled selecting a few main types of the EPhoS such as: key (appea ring in one word), forecasting (selecting a group of words), specifying (defines one from the group of selected words), disjunctive -- their characteristics enable achieving higher parametres of speech recognition procedure.
A full set of the EPhoS containing some 3000 elements was formed as the result of usage of phonetical system of 60 phone mes. However such number of the EPhoS excess. Let us name a sub-multitude of the phonemes taken from their full set a phoneme group united by a stable indication and build a dependence of the number of the phoneme groups ($\mathrm{N}_{\mathrm{ph} . \mathrm{gr}}$) which we get using a definite system of indications (curve 1 in Fig.2). Then let us examine if it is possible to recognize a concrete vocabulary with the help of different sets of the EPhoS differing from each other by the numbers of the phoneme groups used for their identification. It turns out (curve 2 in Fig. 2) that usage of 10-12 phoneme groups (that is $12-20 \%$ of the total number of the EPhoS) ensures recognition of $80-90 \%$ of the words of the given vocabulary (vocabularies of 2000
$N_{\mathrm{eph}} / \Sigma_{\mathrm{eph}}, \mathrm{N}_{\mathrm{w}} / \Sigma_{\mathrm{w}}$

$N_{\mathrm{ph}, \mathrm{gr}} / \Sigma_{\mathrm{ph}} . \mathrm{gr}$.
Fig. 2. Dependence of the number of the EPhoS (1) and the number of the recognized words (2) on the number of the phoneme groups.
words were examined).
Analyzing of small vocabularies ($60-250$ words) used in the systems of various functions shows that it is possible to recognize 95-96\% of the words of each vocabulary using $30-50$ EPhoS formed on the basis of 10 or 12 phoneme groups.

The phonetic elements under analysis can be used for speech recognition as well as for speech synthesis. Moreover it is possible to describe separate words as well as continuous utterances.
that determines the necessity to examine
that speech element as a whole. In that case CV syllables cover about 80% of any
text of the Russian speech. The stresse text of the Russian speech. The stressed
and the first prestressed syllables with and the first prestressed syllables with occurrence in the text equal to $50 \% / 6 /$ For the needs of analysis and synthesis
it is useful to represent the base CV sylit is useful to represent the base CV syl consonants and vowels are written not in
the phonetic symbols, but in tradition

Russian letters, that allows to transform a written sequence of letter symbols inconsonants are written in the one. Twenty lumn of the table according to the maner of production, and in the horizontal rous according to the plase of articulation (labels L, D, A, P, VI,V, Lq and N correspond celess, voiced, liquid and nasal consonsnts). Ten vowels are divided into two gro-

Table. Classification of the base elements of the Russian speech

Cosonants							Vowels										
			L	D	A	P	Hard					Soft					
			A				0	y	H	3	я	E	10	и.	E		
			I				2	3	4	5	6	7	8	9	IO		
I	Fricatives	vI					X			/	///	///	///	///	1	1	$/$
2						III				1		1	X	X	X	X	X
3					H		X	X	X	X	X	1	1	/		1	
4				C				1		1	1	1	1	1			
5		∇	Φ				1	1	1	1	111	111	1	/11	1	1	
6					这-		-	-	-		1	X	X	X	X	X	
7				3				1	1	1	1		1	1	1	1	
8			B								1	1	1	$1 / 1$			
9	Affricates				प		X	X	X	X	X		1	1		1	
IO				ц				/	1			X	X	X	X	X	
II	Plosives	vi				K		1		$1 / 1$	$1 / 1$	$1 / 1$	///	$/$	1	1	
I2				T					1		1	1	1	1			
I3			[1	-	-				-	
I4		v				Γ				//1	//1		1	1			
I5				Д							1	1	1	1			
I6			B				/		1	1	1	1	1	1			
I7	Sonants	Iq		II						1	1		1	1			
I8					P			1		1	1	1	1	1			
I9		N		H^{-}				1		1	/	1	1	/			
20			M								1	1	1				

consonants in the base CV syllables. Diphthongs $4, \mathbf{i}$, io belong to the soft vowel a ranking according to their properties in on and positional variability, however, on and positional variability, however ' mporal characteristics of the transition segment of sounds. At the same time the place of articulstion of a consont of a vowel, therefore CV syllables including con-
sonants with the same place of articulatisonants with the same place of articulati on have similary characteristics for the CV syllables have the colour of the following wovel due to the effect of coarticu-
lation and that effect is more associated lation and that effectis more associon the manner of production of consonants. Thus the characteristics of consonants and vo-
wels determinates their context (allophonic, variability. The table is made for the strssed syllables and besides in
the cells, which are formed at the interthe cells, which are formed at the inter-
section of consonant fows and vowel columns, the rough frequency of occurence of the base syllables from / $6,14 /$ is gi -
ven. From 200 possible CV combinations of ven. From 200 possible CV combinations of
Russian 25 are not used and 14 combinations occur vary seldom, those syllables are labeled by X and lll in the table. Seventy syllables corresponding to the table empty cells are used more often and
cover about 50% any Russian speech and 91 syllables marked by poccur less frequetly. Thus the common number of Russian ba-
se elements is relatively not great. For unstressed CV syllables all consonants have realisations with rather good phonetic quality, and the number of vowels decrea-
ses up to three, including only sounds A ses up h, 8,9 , The duration of unstre ssed CV syllables shortens 1.5 or 2 times as much as the duration of the stressed sy-
liables both at the expense of consonants and vowels.

SYNTHESIS OF ANY SPEECH ON TH: BASE OF CV SYLLABLES
In the process of synthesis on the base rat, a practic one, to develop a speech synthesator which could synthesize any Russian text any speakers voice, including
a female one. The second aim was to make a female one. The second aim was to make
clear if it is possible to synthesize a speech signal perceived as qualitative con tinuous iformation, concatenated from a speech elements. For that purpose a group of speakers pronounced (in according with the table) 175 syllables and 10 v wEklipse - 330 ". For each CV syllable plaess of transitions from consonants to va
with the following audition and correction, those data and syllable duration date were recorded into the computer memory. Unstressed, reduced be formed due to shorte ning of vowel duration of any stressed c syllable. The perception of hardness or
softness of Russian consonants was achiesed due to the maximum vowel reduction of any syllable. The effect of coarticulation between cosonants in compound open syl lables was produced my coduced to minimum, those syilable having the same vowel as the base CV syllable. Coarticulation in the words consisted of cifferent vowels was simulated with the help of addition of a short segment of the succeeding vowel to the end of the prent depended on the contrast F-picture of the adjacent vowels and was increasing proportionally to that contrast increase. e compilation speech synthesis is given in / 15, 16, 17 /. Algorithms and compute rogrammes of the syllable synthesis including phonetic transcription of any Rus
sian text were developed by I.Orlov $/ 18 /$, using the syllable interpretation of a letter record in accordance with the table conctinuous piece of information was produced without any additional transformations exept the preliminary amplitude compression of the sygnal. The speech compisounded as continuous and rather naturally with high percentage of word intelligibility equal to $97-99 \%$. That experi-
ment besides having practical significan ment besides having practical signilica ce proves that CV syllables are

CV ANALYSIS OF CONTINUOUS SPEECH The syllable analysis of continuous speech on of a speech signal is much more complicated than the problem of the speech syn-
thesis. Difficulties of the speech analythesis. Difficulties of the speech analy-
ais mainly depend on the variability of a speech signal and were briefed in Introduction. However, the choice of an analysis unit is of great importance since in addispeech el ements are determined and their spectral and temporal characteristics be come preliminary known as well. The con-
tinuous speech analysis as well as the speech synthesis is reasonable to carry out on the base of cV syllables. That approach is discussed in details in / 5,6,
$19,20 /$. That is why we brief here only some conclusions.
weli The number of base CV syllables as
well as in the speech synth a
to about 200 . A current analysis of the continuous
speech should be performed using fragments with duration of about $100-120$ ms, in that ral characteristics of CV syllables on the context and the position decreases and besides the analysed segment of a vowel sho-
uld be $20-25 \mathrm{~ms}$ longer than of consonant. In addition to CV syllables it is necessary to extract separate consonants and vowels which form compound open syllables as
CCV, CCCV, CVV etc. approximately at the same time window as CV segments. Naturally in that case very short sound. Wouldnit be continuous speech is insignificant / $6 /$. 3. It is useful to perform linear time normalisation of the CV fragment duration a definite speaker / 20 rate
4. A base problem in determination of rules for fragment extraction from continof a signal. A lot of experiments show that the best speech representation is a formant one using pitch synchronisation $16,19,21 \%$

CONCLUSION
The syllable approach has good prospects for usage in spech informatics quate correlation between physical and phonetic properties of continuous
speech. However, that and higher levels speech, However, that and higher levels
of speech processing are specific for each national languge and therefore
they should be thoroughly studied for they should be thoroughly studied for
any language.

REFERENCES

/І/โринов С.Н. ,Савельев В.П. , Немель Г.И. вании Устних команд. Tруды АРСО-ІЗ, ч. I Новосиоирск, І98́4, IOI-IO3.
/2/ Зигангиров К.L., Соронин В.H. Примепе-

З/Ериноз С. Н., Слуцкер Г.С. Вногоуровневая

/4/ іринов С.Н., Слуцкер Г.С. Автоматичес-

/5/ іниппер А.В., Мирошнинов B.C. Текущее

6/ Книппер А.В., Пахонин В.А. К описанию речевого сигнала. "Речевое общение в автоматизирова.
/7/ чистович Л.А. и нр, Речь. Артикулниия и

/9/ Златоустова Л.B., Іотапова Р.К., Труұонетика. Изд. ВіУ. М., І9Е6.
/IO/Francini G. L., Debiasi G.B. and Spinaspeech repr. units for Italian speech.
JiSi, v. 43 ,iv6, June 1968, $1282-1286$.
/II/Tanaka d., Tojava f., et all. A study oi continuous speech. Speech Comunication, 1983,v.2,N2~3, 207-210.
/12/Іотапова Р.К. Слоговая Фопетика герма-
нских языков. П., "Внсшая школа", Іяв6.
/ІЗ/книппер А.В. СГ-продставление русской

/I4/Елкина В.Н., Јдина Л.С. ,Статистика слоГОВ русскои речи. Сб. трудов 1 ММ СО АН

/Т6/Вайншток А.П. , Һиипер А.В.,Орлов И.А. Потапов В. Г. Способ слоговои гомпиля
/I7/スииппер А.В. Орлов И.А. Компиляшия речи ${ }^{\text {с }}$ - учетом новосиориск, І
/I8/орлов И.А. СГ-слоговое преобразование текста длл номпиляционного синтеза ре-
чм. Труд АРСО-14, ч. 2 , паунас, І986, стр. 64 .
$/ \mathrm{IG} /$ Knipper A. Acoustic events in CV sylunds. Signal Processine, N 3,1981 ,
/20/книппер А.B. 0 нормировке СГ-брагмен-

/21/:ниппер А.В., Нахонин В.А., Орлов И. А кн. "Распо сорание оорал

AN EVENT-BASED APPROACH TO

AUDITORY MODELING OF SPEECH PERCEPTION

Toomas Altosaar and Matti Karjalainen

Helsinki University of Technology, Acoustics Lab.
Otakaari 5A, 02150 Espoo, Finland
Tel. (358-0) 451-2794

ABSTRACT

Auditory modeling is usually based on peripheral physiological phenomena. It is found, however, that this basis
is not sufficient in all applications, e.g. in successful speech recognition. Our opinion is that more important than the details of periphery is to include higher-level functional processing in ses several spectral and temporal representations system that ierarchical description of speech. The front-end to create a performed by an auditory model which is based on sychosacoustical principles. Several temporal and spectral and are viewed under multiple time resolutions to yield relible and are viewed under multiple time resolutions to yield reliable
and flexible descriptions of the speech. Based on these spectral and temporal resolutions prominent extrema are located and are classified as objects called events. These objects are organized
into event lists according to masking criteria and measures of prominence.

INTRODUCTION

The usual basis for auditory modeling is peripheral physiological phenomena. Transmission-line or feritter beral
models are used for basilar membrane and neural models for the next stage, e.g. [1], [2]. This may give a detailed picture of the periphery but the models tend to become overly complicated and there is
work.
Another approach to auditory modeling is to apply psychacoustical theory and knowledge. Here we can
concentrate on wider functional concentrate on wider functional properties of hearing that are not
always directly related to physiological details. models are explicitly based on psychoacoustics.

The limited success of auditory modeling in speech recognition shows that an auditory front end does not necessarily solve existing problems. We have to pick up the most essential
peripheral features and combine them with higher-level symblic peripheral features and combine them with higher-level symbolic
processing. With this approach we are immediately faced with several problems, some of which we hope to solve by formalisms proposed in this paper. There is not much hope to
find principles with evidence and support from concret hering research. Instead we have to use hypothetical models that could be possible in the human auditory system.

The central problem for us appears to be in the and symbolic representation without loosing any cete information. The traditional pattern matching and decision process isolates the continuous and discrete domains in a way features in a given context.

There are several concepts that we have found to be important. Retaining redundancy with multiple featur representation at each level of the auditory process and even presumes parallel processing to a large extent if such a system is to be implemented in real-ime.

Other key concepts in our approach are events and even stuctures. Instead of segments with time boundaries we analy vents (time objects) with rich internal structures: time mome
effective time span, type according to several criteria, amplipy or prominence, link to a feature it is supported by, etc. Th list-1ike data structures consisting of events form the basis for flexible representations that can be applied
processing at several levels of auditory modeling.

The prototype system to be presented in text seci reflects our approach in a preliminary form. It should b Considered as a collection of examples to be developed towards a peripheral auditory model to natural language processing.

SYSTEM DESCRIPTION

The system contains many different levels of processing ranging from auditory modeling of the speech input to symbol and event processing. Figure 1 shows an overview of the
current and proposed system. The following sections explain current and proposed syste

Auditory Front End

The system obtains auditory information from a filter bank
closely matches the hat closely matches the human auditory system in terms of
sound perception. The model $[3]$ is based on the most important features of peripheral hearing known from the theory of ssychoacoustics [4] and simulates the human's frequency properties. By the use of this model only relevant auditory spectral information is retained. Irrelevant information is efficiently removed during the early stages reducing the
computation rate in later processing

Ton rate in later processing.
The auditory model is implemented as a filter bank and its
atput is represented by a 48 element spectrat por point in time. The vector's elements indicate approximately he the amount of energy falling in 1 Bark (1 critical band) regions of the
auditory spectrum and are scaled in loudness [4]. Each channel of the filter bank is separated by 0.5 Barks and this provides dequate frequency resolution over the entire 24 Bark auditory pectrum. A spectrum is calculated every 10 ms .

Figure 1. Signal-to-Symbol Speech Analysis System.
Multiple Representation Analysis
The loudness scaled auditory spectra are transformed into sevferent speech features and events. These representionty be separated into two major groups: the frequency domain, and he time domain. These groups are described in the following sections.

Frequency Domain Processing
The frequency resolution of the hearing system to roadband signals is at best 1 Bark. For phonetic classification of speech signals different studies have shown that this can vary
from 1 to 3.5 Barks. We can simulate this effect by bandpas filtering the spectrum in the frequency domain to emphasize the desired resolutions. This bandpass filtered spectrum representation is called the formant spectrum. Adequate
resolution has been achieved for this system with both 1 and 2 Bark bandwidth filters. The basis for use of multiple resolutions for a single representation is explained later on. The formant
spectrum can be used to identify the existence and locations of spectrum can be used to identify the existence and locations of
formants and formant pairs. Formant lists are created by searching for local maxima and indicate where likely formants exist as well as what their amplitudes are but no attempt is mad
classify them. The Formant lists are used in an auditory to classify them. The Formant lists are used
spectrogram display which is shown in figure 2 .

Time Domain Processing

The other category of representations are based upo nformation that the front end representations ine the based upone domain. One
such representation is total loudness and is calculated by summing the elements of a louddess spectrum. Total louddness
as a function of time reveals the temporal enery structure of the as a function of time reveals the temporal energy structure of the
speech while being independent of the individual spectral components.

Figure 2. Auditory Spectrogram of the Finnish word /yksi/.
Stationarity is a representation that measures changes in pectra. Stationarity is calculated for time t, by first finding the average spectra at time $\mathrm{t}_{\mathrm{i} . \mathrm{j}}$ and at time $\mathrm{t}_{\mathrm{i}+j}$ (average computed over several spectra) and then summing the absolute difference between these averages to yield a scaar measure of distance This representation is used to identify locations where spectra good reliability. Stationarity is sensitive to both spectral and amplitude changes in speech.

Another representation used in the system is spectral
which indicates where the majority of the energy lies in slope which indicates where the majority of the energy lies in the spectrum. Four different representations of spectral slope are
used: global, formant 1, formant 2, and formant 3 slope. Global used: global, formant 1, formant , and formant slope.
slope is a wideband locator of spectral energy while the ormant is generally found. These functions where each indicators of certain features such as fricatives and plosives and can also be used to detect spectral centers of gravity [5].

Time domain multiple representation analysis views the speech signal with several different but parallel perspectives
Figure 3 shows the responses of three representations to the Finnish word /yksil.

Figure 3. Multiple Representational Analysis of the word /yksi/

Multiple Resolution Analysis
To obtain a more flexible description of each frequency and ume domain representation, all representations are analyze
under several resolutions. This is performed by band filtering a represestataion with filters having different resolutions. The impulse responses for some of these filters are shown in figure 4. For the frequency domain representation the loudness
spectrum is filtered with 1 and 2 Bark resolutions was mentioned earlier. In this case the filters are scaled in frequency In the time domain representations the filters are scaled in time and resolutions of the loudness, stationarity, and spectral slope
representations are calculated in a similar similar to scale-space filtering [6] and is used to generate qualitative descriptions of signals.

20.5	N
40 -5	
60×5	
120 es	
160.5	
2405	
70\% es	

Figure 4. Impulse responses of some of the filters used in Muluple Resolution Analysis.
Each resolution of a representation is defined as a resolution source while the representation along with its resolutions is defined as a resolution group, as indicated in
figure 1. Speech analysis with multiple resolutions facilitest determining event locations and their respective properties with greater ease and accuracy than would be possible with the original representations alone. The curves in figure 5 show the rheonse of the loundess resolution group to the word $/$ yksi/. for a reliable description to be created of the speech. New
resolution groups mat resolution groups may be added to the system such as pew
detection and a voiced/unvoiced indicator as is found necessary.
Event Detection and Analysis
The next phase of processing transforms a signal, in this case a resolution source, into a discrete and symbolic
representation. The resolution groups are operated upon by event detectors which find local extrema and zero-crossings depending upon which resolution group is being analyzed, an
yield symbols as their outputs. Symbols are more fexible to manipulate during later stages of processing than signals since partial classification has already taken place. These symbols ma contain information regarding their type, time, amplitude an are placed in a list for later processing.

The resolution group event manager is responsible for analyzing a resolution group and finding the most prominent searching for the event with the largest absolute amplitude. It uses as iss input the lists of symbols presented to it by the even detector. The resolution group event manager operates on thes ists to produce a single list called the resolution group event lis

Figure 5. Multiple Resolution Analysis of the Loudness Representation for the word $/ \mathrm{yksi} /$. Solid lines
indicate events, dashed lines indicate related events.
To avoid multiple entries of the same event in the list, all related most prominent event. Figure 5 also shows the events (soli lines) found for the multiple resolution loudness representatio as well as the related events (dashed lines). Another measure of maximum span over the sigma is to choose the event wit maximum span over the sigma axis when using
filtering techniques $[6]$ to yield a top-level descriptor.
An integrated description of the speech is constructed b the gobal event manager and it considers all the resolution grou event lists created by the resolution group event managers an
builds a global event list that contains the most prominent evens.

The final set of symbols created by the global even manager have been proposed to be used as a primar representation of the specch in a rule-based recognition system human would when reading a specech in similar terms as speech. The rule-based system would analyze these symbols unue enough evidence existed to fully support a hypothesis fo diverse sources of information may be viewed in a globa perspective making high rates of recognition possible.

IMPLEMENTATION

The preliminary version of the model is currently imple mented on a two processor system. The auditory mod
filterbank is realized on a TMS 320 signal prociss and the remainder on an Apple Macintosh. The Macintosh is the host for guage [7]. NEON is a hybrid lanhich is an object oriented lan derived from Forth and Smallalk. The next extended version of Lisp Mach is being currently implemented on a Symbolics 36

To efficiently represent ale speech recognition system resolutions, refficently repentasent and manipulate the differen programming methods are used. Object orientation is a powerf data and knowledge representation principle since knowledg regarding the object is contained within the object isself thus
exhibiting object-centered contol exhibiting object-centered control [81,[9]. Objects can commun-
cate with each other by message passing methods They als belong to classes and can insegerit propserties from other classe

Since each representation's analysis can be processed independantly, parallel-processing of the representa esolutions, and events is a suct a concurrent system mplementation of such a system. Transputers $[10]$ and is one of our long-range goals.

CONCLUSION

Higher-level functional processing must be included in uditory models if the information they supply is to be of greater use. This is because peripheral physiological phenomena often does not offer a sufficient basis for applications such as speech
do recognition. In this paper we have described an approach to
implant the higher-level processing activities into an auditory
 derivation of some representations, and the analysis of these
under multiple scale resolutions was explained. Finally, the under multiple scale resolutions wiscte frequency/time events was described.

ACKNOWLEDGEMENT

The authors are grateful to the Finnish Academy which has financed this research

peferences

[1] Lyon, R.F., A Computational Model of Filtering, Detection, and Compression in the Cochlea. Proc. of
IEEE ICASSP-82, Paris.
[2] Lyon, R.F., Computational Models of Neural Auditory Lyon, R.F.. Computational Models of Neural Auct
Tocessing. Proc. of IEEE ICASSP-84, San Diego.
[3] Karjalainen, M.A., A New Auditory Model for the Evaluation of Sound Qualit
IEEE ICASSP-85, Tampa.

4] Zwicker E., Feldtkeller R., Das Ohr als
Nachrictenempfanger. S. Hirzel Verlag, Stuttgart, 1967.
[5] Chistovich L.A. et al., "Centres of Gravity" and Spectral Peaks as the Determinants of Vowel Quality, Frontiers Speec.
1979.
[6] Wikin, A.P., Scale-Space Filtering: A New Approach San Diego.
[7] NEON Programming Manual, Kriya Systems, Inc., Sterling, 1986.
[8] Winston, P.H. Artificial Intelligence (second edition), Addison-Wesley, 1984.
(9] Waterman, D.A. A Guide to Expert Systems,
Transputer Reference Manual, INMOS Limited, Octobe 1986

PERCEPTION AND MEASLREMENT OF DISTORTION

N SPEECH SIGNALS - AY ALDITORY MODELLNG APPROACH

Seppo Helle
Matti Karjalainen

Helsinki Liniversity of Technology
Acouscics Lab, Otakaari 5 A, Espoo
Finland

ABSTRACT
The perception of nonlisear discotion in speech signais was
 Was nsed to obzain anditrory seectar fom the urdistorted and distorted soumds, and the spectral difference was compared to our
Our studies showed tie so-catled $2-\mathrm{cB}$ deviation rule to be useful measure for the fist poticeable level of noninea peetrum exceed 2 dB , the difference between the original and distorted sourd can be perreived This result also verifies the perception. For distortiocs exceeding tere percepion thresthold a more sophisticated objective measure taan we maximum spectral deviation is peeded A distortion measurement system
based on an auditory model has also been constreted

INTRODCCTION

The work with auditory models bas been active in our psycboscoustical model imitating the foman hearing process A mathemarical model that performs this is nor a p physical simmlation of the hearing syxtem. Instead, it attempts to imitat no matter what kind of physical processes there exist This is our approach to additory modeling.
Auditory models can belp us, for example, to create better measuring techniques of noniinear distorion. Conventional tecthniques. like harmonic distortion measurement, don't take
into account howe we actually perceive the distotion into account how we actually perceive the distortion. This
might lead to incorrect resplts and tot to what we want - the sound quality in cerms of percecived distortion If the important properties of the auditory system are bevilt into the measuremen

Aplitas aras inclade
Application areas include speech recognition and speech
analysis for phonetic speech research. These auditory models can provide some new insights to how we perceive spect model Some important phenomena of the buman auditory system that hould be implemented in auditory models are:

- Frequency selectivity of about 1 Bark and masking effect in
frequency domain (excitation spreading function) frequency domain (excitation spreading function).
Frequency sensitivity of the human ear according to the
Loudness carves (60 dB-level, e.g).

Temporal integration; time response of any 1 Bark charnel
hould be its poer lowpass-filtered by a time constant $100-200 \mathrm{~ms}$.
Temporal masking; pre-and postmasking effects.
FILTERBANK MODEL
The filterbank principle is well suited to auditory spectrum The filterbank principle is well suited to auditory spectrum
analysis because the human auditory system - basilar membrane and hair cells - also consists of a multi-channe analyzer $/ 61$. The bandwidth of the overlapping channels is
about one critical band or one Bark. Instead of thousands of hair cells it is enough to have 1-4 channels per one Bark in a 24 Bark audio range. With means $24-96$ channels covering the 24 Bark audio range. With 0.5 Bark spacing our model has 48 good resolution of spectral representation and low amount of omputation.
Each channel consists of a bandpass filter, a square-law rectifier, a fast linear and a
a dB-scaling stage (fig.1).

Fig. 1. One channel of the 48 -channel filterbank used for auditory spectrum configuration. $x^{2}=$ square law detection
$\log =d B$-scaling. Br
Bandpass filters with 0.5 Bark spacing and a little more than 1 oodel. Each bandpass is a 256 -order FIR-filtect designed have a frequency response which is the mirror image of the preading function $\mathrm{B}(\mathrm{x})$ given by Schroder et al $/ 5 /$.
Not only frequency selectivity but also frequency response sensitiviry) of the ear must be built into the filterbank. Th imple way we used is to let the relative gains of the channel vary according to the inverse of the equal loudness curvo

The rectification effect in hair cells of the inner ear is primarily of half-way type. Our model did not have a half-wave rectifier in auditory spectrum nalysis of speech found in auditory spectrum analysis of speech this makes no
remarkable difference. A constant level is added after the rectification to simulate the threshold of hearing.
The remaining two filters are for smoothing the outputs of the selective channels. The faster one is a first-order low-pass with time constant of about 3 ms . Its roie is not important here. The
second one is more fundamental. Its purpose is to implement many effects: temporal integration as well as pre- and postmasking.
Temporal integration is realized by linear first-order filtering (time constant about 100 ms) applied to the output of square-law rectification. Premasking is not a very important and crit

Postmasking was more difficult to be implemented. A linear lowpass filter with a 100 ms time constant gives an overall masking that is several times too long. To make a better match for masking situations $/ 3 /$.

PERCEPTION THRESHOLD OF NONLINEAR DISTORTION
One of the most useful rules of the psychoacoustic theory is the 2 -dB rule of just perceivable difference. This means that any variation in a sound, resulting at least in about 2 dB level
change in any Bark channel, will be noticeable in subjective listening tests. The hypothesis was tested by distorting three Finnish speech sounds $/ a /$, $/ \mathrm{i} /$ and $/ \mathrm{s} /$, with three nonlinear distortions (square-law, crossover and clipping). Duration of
the distorted sound was the third variable. Three persons were asked to find the just noticeable levels of distortions (JND). The test was made by direct comparison of distorted and undistorted signals from a loudspeaker in an anechoic chamber.
The corresponding maximal distances in auditory spectra were The corresponding maximal distances in anditory
It was found that the types of distortion and speech sound have no essential effect on the auditory spectrum distance of dB rule is valid or, more exactly, distortion is just perceivabe 2 -dB rule is valid or, more exactly, distortion is just perceivable when the maximum value of auditiory spectrum distance is about listener).

$\begin{array}{lllllll}2 & 5 & 10 & 20 & 50 & 100 & 200 \\ 500\end{array}$
Fig. 2. Auditory spectrum distances corresponding to the
JND-thresholds of diferent distortions applied to three speech sounds (see text) as a function of distortion duration.

An interesting detail is that the the temporal integration must really be present in the model. This also means that if the distortion must be higher for short durations to get the same distreshold of perception.
In another experiment we found that the perception threshold of distortion without pure reference correponds to $1.5-13 \mathrm{~dB}$ distances depending on types of distortion and speech sound.
We can conclude that if the distance is less than 1.5 dB , the dis can conclude that if the distance is
distortion is practically never perceivable.
SUBJECTIVE DISTORTION EVALUATION VS.
AUDITOR SPECTRUM DEVIATION
Another series of experiments was carried out later to investigate further the correlation between maximum auditory spectrum distance and subjective distortion evaluations, this time Finnish vowels $/ a /$ / $/ \mathrm{i} /$ and $/ \mathrm{L} /$ spoken by two male speakers Finnish vowels $/ a /$, $/ 7 /$ and $/ \mathrm{w} /$ spoken by two male speakers.
Test samples were about 200 ms long and they were distorted artificially with four types of distortions: zerocrossing,
cliping square-law and angle distortions (angle distortion: a clipping, square-law and angle distortions (angle distortion: a
piecewise linear input-output relation having an angle piscontinuity at the origin). In each test, one of the test vowels was played to the listeners with different distortions in a random order. A test series contained 6-8 distortion levels for each
distortion type plus clean signals. The undistorted reference could be listened to before the series, but not between the test signals. Each test signal could be repeated as many times as 10. Definitions for the values on the scale were:

1 No audible distortion
The listener suppos to have heard something like distortion but is not sure.
Distortion is on the just noticeable threshold.
3 Distortion is always perceived when concentrating on Distortion
5 Distortion can be heard easily as "soft" distortion.
Distrion is not "soft" anymore, but not yet disturbing Distortion is now disturbing.
Sound is still easily trcognized because of distortion but the sound is still easily yrecognized.
Distotion is increased to the level where some problems of correct recognition exist.
9 Recognition of sounds is like guessing.
10 Recognition of the sounds is impossible.
There were three test subjects, all of which listened to each series five times. Figures $3-5$ show the results from three
vowils $(/ \mathrm{al} / \mathrm{i} /$ and $/ \mathrm{k})$ of one speaker. The figures present subjective evaluations of distortion as a function of maximal auditory spectrum distance over time and full 24 Bark range.
O the y-axis is the evaluation scale that was used in the test. (Presented are only three of the six test sounds, but the results from the other speaker's sounds were roughly of the same. type.)
The plots show immediately that the vowel $/ \mathrm{i} /$ is the most sensitive of the sounds: that is, distortion is easiest to detect. From the plots it is seen that the vowel $/ \mathrm{i} /$ exhibits the least
variation between the four types of distortion while /w/ exhibits
the most If we look at fif. 5 , we see that for the vowel / $/ /$ the the most. If we look at fig. 5 , we see that for the vowel / w, the
spectral difference corresponding to the "disturbing threshold" (value 6) is over 20 dB for square-law distortion, but only about

10 dB for crossover distortion. For the other speaker's' 'w. thowever, the characteristics of the four distortion type curves were different (variations were again large, but the order was differeml

Fig. 3. Subjective distorion evaluation vs. maximal ouditory
spectral devituion. Vowel: / a I. Average form is evaluations foctrach deviart.

Fig. 4. Subjective disortion evaluation vs. maximal auditor spectral deviout.

Fig. S. Subjective distorion evaluation vs. maximal auditory spectral deviartion
for each point.

Consisering the results we can say that although the auditory spectrum method is good at JND threshold, it has only moderately good correlation to subjective distortion evaluation al refinements. Possible ways of doing his are: (1) to define better distortion measure than maximal spectral deviation, and (2) D improve the auditory model itself.

Improving the distortion measure
Some possible ways of changing the distortion measure are: - Frequency weighting. The current measure handles all the 48
channels in the model equally, but it could be advantageous to give more weight to the highest channels, since high frequency components are usually more disturbing than lower ones.

- Area and level weighting. The distortion measure could be made 2 function of the geometrical area of the spectral
devision which would give a measure relared to the toan amount of distortion.
Cbanging the auditory model
our model does not take into account what happens inside one pirch period of speech sound but rather only the long-term perception phenomena are considered. However, it is know perception. If the time constants of the model were shonened perception. If the time constants of the model were shortened
so that the fine structure of the signal would have an effect on the auditory spectra, this could give some extra information
about the signal. In the case of distortion perception this about the signal. In the case of distortion perception this
information could be important: for example, if one distorion mechanism distonts only the peaks of the signal (say, clipping), In may have a different subjective effect than another type which has more effect on the low-level parts (crossover).

ALDITORY MODELLING APPROACH E DISTORTION MEASUREMENT
Since the $2-\mathrm{dB}$ rule is found to correlate well with distortion perception threshold, the auditory spectrum analysis can be used to measure distortion in audio and speech transmission
equipment This method enables the use of actual speech (or other sounds) as measurement signals. The results correspond

to subjective sound quality better than results obtained with
traditional methods like tocal harmonic distortion measurement We have realized an auditory model based measuring system The auditory model is implemented in a T Texas Instruments TMS
32010 si mal processor. An is used for system control and user interface, and a slightly modified Sony PCM-F1 pulse code modulator acts as the DAand AD-converter. Figure 6 presents the nonlinear distortion measurement principle as a block diagram. . Our system can
handle the entire audio range $(20 \mathrm{~Hz}-20 \mathrm{kHz}$ with a dynamic range of over 90 dB . The Posts and Telecommunications of Finland is testing the applicability of the method in telephone equipment measurements.

CONCLUSIONS
The auditory models have proven to be a useful means of determining perceived nonlinear distortion in speech. Already the relatively simple method of maximal spectral deviation is a
good measure for the JND threshold (2 -dB rule). More severe good measure for the JND threshold (2 -dB rule). More severe
distortion levels need a more sophisticated measure. Practical applications of auditory methods are under development possible areas are the evaluation of telephones and au

ACKNOWLEDGEMENTS

The auditory model was developed in a project sponsored by the the measurement of distortion in speech transmission was financed by the Posts and Telecommunications of Finland. The implementation of the auditory model for the TMS 320 signal processor was realized by Vocom Ky

REFERENCES

1/ Karjalainen M., Objective Measurements of Distortion in Speech Signal Channels by Computational Mode

12 Karjalainen M., Sound Quality Measurements of Audio Systems Based on Models Of Auditory Perception. Proc.

3/ Karjalainen M., A New Auditory Model for Karjalainen M., A New Auditory Model for the
Evaluation of Sound Quality of Audio Systems. Proc. of
ICASSP-85, Tampa 1985.

14/ Karjalainen M., Helle S. \& Altosaar T., Spectral Representations Based on an Auditory Model: Experiments and Applications. Proc. of Nordic Conference on Speech

15/ Schröder M. et al., Objective Measure of Certain Speech Signal Deteriorations Based on Masking Properties of Human Auditory Perception. In the book: Frontiers of
Speech Communication Research (ed. Lindblom \& Ôhman), Academic Press 1979.
/6/ $\underset{\text { Nwicker }}{\text { Nachrichten-empfanger. S. Hirzel Verlag, Stuttgart } 1967 .}$

Walter f. sendlmeier
Max-Planck-Institut für Psycholinguistik
nck-Institut für Psycholinguin
Nijmegen, The Netherlands

ABSTRACT
Seven psychological models of word recognition are analysed as to their explicit and implicit assump-
tions on the phonetic mental representation of vorss, ond the phenetic mental representation of
vors and perimental results concerning the concept of the
primary perceptual unit and findings from first primary perceptual unit and findings from first
language acquisition research. On the basis of these considerations a model for the phonetic mental representation of words is proposed which assumes
simultaneous representation of differently sized imultaneous representation of differently sized this model for models of word recognition are dis cussed.
introduction
Hardly any of the leading word recognition models contains explicit information on the phonetic mental representation of words. This may be seen as a seri-
ous drawback of these models considering that (phonetic) mental representation may not only be regarded as a result of the perception process, but that it functions at the same time as a monitor for per eeption. Almost all models, however, make more or less clear statements on primary perceptual units to
which - at least implicitly - the status of mental representation is ascribed.
Klatt / /1/ assumes in his 'LAFS' (lexical-access rom-spectra) model that the listener is able to distinguish words directly by spectral analysis of the speech signal without having to segment it int
smaller units. However, he also assmes smaller units. however, he also assumes that word
have an internal structure which can best be de scribed by units of diphone size. An important part of the word recognition process according to Klatt's model is the recognition of the internal diphone words must thus be mentally represented as diphone equences in the listener.
In describing his 'logogen model ' Morton $/ 2 /$ gives the impression that he does not regard any segmenta-
tion within word boundaries necessary for the recogition process. Words are held to be represented as

re represented as mol' $/ 3$ / it is assumed that words he listener. The siequences of discrete units in mately that of single sounds, although s approx on the linguistic status of the units and thus on
their degree of abstractness (phoneme, allophone or
phone) are avoided

- Forster $/ 4 /$ was the first to incluce specifications on the phonetic mental representation of
words in his 'search model'. This model is based the assumption that words in the lexicon are repre sented as sequences of phonological segements (phonemes).
- Pisplicit, Nusbaum, Luce and Slowiaczek /5/also make expricit statements on the mental representation of
words in their 'phonetic refinement theory'. They believe that words are represented in the mental equalling single sounds which are defined in a mul-ti-dimensional space 16%.
- Elman and MMClelland $/ 7 /$ assume that there are processing units of different sizes on different
levels. These processing units are acoustic phoneti features, phonemes (allophones) and words. Even
though Elman and McClelland assume interactions bethugh, Eman and McClelland assume interactions be-
tween these different units during the word recognitween these different units during the word recogni-
tion process, on closer examination of their 'trace model ${ }^{\text {' }}$, these units appear to be hierarchically or ganized. Thus the question remains, whether th
different units are simultaneously present in the different units are simultaneously present in the
sense of a mental representation or whether they have to be deduced one from another in a given se quence.
- Grosjean and Gee $/ 8 /$ distinguish between units of processing and units of representation, but only
make specific statements on the former. In the view, units of processing are the stressed syllable syllable and a number of unstressed syllables linked with the stressed syllable. Unfortunaltely, Grosjean and Gee do not specify how these units are related ering the importance the authors ascribe to the function of prosodic features in the word recognition process, it seems feasible to deduce that they
do not tend to assume that represented in form of sequences of discrete single sounds.

PRIMARY PERCEPTUAL UNITS
As mentioned above, the problem of phonetic mental question of the basic (natural) units of speech per ception. When, in the early fifties, experimental phoneticians and psychologists started to invest gate the relation between the linguistic unit and
its processing by the human listener, they were
guided by the concept of minimal pairs and the ensuing distinctive feature theory developed by phonologists. Thus they focussed on the smallest isolated
and reduced units - presented in form of synthesyzed signals to listeners in the laboratory who wer asked to identify and discriminate them. Notwithstanding the valuable results obtained by such stu-
dies, one should be aware of the fact that the experiments were based on artificial acoustic phenomena which were as far distant as possible from their natural manifestations.
tures as being psychologically real, in the begin ning of the seventies an explicit discussion on the nature of the primary perceptual unit began. It was cially by target monitoring tasks, one could deter mine linguistic, taxonomically structured units according to their relevance as units in the speech
perception process. One of the important results of perception process. One of the important results of
these experiments is that the reaction times for short sentences, words, syllables and sounds are the same, if the search list consists of units of the
same size as the target unit $/ 9,10,11$. on the condition that reaction time experiments are an adequate means to reveal information on the primary
perceptual unit, it can be deduced that units of perceptual unit, it can be deduced that units of
different sizes may serve as primary perceptual units. In spite of such results a number of author
still argue for certain units to be the exclusive still argue for certain units to be the exclusive representatives of primary perception and try to
prove their hypotheses by experimental studies $/ 12$, .

RESULTS FROM FIRST LANGUAGE ACQUISITION RESEARCH
Another possibility of gaining insight into the phoat the early stages of the child's language acquisition process. In first language acquisition research t has become quite an unquest onening corresponding to a certain object or class of objects. It seems plausible to assume that in this learning proces the phonetic characteristics are globally perceived
in other words, the child learns the word 'ball' for example, as a phonetic unit and not as a combi nation of the single sounds $/ \mathrm{b} / / / \mathrm{J} / /+/ 1 /$ or even as a matrix of 3×9 distinctive features.
Empirical results support this view:

Bruce /14/ found in investigations with 5- to $71 / 2-$ year-old children that during this stage in deve op-
ment holistic processing of words changes to more ment holistic processing of words changes to more
analytic processing. Liberman, Shankweiler, Fischer and Carter/15/carried out experiments with 4 - and
5 -year-olds and found that these children could segment words much more easily into syllables than into single sounds. In using rhyming tests Magnusson, Naucler and Söderpalm / $16 /$ found that preschool
children were not able to children were not able to give metalinguistic judg-
ments on the basis of the phonetic-chonological structure of the words they heard. School children, however, were well able to do accounted for which may be accounted for These fing among others, point to the fact that at first the child perceives words phonetically in a global, non-analytic manner.
ing prerequisites of a more analytic way of perceiv-
speech elements, in other words, the insight into the existence of certain recurring features, is only possible on the grounds of a substantial vocaof words may occur in a more advanced stage in the process of cognitive development and that it may be furthered by special training is not questioned. But
such perception of speech which analyses different such perception of speech which analyses different
speech signals within word boundaries may only follow global perception in the developmental sequence, and it cannot extinguis.
To waymarize, in this approach it is assumed that the child begins by recognizing words as global
units. More analytic ways of speech perception may units. More analytic ways of speech perception may be used in later stages of language
interindividually varying degrees.

A MODEL OF THE MENTAL PHONETIC REPRESENTATION

These considerations lead to the following model of phonetic mental representation. The grown-up speaker/listener has stored a variety of mental represen-
tations on the phonetic level, the most important being: words, syllables, single sounds and phoneti nodel.
It should be noted that the different units are not
localised on different levels of representation, but localised on different levels of representationt, but
that they are different kinds of representation that they are different kinds of representatio within one level, i.e. the phonetic level. These
different kinds of representation are simultaneously

Fig. 1 : Different kinds of mental representation of words on the phonetic level which are simultaneously at the dispesal of thistefficient for word recognition.
at the disposal of the listener/speaker once he has
established them. From which kind of representation
the listener primarily takes the relevant informathe listener primarily takes the relevant informa-
tion solving a perception task is determined for example, by the type of task, the context of perception, the speed and/or the complexity of the incoming stimuli etc. Besides, it seems to make
sense to assume that the perceptual activities of a listener vary not only with varyir, tasks, but that he may also interchangeably focus on different kinds of representation while solving one particular task,
for example by recognizing a phrase or a sentence. Thus a listener can switch to single sounds or even
phonetic features when discriminating difficult phonetic features when discriminating difficult
words such as proper names or words of a foreign words such as proper names or words of a foreign
language, and then he can switch back to words later.
Such a type of model in which a simultaneous representation of stimuli within different systems of similarity and contexts is postulated, is success-
fully being used in other psychological fields, as for example in the ocognitive psychological research on problem solving; it has amply been shown that the
flexibility in problem solving is based on the ability to change perspective $/ 17 /$.
Since different listeners make different experiences in their perceptual surroundings, the degree of
their ability to differentiate. i.e. the number of types of representation of a given word they have at their disposal, may differ from one individual to another This is why the kind of representation on
which isteners rely in a successful recognition process may also vary according to properties of the 1 isteners themselves. For example, the knowledge of a phonetically oriented writing system (such as is
acquired when learning to read and write an alphabetical writing system) may lead to a more differentiated organization of the mental representation of words. Morais, Cary, Alegria and Bertelson $/ 18 /$
could in fact show that adult illiterates had much more difficulties in solving certain linguistic tasks involving detailed phonetic analyses than literate adults. What Morais et al. showed for
speakers of portugese, Sendmeier $/ 19 /$ could confirm also for native speakers of German. Within the scope of the introduced model these results may be explained in such a way that the adult illiterates ates have. This, however, should not lead to the ates have. This, however, should not lead to the better than the other. As a matter of fact, illite-
rates are just as able as literates to distinguish rates are just as able as literates to distinguish
minimal phonetic differences in discrimination tasks, which, however, gives no clue as to the
primarily focussed type of representation in the process of word recognition.
Closely related to the question in which size the
phonetic perceptual units are represented is the phonetic perceptual units are represented is the
problem of how these representations are present problem of how these representations are present.
Here Hertheimer's concept of ideal types, $/ 20 /$ or
Rosch's related concept of ${ }^{\text {prototypes }} / 121 /$ seem to Rosch's related concept of 'prototypes' $121 /$ seem to
be adequate alternatives to abstract feature marices.
The representation in form of prototypes is postulated for all kinds of representation of the phone-
tic level in the model. It seems plausible to assume that a listener generates a prototype from all th
ever heard representatives of a category in th

Sense of a statistical mean during the course of language acquisition. If one supposes that phonetic ted analogously in form of typical prototypes, but not in the sense of a first degree isomorphy, this implies an enormous capacity of the long term mem-
ory. Objections by scientists who by referring toup to now uncertain - principles of economy aroue against such a supposition of storage-consuming representation can be rejected in view of an almost
unlimited capacity of the human brain $122 /$ The unlimited capacity of the human brain $122 /$. The
material basis of an analogous representation in form of prototypes may be seen in neurophysiological correlates of spectral patterns, since it may be taken for certain that
subjected to a frequency analysis by the peripheral hearing system.

CONSEQUENCES FOR WORD RECOGNITION MODELS

The presented model of mental representation contains a number of constraints on the process of word
recognition. This is due to the fact that structure and process mutually depend on each other. It is up to word recognition models to delineate the rules and mechanisms that characterize the different types
of strategies in speech perception. However, in doing so the following facts should not be ignored: - Word stress patterns are normally used in word retrieval; words seem to be organized in the lexicon
according to stress contours $/ 23,24,25 /$. - Linguistic differences can cause listeners with different languages to develop different perceptual strategies $/ 26 /$.

- Configurational
- Configurational (prosodic) features of words often in recogni listener from focussing on single sounds - Unstressed function words usually are recognized sone time after their off-set, in most cases only
after taking into account the following stressed syllable $/ 8 /$. -The size of the phonetic units used by listeners
varies with the complexity of the words in similari-
 The size of the primary perceptual unit varies
with the size of the respective context $/ 29 /$. Word recognition models which assume only one kind
Hof primary perceptual unit - phonetic features, of primary perceptual unit - phonetic features,
single sounds, syllables or words - are confronted with a number of problems when trying to explain
findings like the ones findings like the ones listed above. It seems that
only such models will be of lasting importance which onta such models will be of lasting importance which
start from the assumption that the listener has acstart from the assumption that the listener has ac-
tive control over the process of auditory word re-
cognition and that cognition and that he can focus at will on any kind
of representation that seems useful for successful of representation
word
recognition.

REFERENCES

/1/ D.H. Klatt, "Speech understanding systems and speech perception
$7,1979,279-312$.
12/ J. Morton, "Word recognition", in J. Morton, J.
tures and processes.Cambridge, 1979, 107-156.
13/ W. Marslen-Wil son, A. Welsh, "Processing intertion in continuous speech", Cognitive Pschology 10, 1978, 29-63.
14/ K.1. Forster, "Levels of processing and the structure of the language processor", in W.E.
Cooper, E.C.T. Walker (eds), Sentence processing: psycholinguistic studies presented to

15/ D. Pi soni, H. Nusbaum, P. Luce, L.M. Slowiaczek, "Speech perception, word recognition and the
structure of the lexicon", Speech Communication structure of the
$4,1985,75-95$.
16/ M. Treisman, "Space or lexicon? The word frequency effect and the error response frequency Behavior 17, 1978, 37 -59.
17/ J.L. Elman, J.L. McClelland, "An architecture for parallel processing in speech recognition: the trace model", in M.R. Schroeder (ed.),
Speech and Speaker Recognition, Basel, 1985, 6F. Grosjean, J.P. Gee, "Another view of spoken
word recognition", Cognition 15, 1987, in press.

19/ H.B. Savin, T.G. Bever, "The nonperceptual reaiity of the phoneme", Journal of Verbal
Learning and Verbal Behavior $9,1970,295-302$.
$/ 10 /$ D.J. Foss, P.A. Swinney, "On the psychological reality of the phoneme: perception, identifica-
tion and consciousness", Journal of Veral Learning and verbal Behavior 12, 1973, 246-257.
/11/ D. MCNeill, L. Lindig, "The perceptual reality of phonemes, syllables, words and senteces",
Journal of Verbal Learning and Verbal Behavior Journal of Verbal
$12,1973,419-430$.
/12/ D. Norris, A. Cutler, "Juncture detection"
/13/ J. Mehler, J.Y. Dommergues, U. Frauenfelder, J. Segui, "The syllables role in speech segmenta-
tion", Journal of Verbal Learning and Verbal tion", Journal of Verbal Le
Behavior $20,1981,298-305$.
/14/ D. J. Bruce, "The analysis of word sounds by young children" JJournal of Educational Psycho-
/15/ I.Y. Liberman, O. Shankweiler, F.W. Fischer, B. Carter, "Explicit syllable and phoneme segmen
tation in the young child" journal of Experi-
mental Child Psychology 18, 1974, 201-212.

16/ E. Magnusson, K. Naucler, E.Söderpalm, "Form or school children and school children investigated by means of a rhyming test ", Abstracts of the 10th international Congress of Phonetic

117/ W. Prinz, "Wahrnehmung und Tätigkeitssteuerung", Berlin, 1983
/18/ J. Morais, L. Cary, J. Alegria, P. Bertelson, "Does awareness of speech as a sequence of
phones arises spontaneously?" ${ }^{\text {cognition }} 7$, phones arises
1979, $323-331$.
/19/ W.F. Sendlmeier, "Psychophonetische Aspekte der W.F. Sendlmeier, "Psychophonet is
Wortwahrnehmung, Hamburg, 1985.

120/ M. Wertheimer, "Untersuchungen zur Lehre von der
Gestalt, 11 ", Psychologische Forschung 4, 1923, Gestalt,
$301-350$.
/21/E. Rosch, "Cognitive Reference points", Cognitive Psychology 7, 1975, 532-547.
122/W. Penfield, "Consciousness, memory and man's conditioned ref lexes", in K.H. Pribram (ed.)
On the biology of learning, New York, 1969 .
/23/ R. Brown, D.McNeill, "The 'tip of the tongue' phenomenon, Journal of
Verbal Behavior 5,1966, , $325-337$.
124/ D. Fay, A. Cutler, "Malapropisms and the structure of the mental lexicon", Linguistic Inquiry
$8,1977,505-520$

125/ E. Engdah1, "Word stress as an organizing principle of the lexicon", in D. Farkas (ed.),
papers from the parasession on the lexicon. Chicago, 1978, 138-147
/26/A. Cutler, J. Mehler, D. Norris, J. Segui, "A language specific compreh
ture 304, 1983, 159-160.
/27/ A.G. Samuel, W.H. Ressler, "Attention within auditory word perception: insights from the
phonemic restoration illusion", Journal of Experimental psychology: Human Perception and Performance 12, 1986, 70-79.
/28/ W. F. Sendmeier, "Auditive judgements of word similarities", Zeitschrift für Phonetik, Sprach-
wissenschaft und Kommnikationsforschung 40 , 1987, in press.
/29/ H. Fujisaki, K. Hirose, H. Udagawa, N. Kanedera, "A new approach to continuoous speech reprocesses of speech perception". ICASSP, IEE 86, 1986, 1959-1962.

ACKNOWLEDGEMEN
Ithank Prof. H. Fujisaki for fruitful discussions 1 thank Prof. A. Fujisaki for fruitful discus

ABSTRACT
The hypothesis tested in this research is have a material influence on speech per-
ception. A statistical model based on analysis of variance in perceptual data is proposed, where significant factors are assumed to be the perception cues and The investigation of the model has enabled us to elucidate a number of psycholinguistic features of the speech perception given language as well as some characteistics of perceptive ability development in both native language acquisition and

HYPOTHESIS, METHODS, MATERIAL
In the present work the perception of carables, words, sentences and texts, was studied. Listening to speech stimuli was it seems an be a perceptual activity that is mainily dependent on the processing of sound sequences and is not closely relat ed to the higher levels of speech compre-
hension. A group of $7-10$ subjects was ask ed to listen to sets of speech stimula presented against the background of som distortion and to write them down. The texts were presented several times, while of distortions or their combinations were noise, distant reception, synthetic speech timuil, accented speech, and b) subjective (poor hearing, poor knowledge of the pect of distortion namely, the signal/ noise ratio (S/N), the degree of hearing loss, the level of performance in the seEach language, etc. was also varied. the basis of its correct perception frequency. Besides, one may obtain a number
res. For example, the word "ruka" (hand)

Speech), with the highest possible frequ-
ency of occurrence (as level of factor
f containing the stressed ${ }^{\alpha} \alpha=$,bisylFob , containing the stressed " α ", bisyl-
labic, etc. Correct recognition of the labic, etc. Correct recognition of the
word "ruka" is assumed to be determined by these factors, or more precisely, by their levels. Hence, it is quite natural to use analysis of variance to discover
the significant lingiatic features (factors) and to establish a hierarchy among them. Results of this analysis have yiel ded a statistical descriptive model set us conaider a fragment of such a model, giving the correlation ratio y_{x}^{2} of some factors in word recognition: 1 against the background of white noise at
$S / N=-6 d B ; 2 a, b-$ in hard of hearing adults with different degrees of hearing loss; 3 - Por German students who percei-$=-2 d B$. The significant factors are un derlined (see the Table).

Experiments Factors		2a	2b	3
Stressed Vowel	0.052	0.020	0.020	
Voiced/Voiceless	0.000	0.007	0.002	0.005
Soft/hard	0.017	0.015	0.004	
Length in Syllables		0.010	0.006	
Parts of Speech	0.018	0.040	0.030	0.094
$\mathrm{F}_{\text {ob }}$	0.012	0.003	0.0	, 043

the factors being investigated in the ex
perimental material should be orthogonal. perimental material should be orthogonal. In most cases balan
les were used $/ 2 /$.
our conclusions are based on the analysis of about 50 experiments, giving approxi-
mately 70,000 responses. These experiments mately 70,000 responses. These experiments
were conducted, in part, in collaboration with my collegues. The study of the models obtained has made it possible t discuss three groups of problems.
I. THE PSYCHOLINGUISTIC FACTORS IN SPEECH PERCEPTION
A. Isomorphism of Models for Speech Unit

This is confirmed, first, by the fact on at all linguistic levels are shown to be analogous, and, secondly, the same factors hold for units of different levels. For example, the factors stressed consonants are significant for both syllable and word recognition. Thus, a certain isomorphism of linguistic levels in the proshould be noted that the obtained factors act simultaneously in every instance and no "input"
B. Similarity in Mechanisms of Perception bach type of distortion is characterized rarchy of these factors. There are, howficant in the majority of cases. Among them we find the following: relative frequency of occurrence and length in sylparts of speech. To conclude, it should pe mentioned that there is an evident similarity in the mechanisms of speech per-
ception under different conditions of distortion, which not only justifies the accepted approach towards speech pathology,
insufficient knowledge of the
language and its nature may be, but also helps to understand every single case on
C. Differences in Mechanism Depending on - Differences in Mechanism.

Then the type of distortion is constant hen the type of distortion is constant but specific factors as well are revealed besides, their ranks may vary. For example
(syllables or words) Fof of speech units (syllables or words) factors in poor reception conditions and to decrease in significance as the recep-
tion conditions improve. The factor Parts of Speech is insignificant under poor reception conditiona whereas under superior onditions it becomes a factor of great va is revealed both common and specific features. The first of these two findings, i.e. the existence of common features, was
not unexpected. The second one, on the ther hand, is difficult to predict and, therefore, is mostly ignored by resear-
chers. In order to sum up the results of us underline that the common features in mechanisms of perception are at work in
all types of distortion, whereas specific
features depend on the degree of distortion.
D. An Extension of Jakobson's Regression Hypothesis.
Let us now look at the data from a different angle. R. Jakobson proposed a hypodisorders mirror the process of language acquisition in children. The data on the vels are better recognized than consonants, /a/ is much more easily recognized then /or /; choreic words are easier than iambic
ones; nominative case is better perceived than other cases; the direct object is superior to the indirect object in the number of correct responses. The active than the passive one. The dialogue is easier to perceive than the monologue, words of iy more often than rare words. Is is clear that the first members of the oppositions are acquired earlier in the ontogenesis. son's hypothesis in the following way: the son suistic features which are the earilest to have been acquired are the most stable

E. The Existence of Simple and Complex

 Some of the factors are simple and cannotbe further disintegrated into other features (i.e. distinctive features of the phonemes or parts of speech). Other factors, type of text, may be conceived as a combination of more elementary features. But in the process of speech perception these conplex ficatures may become crucial, that is,
they function as a whole. An increase in the weight of such complex features is of ten caused by an improvement in reception some recent psychological investigations.
F. Differences in the Perception of Isola-

Comparison of sets of significant factors
for isolated words and words included in text indicates that some of them are factors, however, s decrease in aignificance or a complete loss of oingnificance eption is different for isolated words and words in context.
G. $\frac{\text { Simultaneous Perception of Speech Unit }}{\text { ag }}$ as a whole and in Elements.
Some factors are related to elements into Which the speech units can be subdivided describe the unit as a whole (e.g. the rence). Since both types are significant simultaneously, one may suppose that the recognition of the whole unit and that of its parts occurs parallelly. Let us conre the hierarchies of all factors for words and syllables under similar conditions we can clearly see that for $S / K=$
$=-6 d B$ rank test ρ is +0.86 , for $O d B$ it is +0. 60 , and at +4 aB it is is +0.09. These data indicate that under poor reception conditions the mechanism of phonetic pro-
cessing of a word is highly efficient which is not the case under good reception conditions. In another experiment listeners were given worda spoken by non-na-
tive speakers of Russian (the Agul) and parts of these words pronounced with strong accent. It was found that of (rank words and their parts in 4 different of groups of listeners varied from -0.10 to +0.17, that is, there was actually no correlation at all. This signifies that words were pore distorted segments, i.e. as whole
of sits. units.
Moreover, when German students recognized russian words both masked and not masked the latter correct recognition scores in the former case. This twice as high as in to perception of both familiar and infamiliar words. Thus, a possibility of phonemic decoding has been demonstrated. Now we can amend the rule as follows: apeech quences of elements and as integral units (Gestalt), the strategy depending on the
H. Simultaneous Involvement of All Lingu-

To make this item clear, let us take our data on words. Word perception is determined by the following factors: certain diswels (the sound level), length of words speech and length in morphemes (morphemio level), the number of quasiomonymes (word dicates that various linguistic levels anits at

1. Speech Perception as an Action.

It is generally considered that the prothat the pristener is an active recipien of speech. Our experiments have confirme the significance of the probability fac a word or syllable, the higher the cor ect recognition scores. An additional experiment has shown, however, that this quency distribution in a sample,i.e. Whe frequencies of elements correspond to
their linguistic probabilities this their linguistic probabilities this dependence is the lowest. Conversely, when direct dependence is higher. When the distribution is reverse, $1 . e$., when elements With high probabilities occur rarely and
vice versa, the dependence is also higher, but the correlation will have an opposite ign ("-") indicating that high probabi lity elements are harder to recognize
than low probability ones. Thus, the tive character of perceptual processes is revealed in an interplay of the listener's rent analyisis of frequency distributions in a given sample. The listener's activity is also revealed in series of choices has to make: of a perceptual (phonesal; of a morpheme from a corresponding norphemic class; of a word from a set of
similar words, etc. All this applies only imilar words, etc. All this applies only
to speech units (from sounds to words) to speech units (from sounds to words) ever, the role of this factor considerabI decreases. On the other hand, a key word preaiction factor emerges, whose acation mechanism.

1. THE PSYCHOLINGUISTIC TYPOLOGY OF LANGUAGES.
Comparison of significant factors for number of languages, namely, Russian, forain English and French enabled us to obfactors ${ }^{\text {Find }}$ and Parts of Speech are ex-
amples of iniversal factors.Specific factors for the Russian language are the $10-$ ation of the word stress and word order. The former is non-existent in French while tor may serve as another example. In Russian, the word length in syllables is quite significant whereas word length in morphemes is of less value ($\left(\begin{array}{l}2 \\ \text { is } \\ \text { is } \\ \text { is times } \\ \text { ine }\end{array}\right.$ verse, rord length in syluables being complotely insignificant and word length in
morphemes is in the forefront of signi-
Picant factors. This latter fact is evi-
dently
taxicality" of the German word. A projec-
ted analysis of other languages will help ted analysis of other languages will hel the perceptual level.
III. THE FORMATION OF THE PERCEPTUAL NECHANISM IN SPEECH ACQUISI
SECOND-LANGUAGE LEARNING.
A. A comparison of speech perception me-
the background of white noise, in hard-of-hearing adults, in normal children listening to speech in white noise and in hard-of a +0.11 and a +0.14 rank correlation bet
ween adults and children for the same ween adults and children for dise same the two groups of children as well as th two groups of adults. This indicates tha speech perception is determined by the
age of the listener. It is especially important for children.
. The Sets of factors and their hierarchy change in the course of second languwith the native language mechanism decre with as that of the second language increases. For example, in the group of cognition tests of Russian words in white cognition teste of Russian words in whit the univeraity, 9 varied as follows: $0.40 \rightarrow 0.28 \rightarrow-0.18$ as compared to the as compared to that in Russian. On the basis of the above presented data it may be concluded that significant lin guistic factors are perceptual cues (in gotsky and A.A.Leontyev), reflecting the elementary paychological operations of
the speech perception processes. Moreover the speech perception processes.Moreover, the investigation suggests that the sigobtained unless an adequate way is found of determining factor levels (see the example on word length in Russian and German given above. The listener is assumed ing in mind" a particular level of factors. Hence, levels of ling

Acknowledgements

The author wishes to thank Prof.I.R.Zinder for helpful comments on earlier verall stages of the research. Thanks are due to my colleagues who took part in varioI. Panaajuk for looking through the Eng lish version of the text and making use-
ful suggestions.

pepmences

1. L. Zinder, A. Stern. Factors Affecting word Recognition. - Recent Trends in 1977-1978, p. 123-130.
2. A. Stern. Articulatory Tables for the Development of Perceptual Skills and esting the Auditory Function, Lenin Russian).

PERCEPTION OF TONAL PATTERNS IN SPEECH: IMPLICATIONS

david house

Department of Linguistics and Phonetics
Lund Universit

ABSTRACT
This paper advances a model of pitch perception in speech in which spectral
changes influence the analysis of the tonal contour. This interrelationship is
examined in view of certain linguistic examined in view of certain inguistic perception of spoken language. It is
concluded that the pereption of tonal concluded that the perception of tonal
movements is optimized when these movements is optimized when these
movements occur in regions of spectral stability, that movement at the syllable level can be perceived directly as
linguistic categories and that movement at the phrase level can be reconstructed from
introduction
Intonation provides listeners with
$\begin{aligned} & \text { important information which facilitates } \\ & \text { the perception of spoken language (1). In }\end{aligned}$
this paper the word intonation will be
significant changes in fundamental
frequency which have a linguistic
$\begin{aligned} & \text { function. The purpose of this paper is to } \\ & \text { examine how these changes and their }\end{aligned}$
relationships to spectral changes can be
$\begin{aligned} & \text { represented in the peripheral auditory } \\ & \text { system and in short-term memory, and }\end{aligned}$
system and in short-tern memory, and how
guide the speech perception process
can be greatly varied and can functionent
$\begin{aligned} & \text { can be greatly varied and can function on } \\ & \text { several different levels simultaneously }\end{aligned}$
The type of information dealt with here
$\begin{aligned} & \text { concerns linguistic categories such as } \\ & \text { relative syllable importance (stress). }\end{aligned}$
$\begin{aligned} & \text { relative syllable importance) (stress), } \\ & \text { relative word importance (focus), lanquage }\end{aligned}$
specific information at the word level
$\begin{aligned} & \text { (word accents and tones), phrase } \\ & \text { boundaries (juncture) and }\end{aligned}$
batterns over a longer time donain
(grouping). Some of the principles
involved in Fo-movement perception might,
$\begin{aligned} & \text { however, also be applicable to other types } \\ & \text { of information such as emotions. }\end{aligned}$
Is pitch analysis continuous, following Fo
pectral being influenced by breaks an
nd economical using is it more selective
ovement which are then stored in
short-term memory and retained for
n the basis of two time domains
xperiments, this paper advances a model
which takes the latter view.
perception of tonal movement
at the syllable Level
The first experiment was designed to
test the influence of rapid spectral
$\begin{aligned} & \text { changes on the categorization of simple } \\ & \text { rise-fall and fall-rise tonal patterns at }\end{aligned}$
the syllable level. In this experiment,
the categories were not linguistic ones
in the far were presented to the listeners
A Klatt software synthesizer and a VAX
digital computer were used to synthesize a
Swedish /a/ vowel with formant frequencies
vowel duration was 300 and 3320 Hz . ${ }^{(5,6)}$.
intensity onset and offset. Fundamental
frequency was systematicalily varied to
create 18 different stimuli. The Fo
$\begin{aligned} & \text { contour for stimulus A, designed to elicit } \\ & \text { rise-fall categories, rose from } 120 \mathrm{~Hz} \text { to }\end{aligned}$ involvement, etc.

Raw Fo movement must be transformed by the perceptual mechanism into relevant presupposes an analysis of frequency pitch) direction of movement (rising, psychoacoustic and physiological models of pitch perception are generally in agreement that some degree of central
processing is involved, but it is still unclear as to what extent pitch analysis interacts with spectral resolution (2,3) itch perception in spoken languag
nvolves the additional problem of coping with rapidy changing spectral cues and a pitch contour broken up by voiceless
segments. This leads to a key question.
turning point of 180 Hz and then fell to for stimulus B, designed to elicit fall-rise categories, began at 120 Hz falling to 80 Hz and then rose to 160 Hz . The difference in end-point frequency was variation on the rise-fall, fall-rise categories, i.e. movement pattern versus discrete frequency analysis. The 18
stimuli were constructed by systematically stirulin were constructed by systematically
varying the turning point in steps of 20 varying the trom 80 to 180 Hz with three
Hz
different end-point configurations: 100 different end-point configurations: 100
$\mathrm{~Hz}, 160 \mathrm{~Hz}$ and 120 Hz . The beginning $\begin{array}{ll}\mathrm{Hz}, 160 \mathrm{~Hz} \text { and } 120 & \mathrm{~Hz} \text {. The beginning } \\ \text { point was always } 120 \mathrm{~Hz} \text {. Listeners }\end{array}$ consistently categorized these stimuli on use end-point frequency. use end-point frequency.
To test the effects of
hanges on the categorization, three more ersions of the test were made by ntroducing a gap, consisting of an
ntensity drop preceded and followed by ormant transitions for $/ \mathrm{b} /$, into int the first part, the middle part, and the final part of the vowel respectively. Figure 1 ith the gap in the first part of the Hz

Figure 1
Stylized tonal contours of one version of
the ABX test. The dashed lines. (stimuli the ABX test. The dashed lines (s

Although a few listeners continued to categorize the new stimuli on the basis of
tonal movement, most of the listeners. responses were altered of the list intrusion of
the spectral chanes. the spectral changes. When the intrusions
were placed in the middle and in the last part of the vowel, categorization was more strongly based on end-point frequency. When the intrusions
beginning of
categorizations \qquad the vowel, categorizations were reversed vis-a-vis the the end-point frequency but corresponded
to the average frequency $40-80 \mathrm{~ms}$ after These results seem to indicate that tonal movement is optimally perceived during portions of $\underset{\text { in }}{\text { high }}$ spectral increased by rapid spectral changes, and the duration of spectral stability is perceived and stored as tone levels. This interpretation also complies with the results obtained by Gårding, et al. (7)
where perception of tone 4 (falling) in where perception of tone ${ }^{4}$ (andard Chinese was altered to tone 3 (dipping) by moving the fall backwards in time toward the CV boundary and also by increasing the steepness of the fall.
These manipulations were done by means of LPC synthesis.
Languages, then, which need to manifest rising and falling FO at the syllable
level should optimally place these movements in places of spectral stability. This corresponds to Bruce's (8) production and perception data for Swedish concerning
the timing of the word accent fall in non-focal position, where accent II is
marked by a strong falling Fo well within the stressed vowel. This interpretation also has explanatory power concerning
production data reported by Lindau (9) for turning points occur at the end of the vowel, a high being manifested as a rise and a low being manifested as a fall

PERCEPTION OF TONAL MOVEMENT
The second experiment
\qquad The seception of phrase boundary markers and
percent
connective patterns (10, were presented with sequences Listeners were presented with sequences
fives (55555) and asked to judge whether the sequence was grouped 55-555 or 555-55. The fundamental frequency of a natural Scanian
various
fem
ways five) was
using
LPC manipulated in
synthesis. various ways using LPC symthesis. rise-fall patterns at different frequency
levels as well as rising and falling levels as well as rising and faling
patterns having different ranges. These patterns having different ranges. These
variations were then joined together to create the sequences. Duration was not a
length as were the intervals between them.
36 different sequences were used as The results clearly showed that listeners can use a rising or a falling Fo movement having a greater range than in
the surrounding syllables as a demarcative the surrounding syllables as a demarcative
cue signalling the end of a group. The results also indicated that listeners can rely on connective Fo movement patterns
encompassing the entire group. Examples encompassing the entire group. Examples
of such patterns are the "hat-like" and
nt "trough-1ike" intonation patterns (13). The perception of such patterns implies
the use of some type of short-term memory where Fo movement is stored (either as movement patterns or as frequency levels)
to be retrieved when the entire group has been heard.
Another example from the material where the use of memory seems to be important is fhe same falling syllable in the same position (the second "five") in two different surroundin
falling interpret Fo movement of the syllable is pattern signalling ond of a "hat-like" two-syllable group. In the other instance, the same falling Fo movement is
followed by a greater fall to a lower frequency. This causes the second
syllable to be interpreted as the middle "five" of a three syllable group (Figure 2).

Hz

Figure 2
Stylized tonal contours of two 55555
stimuli showing how stimuli showing how the same falling
syllable was interpreted in two ways. The syllable was interpreted in two ways. The
top stimulus was interpreted as $55-555$ and
the bottom one as $555-55$.

IMPlications for speech perception model
When constructing a model of speech perception which takes into consideration
fundamental
frequency movement, pitch fundamental frequency movement, pitch analysis
presupposing is $\quad \underset{\text { generally }}{ }$ first-order $\begin{gathered}\text { viewed } \\ \text { frequency }\end{gathered}$ presupposing a first-rat frequency
analysis of the speech wave based on the the mechanical properties of the basalar
membrane and characteristic frequencie membrane and characteristic frequencies
and temporal responses of auditory-nerve fibers. This analysis provides the raw materials for a second-order analysis of pitch and timbre (14) on the basis of tentatively propose, two different mechanisms
perception. $\quad \begin{gathered}\text { Of } \\ \text { The }\end{gathered} \underset{\text { second-order }}{\text { first }}$ is a $\begin{array}{r}\text { pitch } \\ \text { direct }\end{array}$ perception. The first is a direct
conversion of fo movement into linguistic categories. The second is a reconstuction
of tonal movements or levels from of tonal movements or levels from The categories
ats accents likely candidates for the docus are conversion of Fo movement. This movement,
optimally located in the vocalic segments, is not then stored as movement, but rather as the corresponding linguistic category. as corresponding to an event approach to seqmental perception as proposed by Fowler
(15). The rapidly perceived stressed (15). The rapidly perceived stressed
syllables, for example, marked by tonal movement, can serve to guide perception to important areas of meaning (16).

Candidates for short-term memory based pitch analysis are juncture cues for
 grouping and in certain cases focus. In
this type of analysis, pitch could be this type of analysis, pitch could be
stored first as tonai levels and then
transformed into ling stored first as tonal levels and then
transformed into linguistic categories.
Figure 3 Figure 3 presents a schematic diagram of
the two different perceptual mechanisms. Where the perception of intonation is seen as an important part of speech
perception, the proposed
division of perception, the proposed division of
movement perception into two mechanisms could have implications for more general models of speech perception. Although
this
division
is this division is tentative and
speculative, it is an attempt to understand, pitch perception
kLaus J. KOhler

Institut für Phonetik und
 Universität Kie

ABSTRACT
For German it has been demonstrated in number of experiments that in production as well as in perception a level and a
level + falling Fo contour on a prestop
vowel are cues for fortis and lenis stop, vowl are cues for fortis and lenis stop,
respectively. This paper reports on perrespectively. This paper reports on per-
ception experiments that replicate the German findings for English, and relates the results to an interaction of three factors: (a) prestop microprosody, (b)
poststop microporosody, ance macroprosody

introduction

 The importance of fo after stop releasean acoustic cue for the lenis/fortis
astegorization of stop consonants has been categorization of stop consonants has been
known for a long time $11 /$. F0 preceding the stop closure, on the other hand, has not been attributed a similar cue value.
For German it has been demonstrated in a For German it has been demonstrated in a
number of experiments with the utterances "Diese Gruppe kann ich nicht leiden/lei-
ten." ("I cannot stand/lead this group.") ten." ("I cannot stand/lead this group.") contour on the prestop vowel are cues fo /t// and /d/ respectively $/ 2 /$. These results have been only partially repli
cated for English in the utterances "I an telling you I said widen whiten." with
very much smaller effets $/ 3 /$. This very much smaller effects $/ 3 /$. This
difference was related to the fuzziness of difference was related to the fuzziness of
the segment boundary in $/ \mathrm{w} / \mathrm{t} / \mathrm{ae} / \mathrm{as}$ against $/ 1 /+/$ ael and to the fact that long initial formant transitions have been
found to increase the perceived duratio found to increase the perceived duration
of a following vowel. To test this hypothesis, three perception experiments were carried out. In the first one, the
previous German test was repeated (a) with another German group in order to demon strate the generalizability of the discovered signal/perception link for German,
(b) with a group of British English speakers in order to show up any perceptual differences due to language background and to establish a base-line for the other
two experiments, which (1) replicated the segmental chain and the FO patterns of the
in an English sentence frame, and (2) compared its resu

EXPERTMENT

$\frac{\text { Procedure. }}{\text { The test tape of experiment } 2}$ of $/ 2 /$ was presented to a group of 16 nativ speakers of German (students of phonetic and languages) in several subgroups, via a loudspeaker in a sound-treated Institute. They classified the stimulus utterances as
"leiden" or "leiten" sentences by ticking leiden or "leiten sentences by ticking the appropriate boxes on prepared. answer
sheets. Two groups of 6 and 7 British English speakers performed the same test
under the same conditions, but they gave heir answers by pressing one of two buttons at the recording stations of a reaction-time measurement system. They
vere students of German spending 6 months vere students of German spending 6 months
in Kiel to improve their proficiency in the language

esults.

The German group replicates the results
 English groups, which do not differ from each other and are, therefore, combined in show data presentation of figure 2 , also functions for level and falling F0. But
 responses in the middle of the duration ratio range for both level and continu-
ously
falling $F 0$, and the response curves ously falling FO, and the response curves
for falling and level + falling F0, which are already close together in the data of the German group, coalesce in this upward shift of two of the identification
functions. This means that the English subjects show the same perceptual effects with regard to level FO as against the
other two F0 patterns, but that they ther two fo patterns, but that they
evertheless locate the duration ratio boundary at a lower the due than the German
listeners. The reason fo this difference isteners. The reason fo this difference may be that because English speakers
generally devoice the nasal plosion after fortis stops, the absence of this
eature in the German test stimuli biases English listeners towards /d/
middle of the duration ratio range.

EXPERIMENT 2
$\frac{\text { Procedure. }}{\text { Two English sentences were constructed }}$ that replicate the focal and utteranceinal position as well as the segmental erman test words in Experiment 1. The two family names "Lyden" and "Lighton", which are of equal (low) frequency in Britain, were inserted in the sentence frame "I
think you'd have to ask ..." They contain the same phoneme sequences as the German ords and can also be realised with nasal plosion. They, too, occur after a voice-
less consonant cluster that interrupts the Fo glide from a low value on "ask" to a
high one in the contrastively stressed name so that Fo has practically reached
its peak value when it sets in again at its peak value
These sentences were pronounced several times by a native speaker of Southern British, with focus stress on the name, ould know about this, Lyden or Lighton?" The FO contours across the names were ver similar to those found in the German sen tences of Experiment 1 (cf. /2/, p. 24),
before the lenis stop F0 drops much further in the stressed vowel than befor fortis. One token of a "Lyder" sentence was selected for the test stimulus genera-
tion, which followed the principles laid tion, which forme stressed vowel measured 289 ms , its closur

Three F0 patterns were generated across the stressed vowel: (a) Level t falling $(122-120-75 \mathrm{~Hz})$ with the fall beginning at
the vowel center, (b) level (122-120), (c) linearly falling throughout (122-75 Hz) These Fo contours were combined with 7 rate-manipulated vowel durations, from 260
ms down to 200 ms in $10-\mathrm{ms}$ steps. The ms down to closure voicing and release were excised and replaced by silence, which was
increased from 70 ms up to 160 ms in 6 increased from 70 ms up to 160 ms in
equal steps, complementary to the vowe shortening. The 21 vowels produced in this manner, together with the complementary closure pauses, were spliced into the Fo patterns of the resulting 21 "Lyden/ those generated in the German test, the only difference being that after the silence $F 0$ set in at 70 Hz (instead of 66 $\mathrm{Hz})$ and that the periodicity of the nasal
was more regular and of much greater amplitude than in the German "leiden/leiten" stimuli, i.e. there was proper and
strong voicing instead of creak.

Since the frame was not synthesiz the stimuli sounded completely natural, ind no "synthetic" quality was detectable n the synthesized vowel sections ether. randomized to give a test of 210 stimuli,
following the same procedure as in the erman test. The same two groups of native British English speakers as in Experiment acted as informants under the same
istening conditions in separate sessions. They classified the stimulus utterances as
$\frac{\text { Results }}{\text { The }}$ and discussion..
The two groups differ in their iving more /d/ judgements. Figure one presents the combined group results. They re basically congruent with the English roup results of Experiment 1: the ider-
ification curves occupy more or less the me positions along the duration ratio xis, the functions for the two falling $F 0$ sets are again not differentiated fron each other, but are clearly separate from
the function for level FO, which yields significantly more /t/ responses. The ifferences between the two experiments are (a) somewhat more / d/ judgements in
the lower half of the duration ratio scale for Experiment 2, and (b) different as against identical behaviour of the two groups in the two experiments. So there between the English "Lyden/Lighton" an the German "leiden/leiten" stimuli. The
bvious candidate is the strong voicing bvious candidate is the strong voicing
nstead of creak in the final nasal of the English utterances. It provides a more promiment release cue for / $\mathrm{d} /$, which may and weaken their effects, i.e. the effect Of flat FO generally and the effect of bazation in the lower range. This conflict hether the release is weighted more ighly, especially than flat $F 0$. The two

EXPERIMENT 3

The sentences "I am telling you I said winsn/whiten." were pronounced several fimes with focus stress on the final word dortiern British speaker that produced the utterances for Experiment 2. One "widen" token was selected for constructing 2 test stimuli according to the same prin ciples as in experiments 2 and 2 . Th
vowel durations ranged from 265 ms to 20 ms , the silence durations from 70 to 160 ms. Again 3 F0 patterns were generated + falling FO pattern the level section was represented by the naturally produced fluctuation between 119 and 123 Hz over

完

Fig. 1. Percentage /d/ responses as a ion ratio for the 3 Fo conditions in Experiment 1 ("leiden/leiten", German group),
and binomial confidence ranges at the 5 ;
 $\mathrm{N}=160$.

Fiq. 2. Responses of the combined British data point $N=130$.

Fiq. 4.
English
Responses of the combined
groups in Experiment 3 ("widen/ whiten"). At each data point $N=110$.
followed by a linear fall to 85 Hz , the proportion of level and slope sections staying the same in all 7 stimuli. The
first 100 ms of the level FO were first 100 ms of the level fo were
identical with the level section of the
level + falling pattern in the longest Ievel + falling pattern in the longest
level
vowel and changed proportionally with the vowel and changed proportionally with the
vowel duration; the remainder descended to
122 Hz . In the third pattern, F0 fell Now Hz. In the third pattern, Fo
122 Hz
linearly throughout from 119 to 85 Hz . The original /d/ release was again
eliminated, and the 21 synthesized vowels

+ closure pauses were spliced into the closure pauses were spliced into the
sentence frame. Fo at voice onset of the
final nasal was 89 Hz , descending to 69 final nasal was 89 Hz , descending to 69
Hz . The very large amplitude of the regular periodicity in amplitude was adjusted to the one found in "Lyden" by applying the reduction factor wo patterns were comparable to the ones in the test stimuli of Experiments the height of the pre- and postconsonantal FO ending and starting points

The test tape construction and the running of the experiment followed the
same lines as in Experiment 2. A previous run of the test was reported in $13 /$. It
was repeated here by the same two British was repeated here by the same two British
English groups as in Experiments a and 2
In a pretest, each of the 13 subjects was In a pretest, each of the 13 subjects was examined as to whether they distinguished were, therefore, excluded from the test because their expectations
would have been different.

$\frac{\text { Results and discussion. }}{\text { Figure }} 4$ provides

combined group. There the data for the divergencies: The differences between the three F0 patterns have practically disappeared. The effect of flat F0, which wa of the same test, has been levellied out. otherwise the two test runs provide corresponding locations of the identification
functions. Since it is only the response curve for flat FO that is positioned differently in the "Lyden/Lighton" and the /widen/whiten data, the responsible for the increase of /a/ judgements. It must be an acoustic
feature difference that is peculiar to the feature difference that is peculiar to the
flat FO stimuli. In "Lyden/Lighton", Fo is flat across the stressed syllable, and rise from the preceding syllable is masked
by voicelessness; after the closure siby voicelessness; after the closure si-
lence, fo resumes at its low utterancefinal value. The flat $F O$ contour is thus bounded by voiceless stretches on both
sides, with low FO preceding and folsides, With low FO preceding and fol
lowing. In this environment, the high flat Fo, i.e. the fortis cue, becomes perceptually salient. In "widen/whiten", on the
other hand, there is an upward FO other hand, there is an upward Fo
glide from the low value of the preceding
syllable right into the stressed vowel, are actually flat. After the closure pause, there is a substantial FO fall of 20 Hz . In this context, the high flat $F 0$ s integrated into a macroprosodic risepattern and is, therefore, percep-
fally far less salient, thus losing its fortis cue strength.

GENERAL DISCUSSION

The results of the 3 experiments point the following prosodic influences on English

- A flat FO across a stressed prestop vowel in across a stressed prestop
in acused utterance-final
disyllable is a fortis disyllable is a fortis cue, compared
with falling f0 patterns, in both with falling Fo patterns, in both
German and English, as long as the flat FO is clearly detachable from a macroprosodic utterance intonation as a
microprosodic manifestation. In German, microprosodic manifestation. In German,
flat + falling $F O$ is also differa flat + falling FO is also differ-
entiated from a continuously falling FO
as a stronger lenis cue.

2. In English, the category boundary between lenis and fortis is located at lower duration ratios. This leads to a
coalescence of the identification coalescence of the identification
functions
for
flat functions for frinuously falling.
3. A stop release with regular voicing of high amplitude and an Fo fall (below
the focus peak) weakens the preconsothe focus peak) weakens the pr
nantal microprosodic fortis cue.
4. The microprosodic effects of prestop erated when they are integrated into
macroprosodic utterance pitch patterns.
5. The interaction of pre- and poststop microprosocty and of pre- and poststop macroprosody and of global uttorance influence on lenis/fortis perception can only arise under special circumbasis for tonogenesis (cf./1/p).

References
1/ J.M. Hombert, J.J. Ohala, and w.G. Ewan, "Phonetic explanations for the
development of
tones", Language 55 ,
2/ K.J. Kohler, "FO in the perception
lenis and fortis plosives" 3/ K K.J. Kohler, ${ }^{\text {Pp }}$ "Preplosive F0 in the
perception of $/ \mathrm{d} /-/ \mathrm{t} / \mathrm{F}$ in perception of $/ \mathrm{d} /-/ \mathrm{t} /$ in English",
Proc. Montreal Symposium on Speech Recognition, pp. 34-35, 1986.

$$
\text { Cumbridge CBI 2EF, } 1 . k
$$

ABSIR.ACI
Presious research has shown that tisteners use the prosodic structure of uterances in a presiclise fashion in sentence comprithen contevts are responded to differently if the prosontic structure of the contex is taried: when the preceding proody indicates, that the word will be accented. ferponses are fister than when the precediry prosody is inconsistent with accent wecurring on that word. in the lechniques were frot used to interchange the liming pulterns within pairs of probodic variants of ullerances, indepenjently of the putch and intensity contours. The lime-adusted utterances could then sorie as a hasis tor the orthogonal maniputation of the three proseshle
dimensions of pitch, intensity and rhytho. Whe werall pultern of results showed thal when listeners uxe prosodl to predict accent loration, they do not simply rely on a single prosudic dimernion, but exploit the interaction between pilch, intensily and rhyith.

Speahers place atcent on the most importinn words in an ulierance. Thus by inding actenled word, listeners can effriently locate the most ceniral parts of a speaher's message. Pretwus studer hate shown that listeners do injeed activel use sentence prosents to tell them where accented word, are going to occur. Culter [?] produced cuample is (1):
(1) (a) The counte had quarrelled over
a $B(x)$ thes had read.
(b) The couple had quarrelies over
rper case renresents sentence accent. In (la) the main sentence accent falls on tras. in (1b) on rald These sentences were used is materials in a phuneme-
monitoring experiment, in which listeners are isked to respond as quickly as powsible to the presence of a specifed uord-initial phoneme. In (1), the targeel specired uord-initial phoneme. in (1) wo the targetbearing word is hath). largets on accented words are responded wf faster than targets on unaccented words in this lash. In Culler's experiment, the target-bearing word iself was actually spliced out of hoth sentence contevts and replaced in same word. The result of this manipulation was a pair of sentences with acousticalls identical targel-bearing words, which were preceded by identical sequences of words; the only difference between the members of each paif was the prosody applied to the words preceding the target. In one case the prosodic contour in which the
target-bearing word occurred was connivent with accent falling upon that word, in the other, it was consistent with the target-bearing word being unaccented. Under these conditions, the 'accented' targets still elicited lister responses than the 'unaccented' targets, and since the only relevant differences between the wo sentences in each pair lay in the prosody, Cutler concluded that their atention to the location where sentence accen would fall.

Prosody, however, is not a unitary phenomenon. Th separate dimensions of rhyihm, pitch and intensity all contribute to the prosodic structure of an ulterance.
Culler's experiment did not examine thoul listeners were exploiting prosody to predict accent, or whether any on prosodic dimension was more informative than others.
Culter and Darwin [3] subsequenty found that remow ins pilch information - i.e. monotonising the sentences - did sentences like (1) the 'accented' tarycts are sid responded to signifizantly fayter than the 'unaccented' tarects.
From this, Cuter and Darwin concluded that pilch information could not the a necessary component of the prosodic dimensen effect. Thes speculated hal to predict upcoming accents, hut variation in any prosodic dimension might prose sulftient.

$$
\begin{aligned}
& \text { ARC Applied Psecholoty (nu } \\
& 15 \text { Chaucer Rd. }
\end{aligned}
$$

In the present studies, the three prosordic dimensions of pitch, rhythm and intensity are separately manipulated in an attempt to analyse the accent effect in further detail. Unlike the study by Cutler and Darwin, which simply value across each ullerance, the present sludie investigate the effects of the separate prosodic dimensions when they are interchansed between the lino members of a sentence pair. To begin with, using dynamic lime-warping techniques in a system developed by Jeffrey Bloom at the Polytechnic of Central London of sentences (for examples like [1], where naturall different contours were produced by having a slizh variation in the text at the end of the sentences, the rhythmic patterns were exchanged up 10 the point which the two members of the pair diverged). Thus (la), for example, was given the rhy thm of (ib) but had the rhythm of (la) but is oun nitch and intensity paterns.

In Experiment 1, phoneme-monitoring response times were measured in these rhythmically manipulated sentences, and in the same sentences with intact
prosody. The intact sentences were LPC-analyed and prosody. The intact sentences were resynthesised to control for acoustic effects of resynthesis. The words bearing the targel were acoustically identical in all four sentences belonging to a set such as (1).
There were 20 such sentence sets. Forly listeners, in four groups of ten, took part in the experiment. Fach group heard only one sentence from each set, and the two variables of 'accented' versus 'unaccented' targets, and intacl versus rhyhmically manipula

Subjects were tested individually. Response times, measured from a click (inaudible to the subiects) aligned with target onsel, were collected by a microcomputer using programs developed hy Norris [4]. After the experiment subicats were given a short recognition test, and their response limes were analysed ondy
scored at least two-thirds correct on this test.

The results of this experiment are shown in Fig. I. The intact sentences, in which thythm, pitch and intensity contours are preserved from the original utterance, show the advantage of 'accented' over 'unaccented' largets which was found in the carlier experiments. This indicates that the resynthesis alone is not interfering with listeners' athility to use prosodic contours to predict the
location of accent. The difference in this condition is significant (FI(1,36) $=21.36, p<.001$). In the rhythmically manipulated sentences, however, the advantage of originally accented ower origitally unaccented largets is Iess than half as large as the difference in the prosodically intact sentences, and in

FIG. I. Phoneme-monitoring response time (msecs.), xperiment 1

This experiment shows that the rhythmic manipulation have severely affected the atcent effect. Each of the
utterances which had undergone this rhyihmic manipulation had an unnatural, indeed a conflicting, prosodic structure - pitch and inlensity contours signalled one prosodic pattern while the rhyth signalled another.
It is clear that listeners did nou base their prosodic processing on one aspect of the prosodic contour alone.

One possible interpretation of this result is that listeners are simultancously processing all three prosodic prosodic dimens that the separate contributions of ea are simply additive. The attenuated, bul still posilive, effec in the rhythmically manipulated sentences would, on this simple story, be altributable to the combination of contours, set against a ncgative effect contributed by the rhyihmic contour.
This interpretation was tested in Fiperiment 2. This experiment investigated prosodic manipulations which were the reverse of those in Fivperiment 1. The pitch
and intensity contours were transposed between originally accented-target and unaccented-target members of a sentence pair, leaving the rhythmic contour, alone, intact.
This manipulation was possible because the time-warping applied to the sentences in Experiment I produced pitch the contour shape from the utterance they had originally belonged to, were aligned with the rhythmic pattern of that utterance's par. Therefore these contours could simply be transposed onto that pair. These ed using prosodic cditiong routines devised by Kim Silterman.

FIG. 2. Phoneme-monitoring response time (msec.). Experiment 2 .

Experiment 2, like Experiment 1, included the resynthesised utterances with intact prosody; these were compared with the utterances in which of the originat prosody only the rhythm was preseried intact, the pitch and intensily comtours heing transposed between members of a pair. Again, the target-hearing words were acoustically identical in all sentences from any set.

Forty listeners, who had mon taken part in Fiveriment were tested; design and prokedure were is in Fiveriment 1. The results are shown in Fig?

It can be seen that once again the utlerances with intact prosody showed a strong accent effect, i.e. response lime difference was statistically significant $(F)(1,36)=6.85$, $\mathrm{p}<.02$). In the ulterances with transposed pitch and intensity contours, there was virlually no response time difference between oriyinally accented and ariginally
unaccented targets (F) <1). The results of this experiment rule out the very simple
explanation of Evperiment I offered above. Had listeners been simply evaluating all three dimensions of prosody in an additise fashion, we inight have evpected the reverse of the resulf found in Experiment 1 - that is, we might have expected an adrantage of originally about half the maynitude of the difference in the opposite direction produced bs the prosodically intact utlerances. However, the conflcting prisody in this case wiped out any difference in response times as a function of original accent lecation.

This result raises the persibility that transpusition of prosodic contours might itself interfere with listeners ability to predict accent location by evtracting reletan

Filg. 3. Phoneme-monitering response time (msecs.), Experiment 3.
information from the prosody. In order to rule out this possibility, a further experiment was conducted in which possibility, a further experiment was conducted
all ithree prosodic dimensions were transposed.

In Experiment 3, the resynthesised ulterances with intiat prosody were again tested, and compared in this case with ulterances in which rhyithm, pitch and intensity contours had all been transposed between members of sentence pair. The manipulated ullerances in this
experiment therefore evhibited the maximum of transposition, in that every uterance had rhyihm, pitch and intensity contours which had originally been applied to another utierance. Howeler, they exhibited the minimum of prosodic conffec, since rhythm, pitch and intensity contours uere aluas in accord.

As in the pretious ceperiments, the target-bearing word were acoustically identical in all sentences from any sel.

Forty listeners, none of whom had taken part in Experiments 1 and 2, were lested. Design and erocedure were as in the preceding experiments. The
results are shoun in Fig. 3.

Once again there was a signifixant advantage for accented' over 'unaccented' targets in the prosodically intact sentences (FI(1,36) $=10.38$, p <.005). Moreover, there was a significant difference in the
reverse direction, i.c. a revponse time adrantage of reverse direction, i.e. a response time advantage of
originally unaccented over originally accented targets, in the prosodically' manipulated sentences ($F:(1,36$) $=$ $6.83, p<.02$). That is, when all three components of the prosodic contour signalled that accent would occur at the position where the target occurred, the target mas responded to faster; and this was true whether the oo its original ullerance's pair.

This result allous us to dispose of the suggestion that prosodic transposition might interfere with listeners' prosodic processing. Insicad, it is elcar that what interfered most strongly with listeners' prosodic processing in the ino preceding experiments was conflict with the other two, listencrs were unable to arrive at a consistent interpretation based on prosudic information. One effect of this was that significant accent effects disappeared.
However, the results from the prosodically manipulated conditions in Experiments 1 and 2, though they were both statistically insignificant, seem to differ. This might suggest that more sensitive experimentation could sel he part of rhythm, pitch and intensity respectively. For the present, though, we may conclude with confidence that listeners' processing of prosody is not simply an interaction between prosodic dimensions is of paramount importance. When the three dimensions rhythm, pilch and intensity agrec, listeners exploit them effciently and consistently. When they conffict, this exploitation is ignificantly impaired.

ACKNOWLEDGEMENTS

This rescarch was supported by a grant from Brilish Telecom to A. Cutler and D. (j. Norris. Acknowledyement is made to the Director of Research of British Telecom for pernission 10 publist this paper.
The author is gratcful to Jeffey Bloom and Kim The author is grateful to Jeffey Bloom and Kim Silverman, withoul whose prosodic manipulation lechniques these experimemts Mould nol hare heen John Williams and John Culling for technical assistance.

References

[I] Bloom, P.J. Use of dynamic programming for automatic synchronization of wios similar speech signals. Prokedings of the lteEE International onferchne on Acoustius, Spach and Signal Processing, 1984, 2.6.1-2.6.4.
[2] Culler, A. Phoneme-monitoring reaction time as a function of preceding intonation contour. Perceplion \& Psischophsisis, 20, 1976, 55-60.
[3] Culler, A. \& Darwin, C.J. Phoneme-monitoring reaction time and preceding prosody: Effects of stop closure duration and of fundamental frequency. Percepion \& Psychophisis; 29,1981,
$217-224$.
[4] Norris, D.G. A compuler-based programmable lachistoscope for non-programmers. Beha ior 16, 1984, 25-27.
iligh frequency speech perception: phonetic aspects and application
mímla gósy
Department of Phonetics, Linguistics Institute of ms
Department of Phonetics, Linguis
Budapest 1250 Pf. 19. Hungary

The so-called speech frequencies (100 3000 Hz) seem to be both necessary and sufficient for ferception and understanding. The role of speech elements occuring above 3000 Hz is unclear. They might ie totally unnecessary, on the one hand or, on the other, they might have a secondary acoustic cue function which is demonstrated experimentally by removing the lower frequencies. Experiments were carried out with Ilungarian native listeners both with normal and with iapaired hearing. The results are given in detail.

improduction

The so-called speech frequencies seen to be both necessary and sufficient for the perception of vowels and consonants. The acoustic information in this frequency range is generally suitable for understanding running speech. However, a lot of comprehension probleas arise if only these frequencies can be used. This can be demonstrated with the telepione where general conversation can easily be carried out without any problems in understanding. Hokever, identification of names or comprehension of sudcenly changed topic of dialogue can cause difficulty. It is known that people with hearing loss at high frequencies (above 3000 Hz) suffer from perceptual and understanding difficulty.

There is no doubt that the first two energy maximums, the formants, contain the main information for the identification of vowels and certain consonants. Moreover, components of some other consonants - like [s] or [tes] - occurring below 3000 Hz are sufficient for their identification. The role of high frequencies (above 3000 IIz) in perception, however, has been little investigated [1]. The acoustic information contained in the high frequencies may be purely supplementary; alternatively it may play an independent and special role in perception. To bring this problem a little closer to a solution, experiments were carried out with Ilungarian-speaking native listeners.
hethod and materlal
The material used consisted of (i) 25 sound-sequences without meaning and (ii) 102 monosyllabic, phonetically balanced Hungarian words. The bisyllabic sound-sequences contain almost all Hungarian speech quences contain almost all Hungarian speed
sounds. The acoustic structure of part of then corresponds to Hungarian phonotactic rules while that of another part of them contradicts them. All the words consist of three sounds: a vowel between two consonants. The words range from well-lnown ones, in everyday use, to ones very rarely used. They belong to different gramatical categories. Attempts were made to choose booth the sound-sequences and words con-
taining consonants and vovels in different phonetic positions and in different environments. The speech material was recorded by a male announcer who pronounced it as isolated statements in random order. The recording was made with a professional tape recorder and microphone under laboratory conditions. An 8 s pause was left between the sounc-sequences/words. The intensity level of sound-sequences and the words varied within $\pm 6 \mathrm{~dB}$. Two types of filtration method vere used for testing: passbend and high-pass filtering by an Audio Filter. The filter slope was always 36 $\mathrm{dB} / \mathrm{octave}$. The cut-off-frequencies were for words $2200,2700,3300,3900 \mathrm{~Hz}$ and 2200-2700, 2700-3300, 3300-3900, 39004700 Hz ; for sounc-seguences $2200,2700 \mathrm{~Hz}$ and $2200-2700,2700-3300 \mathrm{~Hz}$. These values were chosen in view of the fact that the highest acoustic cue for Ilungarian vowels appears in general to be about 2200 Hz ; it is the second formant for the [i] sound. There are 8 different materials for the words and 4 for sound-sequences. In order to examine the role of the upper frequencies, those below 2200 Hz were removed. The frequency analyses were made of filtered naterial by the Sound Spectrograph (Type 700 of Voice Identification). Dach of the 12 test materials was administered to 10 adult normal-hearing subjects, totally 120 subjects, half of them females and half males. The experiments were conducted in a silent room. The listeners' task was to write down the sound-sequences or words they could perceive/understend. In order to obtain statistically significant results, we used our own Psychotest prograr.
nesults and discussion
The experimental data for sound-senuences and for words are sumarized in Table 1. These shov that (i) the perception/uncerstanding of sounc-senuences/words was bet-
ter under pass-band iltering tha under high-pass filtering; (ii) perception/understanding decreased under high-pass filtering according to the change of the cut-off-frequency; (iii) a frequency band seens to occur with the highest perception and understanding ratio: $2200-2700 \mathrm{~Hz}$. The differences between the filtered groups proved to be significant at the . 01 level.

Table 1

Cut-off-frequencies Correct identificaof filtering (IIz) tion (\%)

		words
$2200 \mathrm{~h} . \mathrm{p}$.	sound-seg.	67
$2200-2700$ p.b.	98	79
$2700 \mathrm{h.p}$.	72.5	35
$2700-3300$ p.b.	95	75
$3300 \mathrm{~h} . \mathrm{p}$.	74	
$3300-3900$ p.b.	95	
$3900 \mathrm{~h} . \mathrm{p}$.	46	
$3900-4700$ p.b.	95	

The abbreviations mean high-pass and passband filtering
These results led us to the conclusion that there are frequency bands in which more acoustic information about the same word/sound-sequence seems to disturbing to the decoding processes [2]. The supposed idea is that the upper part of the acoustic structure of certain speech sounds does not remain characteristic for them when the lower part is lost. In other words: these high frequencies do not contain unambigous information about the sounds or cannot de acoustic cues used for identification. The components appearing at those frequencies have been thought to play a supplementary role in recognition. nesults obtained from exarinations using the low-pass filtration method confirm this [3]. If this were the case, the high elements would have beon redundant. Our new results have not confirm this assump tion, and, indeed, they secm to contradict it. The cata have supported an alternative
hypothesis, namely that certain speech sounds and sound combinations have special 'cue-like, components above 2200 Hz . This 'secondary-cue' hypothesis was further investigated by means of spectrographic analyses. These showed that, as expected, the main difference in acoustic structure between pass-band and high-pass filtered groups lies in the presence or absence of the higher frequencies.
by way of illustration let us look at the bilabial nasal consonant [m]. The original acoustic structure of $[\mathrm{m}]$ contains cues at about 500 and 1500 Hz . In the absence of these frequencies it is not possible to identify [m] without elements above 2000 Hz . Spectrographic analysis of $[\mathrm{m}]$ shows further components at about 2800 and 3700 IIz. The word mos 'washes' was understood accurately when frequencies below 2000 Hz were removed by filtration. When the cormponent at 2800 Hz was reduced in intensity by further filtration, identification of the consonant became impossible (Fig. 1).

Figure 1. Consonant [m] in word mos
'washes' and its identification in \%

One of the questions to be asked in this respect is: why can we not used the whole information of the high frequencies in perception, why do they seem to cause difficulty? Moreover, why do these perceptual problems disappear when there are only frequency bands? This suggests that, in conquency to the main acoustic cues (below 2200 Hz), the secondary cues act alone and independently of the disturbing higher components. As to the explanation of 'disturbing higher components' let us document it with an exarple. The perception of the Hungarian long [a:] vowel was analyzed. The correct identification of this sound in the sound-sequence tádó [ta:do:] after high-pass filtering is 0% and after pass-high-pass filtering is
band filtering is 100% (with the cut-offfrequencies of 2200 and $2200-2700 \mathrm{~Hz}$). The false responses in the first case were. [tøldu, tpdu, toldo:, todu]. Instead of [a:] dominantly [ϕ] was perceived. In the acoustical structure of [a:] there are components between 2000 and 4000 Hz with very different intensities. This is assumed to cause the perceptual differencies. The spectrographic analyses show, however, an important difference depending upon the context (sound combination). The [a:] mentioned above was perceived nore correctly when it occurred between fricative or fricative and nasal consonants. This can be explained by the transition phases which act as acoustic cues in this respect. Finally the role of meaning should be talsen into consideration. If we compare the frequency of use and the correct identification percentages of the test words, it seems clear that meaning generally does not play as important a role in this case as is supposed in literature. There are frequent words with low understanding ratio, and rarely used words with high percentage values. There are a lot of items which cannot be used in isolation in Hungarian, e.g. pác 'picsie' (70%) and z óm
'bulle' (20\%). There are words with similar meaning or frequency and their understanding is quite different; and words with similar acoustic structure and different percentage values. The granmatical category of the words seems to be of lesser importance as well.
By way of final conclusion the following idea will be presented. All the results have supported that perception and understanding are better in certain high frequency bands especially in $2200-2700 \mathrm{~Hz}$. This finding led us to the hypothesis that hearing-impaired people with special hearing losses can perceive/understand speech in the $2200-2700 \mathrm{~Hz}$ range better than in a wider band which also contains the 'disturbing' elements.
A supplementary experiment was carried out with the participation of 10 hearing impaired adults having hearing losses of different types and extents. Table 2 shows the responses of a mixed-type hear ing-impaired woman for the words with their normal acoustic structure and after pass-band filtering.

Table 2
Original Responses of a hearing-imwords
paired adult
normal after pass-band fil-

mos	Soundin	mo ${ }^{\text {d }}$
$\mathrm{k} \phi \mathrm{r}$	kol	k $\mathrm{l} \boldsymbol{r} \mathrm{r}$
men:	-	med
la:b	${ }^{\text {a }}$	1a:b
3 eb	3 e	3 eb
hi:d	hi:g	hi:d
si:n	se:p	si:n
101	-	191

The results confirm that the secondary acoustic cues can, indeed, ensure the perception/understanding of speech in case the normal decoding process cannot worls because of hearing problems.

What criteria should the high frequency components fulfil in order to act as acoustic cues? (i) Identification should reach a significant level and, (ii) frequency values should be defined for correct perception. On the basis of our data it can be supposed that the components appearing in certain frequency bands correspond to the above-mentioned expectations.
Further research should show how these findings can be applied in audiological examinations, phoniatric work and in speech therapy.

references

[1] Fant, G.: Speech Sounds and Features. Cambridge, Massachusetts, and London 1973.
[2] Rosen, S. - Fourcin, A.J.: When less is more - Further work. Speech Hearing and Language No. 1. 1983, 1-27.
[3] Gósy, M.: Magyar beszédhangolk felismerése, a kísérleti eredményels gyaorlati alkalmazása./Identification of Hungarian speech sounds, the application of experimental results. Hungarian Papers in Phonetics No. 15. 1986, 3-100.

Inter-aural Speech Spectrum Representation

by Spatio-Temporal Masking Pattern

Tatsuya Hirahara

ATR Auditory and Visual Perception Research Laboratories
Twin 21 Bldg. MID Tower, 2-1-61 Shiromi, Higashi-ku, Osaka, 540 Japan

ABSTRACT

In this paper, several speech sounds are examined by a masking melhod to show typical examples of speech spectrum in the auditrory pathway represented by a spatio-temporal masking patem and to clarify
differences between interaural and physical representacion of spech spectrum. Three types of Japanese specch, monosyllables, continuous speech and a monosyllable reproduced time reversely, are chosen for masker sounds. Using $1 / 3$ oclave band noise bursts with 2 Smsec. duration whole period of each masker. Spaio-temporal masking pattems thus obtained are an inter-aural speech spectrum. Compared with he physical sppecraal pataem: specch onsets and the formant structure, in pariculuar,
phe ransition of formants are emphasized and represented prominent in the masking patterms. These spectral emphases in the auditiory pathway are composed of three functions, AM/FM masking, forward/backward masking, and adapataion. Furher, taking into account the considerabl
differences between inter-aural and physical representation of speech spectrum, the inter-aural spectrum can be implemented as better represenation of speecch spectumum in specech feature extraction and speech
signal processing by compurers.

ntroduction

Spectrum analysis in the human auditory system is Spectrum analysis in the human audiory system is
performed by cochlear function and neural network processing.
These characteristics are assumed to be different from those of These characteristics are assumed to be different from those of spectral analysis
we usually use.
A number of psychophysical and neuro-physiological studies have been carried out to date to obtain knowledge on this indicate that the auditory system has its own signal processing functions such as, critical band filtering, lateral inhibibioion, adaptation, saturation, combination tones generation, maskin spectrum representation in the auditory pathway, is different from the physical spectrum. Also, the remarkable abilities of the human auditory system to detect, separate, and recognize
speech sounds are assumed to be performed using these speech sounds are assumed on ob performed using these processing. Therefore, inter-aural spectrum is superior to the physical spectrum representation when discussing perceptual
cues of speech sounds.
From this standpoint, recent efforts have been made to develop a speech analysis method based on auditory functions. Several researchers have reported studies that simulate some
auditory functions and a number of them have tried to apply their results, in part, to the field of automatic machine speech recognition $[4,5,6,7,8,9,11]$.
Very few reports, however, have been given on studies
concemed with inter-aural representation of dynamically yarying concemed with inter-aural representation of dynamically varying
and/or complex structured sound, such as speech $10,12,13,14,15 \mathrm{~J}$. It is the purpose of this paper to observe
speech sounds from the viewpoint of spatio-temporal masking
pattern, and show typical examples of speech sound papresentation in the auditory pathway. Differences between
inter-aural spectrum and physical spectrum representation of speech are also clarified.

METHODS
Basically, two methods have been used to measure inter-aural spectral patterns. One is a neuro- physiological
method, by which activities of the auditory nerve fibers measured directly correspond to sound stimuli inputs [177; however, this method can not be used to study human auditory
system. Another is a psychophysical method, by which system. Another is a psychophysical method, by which
activities of auditory system are measured indirectly. Three major psychophysical methods used to measure peripheral activity are the masking method [10,16], the pulsation threshold
method [19] and the cancelling method [18]. In this paper, two traditional masking methods, temporal and simultaneous masking methods, were chosen since they are most appropriate for measuring inter-aural spectral representatuo ound of wide range, time-varying spectral dynamics.
A masking value $\mathrm{M}(m ; t, s)$ is defined as the th A masking value M m; ;,S S $)$ is defined as the threshold
shift of maskee signal s overlapped with masker sound m at
time t from masker time t. from masker onset. That is, $M(m+s)=L(m$, $t s)-L(s)$
where $\mathrm{L}(m, t, t, s)$ and $\mathrm{L}(s)$ are the hearing threshold level of maskee signal s with and without masker sound m. present at the time t. When the maskee signal s is a function of frequency
$f, \mathrm{M}(m ; t, s)$ is also a function of frequency f. Therefore, a three dimensional masking pattern for the masker sound can be obained by measuring L ($m, t, s f)$) at various t and f. This three dimentional masking pattern is considered to be an peripheral auditory processing.

EXPERIMENTS
Three experiments were carried out. Maskers were different types of speech sounds, while maskee signals and experimental procedure remained experiment
Masker
 maskers. Experiment II: A continuous sentence speech /Are
dewa eberesutoni noborenai) (He can not climb Mt.Everest.) was chosen for the masker. This sentence was selected because it included the monosyllables $/ \mathrm{le}$, /rel, $/ \mathrm{bel}$ and $/$ /del. The sentence duration is 1.6 seconds. Experiment III: Reversally
reproduced monosyllable Irel was chosen for the masker to investigate how the time axis, inverse of the masker, affected the masking pattern. These speech samples were uttered by frequency was about 100 Hz .
Maskee Maskee signals were sixteen $1 / 3$ octave band noise bursts of 25 msec . duration with a linear rise and fall time of msec . Their center frequencies $f c$ covered 100 Hz to 4 kHz .

Setup Experimental setups and the time chart of the stimuli are shown in Fig.1. The masker and maskee were D/A converted simultaneously via different channels. Both of them were
low-pass-filtered $(\mathrm{Fc}=5 \mathrm{kHz},-96 \mathrm{~dB} / \mathrm{Oct}$), individually attenuated to a certain level, mixed together, then presented to a subjec monauraly through headphones (STAX SR-5) in a soundproo room. The presented level of masker was fixed at 70 dBSPL . Procedure Every threshold value was determined by the
method of limits. At the beginning of the experiment, the maskee level was set below the threshold. Subjects were
instucted to judge whether or not the maskee signal could be instructed to judge whether or not the maskee signal could be
heard with the masker sound for each presented stimulus by heard wih the masker sound for each presented stimulus by
pushing 'Yes' or 'No' button on the switch box. Every time the 'No' button was pushed, the system increased the maskee level
by 1 or $2 d \mathrm{~dB}$ automatically. The maskee level gave the threshold by 1 or 2 dB automatically. The maskee level gave the threshold
value when the 'Yes' button was pushed for the first time. To allow a judgement to be made correctly and easily, subjects were allowed to use two additional buttons: 'Again' to repea the sao well trained male subjects participated in the experiments. Measurements were repeated at least 3 times for every threshold $L(m, t, s)$ and
different days for each subject.

RESULTS

RESULS - and monosyllable masker /de/ are shown in Fig. 2 (a) and (b), respectively. In Fig. 2 (c), the spatio-temporal masking patter measured every 25 msec . for this masker is depicted. The fir ormant transition (e.g. at $t=125$ to 175 msec.) and the vowe observed in the masking pattern.
Figure 3 shows masking spectra and $1 / 3$ octave-band
spectra for $d e l$ at $t=250$ msec. Solid lines represent masking spectra for del at $t=250 \mathrm{msec}$. Solid lines represent masking
spectra, i.e. the inter-aural spectra, and broken lines represent spectra, i.e. the inter-aural spectra, and broxil secter . Thick
$1 / 3$ octave-band power spectra, i.e. .he physical specta the two and thin solid lines represent differences betweenig sectra
subjects. In Fig.3, the first formant (F1) in the masking spect appears more prominent than that in the power spectra since masking values in the lower frequency region were small.

Fig. 1 Experimental setups and the time char of the stimuli. Both masker sound and maskee signal are D / A converted (20 kHz , 12 ibits),
low-pass-filtered ($\mathrm{Fc}=5 \mathrm{FHz}$,-96dB/ct.), individually attenuated, mixted togather, hen presented to a subject monauraly.

Figure 4 (a)-(c) show masking patterns and a $1 / 3$ octave band power spectral patterns for the masker sound $/$ del as a function of time. When compared with the power spectral
pattern, three distinctive characteristics are observed in the masking pattern. (1) Masking does not take the value of 0 dB a the time before the beginning $(t=-25$ msec.) and after the end $(t=400$ msec.) of masker speech. (2) Masking value increase part of the formant. (3) Masking value decreases gradually i the vowel part. These characteristics were commonly observed
in each masking pattern measured with respect to other in each masking pattern n.
monosyllable masker sounds.

The spectrogram and the speech waveform of the
inuous speech masker are shown in Fig .5 (a) and (b) continuous speech masker are shown in Fig. 5 (a) and (b). A
spatio-temporal masking pattern measured every 25 msec. fo spatio-temporal masking pattern measured every 5 merec. fo
this masker is depicted in Fig. 5 (c). Formant structures and formant transitions are clearly represented in Fig. 5 (c) as well a formant
Fig.2(c).

4
(c)
 Fig. 5 (a) Wide band spectrogram, (b) speech waveform and (c) the
spaio-cemporal masking patiern measured every 25 msce. for th vous sentence speech iarele eberestuoni noboren

Figure 6 (a) - (c) represent masking patterns and power
ectral patters for continuous speech as a function of time. Dips seen in the masking patterns at each syllabic boundary,
around $t=75,200,300,475 \mathrm{msec}$. , are deeper and more noticeable than those in the power spectral patterne . Ond morere
for the for the dip depths in the masking patterns being prominant is
that the masking values proceeding and succeeding the dips are that the
large.

Figure 7 shows a monosyllable speech spectrogram for Ire/ in normal time axis. This monosyllable and a time reversally
reproduced one (reversal /rel) are the maskers in reproduced one (reversal /rel) are the maskers in the third
experiment. Figure 8 (a) - (d) show masking pattems using Irel (solid lines) and the reversal /rel (broken lines) for a whole
period of the masker sound Compring period of the masker sound. Comparing both masking patterns,
masking values increase at the onset of each masker sound, masking values increase at the onset of each masker sound,
\cdots ther it is reproduced reversely or not (i.e. at $t=25 \mathrm{msec}$. for irel and at $t=275$ msec. for reversal Ire). This phenomenon appears most remarkable at frequency band $f=160 \mathrm{~Hz}$,
Masking values of $/ \mathrm{re}$ are larger in 5 to 10 dB than those of
 315 Hz and 1.6 kHz . These frequency bands are those within which, F 1 and F 2 transition occurs, although their transition
direction is different between $/ \mathrm{rel}$ (i.e. upward) and the reversal trel (i.e.downward).

DISCUSSION
Results show several important characteristics which seem to play important roles in physical to inter-aural spectral transformation by means of the non-steady part emphatic
functions. Three of these characteristics found in comparing masctions. Three of these characteristics found in comparing
matterns with physical spectral patterns are discussed in this section.
First,
First, speech onset is emphasized in masking patterns.
This onset emphasis is caused by a temporal increase of the amplitude comphonents that is an upward amplitude modulated
(AM) component. There exists a downan the (AM) component. There exists a downward AM component due
to temporal amplitude decrease at speech offsets. Alhough, the to temporal amplitude decrease at speech offsets. Alchough, the
offset emphasis produced by the downward AM component is smaller than the onset emphasis.
transitions, ind maskint pattensitions, in particular, F1 and F2 of the physical spectra. This is an inter-aural emphasis caused by formant movement which is composed of both AM and
frequency modulated (FM) components. These AM

(a) $\frac{\stackrel{y y}{c}}{\substack{2 \\ 2}}$

(b)

Fig. 6 Masking paterns (solid lines) and $1 / 3$ clave band power spectra patterest (bloken lines) for the continuous speech as a function of time and thin lines represent differences between two subjects.

Irel ;	Fig. 7 Wide band spectrogram of the monosyllable masker sound fre/ in normal time axis. This monosyllable and a time reversally
4 \%	reproduced one (reversal fre/) are the maskers in
	trie third experiment.
+2041	
	Fig. 8 Masking patuerns for /re/ (solid lines) and reversal/re/ (bloken lines) at four frequency
	bands: (a) $\mathrm{fc}=160 \mathrm{~Hz}$, (b) $\mathrm{fc}=315 \mathrm{~Hz}$, (c) $\mathrm{fc}=1 \mathrm{k}$
100200	and (d) f $c=1.16 \mathrm{kz}$

are produced by temporal change of each harmonics level. One of the FM components is produced by the resonance frequency
movement itself as seen in broad band spectral patterns. In a movement itself as seen in broad band spectral patterns. In a physical existing frequency' component, such as sweep tone, but physical existing frequency conponent, such as sweep tone, bu
a movement of spectral envelope peaks estimated from several
resonated harmonics of the fundamental frequency However resonated harmonics of the fundamental frequency. However,
this formant movement increases masking values as well as this formant movement increases masking values as well as
frequency sweep tone [20]. Another $F M$ component included in the formant transition is fluctuation of harmonics frequencies.
This fluctuation is a physically existing movement of the FM This fluctuation is a physically existing moveme
component due to fundamental frequency change.
component due to fundamental frequency change.
Third, formants in middle and higher frequency ranges become prominent in masking patterns sesulting from small
masking value in the lower frequency range. This is due to a masking value in the lower frequency range. This is due to
general masking characteristic that lower frequency component general masking characteristic that lower frequency components
mask higher ones more effectively than higher frequency
compnets components do lower ones. In this paper, suppression effect
along the frequency axis, which is seen in the results given by along the frequency axis, which is seen in the results given by
the pulsation threshold $[12,13]$, are not reflected on the masking the pulsation threshold [12,13], are not reflected on the masking
pattern since traditional masking procedures were used. On the other hand, a decrease in masking values at the midterns, but not so noticeable in the continuous speech patterns patterms, eur not so noticeabie in the continuous speech patterns.
This phenomenon an adaptation effect caused by the steady state vowel part which has a several hundred milisecond
duration. In a continuous speech masker, vowel part are no duration. In a continuous speech masker, vowel part are not
long enough to cause the adaptation effect. Since the adaptation decreases masking values at long steady vowel part, non-steady parts of speech (including onset and formant transitions)
preceding and/or succeeding these vowels are relatively preceding and/or succeeding thy.
Furthermore, as shown in the results of the third experiment, reversing the time axis of a masker sound gives us
completely different masking patterns. Two spectra with the same exact frequency structure have two different masking yalues. This suggests that spectral change direction and
interaction between temporarily adjacent componts play interaction between temporarily adjacent components play
important roles in the physical to inter-aural spectral transformation.

To summerize, it is clear that temporal amplitude varying are considered to be important cues in speech perception, are emphasized and more prominent in the auditory pathway than those in physical spectrum patterns. It is expected that
inter-aural spectral representation will bear better results than physical spectral representation when implemented in speech signal processing by computers. The physical to inter-aural spectrum transformation discussed in this paper can be described quantitatively by simulating AM/FM componen
emphasis, backwardfforward masking, adaptation and lateral inhibition. This transformation can be implemented in a automatic speech recognition preprocessor as a better
representation of speech spectrum capable of discriminating two representation of speech specrum capababe of

CONCLUSION

In this paper, three types of speech sounds are examined by a masking method to show typical examples of inter-aural representation of speech spectrum represented by a spatio
temporal masking pattern and to clarify differences between temporal masking pattern and to clarify differences between inier-aural and physical representation
findings are summarized as follows: 1) Compared with the physical spectral pattern: speech onsets prominent in the masking pattem.
${ }^{\text {2 }}$) Spectral emphasis is presumably composed of three auditor masking and ada components emphasis, forward/backwa
ointer-aural spectrum transformation.
3) The direction of AM/FM component movements in speech
sounds is of great importance and strongly affects the process of producing the inter-aural spectrum pattern.
Taking into account the considerable differences between 4) Taking into account the considerable differences between
inter-aural and physical representation of speech spectrum, the inter-aural and physical representation of specech spectrum, hetter
inter-aural spectrum can be implemented as a better representation of speech spectrum in speech feature extraction and speech signal processing by comp.
utomatic speech recognition by machine.

ACKNOWLEDGEMENTS

This work was mainly done at NTT Integrated Communications Labolatories. The author is grateful to Dr.
Kouhei Nakatsu for his continuing guidance and iscussions. The author also wishes to thank Dr. Yoilichi discussions. The author avso wishes to thank
Tohkura for his helpful advice in writing this paper.

E7wicker and ET Terhardel (Eds.) (1974)
 Facts and Models in Hearing,

Springer-Verlag. New York.
21] R.Plomp (1976), Aspects of Tone Sensation; A psychophysical study, ic Pess.
Peripherala Auditury Sastem Elsevier Bionedical
 nalysis," in Trends in Speech Recogsition .W.A.Lea (Ed.). Prentice-Hall, pp analysis.,
S25.55s
s.
 S6] R.FLyon (1982). "A Computaional Models of Filtering, Detee
Compression in the Cochlea," Procedings of ICASSP. pp. $1282 \cdot 1285$.
 pplication to Speech Recognition Research," Procedings of ICASSP, pr [8] E.Z Wicker (1986), "Peripheral Preprocessing in Hearing and Psychoacoustics a.
Guidlines for Speech Recognition," Procedings of he Symposium on Speech ecognition, Montreal, pp.14.
S. S. Shanma (1986)," The auditory processing of specch," Proceedings of the ymposium on Speech Recogniion, Monreal, pp.14-17
10] T. Ilikube (1973) A Masking by Treqeal Modulated Tone." J. Acous. oc. Tapan, vo.292, No.11, pp. 679.-687.
[11] T. Ifukuixe (1975), " Auditory Masking of Ampliude Modulated tone and in

[13] R.S. Tyier and B.Lindolm (1982)" Perimin sudy of
 Swis' in sinulanerus and forward masking." J. AcousL Soc. Am vol.73, No. 3

IS: 4 .Sidwell and Q. Summerfied (1986), "The Audiory Representaion of 16] E. Miysaska (1983)" $"$ Spatio- -emporal characterisitics of masking of brie test- \#ne pusises by a tone-burst wiht atroppt swiching transients," J. Acoust. Soc. apan, volis9, No.9, pp.614.623
17] B.Teljgute and N.Y.S.K.iang (1984), "Speech coding in the auditory nerve
 No.3. pr 76.689
19] T.Houtgast (1973), "Psychophysical Experiments on Tuning Curves and
 he Viewpoint of Simulaneous Masking." Procecedings of the Autamn meeting of Acoust. Soc. of Japan, pp. $249-250$

Department of Philology, Moscow State University
Moscow, USSR, 119899

abSTRACT

This paper presents the results of measure
of Russian word-stress parameters
(using aecoustio and statistic methods). There are also
alsing
demonstrated sime demonstrated some speoific peculiarities of Rus
sian word stress which are employed in the computer model of an automatio word stress deteo${ }_{\text {tor. }}$

INTRODUCTIO

The analysis of the literature on the word stress revelals that the Russian stress 18 not distinguished in ourrent speech by certain spe-
cific parameters. It rather aius at struoturing or shaping of a phonetic word on the whole. The peculiar character of the Russian stress presents
certain difficulties for automatio stress deteocertain.
Among the acoustic correlates usually considered for stressed vowels characteristics are fundamental frequency, duration, intensity and
speotrum. The absolute and relative values are or interest.
it
necessary to speoify the rhythmio orgonization of phonetio words and requency of structures (RS). A rhythmic structure characterizes a single word or a fer words, aut ononous or
syntactic, forming a stressed group. RS designated by a fraction where the number of syllables in a phonetic word is a nowinator and the
ordinal number of the stressed syllable is a deordinal number of the stressed syllable is a de-
nominator. nS variety is designated by a succession of consonants and vovels in a RS which is
shown in term of c showm in terms of c (consonants) and v (vowels). not permit two or more succesive stressed syllables or a long succession of unstressed syllables The average length of an interval between two su-
ceessive stresses varies from I to 3 syllables, the nost frequent being 2 syllables /I/.

In the initial and final RS there are usually no more than 2 prestressed or poststressed sy-
llables. The RSs containing from I to llables. The rSs containing from it to syllable
are most oharaoteristio for fussian syntagmas. The most frequent ones consist of 3 RS , average syntagma length being 2,8 RS.
The phonetic word of 2 or ${ }^{3}$ syllables are
predoinant. The data obtained by prof. L.v.zlam toustova show that the 6 nost frequent RS types:

70\% of any Russian text. The mentioned RS types
and 3 more: $3 / I, 4 / 2,4 / 3$ can cover about 90% of and 3 more: $3 / I, 4 / 2,4 / 3$ can cover about 90% of
any Russian text (e.g. the text of a dialogue) any Russian text (e.g. the text of a dialogue)
$/ 2 /$. The distribution of general RS types in different languages is demonstrated for fiction and
newspaper texts $/ 3 /($ see Table 1).

Table I. Prequency of occourence of RS types (\%)

LS TYPE	language			
	RuSsian	bulcarien	english	german
I/I	13	13,8	27	17,6
2/I	16,8	16,5	18,8	16,9
2/2	21,3	10,6	21,5	16,7
3/1	6,	7,8	r, 4	7
3/2	19,6	16,6	5,5	23,3
3/3	7	2,3	3,8	3,2
4/I	I, 8	1,8	0,7	
4/2	4	10,9	I,9	
4/3	9,2	II, 7	I,9	2,8
4/4	I, 4	I, 3	0,5	0,5
5/3	5	2	r, 4	1

Stress in Russian is normally placed on one of the initial three syllables of a phonetic
it les of a word.

hS healization in spreci

The specific charaoter of RS realization deends on frequency of occurence of a mord, its pends on a variety of conditions: prepared reading vs. spontaneous speech, an artistic reading an actor vs. neutral reading by a layman, RS onstituting a one-mord utterance or being part and genre), normative vs. dialectical speech, eto. Extralinguistio factors are also to be taken into aooount.
arn the number of an RS type is necessary to loyllable and of syllables in a RS, the stressed yllables, consonant pind relative to unstressed ypical of beginning and end of a RS
To deteot the stressed syllable we took a number of RSs with stressed syllables (and voeles of the same utterance. It should be mentioed that stressed and unstressed syllables may
mental frequency, duration, intensity and spectrus. So it is preferable to choose the most tyfor developing an automatic teaching system
(ATS). (ATS).

Thus our minimal text consisted of I to 4 utterances, an utterance consisted of 2 syntag form a text. In the utterance of 2 RSS the pho
netio word of any of the 9 rhythmic types may netic word of any of the 9 rhythmic types may
occur as the first component. The second compo nent may be one of the following types: $1 / 1,1,2 / 1$,
$2 / 2,3 / \mathrm{I}, 3 / 2.4 / 2$. Such RS types as $3 / 3,4 / 3$, $2 / 2,3 / 1,3 / 2.4 / 2$. Such RS types as $3 / 3,4 / 3$, $5 / 3$ can sucoeed every hS type exept $3 / I, 4 / 2$, ance is chosen in a 11 kely manner
The most frequent words are preferable to b structural types of word entries in word counts shows that independently on the material used (written vs. oral text) and the size of analysed
seleotion (400 thousand vs. I million occurences). One can note a certain similarity of rhythm1o types and varieties in both selections The important finding was that the most
frequent struotural models found in word counts are the most frequent in the texts. Thus, there is a 1 limited number of basic structural types of words and phonetic words in Russian /4/. of a phonetio word is the relative duration of its vowels in strong and weak positions. It has change accounts for phonetic word duration variance due to oonditions such as separate vs. contextual oocurence, initial vs. final position in an utterance, emotional vs, neutral content,
whether or not a as bears the phrase accent,

The temporal struacture of a phonetic mord
Ther is essentially conditioned by the relationship of broad and narrow vowels in strong and weak
positions. Finally, it is important whether the initial syllable of a word is covered and the final syllable is open.
resulrs and discussion The comparison of durations of the stressed
and the first prestressed broad vowels in the RS
of vivcle of $V C V C V(C)$ and CVCvCV(C) varieties revealed
that in the final position the first RS vowel is always shorter than the stressed vowel irrespec$t i v e$ of its being open or , overed.

In the RS of the CVCVCV(C) variety with the covered initial syllable in the beginning of an
utterance the first prestressed vowel is shorter than the stressed vowel. The first prestressed vowel that starts an utt
than the stressed vowel.

Initial position (one-syntagma utterance)
The unstressed vowel in the absolute begin-
of a RS of the $3 / 2$ type and VCVCV(C) variety is in 89\% instances longer than the stressed one. In ase of a govered initial unstressed vo-
wel (RS of the CVCVCv(C) variety) is in 90% instances shorter than the stressed one.

Final position (one-syntagma utterance) ce both the initial vowel of an open prestresced byth the initial vowel of an open prestres
sed syllable and the vowel of the first prestr ssed covered syllable (i.e. RSs of the vCVCVC(C) and cucvcr(C) varieties) are in 9
shorter than the stressed vowel.
Table 2. The relationship of durations of pre-
stressed and stressed vorels connected stressed and stressed vowels connecte
to narrow vs. broad types of vowel to narrow vs
sounds $/ 2 /$
YOHELS

coepricient

$\frac{\text { restressed narron }}{\text { stressed broad }}$
$\underset{\substack{\text { 2-syllable } \\ \text { 3-syllable }}}{\text { bylable }}$
$\frac{\text { prestressed narrow }}{\text { stressed narrow }}$
2-syllable
3-syllable
4-sy1able
5-syllable
restressed broad
ressed broad
0,535
0,486
0,486
0,591
0,454
\square
0,82
0,926
0,827

2-sy11abl $\underset{\substack{\text { 4-syllable } \\ \text { 5-syllable }}}{\substack{\text {-sin }}}$
The mean intensity of RS components hav iterance, qualitative nature of the con in an in a RS, and of syllable types. One could justi fiably expect that in final position of a RS in have been lower than in utterance initial RSs. his reeularity is conneeted with the phrase in ensity oontour and has been repeatedly mentioned
The mean intensities allow to estimate in-
tensity olanges in strong and weak elements of
The question of the absolute prominence of
ressea vomels (stressed syllables) especially iressee vowels (stressed syllables) especially in the ns with a narrow stressed vowel (in a \because of special interest.
for experiment shows that a tendency exists for :he stressed vowel (independently on its po oro heginning of an utteranoe with sineilar vove, and consonants. If the first syllable is creased intensity. reased intensity.
cficl variety the usueginning in a RS of the tensity is like this: the poststressed nean inthe least intensive, the most intensive is the stressed one, and the final vowel, however short is more intensive than the preeeding one. A difending of a RS: the most intensive is the stres. sed vowel, the least intensive - secoond poststre

tod te a tool of beasurement is nore adequate than most of physical (acoustic) parazeters. As
far as energy fich is a furction of intensity and curatioa, the loudness is a conplex function of exerey. In the present stady both I ard E ere used and a corparison has been nade.
and re-e test anterial has been tape-recorded ema re-recorded by zeans of an analog-to-digital
cu-rerter on a digital tape which has been conpu
 fic Eessarch (isine). The systen is able to neasu-
re leutress and loudness level (in accorde internationsl standard \mathbf{S} 532) (ind accordence to cessare service softrare $/ 6 /, / 7 /$. The ressilt of such an analysis are the auto-
netic Eraps: oscillograns ith the $1 / 20$ ssec time maris, multiparaetric graphs reflecting in-
tinsitr, loudness level and fundaental frequency as function of tive.
Zhe algortythm has been tested on a linited nateriel where the compared vowels were prosodi
cally different. It demonstrated that loudness interal naxins corresponded to stress vowels in all cases. After parameter optinization the algo-
riythan bas been tested on a more varied material rivithan bas been tested on a more varied material
vith a nev rariable of the vord position in an utterance. A nev phrase test ras compiled to cot pare yovels:
stressed and strong unstressed vorels (ron corered in the first prestressed syllable
and opea in the first poststressed syllable). and open in the first poststressed syliable).
2. Vouels of different proper duration and intensits.
3. Vorels in different phonetic environsents.
fiter the linguistic correction the reliabilit increased to $92, \mathcal{F}$.
cosclesics
The attained reliability justifies the use of loudness along rith other parameters in ror detection in current speech. It's use as a part of the ATS is recomended.
beprexices
/1/ Kagarov E.G. 0 ritae russkoy prozaicheskoy
rechy. Sauka na lkraine, $1922, \ldots 4,3.324-1$ rechy. Sauka na tkraine, 1922, $\mathrm{K} 4,8.324-\mathrm{l}$
332 .
/2/ Zlatoustova L.V. Poneticheskie edinitsy rus3/ 21 atoustova L. F. Universalii - 1o6. E . organizatsil teksta (na materiale slavianskikh. gernanskikh i romanskikh Jazykov),
staik yci, ser. 9 , Philologia, $1933, \mathrm{x}$,
 chitina y.v. Edinitsy ritas russkoy rechy
ikh ispolzovanije γ razlichnykh tekstakh: ikh ispolzovanije Y razlichnyih tekstakh:
Avtoreph. diss. ... kand. philol. nauk. H. 1986. - 19 s.
zlatousto LY Phonettcheskaja priroda russkogo slovesnogo udarenila: ditoreph.
diss. ... kand. philol. naut. L., I953.-
$6 /$ Kozlen
Koz lenko X.P., Rezviakina Z.N. Lzaeritel'
urova'a sluchainyk urova'a sluchainykh protsessov. B'ulleten
1sobretenii i othrytii i tovarnykh znakov.

BiOTZ, N 19, 1968.
Kozlenko N.P. Avtomaticheskoje raspoznavanije slukhovylh obrazov na osnove modeli in-
tegralnogo vosprijatija kachestva zvuka. Maerialy Vsesojuznogo seminara "Avtomatichesoje raspoznavanije slukhovykh obrazov"
kojSo 13 . Novosibirsk, 1984 s. $75-76$.

Acoustic - DYonetro sters OS SPEECH RECOGYTION ALGORITHMS

G. G. RODIONOVA

Computer Sentre of the USJZ icadeny of Sciences, Vavileva str., Hoscon, USSR, 1:7333

abscract

The algorithms tased on the wider use of accustic-phonetic (ifh) information are described. These algorithms incluje : Phclustering of training set and ift-classification on uriknom message. in hFhstructure description of speech sigral is presented.

1. hithoductich
nutomatic speech recognition (ASN) is a key problem of the Eodern speech tectroloEy. In last years a variety of approzches to $\dot{A S a}$ have been explored and certain progress has been made in thie field. This progress is largely due to the use of ini¿ely ajofted formalistic techriques such as the rost popular dinemic-programing (DP) method. Dr-techriçue is based on who-le-word template matching making it's performance çile high due to the absence of sesmentation error ara other acivanteges. Eowever such problews as large time and storage requirements, dicricination of siwilar norts, accourt of coarticulation effects arise. : $0 . x$ it is cuite clear that
this approach is not promising. An inevitable return to accounting for "humen" aspect of speech signal reçuires the design of acoustic-phonetic information based algorithms. In this paper we briefly describe the algorithms containing a set of procedures used for APh-clustering in training and recognition.
2. Pherimetalcal descrifiton of speech sigtal

The accuracy of recognition is evidently dependent on reliability of every level of a recognition system, and errors in coding and parametrical description are the most essential.

The speech signal processing hardware has been developed in the Computer center of the USOR Academy of Sciences. This hardware is based on the principle of maximal account of acoustic and phonetic features of a speech wave. Special devices are designed to extract and input into computer a variety of parameters, characterising the $10-20 \mathrm{~ms}$ intervals (timesegnents) such as:
F_{1}, F_{2} - average first and second formant frequency,
F_{0} - pitch frequency,
N_{0} - number of zero crossings,
A_{0} - total energy etc.
Among these parameters a set of the most informative ones $\left\{P_{i}\right\}, i=1, \ldots, 4,5,6$ has been extracted. These parameters ensure that the requirements of minimal time and maximal accuracy of recognition are fulfilled.
inen an algorithm operates with templates and uses the APh-information, it is necessary that these APh-features provide the distinction between all of the templates in the conditions of real-time processing. ife have developed computer programs to obtain some lexical parameters which reflect the phonetic structure of a message. So the parameters show the presence (or absence) of certain phoneme-like subword units (ph-segments) and their order in a word. As a result of the procedures the secondary characteristics from a set of primary ones have been obtained; e.g.: $R_{1}=1$, if a word S_{i} contains the noise consonant (NC) segment of a duration τ, which does not exceed a threshold value, $\tau_{\text {th }}: \tau^{i}<\tau_{\text {th }}, N_{0}^{1} \leq N_{\text {Oth }}$, $A_{0}^{1}<A_{\text {th }}$;
$R_{4}=1$, if the stressed vowel is of the "a" type, i.e. $\tau^{i}>\tau_{\text {th }}, F_{1}^{i}$ and F_{2}^{i} are lying in their standart domain of mean values, $A_{0}^{1}>A_{t h}$, etc.

Vector $W=\left\{R_{i}\right\}, i=1, \ldots, 8,16$
reflects a certain information about message phonetic structure, for example, the word "catic"is characterised by vector:

$$
W=\{1,1,0,1,0,0,1,0\} .
$$

This means:
$R_{1}=1$: there is a noise consonant (NC) during the given word realization (iR);
$R_{2}=1$: this $N C$ is in the beginning of the word;
$R_{3}=0$: there are no second NC in the word;
$R_{4}=1$: the stressed vowel is of the "a" type;
$R_{5}=R_{6}=0$: the stressed vowel is not of "y" or "u" type;
$R_{7}=1$: the NC has the energy maximum in the high frequency region; $R_{8}=0: R_{8}$ is not computed when $R_{3}=0$; if $R_{3}=1$, then the value of R_{8} depends on N_{0} of the second NC. Such a description is rather rough, but it is of a reliable nature. When the number of secondary features is equal to 16 or 24 , the vector w is more informative, but in this case the description has some evident desadvantages. Thus, the original speech signal is presented by means of full description (FD), being two kinds of parameter, having different levels of extracting and different powers of adequacy.
Namely FD consists of:
(a) primary description - a temporal matrix $\left\|P_{T}\right\|$, where T is the message duration in 10 ms timesegments and
(b) secondary description - a vector :/ of binary lexical features (ph-segments).
This representation is more accurate
then the one obtained with whole-word templates, where phonetical variations can be expressed only by adding other templates. It also shows better the distinctions between similar words. Such a description provides a more natural way of dealing with acoustic-phonetic information and, on the other hand reduces considerably the required amount of training material.
3. APh -CLUSTERING OF A training SET The recognition system software consists of $t_{\text {wo }}$ parts: a teaching one, which providef training set and a recognizing part, destined to carry out the search operations. The training set is formed by means of pronouncing every position of given vocabulary $\{s\}$ (a word or a .rord combination with their attributes indicated: word code, speaker name, etc.). Input and full representation (primary and secondary) for every utterance is made. These descriptions are stored in tiwo computer memory domains. hen the training set of the length M :
$\left\{s_{i}\right\}, i=1, \ldots, M$, (which is at the beginn-
ing structureless) is clustered on phonetical features base, i,e, is divided into J structural clusters $C_{j}, j=1, \ldots, j$. The clustering process is performed with the aid of vector if components, lying in the nodes of a binary logical tree (BLT) These components are previously arranged and BLT is constructed after the user manner. It should be noted that the total number of terminal clusters J is not equal to 2^{k}, where k is the length of vector W. It is so since every branch of BLT does not contain all of the theoretically possible nodes due to the special nature of W. Thus we can estimate the mean number of templates, N_{j}, in the cluster C_{j} :

$$
\mathrm{N}_{\mathrm{j}} \approx \mathrm{M} / \mathrm{J}_{0}
$$

In case of phonetical nonbalanced vocabulary this estimation may turn out to be rather approximate, but this fact is not of a great importance. The point of the metbod is that a cluster, C_{j}, contains a template which is relevant to unknown utterance with the same phonetical label j. APh-clustering is carried out automatically with the help of especially developed procedures of speech recognition system.
4. RECOGNITION ALGORITHM BASED ON APhclustering

Spoken message pertaining to a given vocabulary $\{S\}$ is recognized by looking for a relevant pattern through a subset of templates that maximizes a measure of
similarity with the input signal. The main feature of algorithms under consideration is that the search for a maximal similar candidate is made within the templates that form one cluster without any resortion to the remaining templates The sample to check the recognition algorithm was defined by a given vocabulary $\{S\}$. First, the imput utterence S^{i} was transformed into primary parameter description, the matrix $\left\|P_{T}\right\|^{L}$. For the same message a secondary parameter sequence - vector W^{i} was calculated (in realtime) and an APh-classification was made by the values of vector W^{i} s components. So the S^{i} got a structure label, i.e. it was marked by the number of "its" cluster, j. APh-classification procedure was performed by using the same learning binary logical tree as in the learning stage The fact that both the template and the searched for descriptions belong to the same terminal APh-cluster C_{j} makes it possible to restrict the search for re- , levant candidate \widetilde{E} to objects of C_{j} only: $\tilde{E} \in C_{j}$.
The choise of search strategy is of great importance to the outcome (error rates and recognition time), but the described al gorithms are independent of this strategy. In our case the relevant candidate \widetilde{E}_{j} was found by comparing the parametrical matrix $\left\|P_{r}\right\|^{\delta}$ with the matrices of templates composing cluster C_{j}.

If eph-clustering technique is well developed, the algorithms under consideration not only shorten the recognition time on the average by a factor of J times, but also improve the accuracy. The latter takes place because the smaller the number of processed templates the lower the error in classification.

CONCLUSIONS

Adequate description of a speech object is always of great importance. But in the problems on speech recognition dealing with an object that is highly variable in time and in the parameter space, the question of optimal formalization of this object is decisive. The algorithms described may be of interest for those who develop speech recognition systems and who realize that the role of acoustic-phonetic information should be strengthened.

V.R. IMAKOV, V.N. SOBOLEV

Al-Union By Correspondence Electrocechnical Institte of Communications, Mascom, USSR 12385

ABSTRACT
Optical methods of sound image recognition are discussed as an alternate to recognition systems with von Neumann's architecture. The main design principles and algorithms are described.

IETRODUCTIOA

Most sound image recognition systems are besed on computer systems (CS) with a von Neumann architecture (with a sequential instruction stream). As is known such CS are not equipped with functions (including input-output) required to process non-numeric data, such as apeech, graphic images, etc. Due to the difficulties of real-time parallel processing of acoustic algnals, it appears expedient to shift to customized optical computers (COC) for solving sound image recognition problems. Such COC may use both coherent and non-coherent light emissions, or their combination. Correlation type COC are the most widely used due to the simplicity and efficiency of complex signal transformations, such as convolution, correlation, Fourier transforme, Hankel transforms, multiplication of matrices, etc. In contrast to traditional digital CS in which the elementary operation is a comparison by mod 2, in COC of the correlation type an elementary operation is a complex functional or integral transformation with an execution time determin-
ed only by the time of light travel through the optical media and assemblies, which can be some 10 ns to 10 ps . Another feature of COC is their ability to perform multiparallel signal processing. Optical computers are equivalent to CS with 10^{6} to 10^{12} inputs. The number of output channels can range from 1 to kn , where n is the number of inputs and $k=1,2,3 \ldots$ Another feature of $C O C$ is the ease and simplicity of processing multidimensional objects. COC which should simultaneously, in fractions of a microsecond add and divide hundreds of millions of numbers or multidimensional matrices can be designed without undue engineering problems, while such speeds in traditional digital CS are unattainable, especially if the simultaneous processing of great data bulks is taken into account. Many researches tend to treat acoustic signals as a unidimensional $f_{t}(x)$ one, rather than three-dimensional $f_{t}(x, y$, z) signals, this being hardly always justified. Holography is an ideal means of mathematical simulation of three-dimensional objects, and holographic methods provide an exhaustive description of acoustic signals at all stages of its processing.

mpliementapion

Optical computers can be designed as analog, digital, or hybrid devices and may include various electronic and mec-
hanical assemblies and units. COC functioning is based on the principle of generalised image delineation. The acoustic signal is fed to optical channel mostiy via the so-called spatial-time light modulators (STIM) in the form of a twoor three-dimensional matrix consisting of several hundred or thousand cells controlled by the acoustic aignal or its electric equivalent. The acoustic or electric algnal causes a charge lmage to be formed on the modulator surface and this in turn modulates the light beam. STMKs may turn modulates the light beam. STiss may be operated both in the light transmission
or light reflection modes. One of the STIM or light reflection modes. One of the
modifications is the controlled liquid modifications is the controlled liquid
crystal matrix (with acoustic, electric, crystal matrix (with acoustic, electric,
or light control) with modulation frequencies up to about 60 kHz which is usually adequate for acoustic signal processing. The most advanced acoustic light modulatore (of the Phototitus type) are based on CRTs $[1,2]$, with a special crystal serving as the target inside the CRT and two electron guns for information recording and erasure, respectively. The charge image pattern on the crystal surface is formed by a controllable electron beam. During information readout the passing coherent light is phase and amplitude modulated. Real-time operation is provided by a second electron gun with a wide beam to remove the surface charge. As demonstrated [2], noncoherent optical processing is essentially reduced to linear operations with the 1mage. In the classical non-coherent optical processor [3] the correlated output signal appears on a background of a constant bias. In the past, applicat fons of such systems have been hampered by the low output signal-to-noise ratio and the difficulties of handiing complex data. In the non-coherent optical speech processing system under study a higher signal-to-noise ratio is obtained and the constant bias is eliminated by modulating
and demodulating the carrier. This makes it feasible to preprocess complex data to a form suitable to be input to the main coherent processor; this is acomplished with the aid of an obscure aperture of special shape. Consider two-dimensional functions: the recognized acoustic pattern $f(x, y)$ and the reference pattern $g(x, y)$ which are to be compared by closeness. In the general case, they can be complex quantities. Using their optical image, coded trensparencies with transmission intensities f_{c} and g_{c} are generated:
$f_{c}=0.5\left|f\left(x_{1}, y_{1}\right)\right|\left\{1+\cos \left[2 \pi v_{c} x_{1}+\right.\right.$

$$
\begin{equation*}
\left.\left.+\arg f\left(x_{1}, y_{1}\right)\right]\right\} \tag{1}
\end{equation*}
$$

$$
g_{c}=0.5 \lg \left(x_{1}, y_{1}\right) \mid\left\{1+\cos \left[2 \pi \mu_{c} x_{1}+\right.\right.
$$

$$
\left.\left.+\arg g\left(x_{1}, y_{1}\right)\right]\right\}
$$

where γ_{0} is the cerrier frequacy used in the coding operation. Functions f_{c} and g are realized astensittes ceused by bi are realized as intensities caused by bi asing the cosine carrier. At $|f| \leqslant 1$ and $|\mathrm{g}| \leqslant 1$, we have $0 \leqslant\left|f_{c}\right| \leq 1$ and $0 \leq\left|g_{c}\right| \leq$ $=1$. This means that processing the coded transparencies is equivalent to processing the initial functions. Correlation between f_{c} and g_{c} is provided by the base non-coherent processor (Fig. 1). Presnel holograms for the plane of obscure P^{\prime} were generated, with transmittance functions $g_{c}\left(x_{1}, y_{1}\right)$ in the input plane P_{1} correspond$g_{c}\left(x_{1}, y_{1}\right)$ in the input plane P_{1} correspond-
ing to various phonems and their combinations (dyads). The transparency modulated by f_{c} was positioned in the f_{1} plane and thus the light intensity in the output plane P_{1} was $f_{c} \odot g_{c}$:
$I_{2}=f_{c} \odot g_{c}=0.25|f| \odot|8|+$
$+0.25|f \odot 8| \cos \left[2 \pi r x_{2}+\right.$ $+\arg (f(*) \mathrm{g})]+$
$+0.25|f| \odot|g| \mid \cos \left[2 \pi r_{c} x_{2}+\right.$ $+\arg (g)]|+0.25| g|\circledast| f \mid$
If γ_{c} is sufficiently large, the signal spectra of main frequency band with a modulated carrier in Bqs. (1) and (2) will
not overlap in the frequency domain. Sinnot ovela to multiplication in the frequency domein, the last two terms in Eq. (3) will be zero and the pattern in plane P_{2} will be reduced to:
$I_{2}=f_{c} \odot g_{c}=0.25|f| \circledast|g|+$
$+0.25 \mid f * 81 \cos \left[2 \pi r_{c} x_{2}+\right.$ $+\arg (f \circledast \mathrm{~g})]$
To obtain the desired complex function $f \odot g$ from the distribution in the P_{2} plane the pattern in this plane was scanned by a raster in the x_{2} direction, with the spatial carrier γ_{c} being transformed into a time carrier $S r_{c}$ (S is the scanning speed). Passing the video signal through a band-pass filter removes the first term of Eq.(3) and the second term then depicts the absolute value and phase of the $f(*)$ signal. In the transformation device used masks for the $D C$ component and first, third, fifth and seventh derivatives of the apatial-temporal acoustic signal were provided, with the even derivatfives zeroed out by an appropriately selected obscure function. Differentiation and averaging were holographic.The masks were programmed to provide a pseudo-formant representation of the speach signal, this ensuring an adequate invariance relative to different dictors. Pseudo-formants are more descriptive than formants, least of all prone to change, and are relatively easy to separate [4]. Non-coher-

Basic non-coherent optical correlator 1-source; 2 - condenser lens; 3-decoder; 4 - output signal; P^{\prime}, P^{n} - obscures; P_{1}, P_{2}-mash-transparencies; L_{1}, I_{2} - lenses; P_{3} - integral matrix
ent optical speech processing is limited to linear transforms only. Nonlinear trans forms of acoustic signala are readily produced by coherent optics techniques, using the "Eristal" facility with a "Phototitus" modulator. Recognition was performtitus" modulator. Recognition was perform
ed using the multirange delineation and ed using the multirange delineation and
modified fmage disfocus methods $[2,5]$. PRINCIPLES OF ALGORITHM CONSTRUCTION

Delineation of "visible speech" patterns by means of a controlled photoelectrooptical liquid-crystal matrix is based on the photosensitive surface being exposed both to a focused image and defocused image, the former providing a pulse response in the form of a delta function and the latter - in the form

$$
\begin{aligned}
& \text { tter }- \text { in the form } \\
& 1 /\left(R_{0}^{2} \operatorname{ciRc}\left(\sqrt{x^{2}+\mathrm{y}^{2} / R_{0}}\right)\right),
\end{aligned}
$$

where R_{0} is the defocusing factor. The contour is determined by the difference between these images which is generated during readout. Such process ing is analoguous to photography with an ing is analoguous to photography with an
"unsharp mask" [3]. Generalizing Casas"unsharp mask" [3]. Generalizing Casas-
ent's transform $[2,6]$ by introducing noment's transform $[2,6]$ by introducing norm-
alization to time and combining geometric alization to time and combining geometic transformations with integrated optical ably wider class of phonem speech decoding problems, in particular by including "visible speech" image recognition when the pattern differs from the reference one in scale, positioning, orientation and time dependence. A multigraph is generated in the COC memory as result of hoerated in the $C O C$ memory as result of ho-
lographic speech signal processing, this multigraph containing various interpretations of the recognized words, syllables and phonems. Studies show the optimal recognition algorithm to correspond to the minimal evaluation by Kolmogorov's intricacy criterion. Some relations, describing associative signs are outlined from the versatile relations class. The effects of actually implemented algorithms on the
mage being recognized is limited to the screening operator which is in the form of a apecial mask and which is equivalent in effect to convolution of an associatived sign matrix with a versatile relations potrix. In the intelligent system thus created particular celculus of natural deductions is widely employed. Digital holography was used to design the optimal filter, the initial data being produced by passing. the visible speech images through special masks, such as chess field, concentric alternating dark and light bands, molre grid, etc. Computer processing of these prefiltered image produced a program of grid plotting for precision plotter, with a photo image of this grid reduced by 70X used as an optimal matched filter. The same program was used to control the electron beam path during readout of the recognized visual speech image. Beam deflection was corrected by means of a special associative mask which served as a multiversion prompter. The most probable beam paths vere run first with less probable paths Pllowing The artificial intelligence system made wide use of contiguity and hint relations. As compared to frame arthint relations. As compared to frame artfeatures the advantages of associative links and a considerably higher version search rate for speech pattern recognition.

FURTHER DEVELOPMENTS

The artificial intelligence system described was run mostly under stringent program control. To make the system more flexible it is expedient to complement its intelligent and customized processors by a so-called instrumental processor.

The function of this latter is to generate CS of variable architecture and structure, depending on the stage of the task being performed. The instrumental processor determines the number of atomic evaluators and their networking into a semantic net to optimize the search of a reference pattern for the image to be recognized and select the most efficient algorithm for the present stage. Thus, the intelligent processor sets the strategy, while the instrumental processor determines the tactics of recognition. Mathematical simulation of both processors utilized Petri nets.

REPERENCES

1. Y.Saito, S.Komatsu, H.Ohzu. Scale and rotation invariant real-time optical correlator using computer-generated hologrem - Optics Communication, 1983, v.47, No. 1 pp.8-11.
2. D.Casasent, P.Psaltis. Positional, rotational, and scale invariant optical correlation. - Applied Optics. 1976, v. 15 No.7, pp.1795-1800.
3. А.З.Дун, С.D. Маркин, Е.С.Невеженно и др. Исследование фотоэлектрического модулятора света в режиме оораоотки изооражении. - Автометрия, 1982, с. $24-30$, F 2. 4. Trends in speech recognition. Ed.W.Lea. Prentice-Hall, Inc., Englewood Cliffs, N. I, 1980.
4. О.А.Бутаков, В.И.Островскии, И.Л.дадеев. Обработка изобрякений на ЭВМ. М., Радио и связь, 1987.
5. С.А.Маиоров, Е.Ф.Очин, D.Ф.Романов. Оптические аналоговые вычислительнве машины. Л., Энергоатомиздат, 1983.

g.v.nayinov

A.V.aikialev

Dept of Hechanics
and Mathematics Moscow State University enin aill, Moscow USSR, 119899

Dept of Mechanics toscow State University Lenin Hillo Mo

V.N.TRUNIN-DONSKOY

Computer Center of
Acadeny of Sciences of USSR
Vavilov Street, 40
avilov Street, ${ }^{40}$

ABSTRAOT

This paper is based on the theory of fuzzy sets as a mathematical means of des cription of speech and languge. It is sug gested to consider the problem of paramot ric representation and following analysis of speech signals with the purpose of recognizing as a problem of successive transformations from fuzzy subsets to usual ones and vice versa and an analysis of obtaining results at every step.

ImTRODUCTICN

The idea to use the theory of fuzzy sets for speech recoznition was suggested in $11-5 /$. Partially it was connected with difficulties arising aith attempts to use the traditional mathematical methods of des cription of speech and landuage, particularIf when constructing nonadaptive systems of speech recoznition,i.e. speaker-independent speech recognition systems for an arbi-
trary speaker which is a carrier of pronun. ciation norms for given languge. Experiments of Klatt and Stevens/6/ shows that uncertainty of speech signals in acoustic field is the main propety of speech. At the same time underphonetic decoding linguists are managing without any complicated mathematical means and even without sufficient current information. The studies on blind-spectrogram-reading experiments with various speakers which have been carried out over the years on the faculty of Philology of Moscom State University M/ and constructions of speech understanding systell based on the analjsis of phonetician--expert-experience with decoding speech spectrograms confirm our thesis. Using only general lingustic knowledge on nature of formant parameters, on intensity of signals and harmonics expert-liguists make succesfully phonetic decoding actually basing on
fuzzy linguistic variables (for example, high 1 formant, very low 2 formant, big total energy etc.)
fUZZY TRANSFORMATIONS IN SPEECH RECOGNITION

It has been assumed that elements of thinking of man would enable to imagine as fuzzy subsets for which the function of belonging takes not only 1 or 0 but real numbers beween 0 and 1 . In practical systems of recognition it is not necesary on the parametric level to try to find some global decisins and on phonetic level to obtain unique decision on belonging to a definite class, but it is possible to accept several variants of sounds as it is doing in systems for understanding continuous speech when forming of phonetic lattices.Remark that uncertainty on the phonetic level may be setted using higher linguistic levels (lexical,syntactic and semantic).Thus extension of uncertainty of solutions for ill-definable classes of sounds on lower recognition levels may give more possibilities for right and reliable recognition of speech sounds than raising rigidness of decision-making on the same levels.
It is possible to describe speech which is by its nature rather complicated information phenomenon with the help of fuzzy linguistic variables connected with features of prime parameters which in their turn are results of some objective measu-
rings and do not contain fuzzyness.Thus on the stage of prime data reduction of speech signal we have direct transformation from a fuzzy set to an usual one. At the same time labels indicating on belonging of learning set to suitable classes may be fuzzy.It means, that classification object must be going on with taking into account all of the probable classes. Thus on the stage of fuzzy classification we have an inverse transformation from usual subsets to fuzzy ones.
In the case of data reduction of speech signals using the notion of usual $\alpha-$ level subsets $\mathcal{A}_{\alpha}=\left\{\bar{x} / \rho_{A}(\bar{x}) \geqslant \alpha\right\}$, we may formulate the general principle of construction of acoustic-phonetic processor,which consists in search of α-level which controls passage of speech signals throught some key schemes for purpose of subsequent processing. Experimentally α-levels are selected such i)basic noice of apparatus, stationary noice and room noice do not stand out against a background in pauses; ii)there is information on place of formation of weak fricative sounds (f, h) when they appear.As a result we have a direct transfor mation from the fuzzy subset of analogic speech signals to the usual subset of discrete figure codes corresponding to these analogic signals,i.e. $\underset{\sim}{U}(t) \rightarrow\left\{\mu_{i}^{j}\right\} ;$ where $\underset{\sim}{U}(t)$ is a fuzzy set of analogic speech signals; A_{i}^{t} is a set of discrete readings of parametres representing of a speech aig 2 nal; $i=1,2, \ldots M$ is a type of parameter;
$j=1,2, \ldots N$ is a number of reading．The fuz zy decision on belonging of these discrate readings to the nearest samples is descri－ bed in 18% ．In the process of work of fuzzy decision algorithm we have the inverse transformation from the fuzzy set of dis－ crete readings of parameters representing of speech signal to an usual subset of hy pothesis on pronounced word．
Such transformation may be realized usins decomposition theorem $19 /$ ，which from the ckain of usual subsets $A_{0} \subset A_{1} \subset A_{2} \subset \ldots \subset A_{n-1} \subset$ $C A n$ of acoustically similar families of segments of words with phonetic labels defined by parametric matrices give us a fuzzy subset of hypothesis on pronounced word（here $A_{0}-a_{1}^{(0) . .} a_{N_{0}}^{(0)}, A_{n} \rightarrow a_{1 n}^{(n)}$. ．．．$a_{N_{n}}^{(n)}$ are phonetic transcription of acoustically similar words；$a_{i}^{(j)}$ is a phone tic label of i－th segment and j－th word； n is the word number；N_{n} is length of phonetic transcription of n－th word．The inclusion relation of acoustically similar words is defined by relative embedding co－ efficient．
DEFINITION 1．By a relative inclusion coef－ ficient K_{e} from A_{0} in A_{c} is meant the maxi－ mal number of coincidence of phonemes in transcription arranged on the onder of ap． pearence：$K_{e}=K\left(A_{0}, A_{e}\right)=\max (m) / \exists a_{i m}^{(e)}=$
$=a_{j k}^{(0)}, a_{i_{2}}^{(e)}=a_{j 2}^{(0)}, \ldots, a_{i m}^{(e)}=a_{j m}^{(0)}$ ．
$i_{1} \leqslant i_{2} \leqslant \ldots \leq i_{m} ; j_{1} \leqslant j_{2} \leqslant \ldots \leqslant j_{m}$
DEFINITION 2．Let $A e_{1} \subset A e_{2}$ be meant that $K_{e_{1}} \geqslant K e_{2}$ ．
The fuzzy subset A of hypotheses on pro－ nounced word defined as follows：$A=\operatorname{Max}_{i} \times \alpha_{i} \mathcal{A}_{4}$ ，
$\left.\alpha_{2} \cdot A_{\alpha_{2}}, \ldots \alpha_{n} \cdot A_{\alpha_{n}}\right]$
inere the meanings of α_{i} for $A i$ are such.$~$ that $\alpha_{1}>\alpha_{2}>\ldots>\alpha_{n}$ ）．Weanings $\alpha_{1} \ldots \alpha_{n}$ havesignificance of related between speech waveform and nearests samples：
The following transformation（from a fuzzy subsets of hypotheses on pronounced word to a precise belonging of introducted rea－ lization to a definite standard）may be realized，for example，with regard for sym－ tax and semantics of langure．
On these grounds we may consider the prob－ lem of parametric reprezentation and subse quent analysis of speech recognition as a problem of subsequent transformations from fuzzy subsets to usual ones and vice versa and analysis of results on each step．Such transformations may be described using Galois relations for fuzzy sets $/ 10 /$ These theses were used when working out of acoustic－phonetic and phonologic processor and hardware－softwere speech recognition systems．

REFERENSE

$/ 1 / R . D E$ MORI，《Computer Models of Speech Using FuzzJ Algoritms＞，New York，Plenum Press，1983．
／2／P．DEMICHELIS，R．DE MORI，P．LAFACE ，H． O KaNE，《Computer Recognition of Plosive Sounds Using Contextual Information 》，IEEE transactions on acoustics，speech and sī nal processing，vol．ASSP－31，p．p．359－377， April 1983.
13／R．DE MORI and G．GIORDANO，＜＜A parser for segmenting continuous speech into pseudo
syllabic nacleir＞，Proc．ITEF－ICASSF，Denvor， Colo．，p．p．875－879，1930．
／4／Э．Б．донбаев，В．Н．Трунин－донской，Модели－ рование систем понимания киргизской речи на ЭВМ ，Изд．＂ИЛИム＂，จрунзе，І977． $/ .5 / \not \subset$. Ж．Чымбаев，Предварительная сегмента－ ция и маркировка слитной речи ，М．ВЦ АН СССР，1979．
16／D．KLATT，K．STEVENS，《Sentens Recognition from Visial Examination of Spectroframs and Macineaided Lexical Searching＞，IERE Proc．of 1972 Conference on Speech Somnu－ nication and Processinf．
／7／Н．В．Зиновьева，Особенности интерпрета－ ции＂слепых＂сонограмм при работе с времен－ ным окном ，В кн．＂Тезисы докладов и солкуг ний 13 －й Всесоюзной школы－семинара＂Авто－ атическое распознавание слуховых образов （АРСО－I3）＂，ч． 2 ，Новосибирск，1984，ИА СО АН СССР，с．30－32．
／В／Г．В．Крюков，А．В．іихалєв，В．Н．Трунин－донс－－ кой，Относительная глобальная проекция в автоматическом распознавании образов ，В кн．VII Всесоюзная конференция＂Проблемы теоретической кибернетики＂，Тезисы докладоп， I часть，Иркутск，1985．
／9／А．Кофман，Введение в теорию нечетких множеств ，М．，＂Радио и связь＂， 1982.
／10／A．ACHACHE ${ }^{\circ}$＜＜Galois connection of fuzzy Subset＞，Fuzzy Sets and System，e（1982），p．p． 215－213．

aistrict

This pajer presents the results of a large series of expertaents in reading spectrograns of
lussian utterances. Our experiments have enabled us to reveal the nost general princtples of hu-
man speech behaviour in spectrogran prooessing man speech behaviour in spectrogran prooessing
and expert acoustio-phonetic decoding strategies. .ie discuss here these aspects of human expertise and also nddress the problem of expert
knowledge 1 mplenentation in desiming speech roknonledge implementation in designing speech re-
cognition algor ithm, e.g. the algor ithm for segmentantion of sipeech e.g. ine algorithm into segnents cor
responding to phonemes.
introduction
As it was stated in a recent series of pa-
pers $/ \mathrm{I} /-/ 5 /$, the experiments in sjeotrograin reading demonstrated the ricliness or phogetic
information that can be derived from the wist niformation that can be derived from the wiost
widely used
three-dimensional /frequency-timeintensity/ visual display of the stgnai produced by visible speech speotrographs. It was also
pointed that "rules for extracting and interpreting this information can be explicitly formulated" $/ 2 /$ and thus used to baprove the segruntation and labeling performance of present sivech
recognition systems $/ 3 /, 15 /$ it is also worth mentioning that despite the other-than-auditory modnlity of speech signal processing, the spectrogram reading is of partioular interest as it
can provide some useful insights into the human speech percention as such $/ 1 /$.
Ilere ve rein
Here ve report on the results of a long-
term investigation in reading spectrogras lerm investigation
nussian uterances. The experinents have been oonduoted at the Philologital Department of the inscow University since 1979. At the very beginning of the research the participants evere not
slidiled spectrogran readers, so one of the gosids of our study was to acruuire acoustio-phone-
als tic deooding competence in dealing with visual
speech signal representation. That was the reaspeech signal representation. That was the rea-
son for rather simple experineental tasks set on
an encly an early stage of the work and thenr gradually
increasing oouplexity in the following experiIncreasing oouplexity in the following expert-
wents. It was achieved by using more complex wents. It was achieved by using more conplex
speech units /froin isolated nords of liaited vo-
cabulery and their cabulary and their syntactically and scianti-
cally anomalous combinntions to nonsense rords cally anomalous combinntions to nonsense mords
and nonsense phrases, syllables, extrncted from
words and phrases and so on/, by increasing the
number of sneaisers /on the whole the utterances of It speakers were exauined during our rese-
arch/ and complicating the conditions of the experinients /using dirferent "time windows" with sjeeoch signnls etc./.
In our investigation we used to read wideband speotrograms produced on a "Kay Sona-Graph"
/iodel $702 \% \mathrm{~d} /$ with different frequenoy ranges About 3000 speotrogrems were analyzed in total. In each expertment were taking part from 3 to 4 hunan readers, who in course of the resenrch
/during first $2-3$ years/ mastered the skill of speotrogram acoustic-phonetic interpretation to speotrogram aooustio-phonetic interpretation to
the highest degrea. Pe shall further refer to
them as experts. them as experts.
The results
achieved in our experiments were as follows: the achieved in our experiments were as follows: the
skilled experts were able to correctly transori-
be about be about 87% of segnents with an average I, 21
labels produoed to eaoh segnent in the oase of 1obels produocd to each segment in the oase of
1solated word interpretation and about 835% with an average of I, 2 I labele for the oonnected It would be interesting to coupare our results with those obtained on the basise of other
languages. It was reported $/ 1 /, / 3 /$ that for imelanguages. It was reported $/ 1 / 1 / 3 /$ that for ime-
rioan $\mathbb{E n g i s h}$ the mean accuracy of labeling ran-
 bels to eeoh seguent. For French the first mea-
surement 1 s approximated to 85% and the secondsurement 15 approximated to 85% and the second -
to $1,5 / 4 / . / 5 /$. clenr, comparison of these results wakes it
measurement, which are very simline in the first
ind measurement, which reflects this acouraoy of pho-
netio interpretation of speotrograns, and differ in the seoond, refleoting the ambiguity of phonetic deoisions. Vie suppose that this difference is due to the different phonetical and phonolo-
gical structures of langunges under aisoussion speoifioally to the different numbers of vowel phonemes. Vowel segments, highly influenced by
the surrounding context, are more nmbiguous than consonants, but relatively small set of alternative phonetic labels for vowel identification in nussian decreas
oistons. oistions.
vealed sone other factors, of our results reperts , jerformance in spectrorem reanding. This
performanee
depends pexportance depends on the skill level of the
expert due the training period of speotrogram
reating, on the type of analyzed ss,eech waterial
/oonnected sjeech versus isolated words ing short "time winciow" and on the speaker's specific pronunciation features /foreign accent or speech deficiency/. At the saine time the accuracy of acoustic-phonetre deooding practically does not depend on speaker's voice quality.
it is worth mentioning, that dealing with speotrograus
the exjerts did not make prements of speatral measurement prooess incrensed difficulties in measurement prooess incrensed difficulties in
reasoning about spectrograias and tenpered the results. the close the faots mentioned above, as well as the olose exnmination of the protocoles provided
by the exiserts and of the tape-recorded discussions which they conducted during sone syectrogram reading sessions entabled us to formulnte
the most general prinolples of speech spectrogram aooustic-phonetic interpretation.
tile gavial mincrilis of accustic-mionerle
necubing
We have formulated four most important princtples of spectrogran acoustic-phonetic deoo-
ding $/ \mathrm{Mh} h /$. It should be pointed out that have revealed then from our oum experience, but the later analysis of the literature on the problem has showm that practionlly all of them are
somehois mentioned in the papers of other researchers $/ 5 /-/ 9 /$. This leads us to conclude that these prinotples characterize experts' speech
behavlour as such, unrelated to the language belhaviour as such, unrelcited to the language
structure and perhaps even to the speedh percepstructure and perhaps even to the speeol percep-
tion modality. I. The phonetic identification can't be deduoed inmediately frota the conthnuous acousticparametric representation of the signal. There exisis an intermediate level of speech signal
processing which serves as a $=$ ind of bridge aoross the representational gap between acoustic
substance and it's underlying phonetio form $/ 8 /$. substance and it's underlying phonetic form $/ 8 /$.
The acoustio inforination on this level is described in the most oorpact and abstract manner, without absolute numerical measurements of specsuppose the detection from speotrogram the nost luportant and olosest to phonetic categories acoustio properties, free from the signal variability due to extralinguistical souroes, We be-
lieve that the training period for spectrograil reading is mainly conneoted with evolving in expert's aind this specifio interface device for an other-than-nuditory modality.
field assent to the idea of existence of this spoifio interwadiate representational level in
speech processing. The units of this level are speech prooessing. The units of this 1 ivel are
oalled
acoustio oues or descriptors $/ I /-16 /$. Our attempt to sketch the system of these units is represented in the section below.
2. The Amid is a highly notive provess com-
ing toning tivo processing direothons: it means that the lower speech representation level is analyzed from the point of view of higher level units. The aoustic-parane-
trio rerresentation is judged by the set of
coustic cues existing in exjert's iaind. The ult of producing and cradual deoreasing of number of phonetic hypothesis. That is why the esults of sjectrogran reading dejend in parti cular on the
tio olasses.
3. The general procedure of APhD is divided In two separate stages: a) segmentation by par tial sound specification oorresponding to the
panner-of-articulation eategorics and b) tdentification of the place-of-articulation features In larger sense i:coluding the front-baoik and
high-low qualities of vowels/ it should be pointed out that segmentation does not preced abeling but is conducted by partial reoognition preceeds full aho At the saree time segrientation contextual evidencos are used to deteraine the plaoe-of-articulation features. At this stage the segment boundary placement may be refined
but in any oose seguentation 15 resulted from recognition and includes various procedures for detecting and extracting from the sound wave roups of sounds different in manner of articu-
lation or the so cnlled "broad phonetic classes" $1 /, / 3 /$.
4. The Aihd is highly oontext-dependent
in
contextual evidences in in rocess, The use of contextual evidenoes in in
transformation of acoustic cues into phonetic ategories is obvious and generally aclonouleded. Jut we believe that contextual informantion is mportant as vell in weasurement-to-desortp-
tor mapping. The ex, erts are not aware of thit because they reach an internediate speech processing level by unconscious meohanisms of huma visual systena. But our current experinents nit
digital
representation of the signal have de onstrated the signifioance of contextual infor
fhe sysilm or acoustic cues for memeric untrs
In the present seotion we attempt to sketoh /ac-level/ and it's of the acoustic oue level and subsequent levels of speech signal processing. ive suppose that this structure reflects In examination of the
erts proved to be highly efficitrograms the exsome nrimitive visual objeots" or two $/ 7 /$ that erve as the besis for ac-descriptions. Th acoustic cues carry information about presenoe/
absenoe of PVO, their sequential relations, and bout duration, intensity and frequency modifiations of iVj. The term "modification" in oux
ase means some qualitative /not cuantitatiase means some qualitative /not quantitati
e/ cheraoteristios of NVO, described as being high/mid/low", "long/short", "strong/weak" $/ 3 /$, hile relative charaoteristics are described in longer/shorter". The infortatition about iW0's changes through the time, refliecting in their peotral trajeot

The AC-level in turn can be roughly divided
 lace in tie tifferentiased scositive to tient egren of emproxination to the rreceding zad sobserimi levels /fiz. Y. Thes mits of scre eloser to to.e zcastic-parauetric represen satice, wile i-3 mits are eloser to the zuo ciejerient oi tee fiscetie structire of z est

 se =honetie system of a lergixgz. In tils res ect the in- 2 level tica.

The afore iextioned sablevels are intereso cected becaise higiter level Lescriztics es
fale incorporate wits of the orecting level In editition fithin each sablerei is-mity dif Per in treir phisical natcre /aration, intensity or fremercy/.

- \cos LTEL		bilas feitios LETECI:
-2-Ltay		
scuspic LTE	 CT STEEM SIMML	
Sixecin sizaid		
	$\begin{aligned} & \text { Pig. I } \\ & \text { Gzinill scmate } \end{aligned}$	I2: Ditis

Se have sarked vith orotien line those component nitch we belleve to be of parawount itportance
and complexity in viep of speeci recogition.

The presence/absence infornation about iro and their combinations constitutes the very
ifrst leyer of ic- I. Esing tinese cues the speecin riast isyer of itted into prinary subphonetic seg pents/isS/ such as "roiced closure". unvoiced closure", "roiced noise", "urroiced noise" and
"rocal segrent" mich incorporates both vowels and sonorant consonants. C-I 1150 conteins the sequential cues mich cate it possible to coo-
bine soae non-vocal iss /such es closures and bline soae non-vocal iss /such es closures and
following thea noises/ into agreate segivents. Purt:er on tie durctional $\mathrm{AC-} \mathrm{Z}$ are uscd on these segants. In this case durational ic-2 presuppose relative estiation of lengths of pss in
terns of lionger/siorter". This procedure enanles to identify stops, affricates and stopPricative olisters inth different place of art Tition of their cooponents /such as $\mathrm{ks} /$.
Yocal segrents, including rovels and sono-

 OEItions of sooprants witilin tine vocal se frents

 sre usec to detect vibrats. In tisis case the
 leaje procedure described above results in extracting sejpents corresponding to the raniner of-articulation categories. 111 the obteined
 contain more than one pione of tine saize zanne or articulation /e.g. lid tie sezaents corresponding to stop-fri cative clusters as rell/ boundary flacesent de cisions are incroved on higiter levels.

She ifrst stage of expertise corcerning lation categories doesn't comprise eny significent difficalty for the experts /the sccuraey segrentation 1s about 98% correctly placed boun
dary narkers $/$. But in order to have the corputer gialic the segentation perforaance of the experts, ve need to evolve soae special derice for catomatic extraction of the ito. This probour compettence land beyond the field of phone ticsi as it is related to the dechanisas of har

1 more cosplex intelliectual
spectrogran readers is to cierive place-of-arti culation values fros the sc descriptions. To frequency ic-2, describing contextually indepen-
 their noise components/. Mat very often it is
rather difficult and sometimes even impossible to specify accurately the ilice of articulation for consonants only by their intrinsic characte ristics. In such cases the experts use $A C-1$
desoriptions, carryins information ebout TO's /rainly vojel formants'/ changes through the tive. The ic-3 analysis is highly contextual end presurposes parallel inference of both con-
sonant and vorel
phonetic specificstion, based sonant and vorel phonetic spec
on the seae acoustic evidences.
Foraant trajectories
Pormant trajectories are described cualits-
tively in teras of novejent direations, relatively in teras of novesent directions, rela-
tive spectral locations and frecuency ranges,
 duced accorring to the expert inoansedge of
acoustic manifestations of the coarticulation prooesses in fussian phich maise it posstible to interpret formant trajectories in terus of tio plied aooustic tarzets, closely connceted zith To i-plement tice rules of : $\mathrm{C}-3$ inference in designing speeoh recognition systeus it is rece
ssary not only to reveal and formulate all the ssary not only to revera and for:mlate all the nor problen in itself, but also to describe the
ir possible nor problea in itself, but also
ir possible and ippossible combinations, resul-
tins in ting in different confidence values of phonetic
deolsions. Besides, it is neoessary to evolve
quantitative methods to create qualitative desquantitative wed by the experts. So, the conver-
criptions, used
sation of Ac- 3 units into phonetic features is second most diffioult step of APhD to mimio it in the computer programs.
implementation of the expart aphd principles in
At present we devote our the speotrogram reading methods to digital re presentation of the signal which can serve as an input into a speech reoognizer. To bypass the
problem of automatic extraction of the PVO, we problen of automatic extraction of the pvo, we cor indirect interpretation in terms of AC-I. We came to the conclusion that frequency band anathis purpose because the information about enerby balance in frequency bands can be qualified as a result of the PVO being present or absent peakers frequency range division into bands but we belleve that this problem can be solved y evolving a rather simple adaptation procedur to the speaker's voice quality.
In general the selection of frequency bands epends on the ranges of functioning of acoustio "FII"; "FIII", "low velar noise", "nid aiveolar noise" and "high dental noise" $/$,. It is eviden
that in this case frequency bands mould overlap that in this case frequency bands would overlap
because of the overlapping functional ranges of the above-mentioned acoustic objects/e.g. fre uency band distribution for one of the speakers: up to $3500-7000 \mathrm{~Hz}$.
Using the achieved digital representation i.e. a series of parameter vectors, reflecting requency band energy concentrations, one every igorithus, implementing anl the expert APhD prinoiples described above. The algorithm consists of different procedures /=sets of rules/
for detecting different in manner of articulafion groups of phones /segwentation by reoogniion/. Each procedure performs goal-directed se arch for those pieces of speech wave that are
consistent with the preconditions of its rules active searoh/. The procedures include rules of interpretation of frequenoy band information
n terms of AC-I /intergediate representation/. in terms of AC-I /interuediate representation/
The algorithm doesn't perform centisecond pho netic labeling but interprets each parameter ve ctor with respect to adjacent vectors/contextu
al analysis/. Ne'll dwell on the last principle in more detall. The expert analysis of initial digital
representation revealed that vast majority of representation revealed that vast majority of
centiseoond parameter vectors were characterized by high phonetic ambiguity which could be decresed significantly by taking into consideration values of the adjacent vectors. In this case ve-
ry similiar or even identioal/ vectors can acquire different labels while quite different ones can get identioal labeling depending on

To simulate context-dependent interpretaion of parameter veotors performed by the ex-
perts we have introduced the notions of centers of PSS and their periphery considering centers to be the most prominent and distinot vectors to
interpret them in terms of AC-I. At first the interpret them in terms of AC-I. At first the
sound string is analysed for centers which later sulde the search or boundaries of PSS. The de-
teted centers of the PSS and their readings in teoted centers of the PSS and their readings in terms of ac-I serve as a context for the inter-
pretation of their environments. It means that the reading given to the center. is extended to all adjacent veotors /both preceding and subse-
quent/ untill they are consistent with the preconditions of the periphery-deteoting rules which are significantly weaker than those of the center-detecting rules
PSS, The whole procedure results in extracting responding to phonemes, as it was degments corve. The search for sonorants within vocal PSS is also organized as center-guided process. This norant identificign various procedures for soter and post-center positions.
The algorithm is hierarchically organized according to confidenoe of inferences of the procedures included. The more confident pro-
cedures are activated
earlier, narrowing the cedures are activated earlier, na
search area for suoceding procedures.

Our work on the algor ithm proved the spec-trogram-reading approach to be very prouissing
and productive in view of speech recognition.

afferevces

/I/ R.A.Cole, A. I.Rudnicky, V.W.Zue, D.R.Reddy, Speech as patterns on paper", in Pereception and Production or /2/M.A.Bush, G.E.Kopec, V.W.Zue, Seleoting acoustic features for stop consonant Iden
fication", Proc. ICASSP-83, pp. $742-745$.
/3/ V.lV.Zue, L.F.Lamel, "An expert spectrogram eader: a knowledge-based approach to speeoh
 dem for the automatio reading of French spetrograms" Proc. CA , 5/ N.Carbonell, J.-P.Damestoy, et al., "APHoDEX, phonetic decoding expert system", Proc.
 ture in automatio speech recognition", Proc. ture in automatio speech
X-th ICPhs Plenary Sessions. Syaposia. Ut-
recht, 1983, pp, $315-318$.
 spectrograu
s.
 proach to knowledge-based acoustic-phonetic processing in
ICASSP-86, pp.
23.4.T-4
19/ J.Caelen, N.Vigouroux, "Producing and organizing phonetic knowledge from acoustic
facts in multi-level data", Proc. ${ }^{\text {acASSP- } 66,}$ facts in mult
pp. 23.5. $1-4$.

Г.Н.Вандакурова, Р.Я.Гушепии, Д.А.Мелень

Нафедра биофизики и щатематических жетодов в биологии Дьвовскић государственныћ универсктет, Дьвов, СССР, 290000

AHHOTALYG

Распознавание речевого сообщения расснатривяется кал целенаправленния динамический продесс взаимодействия ассоџративно организованной памати с речевsм сягналом, позволясоии генерировать гкпотезн о кахдом из элешентов сообщения, хоторые проверяштся на соответствие восприниаеиым акустическия образам. При этом нахсицально используется информапря многоурсвневой тамяти распознапеей системн, а ее рецептивнве возиохности задействуштся на гдубину, достаточнур дия однозначно月 сла словои интерпретания речевого сообчения.

SECWHME

В естественноя реси многхе из ноиимальных элементов сообщеная не могут бить непосредственно восприняты, так как они зачастуо недсстаточно четко резиизованя ии дмхе редуцррованм в прсизнесенноя чразе.Ретения о них иогут полвляться при восприятия речи тольно ретросдективно, после того, ках сообдение становится осмесленно

 оссбенность распознамей систем захнгчзется в способности тедудего предсхззания
 сбцения, хоторое уточннется до непротиво-
 peyebong carmary [I].

Нетодслогхческая оснсва рассиатрава-

емого подхода к моделированиш восприятия речк основывается на предполохекии, что многоуровневыи процесс распознаваняя речевых сообиении заклочается не столько в процедурах тавсономан и классификаџия конкретныхх акустических образов, столвно в целенаправменной динамческой актуализапии ими язнковой паинти распознавщей слстенн, что в хонечном итоге позволяет однозначно интерпретировагь сообщение на основе переданных в речевои сагнале смыслоразличительньх признаков, достаточннх для осуцествлєния этой дели. Наряду с выявтением таких инфорэтои цели. Наряду с выявлением таких инфор-
штхвных признаков, в этом процессе основоматмвных признаков, в этом процессе осново-
полагапии рсль играст шеханизия дедүхчии,

 образов преддохагаемян на кахдом шаге анадиза алешентам сообмения [2].

С этс夫 гочки зренкя продедуры актияного вззвмодействия щехду танатьы, организованнсй с учетом нингвистчесмхх п иных
 обрабсткх речевого сагнала не могут игнорарсватвся и дскинн бить введенал в обсло структуру модеви распознавания решн. Возусхнве аигсритим взаииодействия речевого слгнава с пантть расдознамей системы псследовамись в настслдећ рабоге.

Отисанная нсте шсдель основнвзется на дедуктувнси псдходе $\frac{1}{\text { распсзнаванип речи }}$ [1,4$]$. В состветствин с его основноин по-

ложениями, параллельно с процессом обработки воспринимаемого речевого сигнала текущим образом генерируется обоснованные в даннои ситуации гипотезы о распознаваемом речевом образе, которые верифицируются путем сопоставления предполагаемой фонемной структуры с ее акустической реализацией в произнесенном сообщении. При этом моделируотся три принципиально различннх вида перцептивной активности, определенные как:

I/ мыслительная активность (выдвижение словесно сформулированных гипотез в соответствии с лексиконом и захономерностями используемого для речевои коммуникатями используемого для речевой коммуника-
ции языка), утравляемая результатами расции языка), управляема
познавания сообщения;

> познавания сообщения; 2/ слуховая актив

2/ слуховая активность (обработка и представление речевого сигнала в виде динамики обнарукиваемых в неи фонетических качеств, подготавливавщие его к сопоставленио с фонемными матрицами слов, выдаваеmых на данном отрезке сообщения алгоритмом предсказания) ;

3/ активность принятия решения (верификация предсказываемых фонемных последовательностей по результатам фонетической интерпретации речевого сигналад, в результате которой определяется максимально правдоподобная фонемограмма высказывания [I].

В распознавщей системе на используемы словарь всевозможньх слов, находящихся в ее памяти (лексикон), априорно деиству или текучим образом накладывается целыи ряд ограничивающих факторов, которые посторядно задарт и перестраивают подмножества янно задашт и перестраивают подмножества слов-гипотез, актуальных на каждом шаге
анализа конкретного сообдения. Ограничения, анализа конкретного сообщения. Ограничения
которые позволяот упорядочить (при обучекоторые позволяот упорядочить (при обуче-
нии) и целесообразно задействовать память нии) и целесообразно задействовать
при распознавании речи, иогут задаваться как измутри самой системы, так и из внешних источнихов. В первом случае имеет место воздействие на процесс восприятия речи внутренней структуры используемого проблемноориентированного языка (лексики, синтаксиса, семантики). Внешние источники информа-

чии имеют место, когда известна ситуация речевого общения (тематическая, контекстуальная, в т.ч. и текучие резудьтаты распознавания сообщения).

Таким образом, на основе взаимодеиствия априорноу информации языковой памяти с текучей информадией воспринижаемого сигнала формируется результат распознавания пословно предсказываемого сообдения как последовательность слов, наилучшим образом соответствуюдая фонетической структуре высказывавия. Сама мера подобия речевого сигнала эталонам верифицируемых элементов речи (слов) может быть оценена с помощьь различных решаюцих правил и мер близости.

АТГОРИTMИYEСЖИE РЕШЕНИЯ

В моделируемом алгоритме распознавания речевого сообщения максимально исполь зуется априорная информация, заданная в памтти воспринимаомей системы, а рецептивные возможности системы задействуотся при анализе определенного участка речевого сигнала в тои мере, в какой это необходимо для однозначного декодирования соответствуоцего лексического элемента сообщения.

На каждом шаге распознавания текуцее подмножество актуальных лексических гипотез из заданного словаря определяется на основе пересечения подмножеств слов, которые:

I/ задавтся априорно вводимвми прагматическими и лингвистическими ограничениями на высших уровнях системы;

2/ определнотся текучим образом, исходя из лингвистических ограничении, на основе решении о предшествуодих отрезках речи;

3/ определяотся по результатам оценки интегральньх надежно регистрируемых характеристик очередного участка реши на низших ступеннх его анализа.

Для реализации последнего в модель введена динамическая организация памяти по свойтвам речевых сигналов, которые не являртся традиционными своиствали лингвистической категоризацри. В этом плане испыты-

валась ассоциативная групировка слов (осуществляемая параллельно с эталонизацией словаря) по близости их интегральньх акустических характеристик, типичныи пример которой рассмотрен в работе [3].

На этапе обучения системы для разбиения заданного словаря на подмножества близких по акустическому образу слов могут использоваться процедуры кластеризации обучавпих реализаций слов по различным структурнвш, просодическим, маркируопим и другим надежно регистрируемым характеристикам их первичного описания. обнаружение соответствупцих характеристик в акустической реализации распознаваемого слова суцественно уменьшает сбласть поиска решения. Алгоритм группового распознавания слов, соторый испттввался в составе описываемои модели, рассмотрен в работе [3].

В результате наложения всех указанных вьше ограничивапоих факторов на выходе гамяти формируется осмысленное, акустически и лингвистически обоснованное тредсказание лля каждого лексического (следовательно и фонемного) элемента конкретного сообщения, неоднозначность которого (если она имеет место) разрешается оценкой соответствия эталонных описаний слов-конкурентов фонетическои структуре воспринимаемого речевого сигнала. Таким образом, составом актуальной части лехсической памлти на каждом шаге восприятия сообщения постоянно управляшт как первые ступени, так и конечныи результат текущего анализа очередного отрезка речи.

лгоритм принятия решения об элементах речевого сообчения состоит в том, что поступапие из памтти эталоны актуальных слов-гипотез в нупныи момент сопоставлярт ся с очередным отрезком речевого сигнала. Супественно, что щри этом происходит пред варительная унификация описаний речевого сигнала и эталонов с использованием для этой цели многомерного пространства надежно различимых фонетических качеств, достаточных для сегментного представления речи

Последняя в одном из вариантов модели проводилась на основе двоичного структурного описания речи, предложенного в работе [5] и позволяоцего проводить нелинейное во времени сопоставление без использования процедур 巩-согласования.

ЭКСТЕРИМЕНТАЛЬНАЯ РЕАЛИЗАLИЯ МОДЕЛА
В пиалоговом режиме с использованием ограниченных сменных словарей моделировались типичнне задачи распознавания фраз-команд в автоматизированных системах управления (речевое управление высчислительной машиной, речевой запрос в ИПС и другие ситуации). Аппаратурно-программные средства реализованных экспериментальных систем вклочали:

а/ устройство выделения и ввода речевих признаков в ЭВМ (УВРП);

б/ базовыи комплект устройств миниЭЕМ (УВК CM-4);

в/ программное обеспечение речевого управления (ПОРУ).

Исходнвм дискретным описанием речевого сигнала, вводимдм в ЭВМ, являлась последовательность выдав:еемых УВРП калдые 20 мс векторов качественных и количественных peчевых признаков, отсбражамщих акустические характеристики источника, способа и места образования звуков в речевом тракте человека. Вторичное структурное описание речи определялось наличием-отсутствием в речевом сигнале конкретнои последовательности сегментов с различным фонетическим качеством из потенциально возможной последовательности сегментов всех различимых типов. Переход от временного описания к структурному осуцествлялсв с одновременным определением наличия пауз - границ слов.

Алгоритмы, разработанные для речевого обрамения к ЭВМ, были реализованы в ПОРУ в виде комплекса: I/ универсальньх управляопих программ, которые обеспечиварт работу системы в режимах обучения (эталонизации, группировки произносимвх слов исполь

зуемого словаря) и распознавания речи (с выполнением воспринятых речевых команд), и $2 /$ ряда обцих подпрограмм (ввода речи, формирования структурного описания, вывода текуцих результатов и др.). Связи между группами слов, которые могут встретиться в определенных местах фраз или асссциируотся по акустическому подобио, представлялись в памяти в виде графов, эадаваемых списочными структурами.

в режиме распознавания программно релизованы и опробованы:
a/ структурный метод распознавания ре ии на основе бинарного признакового описания речевых сигналов и хеминговой меры их близости к эталонам слов из памяти системы;

б/ метод распознавания сообщений по полному признаковому описанию речевых сигнлов с п-согласованием в качестве меры x сходства с эталонами.
. Исследовалась работоспособность распознающих моделей при объеме экспериментальньх словарей до 100 слов. В условиях щумов до 75 дБ оценена надежность распознавания речевых команд различных операторов, которая при заданных ограничениях составляет $90 \pm 3 \%$ для лиц, имевцих опы работы с системой.

внволы

Результаты исследования рассмотренньх алгоритмов взаимодействия параллельных по токов актуальной информации из памлти с потоком текуцей информации речевого ситнала, полученные в частньх моделях, подтверпдат эфентивность описанного подхода к распознаванию речевьх сосбщений формализоранов взия теоретическом аспекте - показана возможность реализации разработанных алгоритмов в виде целостной иерархической модели восприятия речи.

Следует особо подчеркнуть значение целенашрнй нной активности в работе всех уровнеи и систем, принимаюцих участие в

процессе восприятия речи. Это означает, что и все задействованные в распознаоме модели блоки неизбекно должнн находиться под воздействием управлявицих факторов, наибо лее мотньм из которьх является фактор язы, натралий восприятие речи. Учет все
 го многообразия факторов, как внутренних так и внешних, в том числе и самой речи которые управляот корректностьо и адекватностьо упреждаюией активности распознаюцей системы, представляется нам как феномен ее интеллектуализации. Именно в таком птане слепует понимать значение предварительной организации памяти распознаюцей иистеми ее динамического взаимодействия с распознаваемым сигналом, вне которого смысленное восприятие, т.е. понимание речи автоматом представляется невозможным.

תMTEPATYPA

[I] Derkach M. Deductive approach to automatic recognition of russian spoken sentences // Proc. ICASSP, I980. - pp. IO4I1044.
[2] Динамические спектры речевых сигналов/ М.Ф.Деркач, Р.Я.Гумецкий, Б.М.Гура, М.Е.Чабан; под ред. М.Ф.Деркача. Львов: Вима пкола. Изд-во при Львов. ун-те, I983. - I68 с.
[3] Гумециий Р.Я., Вандакурова Г.Н., и др. Пудступенчатый алгоритм распознавания слов, используощий информацив о совокутности и последовательности акуст. -фо нет. признаков в речевом сигнале // Бест.Львов.ун-та, сер.биол.,I983.С. 105
[4] ВАндакурова Г.Н., Гумецкий Р.Я, Мелень Л.А. К разработке систем распознавания речевьх команд из ограниченньх сменных словареи // Тез.докл. Всесоиз. пк. -семинара АРСО-ІЗ. Новосибирск, I984. - C. I26-I27
[5] Гумецкий Р.Я., Гуса Б.М., Мимин Л.Н. Использование двоичного структурного описания речевого сигнала в задачах распознавания речи // Там же. - С.I36-I37.

Institute of Telecomunication Leninsky pr., 113-20, EINふふ́, 220023, USSi

AESTRACT
The paper report the results of the aimed at designing a universal text-to-speech synthesis model covering both the full rangu of intralanguage phenowena ard applicable for multirithm used in the text-to-speech synInTRODUCTION
The problem of converting a text into several authors through the application of alcorithmic syrthesis or synthesis by rules $[1,2]$. A long list of rules and exaeptiors would be seneralup to thousard.
The main concern of the present stuiny
is to reduce the number of rules to a is to reace the generalized categories eqpable of coveriry all the si mificant intralarsuage pherozara and epplicable at the same tina to various languages. niocel of the present woris reets the above requirezerts.
Tue problez of speech synthesis can $k e$
split into two conparatively indeper dent subproblemis related to adezuate synthesis of phonaizic a.e prosecic cal level these subyroble=s iorresposi to the tasks of synthesizins the cu rent fomant parazesers, on the one Exntal frequany, curation ans intensity, on the ctter. Fhe present =oiel of zpeeci synthesis
 structures cenled Fontraits of pacicres
and prosodes is used. they belo to dean prosoceas is used. Thay walp to de-
 structures of the text.
is Ased lizited set cf alsorita-ic mules pionezes and prosouezes into cirns of p.oneses an prosoderes into curnert

The exact number and the types of phoneme and prosodeme portraits are determined by iven language. For instance, English howel and 24 must be described by 20 sian 6 portraits of vowels and 30 por traits of consorants are required. The exact rumber as well as the types of
transformation rules for the portraits of phonemes and prosodemes rely on the up-to-date Cata in the fields of experinen
tal phonetics, speech production and
speech perception. Thus, for example, the
number of transformation rules for the
ptonene portraits wust take account of
the well -knoum effects of soundscoarticu-
lation, recuction and assimilation.

1. FOLCATM PORTPAITS OR PHOMSHS

Fhorese ard formant are fundawertal notoneme is an elementary and mearingful unit for any texts recording. The probiem of transferrirg a written text into a
parneic one has already been alyorithmically resolved for a number of languages anc row coosa't present ary difficulty. A formant, rather a formant parameter, is of any language sowis. A nodern formant synthesizer can ersure the quality of scuris vary rear to natural. ollowing set of operatingis ezploys the aters: 1, P2, R3, 2 F - frequencies of three voice formarts and the seneralized frequency of ricative formants (F-parameters); hV, An, ha, hf - Emplitudes of voice, rasal, aspi-
rative and fricative formants (A-paraFaters). This set corresponds with the paraini-corse guentive desision of the forfart symthesizer of speech si grels is Euilt an tis s consequentive time ses cents: o -introdictory 1 - basic, $2-3$
 ex different whomas zero. dertain formant
values of F- and A-parameters are given given for the $0-3$ segments by three values of F, χ, τ where F is inherent formant frequency, α - coarticulation ration. At 4th segment parameters are ration. At 4 th segnent parameters are set at at segments 1-3 of values of A,
are set at
T
Thus, each phoneme portrait is described by 83 formant properties. Fig. 1 . tablished experimentaliy by analysing the behaviour of phonemes in natural speech. The minimal requirements to the experimental material are the following: each vowel, 3 s well as a pause; the same spaker.
Fornant parameters and their properties are obtained by examining the sonograms mental analysis includes the phoneme fragments segrentation procedure, the nor
malization of the measured formant parameters, the determination of the inherent values of frequencies and coarticulation the measurement of the for mant transition duration.
As a result of the investigation phoneme Prainian, Bulgarian, English, German and French were obtained and those later on
proved valid in building the polylanguage system of speech synthesis.
2. TRANSFORMATION RULES FOR PHONLME

The rules transforming the phoneme por traits into current values of formant frequencies are based on modelling allophonic variation in natural speech. variation in connected speech are those of articulatory effects caused by coarti Let's consider one of the most essential components of phonemes modification that of coarticulation. [3] describes the level. It has been shown in CV-syllable the formant frequency of the consonant F cv can be expressed by inherent fre-
quencies of the consonant F and of the quencies of the consonant

$$
\begin{equation*}
F^{c v}=F^{v}+\left(1-\alpha^{c}\right) F^{c} \tag{1}
\end{equation*}
$$

where $0 \leqslant \alpha^{c} \leqslant 1$ is the consonant coarticulation coefficient. It is easy to show that the inherent consonant frequenc have the geometrical essense of conso-

Fig. 2 illustrates the trajectories of us lines) for the consonant $/ \mathrm{p} / \mathrm{p}$ and $/ \mathrm{t} /$ /
 ion along the pause of the consonant with point "a"). From the similarity of the triangles abc and cde it follows that

$$
\begin{equation*}
F^{c \vee}=\frac{\Delta 1}{\Delta 1+\Delta^{2}} F^{v}+\left(1-\frac{\Delta 1}{\Delta 1+\Delta 2}\right) \varphi \tag{2}
\end{equation*}
$$

From equation (2) with (1) follows that the $\varphi=F^{c}$ and $\Delta 1 /(\Delta 1+\Delta 2)=\alpha c$. Lyllable containing more than one consonant, i.e. of the type $\subset 2$ O1 VO, C3 C2 C1 VO end the like. Spectrographic examinaf the consonant formant frequency C 2 no only on the vowel frequency vo but on the onsonant frequency C1. By analogy consothe frequencies C2, C1, vo and so on. To take this phenomenon into account the

$$
\left\{\begin{array}{l}
F^{(1) c v}=\alpha^{(1) c} \cdot^{(0) v}+\left(1-\alpha^{(1) c}\right) \cdot F^{(1) c} \tag{3}\\
F^{(2) c v}=\alpha^{(2) c} \cdot F^{(1) r}+\left(1-\alpha^{(2) c}\right) \cdot F^{(2) c} \\
\vdots \\
F^{(n) c v}=\alpha^{(n) c} \cdot F^{(n-1) c v}+\left(1-\alpha^{(n) c}\right) \cdot F^{(n) x}
\end{array}\right.
$$

In the formula (3) the top indexes (n) denote the number of a consonant that co with a vowel marked (0). Some coarticulation effects are also ob-
served in vowel formant frequencies. For instance, in a particular environment F of vowels is considerably increased in the position before dental consonants and
is reduced in bilabial envirorment. Nodis reduced in bilabial envirorment. are calculated from the formula:

$$
\begin{equation*}
F^{v c}=\alpha^{v}\left(\gamma_{1} F^{c 1}+\gamma_{2} F^{c 2}\right)+\left(1-\alpha^{v}\right) F^{v} \tag{4}
\end{equation*}
$$

where Fv, α^{v} are the inherent frequency and the coarticulation coefficient of a quencies of the adjacent consonants (both left and right); ${ }^{\gamma_{1}}$, $\gamma^{\gamma_{2}}$ - weight factor portraits of consonants and vowels affected by coarticulation are based on formu, x^{2} are taken from the tables of phoso carry the information required to siulate the effects of sound reduction and assimilation.

- PROSODIC PORTRAITS

Speech prosodic features are intended as

过过水为边
过为
 －

\therefore …
坔，品电过 －＝－

年
 －皆电

 －＝，－

Fig．1．Graphic presentation of a

d u：It ons x todr

Fig．2．Geometrical sence of F^{c} and α^{c}

Fig．3．Pitch component of the final accentual group prosodic portraits
six intonational types（Russian）

Fig．5．Transformation text－to－speech Transformat
al gorhythm
sis of transformation algorythm text-tospeech in the Phonemophon system. The block-scheme of the algorythm is presented in Pir. 5.
At the first stage a written text is changed by certain rules, including a norphological vocabulary into a phonemic one which is provided with prosodic notation.
At the second stage prosodic parameters as based on the prosodic portraits and the rules of transforming frequency, duration and intensity are being generated. At the third stage formant parameters formed on the basis of phoneme portraits and the rules of transforming then into F-and A-parameters are being generated. From thus obtained sets of parameters many voices formant synthesis of speech signal is being performed.
The peculiarities of building phoneme and prosodeme portraits for multi-language speech synthesis and the rules of their transformation are described in [4].

SUMIIARY

The above presented strategy of speech synthesis from text formed a basis for compyling a series of Phonemophon devices. It has covered the distance from Phonemophon 1 to Phonerophon 5 since 1972 to 1987. On their basis since 1982 a mass production of speech synthesizers from text has been launched. The latest version of Phonemophon 5 is a single-card device built by digitalmicroprocessors. It ensures a bylingual speech synthesis from text (Russian and English for instance) ait is supplemented with controlled voice characteristics (3 male and 2 female) and with the controlled speech tempo. It is also well provided with the interface with a computer and telephone.

ACKIOWLEDGENENTS

I gratefully record my thanks to Elena Karnevskaya for the beneficial cooperation in creating essential linguistic principles. I should also like to thank Michael Larchenkov and Irina Aksjutina for their participation in the constraction of the programmed model. I must thank Valeriya Afanasyeva and Yuri Zimitsky who have built the device itself. I an greatly obliged to my Institute's authorities and the colleagues of the laboratory who have readily supported this work.
And last not least I should like to thank Ludmila Leladze for the magnificent preparation of English version of this paper.

REFEREICESS

1. D.H.Klat. The KLATTalk text-to-speech conversation system. In. Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing. Paris, 1982, pp. 1589-1592. 2. Hertz S. "Prom Text to Speech with SRS". J. Acoust. Soc. Am. 72(4), 1982, pp. 1155-1170.
2. B. M. Lobanov. On the Acoustic Theory of Coarticulation and Reduction. IEEE Int. Conf. Acoust., Speech, Signal Processing. Paris, 1982, pp. 915-918.
3. E.B.Karnevskaya. The Linguistic aspect of multi-language speech synthesis. In this volume.

Christel SORIN, Danièle LARREUR and Régine LLORCA

Centre National d'Etudes des Têlécommunications 22301 Lannion FRANCE

Abstract

The prosody is one of the main factors deciding the quality of text-to-speech synthesis systens. We present here a system allowing for a prosodic parsing and an automatic prediction of a French prosody which makes no use of syntactic analysis. The system was derived from studies on the prosody used in commercial announcements. In the first step, a sentence is divided into Prosodic Groups (PG's) which consist of lexical words located between two grammatical words. In the second step, the length and relative location of PG's determine the insertion of pauses and the specific prosodic categories attributed to each PG. Finally, simple right-to-left derivation rules furaish the prosodic category of each word inside the PG. Predefined Fo and duration rules are then applied depending on the prosodic category attributed to each item.

Introduction

The automatic generation of prosody in text-to-speech system consists into two phases :

Phase 1 : definition of prosodic rules allowing to automatically derive Fo and duration contours from prosodic markers (manually) introduced in the text.

Phase 2 : definition of parsing rules allowing to predict the location of the prosodic markers automatically.

Existing text-to-speech systeins for French include different sets of prosodic rules (see for example, Emerard, 1977, for the CNET synthesis syter, O'Shaughnessy, 1984 and Ballly, 1986, for the INRS system, Lienard et al, 1977, for the LIMSI system and Carlson and al, 1982 , for the KTH system). These rules were mainly defined by stujying fo contours of read sentences. Another prosodic speaking-style is that used by radio or TV speakers for news or commercial announcements. This "speaking-style" largely uses lexical emphasis and aims to be maximally intelligible and conviacing. It could therefore be well adapted to speech syathesis systen towards counterbalancing the negative effects of the segmental defaults of synthetised speech.

In the first part of this paper, we present a new set of prosodic rules trying to nimick French "commercial" prosody. In the second part, the prosodic paser will be described that allows to generate, in the CNET's synthesis system, both types of prosody the "reading" prosody and the "commercial" prosody.

I- Enles for "comercial" prosody generation in French

The rules system consists into 3 modules :

- a "duration" module
- a "macroprosody" module
- a "microprosody" module.

1/ Duration rules

Two different sets of duration rules were defined. The first one is intimately related to a diphonesbased syathesis system. The duration rules aims to complete the duration effects already captured inside the stored diphones by durational modifications which appear inside a sentence. Established 11 rules include the lengthening of the last word-syllabe before a main prosodic boundary, the shorthening of consonant clusters inside a word, the shortening of middle syllables inside long plurisyllabic words, a special treatment for monosyllabic lexical words etc... These rules use the informations provided by the intonation markers which will be described in the following paragraph.

However these rules only modify the intrinsic segmental duration of the stored diphones. Therefore, the criteria used for choosing the diphones (both the environament from which they were extracted and the segmentation criteria) still strongly influence the segmental durations of resulting synthesised sentences.

A second set of rules was developped so that the duration module would be independent from the type of synthesis system (formant or diphone-based). This predictive model of segmental duration (Bartkova et Sorin, 1985) was tested on three corpora : the mean differences between measured and predicted segmental durations were less than the Just Noticeable Difference (JND) for duration in connected speech (Huggins, 1971).


```
    *-matMen:=~品
```

ニッ －1．．．．－
－

 \geq OTr

隹：

11．Prosodic parsing of a sentence in French

In many text－to－speech synthesis systems，the prosody is deritived from nore or less complex syntactic analy－ sis of the sentence．However，for French，Choppy and
al（1975）proposed an automatic generation of prosody that avoids the need of a syntactic analysis of the text．Some recent studies（Wenk and Wiolland（1982）， Dell（1984）and Martin（1986））suggest that rythmical constraints could strongly Influence the prosodic
structure of the sentence．In the corpus we studied， we observed a strong tendency for segments between pauses or prosodic juncture to have the same number

In these context and for practical reasons（i．e．to avold the use of an heavy syntactic parser），we deve－ lopped a prosodic parser that maximally uses beside
the ponctuation）the presence of short gramatical words inside the sentence．These words have，in fact， words inside the sentencer
2 main characteristics
they are indicators of some syntactic structure they present frequentiy a relatively stable low
 higher
word．
A lexicon of 120 grammatical words was butle．The wo－
rds belonging to this lexicon are marked ϕ ．Among rds belonging to this lexicon are marked ϕ ．Among that，most of the time，introduce a subordinate phra－ se（they are marked $\phi^{x *}$ ）and another group that al－ ked $\phi *)$ ． The prosodic
following way
1／detection of the word marked ϕ, ϕ^{*} or $\phi^{* *}$
$2 /$ Introduction of ϕ, ϕ^{\star} ortion of brackets（II）before every word and before ponctuation sigas（11ke non δ－word etc．．．）．
The sentence is then parsed into segments between brackets．These segments will be designated as＂Pro－

A second module attributes to each PG a specific ca－ tegory which will define the location of the pauses
and the main prosodic boundaries．Here，the baste Idea was to introsuce pauses after long PG in order to simulate breathing pauses．We hypothestsedsed sen－
was preferable to introduce（in the synthestsed was preferable to introduce
tence rather larger number of pauses than a realistic number of pauses（as in natural spontaneous speech ： such pauses could reduce the mental load of the $11 \mathrm{~s}-$
tener due to the heavier processing of alterated speech（Nusbaum and Pison1，1982）．However，the loca－ tion of those pauses should be，of course，prosodi－ plausible．

4 main categories are attributed to each PG as －
－the number of lexical words faside each $P G$
the position of the PG inside the sentence
fn some cases，the number of syllables in the PG
and the previous
surrounding PG＇s．
table ut
Examples of prosodic parsing rules

teentence－ftinal ${ }^{\text {PG }}$	cives the category
PG followed by a comma	－recelves the category IV －is followed by a long pause＂P＂
$\begin{aligned} & \text { PG containing } 3 \text { (or } \\ & \text { more) lexical words } \end{aligned}$	－recelives the category IV ．is followed by a long pause＂P＂ －attributes the category IV to the preceeding PG －is preceeded by a short pause＂p＂（facultative）
－PG followed by a PG contalintigg a $\phi *$ or $\phi * *-$ word	－recelves the category IV 1s followed by a short pause＂ $\mathrm{p}^{\prime \prime}$
Stylistic rule（specifi－cal1y observed in commer－ cial announcements）	－ 1 f the total syllables number of the 2 PG＇s exceeds 7 syllables ： recelves the category
－$P G$ preceeding the sentence final PG	IV －is followed by a short pause＂ p ＂ －If not ： －recelves the category II －attributes the category IV to the preceeding PG ．is preceeded by a short pause＂p＂
－PG containing an unique lexical word	receives the category V （if no category was previously attributed）
－PG containing 2 lexical words	a set of contextual rules attribute or the category V or the cate－ gory IV and a short pause
－sequences of PG having recefved the category v	．If the total number of sy11ables exceeds 7，an eurythinic index is cal－ culated ：a short pause is introduced between the PG＇s which delimit the eurythific structure． Category IV is attribu－ ted to the PG preceeding this pause． s－harmonisation Rules）．
$\underbrace{\text { Right－to－left }}_{-1}$ insi	$\begin{aligned} & \text { derivation rules } \\ & \text { de e PG } \end{aligned}$

The final step of the processing consists of deriving the prosodic markers from the categories attributed
to each group．This task is achieved in 2 different ways for the＂reading prosody in one hand and for the commercial prosody in the other hand．In the frst case，a simple correspondance－table associate each category to one of the previously defined proso
dic markers（Emerard，1977）．In the second case，some
right-to-left derivation rules are applifed inside each PG : a category is attributed to almost every word in the sentence (some intermediate rules group some monosyllabic word sequences into an unique "prosodic word"). At this level, (which now use 6 categorles) a correspondance table assoclates to each word-category one of the markers which were presented in the flest part of this paper (Table III).

TABLE III

Category	Prosodic Marker
I	0-
II	4*
IV	1-or 5- (monosyl1.
V	4*
$V \mathrm{I}$	3-
o, ot or f** vord - unique - tro - seguence	$6 \text { and } 6-$
shert nquse $p^{\prime \prime}$	8
long fause " ${ }^{\text {" }}$	7

Tsble IV gives sose examples of the results both for the F catejuriastion ans for the allocation on prosodic arkers for the "comercial" prosody.

Conclusion

The entire prosudic moiule ass testej ∞ a large boty of TELEX messiges. Special iters like sumanes, eccrunpms, nuters, abbreviations, vera treatej beforohans by a text-preprocessing sadule. The results vera juized to te satisfsctory eaush to implemeat this mujula lato a text-to-speech systen far reajlag electruale esil.

Sore defsults of cils mainie injlate the liaits of * syatam-lajepeadent" prosuilic parser : la some casas, rythalisi coustraints must te suborilnatej to syatactic structure, vilich cannot te detectel without a profound syatactic malysis. This is the case, in ferticular, for verbs or rersu: Escas, is illustrates in Table If ("uls ea place" mast be consilerej as an EG because it is derlved frod the verbal Esre aettre ea pisca"). Corrasponding prosuile iufroveneats coult
then be reached only in using, at least, a large lexicon of verbal forms or a fine syntactic (and may be) semantic analysis which remains to be done.

Acknowledgementa

The authors wish to thank S. Maeda for his help in writing the english version of this paper.

Efferences

Bailly, G. (1986) : Multiparametric generation of French prosody from unrestricted text*, IEEE-ICASSP, 2419-2422.
Bartkova, K. and Sorin, C. (1985) : "Predictive model of segmental durations in French", J. Acous. Soc. An., 77, suppl. 1, S54 (to appear in speech Conm.). Carlson, R., Granströn, B. and Hunnicutt, S. (1982) : *A multi-language text-to-speech module", Proc. IEEEICASSP 82, 1604-1507.
Choppy, C., Lienard, J.S., and Teil, D. (1975) : "On algorithae de prosodie autonatique sans analyse syntaxique", Proc. 6th JEP/GALF, 387-395.
Dell, F. (1984) : 'L'acceotu8tion dans les phrases en français-, in Formes sonores du langage", ed. by Dell, Rirst and Vergraud, Hermann, Paris, 65-122.
Ezersid, F. (1977) : 'Synthèse par diphones et trattement de la prosodie-, These 3° cycle, Oniv. of Grenoble.
पuEsins, A.U.F. (1971) : Just noticeable differences for segaent daration in astural speech ${ }^{-}$, J. Acous. Soc. 4z., $51,1270-1278$.
Lienary, J.S., Tell, D., Choppy, C. and Renard, G. (1977): Diphone synthesis of French : Vocal respoose unit and atonatic prosody frow text", Proc. IEEE-ICASSP 77, 560-563.
Martin, P. (1986) : "structure prosodique et structure rythrique pour la syathèse". Proc. 15 JEP/ GALP, 89-91.
Nuskajz, E.C. End Pisoai, D.B. (1982) : Perceptual and cognitive constralats la the use of voice response systens", Research ca speech Ferception, Progress Eepcrt S, Indiam Cniv., 203-216.
C'sbacinessy, D. (1994) : Desin of a real-tine Freach tert-te-speech systen, Speech Coma., 3, 233$=13$.
Geak, 3. and ifislland, F. : Is French really syllatle timed", J. of Phonetics, 10, 193-216.

TAsLs If : Eraples of Prosodic Paraligg and llocation of Prosodic Markers
(sententes presentlig mo ponctastiva sign)
$P=10 c g$ pause
$D=$ short pause

ALEŠ BuČEK

Tesla Electronics Research Inst. Prague, Czechoslovakia

JEVGENIJ TIMOFEJEV

Faculty of Pedagogics
Hradec Králové, Czechoslovakia

ABSTRACT

The paper concerns the present-day state of research of automatic conversion of Russian written text into a corresponding acoustic signal.

INTRODUCTION

Our information is limited to the results of research work carried out in the framework of integrated efforts of Tesla Electronfics Research Institute in Prague and Faculty of Pedagogics in Fradec Kralowe. As a result of the result of the research work the first version of the program, which assigns a sequence of short sounds of appropriate amplitude and spectral composition to any Russian text written in a usual form, has theen developed. The sounds transmitted by microcomputer rapidly, one after another are percepted by users as spoken Russian.

SPEECH SYNTHESIS

Our solution is based on approximation of speech signal on the tasis of the basis of twa-formant sounds, which are tabulated for ane-period length in the computer memory and transmitted inta loud-speaker respecting the sound combination of input text. We have used an arsenal of 12 vocal-ifike sounds and of 1 noise-like sound. By changing the rate of transmision of various digital patterns, by warious number of patterns in one period, by warious number of periods and various loudness we have obtained much more extensive set of varfious sounds. By means of these $12+1$ i sounds and by way of their transmission individual elements. of spoken speech are described in the computer memory. We have defined these elements as follows: th - sound initiation
h - sound body
hy - sound ending
cv - consonant-vowel combination /each with other/
vc - vowel-consonant combination/each with other/.
Russian word CKOPO/sko:ra - phonetic transcription/ is decomposed in comformity with this definition into the following speech elements:

$$
\nexists s, s, s \neq \pi k, k, k a, o:, o r, r, r a, a, a \neq
$$

The above decomposition is not entered by
the user - the computer carries aut the operation without any intervention from the user s part.

The tables of parametric description of individual sounds, which appraximate the sounds of speech, have been composed on the basis of prof. M. Romportl s and prof. L. Bondarko's works. We have also used spectragams of natural speech. Perception tests were the decisive argument of spectrograms interpretation.

In the first version of our synthesis the high degree identification of Russian word accent/when basic prosodic parameters are absent/ is provided by means of:

- greater quantity of stressed vowels vs. unstressed towels, final stressed avawels are double elongated
- stressed xowels are 6. dB louder than unstressed vowels
- stressed vowels are $1 / 2-$ tone higher than unstressed vowels
- quality alternation of unstressed o/a-vowels/a-norm pronunciation/, i-norm promunciation can be also introduced, but the perception of word accent is not improved.

TEXT-TO-SPEECH ALGORITHM

The described method of synthesis of segmental features of speech and approximation of stressed/unstressed vowels phonetic contrast have enabled to produce a synthetic signal of spoken Russian, which has no prosodic feature and sounds somewhat monotonously, but is characterized by high degree adaptability of the users of Russian to this signal with good understanding.

Besides the input text need not be entered in a form of phonetic transcription. The automatic conversion of a usually written Russian text into input phonetic transcription is also provided.

The first version of algorithm of written text-to-phonetic transcriptian includes four basic stages:

1. Heceipt of input text

In the input buffer the system selects only alphabetic letters of written Russian/capital letters of Russian alphabet/, character ":" for word accent, character "." for pause, character /spacing/ and $C R$, which ends the receipt of a text.
2. Text transmission inta working memory
The text is transmitted character by character from left to right till CR. During transmissiom some characters or some combination of characters are processed:

- realization of some consonant combina-
tion is modified / IPA:ЗДमझK - prazn'ik,

- realization of adjective inflextion in genetive case is altered / ДOPOTO: $م$ - dorogavol
- a-norm pronunciation is introduced / XOPOIIO: - xarase/
- realization of pronoun पTTO and conjunction पTOBE is altered /sto
- - i-norm pronunciation is introduced in
a limited size/in the first unstressed syllable before stressed syllable/ - consonant combination $C Y$ is substituted by realization of ax /in a limited size/.

3. Text processing in working memory from left to right:

- the letter b before vowels is substituted by fits spoken equivalent
- doubled consonant is substituted by single one
- the orthographical b is conversed into its phonetic realization
- pronunciation of a preposition with unstressed vowels is realized / OBO, ПЕРЕДО etc./.
- conversion of multiciphered letters $/ E, E, D, G /$ is ended
- realization of Iinal stressed a-vowels is modified
- the so-called coarticulation in vowel comoination / HAY:KA, COOBHE:HKE etc./ is respected.

4. Text processing from right to left:

In this stage the text is processed according to deaf-sonorous assimilation laws of Russian. The text processing is finished as soon as the beginning of the text is reached.

In the present stage of development, our algorithm of automatic transcription contains more than 30 rules and occupies $1,5 \mathrm{~KB}$ of ROM-memory. It is universal and every Russian text can be processed. Algorithm development has been based on twa methodical principles: approximation and ignoration. For example, the algorithm approximates the pronunciation of all unstressed a/0-vowels as a single realization of a weak /a/ in opposition to a strong stressed /a/. The pronunciation of some strange-origin Russian words with weak unstressed o-vowels is ignored. Nevertheless the user has an opportunity to produce realization with unstressed owowels: in this case accent need not be input/the qualitative alternations of unstressed vowels are conditioned by accent input/. The basic crfterion for algorithmic rules extension is communicative effect of an acoustic signal and its aesthetic realization. For example, from communicative point of view it is not necessary to modify the consonant combination YT, पH into rt_{t}, Sn. The user of Russian will understand text with ct_{t}, x_{n}-realization in the same way as with ${ }^{3} t, s_{n}$-reallzation. But from aesthetic point of view the above modification of text should be desirable. That is why the $\chi_{t}, \mathrm{c}_{\mathrm{n}}-\underset{Y}{ } \mathrm{t}$, $\mathrm{sin}_{\mathrm{n}}$ conversion has a limited effect and is walid for words ymo and YTOBS anly. The rest of words are ignored/Pemenue конечно. - Нонечно, он прав./.

The first version of our text-to-speech algorithm contains the greatest part of Russian written text/phonetic realization differences and is being constantly improved. The practical ideal version of the algorithm is connected with further progress in miniaturization of hardware as well.

TEXT-TO-SPEECH CONVERSION FOR GERMAN USING A CASCADE/PARALLEL FORMANT SYNTHESIZER

GERHARD RIGOLL**

Fraunhofer-Institute (IAO)
Depl. of Advanced Information and Communication Technologies
Holzgartenstr. 17, 7000 Stuttgart 1, West Germany

ABSTRACT

The paper describes some aspects of the use of the cascade/parallel formant synthesizer for German text-to-speech synthesis. Since the algorithms used for speech synthesis are relatively similar for the most languages, the paper emphasizes some novel approaches and special phonetic problems, such as the use of a mathematical model for the cascade/parallel formant synthesizer for the determination of the synthesizer control parameters or the synthesis of phonemes with special articulation, rather than to describe more generally the development of the entire system.

INTRODUCTION

In 1983, the work on the development of German text-to-speech converters, based on the cascade/parallel formant synthesizer developed by D.H. Klatt, has started. In general, the development of a text-to-speech system can be described under different aspects, e.g. emphasizing more the common technical problems, or the letter-to-sound conversion, or the fact that the system might have been modified for a different language, which usually requires a complicated modification procedure that was also performed for the system described here. In this paper, the phonetic aspects of the use of the cascade/parallel formant synthesizer for the German language are especially considered. The accurate determination of the main control parameters for the cascade/parallel formant synthesizer is probably the most important step in order to achieve high voice quality of the final system, although many different steps, e.g. let-ter-to-sound conversion or prosodics, which are not considered in this paper, are also responsible for the overall quality of the system.

THE CASCADE/PARALLEL FORMANT SYNTHESIZER

The formant synthesizer which was used for German synthesis is a modified version of the synthesizer described in $/ 2 /$ which was improved by D.H. Klatt during the last years. The current version is now very flexible and capable of synthesizing different voices, including women and children voices. The most important control parameters are still the first three formants and bandwidths and the fundamental frequency. Additionally, it is possible to control special parameters for the voicing source and for prosodics, which is mainly useci for the generation of different speaker characteristics. The German vowels and sonorants are synthesized using the cascade branch, while voiceless fricatives and plosives are generated by the parallel branch. Only for voiced obstruents, both branches of the synthesizer are excited.

MATHEMATICAL MODELLING OF THE CASCADE/PARALLEL FORMANT SYNTHESIZER

There are basically three possibilities to obtain the values for the control parameters of the synthesizer. The fastest and simplest method is a perceptually based method, where the parameters for every phoneme are tuned as long until the synthesis of the phoneme sounds very similar to the original utterance of the phoneme. Although it is possible to find relatively fast a parameter constellation which is leading to an acceptable result for every single phoneme, the overall quality of such a system is mostly poor and many phonemes which used to sound natural when they where tested in isolation, sound unnatural in connected speech. The second method is based on the calculation of the parameters with the use of speech analysis tools, e.g. formant calculation based on an LPC analysis and the generation of the phonemes with the parameters obtained from this analysis for each phoneme. But also this method leads to problems because usually the generation of a sound, using the formant values which were obtained from an analysis of an utterance of this sound, does not lead to a synthetic sound with exactly the same acoustic and spectral properties of the natural utterance. The third method is a spectral tuning of the synthesizer parameters to the spectral properties of one single speaker. This is a very time consuming iterative process, where at the first step the initial values of the synthesizer parameters are derived from an analysis of a natural utterance, as in method 2. In the following steps, the parameters are tuned as long until the spectral analysis of the synthetic utterance is similar enough to the spectral analysis of the natural utterance. In this way, the system is forced to have almost the same spectral features as the single test speaker, which can lead to a high amount of naturalness of the synthetic voice. If such a procedure is used, it is obvious that the success is also dependent on the tools and algorithms which are used for the analysis and comparison of natural and synthetic speech. Beside the more traditional analysis methods like spectrograms and spectra, a novel approach was tested during the development of the German text-to-speech system. This approach is based on a mathematical model of the cascade/parallel formant synthesizer. Based on the fact, that both branches of the synthesizer are composed of digital resonators with the transfer function

$$
\begin{equation*}
G(z)=\frac{1+c_{i}+d_{i}}{1+c_{i} z^{-1}+d_{i} z^{-2}} \tag{1}
\end{equation*}
$$

where the resonator coefficients c_{i} and d_{i} contain the according formant F_{i} and bandwidth B_{i} as nonlinear functions:.

$$
\begin{gather*}
c_{i}=-2 e^{-\pi B_{i} T} \cdot \cos \left(2 \pi F_{i} T\right) \tag{2}\\
d_{i}=e^{-2 \pi B_{i} T} \tag{3}
\end{gather*}
$$

[^1]
 It antir
$$
\frac{\square}{\square}+\frac{+}{\square} \frac{\square}{=}
$$

 тй

为

 $x=-5$

3

Fig．2：Spectrogram of the phoneme sequence／iRi／
This periodical change can be demonstrated even better by looking at the formant tracks of this sequence in Fig．3，obained from the earlier de－ scribed nonlinear parameler estimation procedure．

Fig．3：Formant tracks of the phoneme sequence／iRi／calculaed with the use of a nonlinear parameter estimation algorithm
The synthesis of the uvular／R／can be performed either by a modulation of the gain AV of the voicing source or by a modulation of the formants．
It was decided to use the latter method in the current version，where only the second formant was modulated by a cerrain percentage of his sta－
then tionary value，which is shown in Fig． 4 ．Simultaneously to this modu－ lation，rrication noise is added via the parallel branch by setting the gain
A_{2} of the second paralle resonator to a value different from zero．In this way，the uvular $/ \mathrm{R} /$ is handed sinit a value different from

Fig．4：Formant tracks given to the cascade syathesizer branch for the production of the phoneme sequence／iRi／

COARTICulation
a very important module of a text－to－speech system are the rules for veral ways
the coarticulation of the spectrum of the stationary part of vow－
ess and sonorants with the preceding and the following pho nemes is calculated by a eeneral coarticulation formula which is applied to the formant vaiues and reflects the percentage of the
influence of the formant values of the neighbour phonemes to the influence of the formant values of the ne
－the variations of boundary values in the transitions of consonants to different vowels are automa
application of the locus theory
the variations of the spectral properies of consonants in the en vironment of different phoneme classes is taken into account by modification of the gains of the parallel resonators according t
－special extended rules are applied to some sonorants which show strong coarticulation．In the German language these are espe
cially the phonemes． $1 /$ and the uvular／ $\mathrm{R} /$ Again te $/ \mathrm{R} /$ is the cially the phonemes $/ /$ and the uvular $/ R / \mathrm{A} / \mathrm{A}$ ain the $/ \mathrm{R} /$ is th
most difficult phoneme to bandle scince it requires complex rules most didificult phoneme to handie scince it requires complex rutes
for the formant values as well as for the control of the fricaion bor the parameter $A_{\text {it }}$ is it appears in differente environments．The
coariculation of these sounds can sometimes be effected only by
 often also by both neighbour phonemes，depending on these phonemes

Since the recording and tuning of phonemes is never carried out with phonemes spoken in isolation，special attention has to be paid to incor the various sounds because these rules will modify the originally entered parameter values according to the current phonetic environment，in which a specific phoneme is recorded，analyzed and tuned．This is a se－ rious problem scince at the begin of the tuning task，the coarticulation
rules are usually not yet known，but they are theoretically required in order to obtain optimal tuning results．

CONCLUSION

Some important steps of the synthesis of German with the cascate／parallel formant synthesizer have been described as well as
some new approaches for he synthesizer control parameters．The desccintion of the developmen of the entire text－to－speech system．is beyond the scope of this saper．The experiences which were gained during this development have shown tha the careful and time consuming tuning of every single phoneme and the onsideration of many special cases and exceptions is the key to obtai

references

／1／G．Rigoll：The DECtakk System for German：A Study of the Modification of a Text－to－Speech Converter
guage．Proc．IEEE－ICASSP．Dallas，1987．

D．H．Klatt：Software for a cascade／parallel formant synthesize

3／G．Rigoll：A New Algorithm for Estimation of Formant Trajec cories Directly from the Speech Signal Based on

14／A．Gelb：Applied Optimal Estimation．M．I．T．Press，Cambridg

```
Dept. of Phonetics and Linguistics
University college London
```

ABSTRACT
A new model of intonation for text-to-speech
ynthesis exploits natural variability within synthesis exploits natural variability within
phonological constraints. Patterns are determine phono refical censtraints. Patterns are determined
with reference to those preferred by an individual speaker.
introduction
The output of a text-to-speech synthesis system
needs to be intelligible, reasonably natural, and needs to be intelligible, reasonably natural, and ntonation will contribute to intelligigibility, by larifying the information structure of
and to naturalness, by using FO contours and to naturainess, by using FO contours
characteristic of the target speech, aligned to the segmental structure of the text in a phonetically principled manner. To be acceptable to the
istener, the output must combine intelligibiit with whatever degree of naturalness is necessary to ake the act of listening a comfortable, undemanding For the synthesis of isolated sentences, patterns nay be readily specifinid which are plausible and
easy on the ear ; but the use of these same解 paterns to repetitiveness which a the paragraph or more,
listener may find tedious: so, acceptability declines. We propose
that enhanced acceptability during sustained listening may be achieved by exploiting a further spect of naturalness: the variability to be found

theoretical backgroun

In natural speech, the choice of intcnation contour for a text involves a number of separate
phonological choices, some of which carry a highe phonological choices, some of which carry a hig
Unctional load than others. These choices
Significantly constrain the degree of allowable variability, but within these constraints there is no one single 'correct' intonation pattern
applicable to a given text spoken in a given applicab
In developing an intonation model for synthesis-y-rule, an early priority must be to identify the example:
(1) the division of the text into intonational phrases, or 'tone-groups';
(2) the allocation of acce
Stressed syllables which are (rhythmically stressed syllables which are also pitch-prominent, itch contour);
3) the relative prominence of accented syllables; 4) the selection of the pitch contour whose
tarting-point coincides with the final accente llable (the 'ninides) of the tone-group -- the nuclear tone';
(5) the selection of pitch contour over any
emaining (pre-nuclear) syllables.
These sub-systems imply
Hese sub-systems imply a contour-based analysis
Which owes much to the 'British school' of intonation, notably $/ 1 /$ and $/ 2 /$. We believe that this approach is well motivated at the phonological this ap
Level.
A theoretically sound synthesis model must allow or those formal differenceses for which a functional
account can be given; ideally it should also model account can be given; ideally it should also model
bserved formal variations where no functional notivation may be apparent.
While lexical, syntactic and semantic factors play their part, the unifying principle determining
intonation assignment is surely a pragmatic one the tailoring of an utterance to its context. In a synthesis system using unrestricted text input, any semantic or pragmatic knowledge is bound to be ver 1 imited. The rules must exploit any lexical or
grammatical knowledge available, but occasional inappropriate choices will inevitably risk lowerin the acceptability of the output (cf. $/ 3 /$). The adverse effect of such errors may be minimised by an
output which is otherwise natural-sounding and easy output which
to listen to.
This paper does not directly address the probiem
of improving the syntactic, semantic or pragmatic of improving the syntactic, semantic or pragmatic
knowledge-base. The model described assumes that the input text has been converted to a transcription on which tone-group boundaries and accented
syllables are explicitly marked.
the model
$\frac{\text { Foundations: auditory analysis of a corpus }}{\text { The model's phonological units and probabilisti }}$ rules were based on close auditory analysis and prosodic transcription of a short corpus of recor
texts. Four texts of $150-250$ words each were texts. Four texts of $150-250$ words each were
derived from information bulletins -- reports on road conditions and weather forecasts -- issued
over the telephone, using a declarative English over the telephone, using a declarative English 1 female) were transcribed orthographically, using suitable punctuation, and presented as written texts to five experienced readers (3f, 1 m), who in turn
cecorded the texts on to PCM tape in an anechoic recorded the texts on to PCM tape in an anechoic
chamber. A laryngograph signal (Lx), from which excitation frequency (Fx) analyses were
made, was recorded simultaneously. A
used a (near) RP variety of English. The recorded speech was transcribed prosodically, on an auditory basis, using a syllable-by-syllable
interlinear notation. Comparison with the derived interlinear notation. Comparison with the dermed
Fx traces indicated a reasonable match in terms of contour shape and relative pitch levels. No attemp was made to transcribe durational variation.
There was no one preferred reading for any of the There was no one preferred reading for any of
texts, with respect to any of the sub-systems outlined above. A contour-based interpretation in terms of tone-groups and nuclear tones seemed well
motivated, with falling, falling-rising, rising and level patterns all perceptually salient at the ends of intonational phrases. A consistent finding was a high degree of variability in contour-shape in pre-
nuclear position. The contours were not readily interpretable in terms of fixed-pattern 'heads' (cf linf; nor were sequences of accented sy 1 ables linked by any kind of ais variability reflected a succession of choices between possible formal patterns. Their functional motivation was unclear, unless it was simply a strategy to avold monetory.
There was some evidence that individual speakers had preferred options among these patterns
The inventory: units, contours and features Units. The basic phono (Au) (cf $/ 5 /$). This
model is the accent-unit (aul consists of an initial accented syllable together
with any unaccented syllables following it. The with any unaccented syllables following it. The
unit is bounded on the right by the next accented syllable or by a tone-group boundary. Minimally, it will contain just the accented syllable; there is nc theoretical upper 1 imit, but units may conta
than one rhythmic foot, since some stressed syllables are not pitch-prominent, and are therefore demed unaccented.
Within a paragraph of text, the largest unit
ecognised by the model is the breath-group (BG) hecognised by the model is the breath-group (BC) entence, since it corresponds in practice to a stretch of text bounded by $/ . /$, /!/ or /?/. A breath-group may be subdivided into punctuationturn may contain more than one tone-group (TG). turn may contain more than one tone-group
one-groups are composed of one or more accent units, together with an optional prehead (PH), corresponding to any unaccented syllables preceding
the first accent in the group. The final accent of tone-group is the nucleus; preceding (optional) accent-units make up the head. All BG and PG boundaries are also TG boundaries. The hierarchica
structure linking groups and units is demonstrated below:
(1) $\left.\left[\left[1\left[{ }^{n N o} ._{A U}\right]_{T G}\right]_{\mathrm{PG}}\right]_{\mathrm{BG}}\right]$ (= minimal breath-group)
(2) [I[[There are $\left.\left.{ }_{\mathrm{pH}}\right]\left[\text { "more lane } \text { 'closures }_{\mathrm{AU}}\right]_{\mathrm{TG}}\right]$
[[between 'junctions $\left.{ }_{\mathrm{PH}}\right]\left[{ }^{\text {thirty }}{ }_{\mathrm{AU}}\right][$ "two and

[$\left.\left.\left.{ }^{\text {Preston. }}{ }^{\mathrm{AU}}\right]_{\mathrm{TG}}\right]_{\mathrm{PG}}\right]_{\mathrm{BG}}$.

Key: " accented syllable; , stressed syllable. Contours and features. Accent-units are char-
acterised by contour. Nuclear unit contours in corpus represented four basic nuclear tones: falls, fall-rises, rises and levels. (This formal Classification does not distinguish between 'fall-
rise' and 'fall + rise'.) Head unit contours fell into three natural classes: Levels, falls and rises An earlier version of this model /6/treated nuclear and head units separately; the revised version con-
siders both types to belong to the same underlying formal classes. Nuclear units typically involve fore salient FO movement than head units, and ar
ore predictable in their alignment to syllables. more predictable in their alignment to syllables.
Head unit contours showed much variation in this respect, depending not only on the number of syllables in the unit, but on features affecting,
for example, the timing of the start and end points of the characterising contour. Stylisations of the basic contour shapes perceived, subsequently dapted for implementation in the model, are shown The use of features owes its inspiration, but not its detail, to Lada $/ 7 /$. The unmarked forms in Fig 1 were those characteristically found in nuclear
positition, where the marked forms were less cormon; position, where the marked forms were ess common,
both marked and unmarked varieties occurred freely in head units, though fall-rises as a class were
rare in this position. In practice, there is rare in this position. In practice, there is
normally a brief sustention of FO at the start-o the contour, which is accounted for in our implemen tation: contours are only considered to display the
feature | +delayed startl when such a susterition seature [+ delayed start] when such a susterition continues into the second syllable. perceptually
level contours may, in fact, follow a shallow declination line; this too is accounted for in the .
$\frac{\text { Distribution of } A U \text { contours in the recorded corpus }}{\text { Nuclear. }}$ Naclear. Between them, All BG boundaries ended in $/ \%$, and all were associated with a falling tone (with one exception,
thentence 'Thank you for calling.'). Any of the the sentence 'Thank you for calling.'.'. Any of the
t mes could be found at other PG and TG boundaries. siatistically, fall-rises were most probable here, sarticularly in the case of bG-initial tone-groups:
over 908 of the units had either level or fand. over 908 of the units had either level or wire fev, if any, positional constraints on these Nours. However, when they were analysed in rel....n to the nuclear tone which eol cowe certain tendencies came to light. t.. torie-group, certain tendencles came to 1 ght.
The coni levels constituted around 578 of head units
lo cuernil, this proportion dropped to around 408 whe
immeciately preceding a fall-rise nuclear tone, where they were overtaken by falls. Most of the few rising head-units occurred in tone-groups w
a falling nuclear tone. There were no obvious a falling nuclear tone. There were no obvious
constraints on the juxtaposition of different accert-units, but estimates of the probabilities of certain collocations could be derived from the
corpus distributions. There was no clearly corpus distributions. Thentifiable pattern governing the application of the features to these head contours.
The probability values quoted above are derived
by adding together the scores for several RP-style
speakers, a procedure which allows us to make some
generali isations about intonation units used in this variety of Engl ish for this discourse style, but which obscures the preferences of the individual
speakers. Probabilitities based on averaged values. or, preferably, on those appropriate to a particular speaker, may be adopted to implement the model in a
text-to-speeech systen see melem

Relative prominence of accents
The derived Fx traces relating to the corpus recordings allowed us to make an accurate assess-
ment of the actual and relative peak frequencies accented syl1ables. Within a tone-group, there was a manked tendences for the Fx of successive head
accents to show some sort of decline accents to show some sort of eecline. There were
no fixed target values associated with accents in any position, but it was possible to def ine a frequency range within which accents were 1ikely to
occur. The position of the tone-group within the occur. The position of the tone-group within the
breath-group, and of the breath-group within the paragraph, were relevant in determining the hei ght
 nuclear accents was more varied. a step up from a
preeceding accent typically reflected a 1 inguistic neea to highlight the item in question.
$\frac{\text { Implementation }}{\text { This section }}$
sion looks further at the principles than at the detetai in od argorimplementatation, which are arer subject to revision. An earlier evsion of the
implementation is described in mors den of then ${ }^{\text {Impenementan on the is described in more detail in }}$ preparation.
The mooiel
speech synthes is implemented on the JSRu text-tospeech, replacing or adapting the terson mate model of Edward $/ 8 /$. Rules relate to $\begin{aligned} & \text { Fo values only; all } \\ & \text { other }\end{aligned}$ ther aspects of the systen are unchanged.
Reference frequencies. The overall based on that of of a particular (male) speaker is Values are der ivea from frequency distribution (DX)
histograms made frof histograns made from the Lx signal recorded wit
the reading of the texts.
rhe extremes of the range ('HiFx' and 'tofx') are taken from the 1 st ordar distribution, as is the mode ' (preferred
frequency) value. n an additional reference value Used in computing the synthetic Fo is 'Iofx $\times 2^{\prime}$, the
lower 1 imitit of the range as measured on a 2 nd order lower 1init of
distribution.
selection of AU contours. Nuclear contours
 punctuation. For instance, boundaries associated
with full stops invariably generate fallss comas and unpunctuateed boundaries are associated by convention with the fall-rise, but an algoritha con-
verts this to a rising or level tone in certain verts ch , to
circumstances. Head-unit contours are assiain circunstances. Head-unit contours are assiqned
according to tables of probabilitities derived from
analy analysis of tae speech to be model lese. The trables
take account of the transitional probabilitites take account of the transitional probabilities
associated with the collocation of different asoctore whes (see $/ 6 /$ for specificic examples). Feature application makes use of tables of station stion-
ary probabilitites similarly der ive ary proan hites siniliariy derived from the corpus.
Contour to FO conversion are broken iown into their constituent levels: H
(high) and L (low) for falls and rises
additional constituents H^{\prime} and L ' to deal with the

Fo values for H and L are are calcurated on separate Criteria. The first H in a breath-qroun is ploteted
in relation to the mean value used for such accents in relation to the mean value used for such accents
by the reference speaker. The H value in subsequent accents will be at a point which is a fixed proportion of the distance between the mode and the
previous H. An adjustment upwaras is made in a new
 to the previous pG-initial accent. There is a
degree of allowable deviation from the computed mean values. Declination between accented syllables is a derived effect.
In nuclear units, the value of L coincides with Cofx2, unless it it is bo-final, in which case it co-
incides with iofr. incides with lofx. In head units, L is al calculated associatear H and Lof ta . . . $\underset{\text { Prehead syllables are }}{\substack{\text { and } \\ \text { Prem }}}$ the modal value.

DISCUSSION

Many of this model's algorithms are still being
modified, but even at this early stage we believe modified, but even at this earny stage, we believe
that the output has much to recommend it chosely based on observations of natural speech; it all ows the distribution of patterns to be modeli ed
on a particiulur speaner on a part ticular speaker, it exoloints natural in-
tonational vari ability, The inventory cuuld be
 different discourse-styles and lects.
In due course, the model will pe
In due course, the model will be integrated with
improved higher-level rules for phrasing improved higher-level rules for phrasing and accent
placement; and at the lower level, a set of micro-
 ine contours now generated (Fig 2) to enhance the
phonetic naturainess of the output Meank i ie, the model avoids the
petitiveness often associated with syntheticic speech. n its present inplementation, there is is in fact no
way of preaicting precisely which set Way of preaicting precisely which set of contours
will be appli ied to a given text. A further planned
devel development will be a facility. whereby part icular
patterns nay be specified expyincity.
AcKNOWLEDGEMENTS

Thanks are due to our sponsors at the speech Research Unit, RSRE, and to numerous colleaques at for their comments and support.

references

/1/ J.D. O'Connor \& G.F. Arnold, Intonation of
Colioquial English, Longman, 1961, 2nd ed 1973 .
$/ 2 / \mathrm{D}$. Crystal, Prosodic Systems and Intonation in English, Cambridge University Press, 1969.
3/ G. Akers \& M. Lennig, 'Intonation in text-tospeech synthesis: evaluation of algorithms', JASA
$77,2157-2165,1985$.
/4// J. Pierrehumbert, 'Synthesising intonation',
JASA 70 , $985-995,1981$.

15/ F. Nolan, 'Auditory and instrumental analysis of intonation', Cambridge Papers in Phonetics and
Experimental Linguistics 3, Dept. of Linguistics, University of Cambridge, 1985.
/6/ M. Johnson \& J. House, 'An accent-unit model Of intonation for text-to-speech synthesis', ${ }^{\text {Proc. }}$
IOA: Speecii and Hearing 8, part $7,409-416,1986$. /7/ D.R. Ladd, 'Phonological features of
intonational peaks', Language 59, 721-759, 1983.
$18 /$ J.A. Edward, "Rules for synthesising the prosodic features of speech', JSRU Research Report prosodic feal
1015, 1982.

Fig. 1: Schematised accent-unit contours
Unmarked Marked
(1) Levels

\qquad

n.a.
(2) Falls[+delayed start][talimed tater] [tdelayed end]
(3) Rises
[+delayed start] [+delayed end]
\qquad [+delayed start] ${ }_{[+ \text {raised peak }}^{[\text {delayed }}{ }^{[1]}$

Fig. 2: Comparison between accent-unit contours and an FO contour derived from natural speech
The solid line in each version is the accent-unit contour; the broken line is the contour derived from The sold line in each versithe JSRU synthetic segmental durations:
natural speeh, aiigne with the
"Here is the "British "Telecom "Traveline 'bulletin, pre"pared by the "BBC "Motoring and "Travel 'Unit
for "motorways.

!

In the contour generated by In the contour generated by
rule, H and L values are Calculated in JSRR intch
levels. Interpolation levels. Interpolation
between then is according to a 'moving-target' algorithm to prevent steppiness' in ynthesis frame rate.
intrinsic pitch of vonels : an experimental
study on italian
MASSIMO PETTORINO
Ist. Universitario Orientale
Fonetica Speriment
Napoli, Italy
abstract
Many researches have studied the Intrinsic Pitch of the vowels in different languages
and from different points of view. There is a qeneral agreement on the existence of this phenomenon and various hypotheses have
been formulated in order to explain the mechanism controlling the I. P. The aim of this experimental study is, on one hand,
to verify whether the Intrinsic Pitch of to verify whether the intrinsic Pitch of
vowels does exist in Italian; on the other vowels on the basis of the spectrographic data and Fo tracings obtained from norma and oesophageal spech and from singing to try to relationship between Fo, opening degree
discussed.
introduction
For more than fifty years there has been a general agreement among phonetician about the existence of an Intrinsic Pitch of vowels. Many experimental from different dealt with tiew and all of them have demonstrated that in many languages, as for instance English /1/. Danish pitch than low vowels, other things being equal
Fiven ven if there isn't disagreement on the existence of the I.P. problems start when happens. nillated to give an account for the I. P. beainning tron the so called "dynamo-genetic" theory proposed by aylor the higher muscular
According to Taylor cersion of the tongue required to realize
a hin vowth. radiates to muscles of the a hizh wowl. radiates to muscles of the vocal foldis thas. therefore.

However, Taylor's theory is no longer accepted since electrical insulation in
muscles and nerves is good enough to premuscles and nerves is good enough to pre-
vent serial contraction of adjacent muscles by an osmotic spread of excitability Subsequent theories can be grouped into three main categorines: "acoustic coupling" aerodynamic" and "tongue pull" theories.
The first one, based on Flanagan's mode The first one, based on Flanagan $/ 1 /$, takes into consideration the formant pattern of the vowel: a low F1 attracts Fo giving
rise to a higher pitch. This explains why rise to a higher pitch. very low F1, have a fundamental frequency higher than that The second theory, formulated by Mohr $/ 6 /$, relates the width of the pharynx with the
glottal pressure. According to him. a glottal
the lows vowels are According to thim, as
characterized by a smaller phayyngeal cavity, the supraglottal
pressure increases and consequently the pressure increases and consequently the
transiottal pressure gradient decreases transglottal pressure gradient drequency. According to the "tongue pull" theory, high vowels have a higher pitch because
when the tongue rises it pulls the larynx up via the hyoid bone causing an extra tension of the vocal folds, either vertily (Newelefowsk's s view $/ 8 /$ /).
ly
lil these theories. which were based on All these theories. which were based on
experimental data, have subsequently been experimental data, have subsequently data. confuted on the basis of fur hypotheses can explain the phenomenon of the I.P., Silverman $/ 9 /$ is led to conclude that "the
various physiological. acoustical and various physiological acoustical and and mech to account for the IFO [I.P.] are not
sed
mutually exclusive and probely are all mutually exclusive, and probably ${ }^{\text {are }}$ all
operative during speech production
(p.13). operative during speech production" (p.13).
However, it seems to us that such an explanation is quite obvious because speech acts are complex and it always happens by many factors. The point is that, as regards I.P.. it is necessary to distin-
guish between cause and effect, that
is between what we really command to the articulators to do in realizing a high
or a low vowel and what is merely a conseor a ance of it.
The aim of this experimental study is, on one hand, to verify whether the I.P.
of vowels does exist in Italian; on the other hand, on the basis of acoustic data obtained from normal and oesophageal speech and from singing, t.
procedure
A list of about 200 meaningful Italian words has been prepared. Vowels is/ le/ / $/$ / /a/ /o/ /o/ /u/ occur in intial includes
medial stressed position. The list medis differing in the vewel only. The
words dif
list has been read three times in a randomlist has been read three times by a native ized order in an anechoic room by a native
Italian speaker. Of each word a wide band spectrogram has been made using a Voice Identification Sound Spectrograph by Elec-
tronic ApS in order to have the formant tronic ApS in order to have the formant
pattern of the vowel. In order to calculate the fundamental frequency, a narrow band spectrogram at a linear expanded scale
and the Fo tracing given by an FFM by Fand the Fo tracing given almost all cases
J have been made. As in all the vowel had a rising-falling Fo movement
with a maximum occurring at about its midwith a maximum occurring at about point point.
RESULTS
Fig. 1 shows the average fo values of the three utterances in normal speech.
As we can see, la/ has always the lowest pitch, whereas the other vowels undergo an increase in pitch going from
Hz . Furthermore, we have to notice that Hz . Furthermore, we have to notice that
$/ \mathrm{i} / \mathrm{and} / \mathrm{u} /$ show an Fo increase higher than that of $/ \mathrm{e} / / \varepsilon / / 0 / 10 / \mathrm{the}$ former
being in a range of $15-20 \mathrm{~Hz}$ and the
latter of $4-10 \mathrm{~Hz}$. As we can see the data confirm the ex-
istence of an intrinsic pitch of vowels istence of an
also in Italian.
In order to verify which of the different theories can explain the phenomenon of
I.P., it seems useful to make further exif the I.P. is due to the raising of the If the I.P. is due to extra tension of tongue that causes an extra tension of
the vocal folds, as suggested by the tongue pull theory, the phenomenon should be nullified in oesophageal speech. In furgery the
with the total laryngectomy sur
the larynx with the hyoid bone and all whole larynx with the hyoid bone and all
associated muscles and ligaments are reassociated muscles and ligaments are re-
moved. The voicing source, so-called neomoved. The is viven by the surgically altered pharyngeal oesophageal sphincter.
fore as there aren't any direct interfore, as there aren't any tongue and the connections betwerd neo-glottis, according to the tongue pul theory, in oesophageal speech differences
in I.P. between high and low vowels would not be expected.
not be expected. in order to verify the tongue pull theory the same speech material has been uttered by a laryngectomized speaker. However we by a restricted the list of words to /a/ is and /u/ vowels because, as we have
said above, the difference in pitch is said above, the
most remarkable for these vowels. The data show that the mean Fo of both
The 184 Hz and $/ \mathrm{a} / \mathrm{Hz}$) of oesophageal $/ \mathrm{i} /(84 \mathrm{~Hz})$ and $/ \mathrm{u} /(91 \mathrm{~Hz})$ of oesophagea speech is higher the I.P. persists also in oesophageal speech and consequently we
can exclude both the horizontal and vertican exclude both the horizontal and ver
cal versions of the tongue pull theory. These conclusions agree with the results obtained on oesophageal speech by Gandour
and weinberg $/ 10 /$. They are in favour of and Weinberg $/ 10 \%$

III uterance

FIG. 1. Intrinsic pitch of Italian vowels
the aerodynamic theory. In fact, according to them, the "impedance of the vocal tract
is higher during the production of high versus low vowels. A natural response on
the part of the speaker to this situation the part of the speaker to this situation
would be to increase respiratory drive would speech/vocal effort" (p.353), and in consequence of
a higher pitch. However, it seems to us that the aerodynamic process is more complex and, therefore. it has to be reexamined in detail. We know that glottal vibrations are deter-
mined by the difference between subglottal mined by the difference between subglottal
and supraglottal pressure : the lower supralottal pressure is. the higher is
the fundamental frequency. On the other the fundamental as the supraglottal pressure depends on the opening degree of the constriction occurring along the vocal tract, there
must be a close relationship between Fo and opening degree too.
have made an experiment on singing. We vCV sequences, where V twas $/ a / / \mathrm{i} / \mathrm{monotone} / \mathrm{or} / \mathrm{u} /$ and C was in turn a stop, a dental frica Fig. 2 shows the average Fo values of the consonants.
As we can see, the data clearly demonstrate
the existence of a direct relationship the existence of a direct ree of conso nants. In fact we have the maximum pitch
fall in stops and fricatives because of fall in stops and fricatives because of
the high flow resistance at the articulathe high flow renstion and it is nullified in nasals and laterals because of the free catscape of air through either the nasal cavities or the sides of the tongue. The relationship is given by the Fo trend of the trill. In fact, in this case, Fo about 10 Hz and 40 Hz simultaneously with
the dental openings and closings (fig. 3).

In the light of these considerations, we must conclude that the more open the consonant is. the higher is its pitch.
However, as regards the vowels. show that as regards the vin singing $/ i /$ and $/ \mathrm{u} / \mathrm{have}$ an increase in pitch of At first sight the data seem to be contradictory because as regards the consonants
the more narrow the constriction is the the more narrow the constriction is the
lower is Fo. whereas as regards the vowels lower is Fo, whereas as regards the vowels
it seems to happen the contrary, the more narrow the constriction is, the higher
is Fo. The point is that when we classify is fo. The point is that when we classify
the vowels as "high" and "low", or "close" the vowels as "high" and "low", or close
and "open". we refer only to the oral cavi-
ty; conversely if we take the whole vocal
Fig 3 Fo tracina of arra in singing.
tract into consideration the whole vocal
neasleading is this kind of definition. In fact, as we can see in fig. 4, X-ray
tracings of the Italian vowels /a/ $/ \mathrm{i} / \mathrm{l}$ and /u/ show that all these vowels are characterized by a same impedance occurring different places along the vocal tract: the pharyngeal cavity for $/ \mathrm{a} /$, at the or $/ \mathrm{i} /$.
rom this point of view we must consider a/ i/ and /u/ as "close" vowels and consequently their different fundamental frequencies must be related to the point long the vocal tract where the maximum
impedance occurs and not to the oral impening degree. From this point of view, ve can easily understand why la/ has an ntrinsic pitch lower than that of /i/ pharyngeal cavity causes a sudden increase

[i]

[a]

[u]

FIG. 4. X-ray tracings of $/ \mathrm{i} / \mathrm{/a} / \mathrm{l} / \mathrm{h}$.
to a drop of the transglottal pressure nd consequently to a lowering of the funin light of this, we can give also an account for the acoustic coupling theory. ocording to this theory, a mer pitch. Now, e know that from an articulatory point of view a low F1 corresponds to a constric-
tion occurring in the front half of the ocal tract and, therefore, to a wide sharyngeal cavity. So, once more it is he pharyngeal width to determat is just the opposite of what happens for $/ a /$.
Conclusions
The data gathered in this experimental research confirm that the phenomenon of normal speech as well as in singing and in oesophageal speech. Furthermore, the
phenomenon must be explained exclusively from an aerodynamic point of view, considering on one hand the configuration of the whole vocal tract during the pro-
duction of the vowels and. on the other
ad the pressure trend at glottal and supraglottal level. As regards the tongue pull theory, eve though many experimental studies have prooved that there is a mechanical connec
tion between the tongue and the larynx tion between the tongue and the larynx ly shows that it has nothing to do with the phenomenon of I.P. As regards the acoustic coupling theory,
suffice it to say that above, the rising or sat, as we have said must always be seen low the of a formant articulatory gesture, even though we must admit that such an explanation is less evocative than the hypothesis according because of their closeness.

REFERENCES

/1/ H.C. Taylor, "The Fundamental Pitch of Eng ish Vowels", Journal of Experimen-
tal Psychology, $16,565-582,1933$.
$12 / \mathrm{N}$. Reinholt Petersen. "Intrinsic Fun
13/
chunconadis, H.W. Strube, "Untersu chungen zum ntrinsic Pith Deutsche
Vokale ${ }^{\prime \prime}$. Phonetica, 38, 277-290, 1981.
/4/

15/
161
17/
1964. ${ }^{\text {Spezifische }}$ Dauer ,ine K. Silverman, "What causes Vowels to have Intrinsic Fundamental Frequency?"
Cambridge Papers in Phonetics and Experimental Linguistics, 3 , 1984 . J. Gandour, B. Weinberg, "On the Rela-
tionship between Vowel Height and Fundamental Frequency: Evidence from Esophageal Spe
$354,1980$.

Grateful acknowledgment is made to Umberto craque
ration.

ABSTRACT
We investigated whether an intrinsic pitch (IP),
effect occurs in Standard Chinese and if it exists effect occurs in Standard Chinese and if it exists
how IP and pitch level interact with each other. how IP and pitch level interact with each other.
The fundamental frequencies (F0) of each 9
Chinese vowels at different tonal points were Chinese vowels at different tonal points were
measured in three cases: (1) in a monosyllable, (2) measured in three cases. (1) (3) the word-final position of a disyllabic word. The test items (4000 monosyllables and 509 disyllabic words) were
embedded in a frame sentence and uttered by 5 embedded in a frame sentence and utered by 5
male and 5 female informants. The results show that the characteristics of IP are to be found
in all four different tones of Standard Chinese in all four different tones of Standard Chinese
in spite of the fact that those tones have in spite of the fact thar those tones have
different FO-pattems. Furher, the higher the rela-
tive pitch value the erger the difference in FO tive pitch value, the larger the difference in F0
among the vowels. The IP differences are among the vowels. The IP differences are
reduced in word-final position. These results suggest a new hypothesis.
introduction
 influence of tongue height of vowels on the Fo-value associvalues than low vowels when other factors are kept con stant. A great deal of research has been devoted to the analysis and quantification of intrinsic $\begin{aligned} & \text { pitch in several } \\ & \text { languages: English, Italian, Danish, Japanese, French }\end{aligned}$ anguages: English, Italian, Danish, Japanese, French,
German, Greece, Taiwanese Chinese, Yoruba, Serbo Croatian, Itsekiri, and Chinese. IP has also been observed when vowels were sung at the same pitch. The
eference list can be found in [1]. Various experimental conditions were applied in these
suudies. In the early experiments, isolated 'real' words as
well as 'nonsense' words were used. The segmental well as 'nonsense' words were used. The segmental
environments (i.e. consonantal context) were carefully con trolled. Later, the test words were embedded in a frame sentence. The effects of prosodic environnent on IP
had been took into account.
Petersen [2] reported that had been took into account. Petersen [2] reported hat
the magnitude of IP in stressed syllables is Iarger than the magnitude of IP in stressed syllables is larger than obtained for Italian accent/honaccent words
these studies gienerally All of
showed similar results except these studies generally showed similar results except
Umeda's [4] which reported that there were no consistent IT effects in a 20 -min reading by tho speakers. In
order to investigate whether IP effects occur in connected
speech, Ladd and Silverman [5] compared test vowels (in
German) in
comparable
segmental and prosodic German) in comparable segmental and prosodic
environments under two different experimental conditions: environments under wo diferent experimental condions:
(1) a typical laboratory task in which a carrier sentence served as a frame for test vowels; (2) a paragraph reading task in which test vowels occurred in a
variety of prosodic environments. It was shown that the IP effect does occur in connected speech, but that the
size of the IP differences is somewhat size of the IP differences is some what, smaller than in
carrier sentences. They pointed out that Umeda's finding carrier sentences. They pointed out that Umeda's finding
was questionable because she apparently had not made any attempt to control for the prosodic environment of the voovels that were measured. In a recent study, Shade $[6]$
investigated the interaction of IP and intonation in running speech. She examined the F0 of the vowels [i,a,u] in four sentence positions. The results showed a large main effect of IP that lessened in sentence final
position.
However, none of these studies were concerned with
the roles, of pitch of these studies were and the position in the word in the roles of pitch level and the position in the word in
affecting intrinsic pitch. The main goal of the present
experiment was to experiment was to get a general idea about the effect of
intrinsic pitch in Standard Chinese. The effect was to be intrinsic pitch in Standard Chinese. The effect was to be
studied as a function of the following variables: (1) pitch level (in different tones); (2) position in disyllabic

METHOD

The material consists of two parts, 400 monosyllables and
509 disyllabic words. All possible combinations of con509 disyllabic words. All possible combinations of consonants and simple vowels in Standard Chinese were
included in the monosyllable part, and each combination included in the monosyitable part, and each combination Among them there are 279 'real' monosyllabic words
and 12 'nonsense' words. In the disyllabic word pant, and 121 'nonsense' words. In the disyllabic word part,
every word consist of one test syllable (a simple vowel preceded by an initial consonant) and one matched syllable. preceded by an initial consonant) and one matched syllable.
The matched syllable was chosen in such a way that the est vowels could be compared in a similar segmental
environment
and

 est syllabies 273 were in word-initial and 236 in word-
inal position. As many combinations of two tones as posfibal position. As many comb
sibe involved in this part.
In order to make all test items be in the same phonetic
environment and to approach the situation of connected environment and to approach the situation of connected
speech, all the monosyllables and disyllabic words were embedded in the frame sentence /Wo dús.zi./ (I utur
word _ . .) respectively
Ten speakers (5 males and 5 females) of Standard Chinese were recorded. They had been trained for a short period before the recording. A natural speech style was aimed at.
The test materials were read once by each speaker in an acoustically treated room.
The recordings were fed into a Visi-Pitch (model 6087) for
the extraction of FO . The counter on the Visi-Pitch prothe extraction of FO. The counter on the Visi-Pitch pro-
vides a digital display of F0 for sustained vowels while the vides a digital display of FO for sustained vowels while
cursor allows the user to determine the F0 of any point
pore on the pitch
accuracy.
Fig. 1 shows the measuring points of $\mathrm{F0}$. They are: for
high tone (T1) the midde point T 1 ; for rising tone (T2) the high tone (T1) the middle point T ; for rising tone (T2) the
lowest point $\mathrm{T} 2-1$ and the highest point $\mathrm{T} 2-2$; for dipping lowe
tone (T3) the stanting point T3-1 and the lowest point T3-
2; for falling tone (T4) the highest point T4-1 and the 2; for falling tone
lowest point T4-2.

Fic. 1 Neasuring points of fuxdurnental frexpeny
As a first step we only cared about average IP differences between vowels but ignored the differences
between consonantal context and interspeaker variation. The staristical method was a one-way analysis of variThe statistical method was a one-way analysis or
ance (with speakers and consonantal environments as a ance (with speaked measure).

RESULTS

1. Vowels Intrinsic Pitch In Four Tones

The data which will be analysed in this section
derived from 400 monosyllables. The intrinsic derived from 400 monosyllables. The intrinsic FO
values for each of 9 vowels and relative FO difference (FFO) between the vowel [als and the remaining 8 vowels at
different tonal points are given in Table 1. in which the different tonal points are given in Table 1 . in which the
data are mean values averaged across consonants data are mean
for 5 males and 5 females respectively. ${ }^{\text {and }}$ This is also for 5 males and 5 females respectively
shown graphically in Fig.2 (see $0-0$).
The data mentioned above permit us to make the following values of the vowels go from high to low as the tongue height of the associated vowel drops, and the F0 difference between high and low vowels are significant; 2) at points
T2-1 and $\mathrm{T} 3-2$ a high vowel also has a higher F 0 except that T2-1 and T3-2 a high vowel also has a higher
the FO-value of [o] of the males is a bit higher than that of I] and $[i]$ and the FO-value of [a] of the females is higher
than what is expected The data at these five points show han what is expected. The data at these five points show
hat Chinese, as a tone language, also exhibits the that Chinese, as a to toie
influence of intrinsic pitch.
The situation is more complex at points T3-1 and T4-2.
We found considerable interWe found considerable inter- and intra-speaker variability
for $F 0$-values at point $T 3$-1. The main problem at point $T 4$ for FO-values at point T3-1. The main probiem at point T4-
is that the energy at the end of T is very low and the periodicity is not good enough to permit precision in meas Irements. As a result
Ihese two points.

Table 1. Mean intrinsic FO-value for each of the 9 Chinese
vowels and relative FO differences ($\Delta \mathrm{FO}$) between the vowel [a] and the remaining 8 vowels at different tonal voints. [a] and the remaining 8 vowels at different tonal points,
derived from 400 monosyllables, averaged across consonantal contexts, and for 5 males and 5 females respective ly.

Fo and afo (Hz)

.-. Noxosylable
int:al

elongation x of the vocalis muscle can be approximately expressed as,

$$
T=a e^{b x}
$$

The incremental tension per unit elongation, as
given by $\partial T / \partial x\left(=a b e^{b x}\right)$ is given by $\partial T / \partial x\left(=a b e e^{x x}\right)$ is obviously greater at larger
values of x which generally correspond to higher FO values. In other words, the same incremental elongation due to the tongue pull could cause a larger
increase in tension T , thus leading to a larger F 0 variance at high F0 than at low F0. However, it must be emphasized that this is only a probable conjecture.
The reliable evidence for the interpretation should be The reliable evidence for the interpreation should be this kind of nonlinearity in the prowuction of speech
could be confirmed, it would be helpful for a better undercould be confirmed, it would be helpful for a better under-
standing of the similar nonlinearity found in the perception of speech.
acknowledgentents
We would like to express our thanks to Prof. Eva Gäding and Prof. Maa Dah-You for their valuab
tions and critical reading of the early versions.

REFERENCES
[1] Shi, Bo and Zhang Jialu. 1986. Vowel intrinsic pitch
 [2] Petersen,N.R. 1978 . Intrinsic fundamental fre-
[2] quenc
189.
[3] Ferrero,F.E. et al. 1975. Some acoustic and perceptual characteristics of the Italian vowels. Paper presented
mimeographed.
[4] Umeda,N. 1981. Influence of segmental factors on fun-
damental frequency in fluent speech. J. Acoust. Soc. Am. 70 : 350-355
[51 Ladd,D.R. and Silverman.K.E.A. 1984. vowel intrinsic
pitch in connected speech. Phonetica $41: 31-40$. pitch in connected speech. Phonetica 41:31-40
 [7] Taylor.H.C. 1933. The fundamental pitch of English man
[8] Fhanagan,J. and Landgraf,L. 1968. Self-oscillating source for vocal-tract synthesizers. IEEEE Transactions on
Audio and Electroacoustics AU-16, $57-64$. [9] Mohr.B. 1971. Intrinsic variations in the speech signal.
Phonetic, 23: 65 . Phonetica, 23: 65-93.
[10] Ladefoged,P. 1964. A phonetic study of West African
languages. In West African Language Monograph, Series I (Cambridge U.P., Cambridge).
[11] Ohala.J. 1973. Explanations for the intrinsic pitch of vowels. Monthly Internal Memorandum, Phonology
Laboratory, Univ. of California, Berkeley (January), 9-25. [12] Ewan,W.G. 1975. Explaining the intrinsic pitch of [12] Ewan, W.G. 1975. Explaining
vowels. Paper presented at intrinsic pitch of
tics Association Conference, San Josth Califormia Linguis[13] Bush,M. 1981. Vowel articulation and larjngeal con trol in the speech of the deaf. PhD thesis, MrT (unpub 14] B.
[14] Banner.,R. 1984. Towards a model for German pro-
Working Papers 27: 1-36. Dept. of Linguistics and sody. Working Papers
bernd móbius, alice zimmermann, wolfgang hess
Institut für Kommunikationsforschung und Phonetik,

abstract

Abstract

s a preliminary study in the analysis of German sentence intonation, this contribu tion deals with two types of segmentally conditioned fundamental frequency (Fo) variations: the influence of stop conso variations: the influence of stop consol the differences in F_{0} between high and 10 (Fo). These microprosodic phenomena are recorded, evaluated and discussed in de tail for one speaker. Apart from speaker- specific variations, the results are quall specific variations, the results are quarported in the literature $/ 1,3,8 /$. In intonation research, the CFo effect may be intonation research, the CFo effect may be neglected, provided that the exact point of Fo measurement is chosen appropriately, hereas IFo differences have to be evaluhed for each speaker separately.

introduction The temporal course of voice fundamental
frequency (Fol, as the pre-eminent representative of sentence intonation in Ger-
man. may be considered as the result of man, may ine coning factors. A thorough description and interpretation of fundamental frequency tracings must account for
at least the following factors that affect at least the following factors that affect
the course of Fo in different ways: microprosody, i.e., intrinsic fundamental frequency, of vowels and coarticulatory Fo sentence accents; sentence position; and modality /15/.

This contribution deals with the microprosodic factors, namely the influence of
initial stop consonants on F_{o} of stressed vowels (coarticulatory Fo variation; CFo), and the dis lintrinsic fundamental frequency; IFol. These phenomena may be defined as variations of the speech signal which
depend on the acoustical and physiological depend on the acour human speech production system.

The aim of this study is to record and one speaker and to eliminate them as fartors disturbing the interpretation of The relevant procedures described in the literature e.g. ${ }^{2}$, $11,15 /$ generally imply an undesirable restriction in the the large inter-subject variation of the microprosodic effects $/ 1,6$, the the pro-
cedure described here seems to be fairly cessful
experimental data on german
Intrinsic Fundamental Frequency (IFo) of Vowels: Test Material
we evaluated part of our investigation we evaluated the intrinsic fundamental
frequency (IFo) of the German vowels for frequency speak. Within the key words vowel
one suality was ardied as well as vowel quan-
qual quality was varied as well as vowel quan-
tity. According to the results of earlier studies of German microprosody /1, $9 /$ we expected systematic higher IFo values for high vowels compared to low vowels. The tity on IFo are less clear-cut. It is true that the IFo differences between open and closed vowels tends to be more distinct in
short vowels than in long ones; but a sigshort vowels than in iong ones; butated by Antoniadis and Strube /1/. For our speaker
the difference was insignificant.
The key words were embedded in a short carrier sentence of the form "Ich habe .. gesagt" ("I said ..."). The choice of a
relatively short carrier sentence enabled relatively short carrier sentence enabled
us to control the intonation contour of us to control the intonation \quad contour or the whole unterad of German words with the exception of the key words "Kir" an
"Punk" which are borrowed from French and English, respectively. Nevertheless thes wo words may be considered as elements of present-day German; they were uttered wit. [ki:x] and [papk]. Within the key words we
examined and analysed the long and shor
stressed vowels of German:

Coarticulatory Fo-Variations (CE). Test In the second part of our investigation we evaluated the coarticulatory influence of initial stop consonants on the funda place of articulation as well as the voic ng of the plosives. The key words con taining the initial German plosives / $\mathrm{P} /$ the aforementioned carrier sentence "Ich habe ... gesagt"

rocedure

Since we expected the microprosodic F variations to be strongly dependent on th he utterances of only one speaker in the irst step of the experiment. The tes entences were spoken by a male subject arried out at three different days within two weeks. The test sentences were typed on cards and presented to the speaker in er of Standard German, was instructed to pronounce the, sentences successively with
few seconds' interval.
The material was recorded in an anechoic chamber using a professional microphone and tape recorder. Before digital processing we checked whether the test sentences were uttered with the same underlying in-
tonation contour in all cases. A group of tonation contour in all cases. A the sentence modality unanimously as declarative. The syllable containing the test vowel had
to be realized with nuclear stress, i.e., rising Fo, controlled by means of a Fro-kjaer-Jensen Transpitch Meter output. Utterances that did not meet these requirerecorded again; this proved to be necessary in a total of 14 cases.
The fundamental frequency
was carried out by an algorithm
what was carried out by an algorithm oscillogram in high represents the spech The program enables
temporal resolution. The determining the duration of fundamental
periods and calculating the actual F_{0} values for each period. The results are presented and discussed in the following section.
pesults
The values of intrinsic fundamental frequency for the German long and short vowels presented in figure there determined
as follows. Presuming that our studies into microprosody are subordinate to intonation analysis on the sentence level, we looked for a way to condense the Fo micro-
structure of a vowel in one single represtructure of a vowe Two procedures with two measuring points seem to be particularly
a) Arithmetic mean $\overline{\bar{x}}$: To begin with, we
cut off the first and last third of the temporal course of the vowel. Then the arithmetic mean is calculated for the Fo
values of the remaining (second) third. This procedure is motivated by the fact That the influences of neighbouring seg ments may be considered relatively small
in this quasi-stationary part of the vowel /1/. b) $2 / 3$ value of fundamental frequency at two thirds of the duration of a vowel $/ 12 /$. This well-established method has aped 2/. Rossi defines a regularity which says listeners as a whole; on the contrary, the perceived pitch of a vowel corresponds to
a value of fundamental frequency that is a value of fundamental frequency that ond and the last third of the temporal
course of Fo. The $2 / 3$ value may be regardcourse of Fo. The $2 / 3$ value may be regarded as representative fos.
or falling Fo glissandos.
The results show - as we had expectedessentially higher is ifo we had expected
vowels compared to those of low vowels vowels compared to those of low vowels,
with the exception of the short /U/ which has even lower IFo values than $/ E /$. With
the tongue height being equal, back vowels the tongue height being equal, back vowels
show higher IFo than front vowels, which show higher inco accordance with data reported in the literature / 1, 10/; /U/ is the exception
here, too. The values for $/ \mathrm{i}: /$ and $/ \mathrm{I} /$ turned out somewhat lower than expected, a finding that may be caused by the struc eral of the test material containing sev
words with final vocalized $/ \mathrm{r} /$,
 controlled by using other test words con taining the vowels /i:/ or
tively, andential results of our investigation concerning the coarticulatory fundamental frequency variations are illustrat detailed representation of the averaged F o tracings for the CV combinations "voice less plosive + long vowel" and "voiceles that vowel quantity influences the actual Fo values rather than the whole contour Furthermore the infuence of the 50 mis. plosive has decayed after at most 50 ms .
This is important for further measurements. The influence of coarticulatory F_{0} variations may be neglected when the point of measurement is chosen appropriately,
that is, at least 50 ms after the vowel onset.
Figure 3 supports the hypothesis $/ 1,2 /$ Consonant has of articulation of the stop the course of fundamifical frequency in the the course of fu.
following vowel.

Figure 1a, b. Intrinsic fundamental frequency values of the Figure la,
German vowels. (a) Long vowels; (b) short vowels. Fo calcula-
tion for the $2 / 3$ value (/12/; white surfaces) and for the tion fir metic mean $\overline{\mathrm{x}}$ (hatched surfaces). All utterances by on speaker (DL, male)
discussion
There remain at least two problems deserving discussion here, in particular for the part of our study that deals with the incourse of fundamental frequency of vowels. The vowel onset after voiced and voice-
less plosives is mostly reported in the less plosives is mostly reported in the pectively. We also share this observation. In a recent study Silverman $/ 14 /$ argues
In
that this so-called "rise-fall dichotovy" that this so-called "rise-fall dichotomy"

- falling Fo_{0} after voiceless stops and rising Fo after voiced ones- is an artifact brought about by the structure of the
test sentences. In the great majority of test sentences. In the great majority of
investigations the key words are integrated within a carrier sentence in nuclear-
er, this position is marked by a rising underlying intonation contour. This constellation, applying to our data as well,
is in Silveman's is in silverman sopinion and experiments the ideal condition for an apparent dichotomy of rising and falling Fo contours. Furthermore we proceeded from the as-
sumption that the influence of a stop consonant on vowel F_{0} is purely progressive, .e., only following vowels are affected $3,6,8 /$ In two recent studies, however,
Kohler $/ 4, ~ 5 /$ showed that the Fo microstructure may also contribute to the discrimination of postvocalic lenis and for is obstruents.
We hold the
nents as well as Kohler's findings will have to be taken into account in the
choice of test material in future studies

Figure 2. Coarticulatory Fo varia-
tions. The figure shows the Fo
tions. The figure shows the Fo course of the CV combinations
"uoiceless plosive + short vowels" $\left(V_{k}\right)$ and voiceless plosive + long vowels" (V_{1}). Vowel onset at 0 ms .
All utterances by one speaker (DL ,
and in the interpretation of data reporte in the literature

conclusion

The procedure presented here will allow us to study and analyse intonation on the sentence level without considericopros interfering influences of the micropros ody. The proposed and $2 / 3$ value - are bot found representative of vowel fundamental requency. The actual variations of the intrinsic fundamental frequency of to b etermined for each speaker separately.

references

1/ Antoniadis Z., Strube H.W. (1981): 'Untersuchungen zum 'intrinsic pitch deutscher 277-290
2/ Di Cristo A., Hirst D.J. (1986) Di Cristo A., Hirst sis and synthesis". Phonetica 43,
$11-30$
3/ Jeel V. (1975): "An investigation of the fundamental frequency of particular stop consonants. Annua
Report of the Institute of phonetics Report of the
$9,191-211$ (Copenhagen)
4/ Kohler K.J. (1982): "Fo in the production of lenis and fortis
sives". Phonetica 39, 199-218
 Figure 3. Coarticulatory Fo varia-
tions. The figure shows the
course of the course or

5/ Kohler K.J. (1985): "Fo in the perception of lenis and fortis plo-
sives". J.Acoust.Soc.Am. I8,
(1), sives"
$21-32$
6/ Lehiste I., Peterson G.E. (1961) "Some basic considerations in the
analysis of intonation". J.Acoust. Soc.Am. 33, 419-425
7/ Lyberg B B (1984): "Some fundamental frequency perturbations in a sentenc
context". J. Phonetics 12 , $307-317$
18/ Mohr B. (1971): "Intrinsic variations in the speech signal". Phonetica 23 , 65-93
Neweklowsky G. (1975): "Spezifische
19/ Neweklowsky G. (1975): Tphöhe der Vokale". Phonetica 32, 38-60
110 sic funden (1976): "Intrinsic fundamental frequency of Danish
vowels". Annual Report of the Institowe of Phonetics 10, 1-27 (Copen-
11/ Reinholt Petersen N. (1986): "Perceptual compensation for
conditioned fundamental
segmentally
frequency

/12/ Rossi M. (1971): Le seuil de glissando ou seuil de perception des variations tonales pour les sons de
/13/ Sendlmeier W.F., Stock D. (1983): "Ein Computerprosramm zur Manipulation digitaler Sprachsignale mit
einer Anwendung zur Synthese nach dem einer Anwendung Farhberichte des InKommunikation $17,1-16$ (München)
/14/ Kommunikation
Silverman K.
$\left.(1986): \quad{ }^{1-16} \quad \begin{array}{l}\text { (München) } \\ \text { "Fo segmental }\end{array}\right)$ cues depend on intonation: The case
of the rise after voiced stops" of the rise after voiced stops".
/15/ Thorsen N. (1979): "Interpreting raw fundamental frequency
traci
Danish". Phonetica 36,
$57-78$

Institut fur Phonetik und Sprachiche Kommunikation der Ludwig-Maximitians Universitat Munchen. FRG

ABSTRACT
F. perturbations were measured for Hindi
voiceless. voiceless aspirated, voiced, and voiceless, voiceless aspirated, voiced, and
breathy viced stops combined with the phonemically long vowels/a e i o w/ in word-
initial position and isolated word produc-
tinaly initial position and isolated word produc-
tion. The analysis revealed: (i) significhe
cant diferences between the stop manners
of articulation for about 90 ms after reof articulation for about 90 ms after re-
lease: (ii) significant influence of the
tongue height of the vowel, and (ii) less angue height of the vowel, and (ii) less
nfluence of the place of articulation of
ne stop. influence.
he stop.

INTRODUCTION
Fioperturbations after stops have been though of as unavoidable by-products of
the stop articulation and have been treated
as sendary cue for the perception of as a, secondary cue for the perception of
stop s manner af articulation. onde'
studies f33 for examperevealed falling
F. cintour after voiceless and alower . studies [3] for example revealed a falling
F. contour after voiceless and alower F .
onset but
still falling contour after onset but still falling cont iour after
voiced stops. It was shown by Lear $[2]$ and
vmeda [5] that the influence of the precevoiced stops. It was shown by Leat [2] and
Umeda rsj that the influence of the prece-
ding stop had disapeared in nontone ding stop had disappeared in non-tone
languages 1 ike English after 75 to 100 ms .
 on vaiced and voiceless aspirated stops:
thus voiceless unaspirates and breathy
voiced stops were rarely included in these thus voiceless unaspirates and breathy
voiced stops were rarely included in these
studies. Moreover. i attlention has been paid to the influence of the vowel on
he F. perturbations. Hence, the aim of our nvestigation is threefold: (i) to provide
data from a language with a four-way contrast within the stop categories, (ii) to present results from breathy voiced
inii) to tost the influence of
stops.
sither the place of articulation of the ither the place of articulation of the
top and the tongue height and tongue stop and the tongue height and tongue
material, informant and procedure
A list of words was prepared containing the voiceless voiceless aspirated, voiced, and
breathy viced stops in four places of
articulation articulation comabial with dal, retroflex,
and velar) comined whenemically
long vowels of Hindi in word-initial
onsition

isted in Table 1 for the stop conditions. The difference between the stops $\begin{gathered}\text { remains } \\ \text { significant till pitch period } 20 . \text { All } \\ \text { stops }\end{gathered}$ siffer in respect to the F. onset and ${ }^{\text {F }}$ ontour. The onset is highest in voiceless
tops (henceforth VL). iower in aspirated tops and voiced stops (VD) and lowest in
ASP)
reathy voiced stops (BRE). VL stops have a
 falling, and BRE stops arising pattern.
The fall is steepest invi, less step in
TD stops. All stops differ significantly
 (P1). At pitch period P2O the stops fal
into two groups: vo and UL With iower F.
and BRE and ASP with higher values.

 show the highest F. onset, whereas the
[apic] stops $/ p /$ and $/ k /$ have lower F.

frequencies at the onset with an overlap
between both groups. The contour is falling between both groups. The contour is falling
for all stops except $/ \mathrm{k}$, which shows rising-faling pattern. Fig. ${ }^{3}$ shows th
results for the ASP stops. All stops hav results for the ASP stops. All stops have
hish F. values at vouel onset. F. increases
from
 continously from p2 to proe other stops.
differs significantly from the
vo stops show a different pattern (cf. Fig.

 higher and the
lower Frequencies. But only /b/ differ
significantly from the other stops. Th

 show a
to p $1 / \mathrm{P}$ to P2
to P20.
P2 and

stops, but they do not differ significantly from each other. The differences betwen
the stops in pitch periods p4 to p20 are
caused by the sionificantly higher cased by the significantly
values for the velar stop/gh/. values for the velar stop vigh. on the F.
The influence of the voel on to
contour. The results for the VL stops are contour. The results for the vistops are
shown in Fig. 6, the F-values and p-values
for all vowel conditions are given in Table

$\begin{array}{ll}\underset{y}{2} & 200 \\ \vdots \\ 0 & \\ 0\end{array}$
Fig. 4: VD stops

Fig. ${ }^{2}$ to 5 : Fo values as a function of
pitch period and place of articulation of
the stop
2. The F. at vowel onset is a function of
the tongue position of the vowel: central
 than front vowels. The, F. trajectory for
the vowels difers: $/$ shows a steep
fallingethe the vowels differs: /a/ shows a steep
falling, the mid vowels of ol aling,
and the high vowels/i u/a rising-falling and the high vowers/isula arising-falling
pattern. The difference between F. onset
and endpoint of the trajectory is again a and endpoint of the trajectory is agan a
function of tongue height: it is greatest

Fig. 6 to 9: Fo values as
pitch period and the vowel
for /a/ less for, the mid vowels, and
smallest for in
These result reflect the well known effect of "intrinsic
pitch". Fig. 7 displays the results for the

TABLE 2: Effect of the vowel as function of

ASP stops. The differences between the
 compared to the UL ones. F. is obviousty
determined by the tongue position of the
vowel: central and back vowels lead to vowel: central and back vowels lead to
vowher Fonset than do front vowels. All
onowels differ significantly from each
vole
 the first two pitch periods, and a falling
contour from P2 to P10, whereas the mid vowels have arising-falling and ${ }^{\prime}$ i/
rising-falling-rising pattern. In rising-falling-rising pattern. (In is stop
F. at vowel onset (cf. Fig. 8) is det mined by the tongue position of the vowell F.ist lowest for mid, higher for high, and
highest for low vowls. But only fel
differs highest for
differs. signicantly fowe from the other
vowels. The vowels differ. too, in respect vowels. The vowels differ; too, in respect
to the F. trajectory $/$ ar shows a steep
fall, /e otir a short fall followed by a
fist ising contour, whereas /u/ has a rising
 ence of the vowel is smallest but signi-
ficant at vowel onset. Back vowels shou a
silighty slightly higher F. than non-back vowels.
For detailed discussion cf. 4 . 4 .
Interaction between place of ation
 with those from Ohde's studies we have
calculated the F. difference between the and
irstated the ${ }^{\text {and }}$. difference between
Concerning the pitch period (cf. Tab. 3) Concerning the stop manners in general a
fall was measured
whereas ASP and BRE stops show an risp whereas ASP and BRE stops show a rising
pattern. This can be explained by the
different timing and width pattern of the (10tis for these two wroups of stops (cf.
slot
[1]). The effect of place of articulation

 stop's manner of articulation, the results
can be sumarized as follow: (i) ASP stops
cause a rise fis cause a rise from pi to pis. There is no
interaction between place of articulation
and vowel. (ii) The Fois rising after BRE
stops with only a few exceptions be neglected due to the exceptions which can
minal differences between P1 and P2 in these examples. The
ressults for bho/ cannot be explained (iii) $V L$ and $V D_{\text {at }}$ stops show similiar
patterns and large interactions between place and vowel. In labial positicn [+back] vowels cause a rising F_{0} contour, whereas in dentay pasition the same effect is
caused by
with tront] vowels. In combination
 pattern, tootitio is falling in the
retroflex position for both stop manners
with the exception of i/ after VL stops, with the exception of $F_{\text {i/ after VL stops, }}$. The differences
which cause a rising F_{0}. The
 stops, Whereas after vo arise rise
observed only with [thigh] vowels.

GENERAL DISCUSSION

Concerning the stop manners of articulation
in general our results verify those found in general our results verify those found
by Lea and Umeda, as the diferences remain
significant for about 90 ms. and they are significant for about so ms and they are
in good agreement with those found by ohde:
VL, ASP and VOD stops cause a falling F: after vowel onset. The Fo onset is higher
for VL than for ASP stops. The overallif. for UL than for ASP stops. The overal F.
is on the other hand higher after ASP than
after VL stops. The places of articulation is on the other hand higher after ASP than
after stops. The places of articulation
do not influence the F. onset pattern ina do not influence the F. onset pattern in a
systematic way: The stop manners form two
different sets systematic way: The stop manners form two
different sets: (i) ASP and BRE stops on
the one side and VL and VD on the other the one side and $V L$ and $v D$ on the other
side pattern differently with respect to to
 BRE stops cause a Firise from P1 to P2
(with only few exceptions within the BRE category the UL and UD stops reflect simi-
liar interactions between place of articuliar interactions between place of articu-
lation and the vowel This can be explained
by the the lation and the vowe difference in the laryn-
by the underiying or
geal behavior during the production of geal behavior during the production of
these stops. In VL as well as VO stops the
glotatis is almost closed during the moment glottis is almost closed during the moment
of articulat ory release of the closure,
whereas the ort Whereas the gottis is open in BRE as well
as ASP stops. Thus the F. onset is less affected by art iculatory movements suring
the production of ASP and BRE Stops, but is subject to greater influences in VL and VD
stops. some general differences between our stops Some general differences between our
ressults and Ohde's are obvious: (i) ASP stops cause a rising-falling pattern across
all place and vowel conditions. This diffeall place and vowel conditions. This diffe-
rence is systematic without any excepticn.
It It can be assumed that the different
methods applied in these studies may be
respodsibp methods applied in these studies may be
responsible for this effect. (ii) UL and vo
stops do not cause afalling ${ }^{\text {and patern in }}$ stops do not case a falling F. Pattern in
all place or vowel conditions. The patern
is is a function of the place of articulation
and the tongue height and tongue position and the tongue height and tongue position
of the vose (iii) concening the inter-
action between place of articulation and vowel we found, in contrast to ohde, a
similiar pattern for the VD.and VL stops. similiar pattern for the vD and VL stops.
This interaction is comparabie to that of
Ohde only in respect to the VD category.

TABLE 3: Interaction between place of articulation, vowel ${ }^{\text {and }}$ atop manner: diffe-
rence between P_{1} and P_{2} in Hz . positive

		vo	VL	ASP	BRE
means		7.9	8.7	-14.8	- 7.9
labial	1a/	11.2	50.5		-11.3
	'e/	$\begin{array}{r}3.3 \\ -3.4 \\ \hline\end{array}$	31.0 -14.6		
	/i/	- 1.8	-12.8		-5.3
	\%	- $\begin{array}{r}4.2 \\ 1.5\end{array}$	-35.8 13.7		-11.5 -6.1
dental	/a/	13.8	49.0	- 5.0	0.4
	'el	$\begin{array}{r}-0.5 \\ 11.4 \\ \hline\end{array}$	$\begin{array}{r}-14.1 \\ \hline .3\end{array}$	-27.3	-15.3
	/i/	- 3.9	- 9.4		-10.6
	101	1.7	-12.5	-35.0 -19.3	-14.6
	\times	6.6	7.7	-19.3	-10.1
retr.	/a/	42.7	51.7	- 0.8	5
	1e/	3.7	46.8	- 9.4	-13.7
	\%19	+8.4	36.7 -9.2	-23.0	-13.6 2.1
	/u'	20.8	30.8	-10.0	-6.7 -4.1
velar		14.4			-16.3
	'e/	4.3	-26.1	-37.2	-4.4
	10%		-31.1 -11.6	-26.1	-5.0
	fís	- 2.12	-11.4	-42.1	- 4.2
	+	2.9	-17.4	-15.0	-3.0

REFERENCES

[1] Hirose, H.; Lisker; L.; Abramson; laryngeal features in stops production. Haskins Lab. Status Rep. Speech
Qes. SR-31/32, pp.183-191 Haskins Res. SR-31/32, pp. $183-191$ (Has
Laboratories. New Haven 1972)
[o] Lea, W.A.: Segmental and supra-
 Consonant types and tones, ppy 17-70
Cincuistic Program, University of
Southern California, Los Angeles 1973)
43. Ghde, R.N.: Fundamental frequency as an acoustic correlate of stop conso
nant voicing. J. acoust. Soc.Am. 75 : nant voicing
$? 24-230(1984)$
[4] johiefer,L.: F. in the production and Perception of breathy stops: evidence
from Hindi. Phonetica 43:43-69 (1986)
[5] Uneda, N.: Influence of segmental factors on fundamental frequency in
fluent speech \quad J.acoust. Soc.Am. 70 :
$350-355(1981)$

INITIAL Fo-CONTOURS IN SHANGHAI cV-SYLLABLES - AN INTERACTIVE
FUNCTION OF TONE, VOHEL HEIGHT, AND PLACE AND MANER OF STOP HEIGHT, AND
ARTICULATION
ling ring - harry ramming - lieselotte schiefer
hans g. tillemann

Institut fur Phonetik und Sprachiche Rommunikation der Ludwig-Maximilians Universitatit München,

abstract
Perturbations after voiceless and voiceess aspirated stops are analyzed in Shang-
hai, a tone language. It turned out that F.
s, al ways higher after voiceless than after is always higher after voiceless than after
aspirated stops, 15 and this difference dis.
appeares after to 30 ms. The place of appeares after ${ }^{15}$ to 30 ms . The place of
articulation of
the stops does not contriarticulation of the to the F_{0} difference,
introduction
For languages such as German and English it For well known that voiced stops cause an
is nitial lowering of Foincv-syllables and

 of the that in a tone tanguage this effect
showed
disappeared after 40 to 60 ms. This raises disappeared after 40 to 60 ms . This raises
the question whether this specific gattal
behaior the question whether dependent or not. Most
behavior is language
studies on $\mathrm{F}_{\text {。 }}$ perturbations after stops fostudies on Fo perturbations after stops fo-
cused on the difference between voiced and
voicel voiceless aspirated stops rather than on
the difference between the two voiceless the difference aspirated and unaspirated). on
categories as and and
the other hand. those studies which exathe other hand, those studies which exa-
mined that difference provided rather diverse results as in some of the languages voiceless aspirated stops caused higher $\begin{aligned} & \text { Fo } \\ & \text { values than the voiceless ones (Korean }\end{aligned}$ (2)), whereas other authors report the re
verse (English verse (English
aspirated stops was reported
asoo for aspirated stops was reported too for
Cantonese by zeer 71,
perturbations after
 respectively. The rather conflicting
results cannot bexplained easily as the studies differ in (i) number of speakers
empioyed, (ii) material included in in most
studies only a subset of either the stops studies only a subset of either the stops
or stop-vowel combinations is analyzed),
and especial and especially (iii) in method. With our to an solution of wanted to help contribute
the problemby employing
further material from a tone languag Thus, the aatimof our study is the therongl:
Ti) to examine the Fo perturbations caused (i) to examine the Fo perturbations caused
by two voiceless stops in a tone-language.
(ii) to measure the duration of these
yze whether the ro perturbace of art either with tone, the st
culation, or the vowel.

material and informant

Every word, containing one of the cl somparate cards. Was whitten ten times one informant (maie, ${ }_{\text {speaker of }}{ }^{34}$ years old), nangi, but with imperfect knowledge of Mandarin. The recordings were made in our Mandarin. The recordingen M15 itute on a Telefunken
tape recorder using a Neuman U87 studio icrophone. The microphone was placed in ront of the speaker at a distance of about
comfortable loudness and tempo. He was
giventhe cards in randomized order and he given the card the words in the following way: after reading the turn wo the card the put it aside before continuing with the next word.
This procedure caused the speaker to read This procedure caused the speaker to read
slowly and breathe after every word. smployed this method in order to avoid any
emist effects". The recordings were kind of "list effects". The recorings were made in one session
of about 15 mins .
procedure

A preliminary analysis of the fundamental
frequency was run with the Frokjer-Jensen Prequency was run with the froker-jeation
Fo-Meter in order to check the realiser of the tones and to eliminate any mistake
made by the speaker. The material was then made by the sperppri1/50 with a sample rate of 20 kHz and filtered with a cut off fre-
quency of 8 kHz . The first 15 pitch periods quency of 8 kHz . The first 15 pitch per the
of the vowels in syllables and
first ten periods in short syllables of first ten periods in short sylables of
Tone were delimited manually with the help of a segmentation routine and store
for analysis (for detail of. (5)). The for analysis (for detail cf. (5). The Fo
was calculated separately for all CV condi tions in all tones, averaged over all repe titions. Separate multivariate analyses o
variance were applied for each tone condi tion.

RESULTS

$\frac{\text { Manner of articulation. The main effect of }}{\text { the stop } \mathrm{s} \text { manner of articulation (cf. Fiq. }}$, is significant in all tone conditions but of the interactions between manner of articulation and vorter vL than after ASP lways higher after VL than after
stops. This efrect disappears in Tone
after
 tively. This is equivalent to either
30 or 25 ms .
30 Place of articulation. The effect of the
Stop's piace of articulation is sianificant
int
 han the labial or alveolar stops. As there
is an interaction between the manner and
 2, the maineffect of the place cannot be
interpreted by itself. It is apparent that
the interaction is due to the velar vL stop
 espectively, Vowel. The main effect of the vowel is
Significant throughout. The diference
 t than after ASP stops and the results
eflect the well known phenomenon of
 igher F_{0} values than mid or 10 ones. As
here is no interaction between the vowels nd places of articulation, the results for
one 2 and the V stops are displayed in
 The contour. The Fo differences between the
vowels are nearly the same at P as well as at ply. Tone 3 shows an interaction between
place of articulation and the vowel (cf. place of articulation and the vowel (cf.
Fig. 4) which obviously is due to a diffe-
rent behavior of the velar stop. Hhereas rent behavior of the velar stop. , Hhereas the fo onst in /e/ is lowafter the labial
and aiveolar stop, it is higher after lk/,
followed by ashort fall instead of a rise. followed by a short fall instead of a rise.
The differences are even greater for /u/, The differences are even greater for ful,
where the forter ist isnificantiy
higher than after the other stops. higher than after the other stops.
Interaction between manner of articulation and vowel. In all tone conditions a sigand vowe. interaction between the stops
nificant
manner of articulation and the vowel can be manner of articulation and the vowel can be
bserved. The results are plotted separately for the tones. Fig. 5 shows the results or vowels are small after the ASP stops, greater after the VL ones; il after
the vi stops difers significantiy fromall
 ror Tone 3. Fo after the ASP stops is
rising in ie/ level intu/, whereas both
vowels have aifalling patternafter the vi

 somewhat different pattern. This time, the
interaction is caused by the ASP stops
 the onset is high, followed by a Fo rall.
After ASp stops the Fonset is extremely low in /e/, which shows a rising-falling
patern, whereas the onset is high in ol ol
followed by a quasi-linear for fall towards Collowed by a quasi-1inear fo fall the other hand a falling-rising pattern. To summariz these results it can be stated that (i) the
interaction between manner and vowel is interaction between manner and vowel is
caused by a specific behavior or /i/ (Tone 1) and (u/ (Tone ${ }^{3 \text {) after }}$ VL stops, and stops in Tone 4.
There is
one

Fiq. 1: Fo values in Hz for the manners of
articulation as a function of pitch period and tone

${ }^{1}{ }^{\text {priten periods }}$
$\frac{\text { Fig. 2: Fo values in Hz for Tone } 4 \text { as a }}{\text { function of pitch period, manner and place }}$ of articulation

Fiq. 3: Fo values in Hz for Tone 2 as a
function of pitch period and vowel

${ }^{1}{ }_{\text {pitch periods }}^{3}$
Fig. 4: Fo values in Hz for Tone 3 as a
function of pitch period, place of
articulation, and vowel

Fiq. 6: Fo values in Hz for Tone 3 as a articulation, and vowel manner
 pitch periods Fiq. 7: Fo values in Hz for Tone 4 as a
function of pitch period, manner of
articulation, and vowel

Fiq, 8: Interaction betteen manner of
articulation, place of articulation, and
vowel in Tone 1. Fo values in Hz
between manner of articulation. place of
articulation. and vowe in tone 1 it e.
none of the factors examined contribute none of the factors examined contribute
notependently to the fo perturbations. The
ind interaction (based on the mean F. values)
is shown in Fig. B. It is obvious that F. is higher after, pi than after t/: tai is
associated with the lowest. ior with mid,

 the forences freater. $/ 1 /$ and
In order to have results comparable to
 method the initial 78.0 ms of the vowels, we
over the
(i) give averaged F, values in Table 3 for (i) give averaged Fo values in Table 3 for
Tone 1 , Tone 3, and Tone 4, as well as the
, corresponding ms and (ii), as wall ayed the Fo
contour in (pey, vs phey/ in Tone 1 , the corresponding ms, and (in), analyzed the th
contour in ipey/ vs phey/ in Tone i, th
results of which are displayed in Fig.

Fig.9: Fo values in Hz as a function of
pitch period and manner of articulation It is clear from the averaged data that in
our material the
to after VL stops exceeds those after ASP stops. On the other hand,
the F, the ${ }^{\text {Fo or onset is high in pey/ and falls }}$, ond
towards the end of the contour, whereas it towards the end of the contour, whereas it
is lowafter phey and rises till P6 wher
it owe it exceeds the value of /pey/. The mean F .
value for /pey/, averaged over about 65 ms value for /pey/ averaged over about 65 mm
(this corresponds to 15 pitch periods) is
239.4 Hz that for /phey/ 235.6 ms .
discussion
To answer the question we have asked in the a remaction it can be stated that there is a remarkable difference in F_{0} after VL and
ASP stops: $\mathrm{F}_{\text {。 }}$ is always higher after the VL ASp stops: ${ }^{\text {Fo }}$ is always higher after the
than the ASp stops. This difference dis
appears and than the ASP stops. This difference dis-
appears after is to 30 ms. Our results thus
are in agreement are in agreement with those of Hombert et
al 11 are foruba, as well as with those
studies which reported higher wo values
art after VL
findings
speech of indings of zee 17 j for Cantonese. Inthe
spech of our informant, the stops. places
of articulation
 tioning that the phenomenon of intrinsic
pith could berified in a tone lanquage,
too. But the influence of the vowel is not pitch could be verified in a tone language,
too. But the influence of the vowel is not
independent of the stop's manner of articu-

TABLE 3: Mean F_{0} values in Hz for the VL and ASP stops in Tone 1, Tone 3, and Tone 4, as
ell as the duration of the vouel portio

lation. The intrinsic pitch effect is grea-
ter after vL than after ASP stops and seems rences between the vowels are greater in Tone 2 than in Tone 1 or Tone 4 . This Trac-
tor cannot be discussed in detail here but tor cannot be discussed in detail here but
will be dealt with in another paper. On the other hand the interaction between the VL
stop high vowels seems to reflect a stopand hiqh vowels seems to reflect a
stronger coupling between the supra- and stronger coupling betweenthe supra- and
subgottal cavities after vL than arter ASP
stops. sugh1
stops.

REFERENCES

(1) Hombert, J. -M. - Ohala, J.J. - Ewan

121 Kagaya, R.: A fiberoptic and acoustic Kagaya, R.: A fiberoptic and acoustic
study of the Korean stops, affricates
and fricatives. Journal of Phonetics
and $161-180(1974)$
(3) Lea, H.A.: Segmental and suprasegmen quency contours; in Hyman, L. Consonant ypes and tones, pp. 17-70 (Linguistic
program, University of Southern CaliProgram, University of Sou
fornia, Los Angeles 1973)
 Schiefer, L.: F. in the production and Schiefer, L.: Fointhe production and
perception of breathy stops. evidence
from Hindi. Phonetica 43 : $43-69(1986)$
(6) Umeda, N.: Influence of segmental factors on fundamental frequency in
fluent speech. J. acoust. Soc. Am. 70 ,

Zee, E : : The effect of aspiration on Cantonese. UCCA Horring vowel in
Papers in
Zee, E. Maddieson. II: Tones and
tone sandhi in Shanghai: Phonetic tence and phonological analysis. University of Canifornia horing Papers
in Phonetics 45: $93-129$ (1979)

евГЕНИИ ХЕЛиМСКИИ

Институт славяноведения и балканистики АН СССР
Москва, 125040 , Ленинградский проспект, д. 7

ABSTRACT

The principle of mora-counting is applied in Nganasan (Tawgy Samoyed) in two ways. A rule of consonant gradation posits the strong grades of consonants and consonant clusters before the even vocalic moae, and their weak grades before the odd rocalic morae. The morae in this case are counted from the beginning of a word. On the other hand, the stress is normally placed on the penultimate mora and the eventual additional stress on the pre-prepenultimate mora of a word. This dual and counter-directed mora-counting must be related to different stages of the Nganasan linguistic history.
I. Среди самодийских й других уральских язнков нганасанский ввделяется сложностью и неординарностьп своей мороонологии, наглядно демонстрируя, что такой типологический признак, как агтлютинативная прозрачность морӗемного состава слова, модет свободно сочетаться с високой развитостью q̆узионных явлений. Особенно заметнур роль играет система черепования ступеней, ноторая распространяется на интервокальние пумные согласные и некоторые पर сочетания: $\mathrm{h}\left({ }^{*} \mathrm{p}\right): b, t: \delta\left({ }^{*} d\right), k:$
 : t unt : nd, nk : k unk : ng, ns : ná, pt : t, $\mathrm{p}_{\mathrm{k}}: \mathrm{k}$, $\mathrm{ps}_{\mathrm{s}}: \mathrm{s}$ п др. (первой всюду указана сильная ступень, после двоеточия -слабая). Фонетическое качество отдельно

взятого согласного, как можно видеть, не определяет его места в чередовании ступеней: сильная ступень одного чередования может совпадать со слабой ступенью другого, cp. к в соотношении с \& п с nk или ? yze в первои описании нганасоноио язнка у h .А.Кастрена /I/ было выделено два вида чередований ступеней.

С одной сторони, имеет место ослабление согласних в начале (исходно) закрытого слога, особенно часто и четко проявляощееся в двусложннх основах, ср. katu "ноготь, коготь" : Gen. ka Su; утрата ауслаутного $-\eta$, происшедшая в нганасанском язнке уже "после Кастрена", не привела к устранению чередования, а не привела к устранению чередования, а лишь превратила его из чонетически детеррованное), maku "спина" : Gen. magu($\boldsymbol{\eta}$), kinta "дым" : Gen. kinda(ŋ), liŋhi "орел" Gen. limbi(n), hodür "письмо" : Gen. hotüra(η), dadì (η) "силок" : Gen. dasiña(η) т.Д.

С другой стороны, налицо определенная зависимость чередования согласных в начале суव̆фиксальных слогов от числа пу долготы предиествуюцих слогов. Это наблодение И.А. Кастрена было отражено в подразделении шиенных и глагольннх основ на фонетические классы, ср.: "Die erste Declination umfasst alle Nomina, die auf einen langen Vocal ausgehen und diejenigen auf einen kurzen Vocal auslautenden, die aus einer gleichen 7 ahl von silben bestehen und eine kurze Penultima haben; zu den zweiten De-
rination cehören die auf einen kurzen Vocal ausgehenden Iomina, wenn das wort entweder aus ungleichen Silben oder aus gleichen mit einer langen Penultima besteht oder wenn den Endvocal m, n, 乌 vorangeht. Nach der dritten Declination werden die auf ein i oder einen Consonanten ausgehenden Nomina decliniert" /I:I56/ (cp. тarke пояснения и сходную еоормулировну для глагольных основ - /I:I58,I6I-I62,44I/). Но гакая группировка (принадлежащал, возмолно, не стольно М.А.Кастрену, скольно его издателю А. Ныұ̆неру) оказывается не тольно громоздкой, но и недостаточно точной: так, глагол ́́āgimti- "улучшить", попадаюций во второй класс основ, мордонологически ведет ебя как оснога первого класса (Praet. и́ā-inti-diama, cp , тля пепвого класса homa-gimti- "заострить" : praet. homagimti-di̊ma ІІ для второго класса t'ìmti- "заквасъть" : Praet. tīmti-siomo). Ta we неполнота сохраннется в несколько более четких поормулировках Г.Н.Прокоф̆ьева /2:59/. Это обстоятельство побудило П.Хайду в специальном исследовании, посвяценном самодийскому чередованию ступеней $/ 3 /$, оставить отірнтым вотрос о возможной завпстмости выбора альтернантов суйииксальннх морд̆ем от четности/нечетности слога. Н.М. Терещенно в свости/нечетности слога. наиболее полном на сегоднящний день
описании нганасанского языка /4/ иллюстрирует чередования большим ІІ очень ценным материалом, но не ставит задачи вскрыть регулируюшие их правила.
2. В то же время уже названная ввше раоота сотериит ключ п понианио принтитов әтих го ударения позволил П. Хайду открыть моросчитаюший характер нганасансного язнка:
мй слог с долгим гласннм или диф̆тонким гласравнивается к двум слогам с крам $/ 500$ / и наше ным ($3: 53 /$; см. такке моры как с̆онологической единиды установлена также длл энецного лзыка (6:I及-I5/)

Систематизашия имеюцихся дапннх и

х проверга путем полегого опроса инц̆орантов (усть-Авам, I986 г.) дают возмотность нонстатировать зависимость появления сильной/слабой ступени согласных и их сочетаний от длины предиествующей части слова в морах:
(R1) перед гласным четной от начала слова моры появляется сильная ступень, перед гласным нечетной моры - слабая ступень Cйеру действия подсчета мор ограничивают (в2) непосредственно после согласного (в ом числе и исторически утраченного, но рисутствуюшего на глубинно-(онологиче ном уровне) всегда выступает сильна супень, если только само возникаюдее сочетание согласных не участвует в чередовании ступеней;
и (R 3) непосредственно после долгого гласного или дичтонга вселпа внстушает слабая ступень.
Три подсчете мор следует иметь в вдду екоторые данные исторического вокализма нганасанского языка, а также особенности раф̆ини отдельных источников. Так, пиытонги иа п ӥа, развившиеся в непервых слогах из ${ }^{\text {ӧ }}$, трактуются морф̆онологически как одноморные. Не создает дополнительной моры и дич̆ттонгопдность произношения кратких гласных первого слога, отражаемая - хотя и непоследовательно - в записях М.А.Кастрена (ср. диграц̆н еа, оа на месте /е/ /o/) и, реже, других исследователей.
2.I. Примеры образования притяжатель ннх ф̆орм 3 sg номинатива имен (сучфикс ных qорм 3Sg номинатива имен (суqi
$\left.-\delta u /-\delta \dot{i} /-\delta_{i} /-\delta i /-t u /-t i ̈ /-t i /-t i\right):$
(R1) I мора: ni-ti "его жена"; 2 моры: məku- δu "его спина", dưtü- δ ӥ "его рука", fini- δi "его старший орат", tími- δi "его зуб": З моры: bakunu-tu "его осетр", tiri-mi-ti "eго икра", bārba-tu "его хозяин",

 "его короткпи", kuadumu-бu "ее му"
(R2) tar-tu "его шерсть", guat'u "eго нога" (OT пиaј "нога"; $j t>t$), đebsiti
＂его пятка＂（от debsi（y）＂питна＂），hüəgatï ＂его колено＂（от hüagaj＂колено＂）．
（R3）tă－8u＂его олень＂，kəi－8i＂его бок＂，latā－δ и＂его ность＂，biria－δ_{i}＂сго рана＂，sū $\delta \bar{\partial}-\delta u$＂его лопатта＂，ŋајbukд̄－$\delta u$ ＂его шамансная шапка＂．

2．2．Прииеры образования деспричастий
 шионалыо слизки иніинитивам）：
（R1） 2 морн：bití－dii＂внпить＂，dila－di ＂поднять＂，đогә－d’a＂плакать＂，hotə－d’a＂па－ писать＂；З моры：bíбibti－si＂напоить＂，dí－ labti－sí＂приподиять＂，đ̛orələ－sa＂запла－ кать＂，hodatд－sa＂писать＂，ba δ uata－sa ＂расти＂（－uа－＝I мора！），buata－sj＂пере－ шагивать＂，hiriə－si＂раскрошить＂； 4 моры： bi§irnäntídii＂хотеть пить＂，hotarubtu－d’a ＂заставить написать＂，buata’kд－व̌i＂начать перешагивать＂； 5 мор：hodatanantu－sa＂xо－ теть писать＂，hīlıərabtu－śsa＂обснпать кро田－ намии＂．
（R2）is＂＂быть＂（основа ij－），baסuasa ＂внрасти＂（основа ba\＆ua（r）－），bari²－si ＂порвать＂，bəu＂－sa＂перейти＂，tasogim－śa ＂стать горьким＂

2．3．Примерн образования причастий не－ осуиествлепного действия（сус̆фияс－пәtu－

（R1） 2 моры：tuj－mə uma？$^{\text {a }}$＂не пришед－ ший＂；З моры：bӥ̈－matuma？a＂не уехавшийй＂ （в записи і．：．Т．Терещенко－бумәтума＂а，од－
 ＂не пивыий＂，sua－matuma？а＂не перекочевав－
 hodata－ma umapa $^{\text {a }}$＂не учаипйся＂，hutarj－ma－
 ＂не начавший есть＂．

2．4．Примеры различий в историко－йоне－ нческой рес̆лексации，связанных с количе－ ством препшествуюших вокалических мор：

Сан：од．／7：I57－I58／＂tерâ＂гвоздь＂$>$ нг． taha，но самод．17：¿4－25／＂inдра＂тесть＂$>$ hr．yinaba．

Сев．－самод．＂putâta＂туловице＂（ср．не－ нешк．лесн．pittat，энецк．тунцр．puסобо） $>$ HT．hüta δ д．

Санод．／7：З4／јаика＂близнец＂＞нг．d’э－
 ńāga＂xороший＂（в соотеетствии C RJ，пос－ де долгого гласного $k>E$ ）．

3．Рассмотреннее деше случаи могут бить охарактеризованы как ритмическое чередова－ ние ступеней．С ним сосуцествует уже упо－ минавшееся чередование по правилу
（R4）ритиичеспи сильнал ступень чередова－ ния подвергается ослаблению в начале ис－ уотно закрытого слога
Попазательно частичное несовпадение резу－ льтатов занєны синьнод ступени на слабую и ослабления по правилу $\mathrm{R} 4-\mathrm{E}$ частности，
длн кластера＊nt．
3．I．Примере образования q̆орм 1SE наме－ ченного дейстіия（суо̆ч̆иाсс－hantu－／－hatu－／ －handu－пा др．）：

Силнная ступень，открытый слог：kəmoha－ ntuma＂собжраюсь дой：ать＂，yanabtăhantuma ＂собирагось забить＂．

Сильная ступень，закрытьй слог：ŋатәha－ ndum＂собирагос гдать＂，tolarhandum＂собi－ ралсь красть＂．

Слабая ступень，откритый слог：kәhərə－ hatuma＂собираюось оторвать＂，mēruhatuma ＂собиранов укрепить＂．

Слабая ступень，закрытвйй спог：münta－ hatum＂собира：ось пасти＂，yamurəhatum＂со－ бирагось есть＂．

4．Отсчетом мор определяется одновре－ менно и просодическая организапия нгана－ санских слов．Ее ведуций пржнцип состоит в том，что главное ударение падает на тот слог，которнй вюлючает предпоследною вока－ лическую мору：sa•mu＂шапка＂，samu＂mә＂но шапка＂，кӥmä•＂нож＂，kümä＂ma＂мой нож＂， ba＂sa＂железо＂，basä＂зелезний＂，ho nsi ＂иметь＂，hontijo（dонетически такее［hon－ tè $\left.{ }^{-}\right]$）＂имеппий＂，hai＂mu（бонетически так－
 нетически также［se•वəə］）＂язык＂．

Этот принцип，установленный в работах
 оолее частными закономерностямй：
－Факультативно ммеет место оттякка

ударения на третий от конца слова слог， если предпоследней норе соотретствует кпаткий гласний еерхнего подъема（особен－
 ta゚ra～sa＂tara＂песец＂．
－Слова，состоящие из 4－5 вокалических мор，обнино имеэт дополнительное ударение на слоге，ноторый вклічает четвертую от конца вокалическую морy：ba：jnübtü•家a ＂обидеть＂，tu：rkuta＇na＂грузовая нарта＂， tä：rä•＂только олень＂，moluäda•？a＂олень с поломанным рогом＂．
－Слова，состолцие из большого числа еокалических мор－разумеется，таковыми могут о́ыть только многоморйепные образо－ вания－обычно пиеют дополиительное уда－ рение на первок и／или третьей море осно－ ви，вне записимост：от того，попадает ли это ударение на четнуо тіли нечетную от конца слова мору：ho：taru（：）btuduj＂m＂я застаеил написать＂，ho：taru（：）btudua ma ＂я заставил（его）написать＂．Как правило， агщентуапия подобннх слог еарьируетоя в зависиности от темпа речп；не исключено， что относительная интенсивность ударения на корневоя и суषфиисальной частях может использоваться в стилистичеснтх целях．

5．Две модели отсчета мор в нганасан－ ских словойориах независтми друг от дру－ га．Чередованиие ступеней согласных регу－ лируется отсчетои нор от начала слова，а лируетсл отсчетол мор ол начала слова， ноор места ударения－отсчетом мор о сонца слова．В результате пи сильная，и слабая．ступени консонантного чередования способны выступать в любой позиции по от－ ношению к месту ударения，ср．satarəkї̈。 ＂несец－то＂，koligưä＂＂рыба－то＂，satərə＂tí ＂его песец＂，ко䒑ì $\delta_{\text {j．}}$＂его риба＂．
В предваритсльнои порядке можно ен，щии－ нуть гипотезу о том，что эти две модели связаны с различннми хронологическили стадинми в истории нганасанского язына． Система чередования ступеней，как устано－ вил уже А．Сотавалта／9／，обладает чрезвы－ чайным сходством с системой，реконструи－ руемой для прибалтийско－йинского пралзыка
（в согременних прибалтийско－инскпх азыках она сохранилась реликтово），см．／IO；II： IIS－I57／．Вероятно，оти системы могли ноз－ ниснуть при такой акцентной организации слова，когца основное и дополнительнье уда－ рения падали на первнй слог（мору）и все нечетные при отсчете от начала слова слоги （моры），т．е．слабал ступень систематиче－ ски полвлллась в предударной псзиции．В таком случае закон чередования ступеней рюнно расценивать кан аналог закона Верне－ pa／Iz： $74-86 /$ ．

Однако в нганасанском языке данная сис－ тема сумела сохраниться пи после того，как система ударения модийицировалась（возмож－ во，под иноязвчным влиянием），вследстрие чего акцентнюм центром слова вместо первой морн стала пенультима．

Se 8．1．4

Institute of Linguistics Chinese Academy of Social Sciences, Beijing, China

ABSTRACT
The synthesized speech of /shi//tuo/ and /ai/ were utilized to investigate the perceptual cues for tones. The result of this experiment indicated the by of about 95%, whereas the four tones can of about ${ }^{\text {not be distinguished by amplitude contours }}$ not be distinguished by amplitude contours
alone. It also showed that the effect of
duration duration on the naturalness of tone-3 and tone-4 is greater than that on the rate of
identification of tone- 3 and toneINTRODUCTION

In 1924 , Liu Fu discovered the important role of Fo in Chinese tone (1). It was found that the Fo curve in syllable
not only has a " tone-section $"$, but also not only has a " tone-section ", but also
generally has a " onset-curving section " generally has a onset-curving section et al. made the ro analysis and identific(3) ${ }^{\text {ation }}$ test for colloquial Standard Chinese

Howie demonstrated the primacy of fo
pattern in the identification of the four pattern (4). Wang talked about the role of tones (4) wang talked about the role (5). Lin and Nang discovered that the judgement of tone category of the first syllable in
bisyllabic word is often influenced by pitch of the second syllable and duration of the first one (6)
the role of tro, amplitude and duration in the role of ro, amplitude and duration in in the synthesized speech .
Thi fhysical manifegtation of tona
We made an acoustical analysis of 138
osyllables consisted of 38 different Initial and Final Combinationswith tones spoken by two speakers (m and f). of the two speakers. It can be seen from fig. 1 that each tone generally has its own peculiar fo pattern although the durations of the four tones did not show a regular relative relation ,
comparatively speaking, the duration of tone-3 were in most
est $\dot{\text { F }}$, Four different types of amplitude con-
tour could roughly be drawn from the amtour could roughly be drawn from the am-
nlitude curves in 276 monosyllables, name ly: mid-hump, back-hump, two-hump and front-hump. It can be seen that the ampli tude contours in tone- 3 spoken by m were
all two-hump, but those spoken by f were atwo-hump only in 60% of the cases
The peak of intensity in tone -3 show ed in most of the cases the lowest.
PiRCermual mexperiment of TON:'A
The syllables of /shi/, /tuo/ and /ai/ were synthesized by a synthetic system (7) under five conditions shown in the eft column of tables given below All the speech sounds were randomized
it impossible for the 14 subjects listeners, to predicate under which con-
dition the speech sound were synthesized dition the speech sound were synthesized
while he or she heard it. The average rawhile he or she heard it . The average ra (14) was displayed in percentage in the
right column of each table. The figures in parentheses in the tables represented the percentare of the speech sounds in
good timbre judfed by the subjects.
The data of the parameters in condition one roughly corresponded to the physical manifeslation of tones. A sonarram of tuo/ synthesized by condition one was d splayed in fig. 2 . Table 1 showed of tone was 98.8%, and the sneech sounds in good timbre amounted to 70.7%. In condition two the amplitude contours were only varied the amplitude contude contour of low-faliingr-rising of fo varied to mid-hump from two-hump, but
other parameters were the same as those in condition one. A sonasram of /tuo/ in this condition was displayed in fig. 3 Table 2 showed that the rate of correct
identification of tone was 97.6% and
the speech sounds in the speech sounds in good timbre amounted
to 67.1%. In condition three, fo patterns were
all mid-level, and durations were the
same as those in condition one, but the
amplitude contours had the four' differen types of mid-hump, back-hump, two-hump and front-hump. A sonarram of 'tuo/ in this condition was disnlayedin fig. ${ }^{4}$.
Table 3 showed that the subjects (id) Table 3 showed that the subjects
ntified the speech sounds as tone-1 about

Fig. $1(\mathrm{~m})$ average fundamental frequency curves in mono-syllables for Beijine speaker m

Fig. 2 sonagrams of /tuo/ synthesized
90%. No one identified them as $\begin{aligned} & \text { other } \\ & \text { tones , namely no one identified } \\ & \text { the }\end{aligned}$ tones, namely, no one identified the two-hump or front-hump and with mid-level.
of Fo as tone 3 or tone -4 . This result. indicated that the four tones can not be istinguished by amnlitude contours alone

Fic. $1(f)$ average fundamental frequency curves in mono-su
 d the same as those in condition one, the urations in condition four and five we.
different from those in condition one condition four the durations of four different sounds were repulated as the same as those of tone-4 in condition one ; In
condition five, the durations of four dicondert sounds were done as same as those of tone-3 in condition one. The speech
of
sounds synthesized by condition four were sounds synthesized by condition four wer
correctly identified as tone-1, tone-2 correcty identified as tone- , tone-
and tone-4 95.8% in average, but tone--390.5%, namely, the rate of correct
identification of tone -3 decreased abou 7% compared with that in condition one. This time, the number of speech sounds With tone-3 judged to be in good timbre
decreased 22% from those in condition one.

Fig. 3 sonagrams of /tuo/ synthesized

Fig. 4 sonaprams of /tuo/ synthesized

And the speech sounds in condition five were correctly identified as tone-1 ${ }^{\text {tone- }}$
-3 and tone -495.8%, but as tone- 288.1% - 3 and tone-4 95.8%, but as the rate of correct identification of tone-2 decreased 12% compared with those in condition one. This time, the number of sneech sounds with tone-4 judged to be in good timbre decreased these two results indicated that the effect of duration on the naturalness of tone-3 and tone-4 was greater than -3 and tone-2.
CONCLU:SIUN
We may conclude that the four tones can be generated by Fo pattern alone with the possibility of about 95%; The effect of
duration on the naturalness of tone -3 and

Condition thror	The rato or identification of toner (x)			
	tone-1	tone-2	tone-3	tone-4
	${ }^{972} 2$			
3.2 \% \% \% ${ }^{\text {\% }}$				
ton.: back-hump	85.7)			
	(42.7)			
3.3 P_{0} : mida-12vel				
	${ }_{\text {c }}^{\text {85.7 }}$ (26.2)			
3.4 po: mid-level				
	($\begin{gathered}92.9 \\ (57.1)\end{gathered}$			

TABLE 1

Condition fons	$\begin{aligned} & \text { I'he rate of identificition of tones } \\ & (x) \end{aligned}$			
	tone-1	tone-2	tone-3	tone-4
	$\begin{gathered} 100 \\ (78.5 \end{gathered}$			
		$\begin{gathered} 95.2 \\ (60,6) \end{gathered}$		
		$\begin{gathered} 4.7 \\ (2.4) \\ \hline(2) \end{gathered}$	$\begin{gathered} 90.5 \\ (39.7) \end{gathered}$	
				(77.6) ${ }^{97.6}$

TABLE 5

tone-4 is greater than that on the rate of identification of tone-3 and tone-2; The four tones can not be distinguished by amRiflrences
(1) Liu Fu, An experimental record of , bookand the pin Mao-can, The pitch indicator and the pitch characteristics of tones in
Standard Chinese, Acta Acustica, Vol. 2
 T. \& Nimurang, T. The acoustical features and perceptual cues of the four tones of colloquial standard Chinese, In Proceed Vol. $3^{2} 1972$. (4) Howie
the perception of Mandarin experiment on ceedings of the 7 th Inter. Cong. of Phonetic Sciences eds inter. Cong. of Phonetic Sciences, eds. by A. Rigault \& R.
arbommeau, 1972 . The Hague : Mouton. PP. 900-904
(5) Wang, William S-Y. , Lectures on experimental Phonetics S, in collective Beijing Unguistics, No. 14 , ed, by Press (6) Lin The Problem of tonal percention, The Journal of Linguistic Society of China, No ${ }^{2}$, (7) Yang, Shuen-an, The effect of the dynamic characterictis of voiced source upon the quality of systhesized
speech

In strictly phonological sense the pa-
rameter of duration can be regarded as rameter of duration can be regarded redundant in so is concerned. However, when their constitutive function is
taken intoo account duration as well as
int taken into account duration as well
intensity prove to be indispensale fol
producing nnatural" Chinese speech. In isolating languages tones play an im-
portant role: their primary, phonologiportant riote: their - function is to distinguish one morpheme from another.
But it is not their only function. VariBut it is not their only function. Vari
ous combinations and modifications of tones constitute the prosodic system of an isolating language as a whole. As a
result of the ir interaction different rhythmic structures of words are created, different emotional and evaluative
overtones are superimposed on information proper.
The main physical correlate of a tone is its fundamental fore (contour - level, rising, falling, fall-ing-rising) and the respective intervals For a considerable period of time these
parameters of tones have been in the fo cus of attention of experimental phone-
tics. The other physical correlates of tics. The other physical correlates of
tones - intensity and duration - have noter yet received all the attention they deserve.
A considerable amount of data obtained has convinced us that the parameter of duration cannot be ignored if our aim
is "natural" Chinese speech. This featu re is redundant only on the distinctive level: morphemes can be distinguished ed, of course, that their registers and contours are different. Thus the simplest opposition is observed in the case
of the first and the fourth Chinese tones: a level tone on a high note is quite high and then falls as low as pos-
sible. From the point of view of their
constitutive function duration and intenconstitutive function to be absolutely indispensable for making to beund when we When we stress the importance of duration total duration of each tone that really matters. The paramet determining the inner structure of complex tones. Thus the third
(circumflex) tone is not only longer than any other basic tone, but is also characterized by a certain time relationship between its components: its rising part
cannot exceed a certain limit, otherwise cannot exceed a certain
the listener may mistake it for the se cond (rising) tone.
he duration of tones as integral prosoic units of syllables has a functional 11 the other prosodic layers of the lanOur synthesis of two-syllable words has shown that the role of duration for pro-
ducing natural (proper) Chinese sound ducing natural (proper) Chinese sound 19 models of Chinese words and each model has its own time relationship of the con-
stituting tones. If this or that time re stituting tones. If this or that time re-
lationship is not observed the sound caul becomes unacceptable from the
viem of the language norms.
Viem of the language norms. Under the influence of the higher proso-
dic levels tones may vary in length as well as in range, pitch direction and intervals. Thus dipferent degrees of promi-
nence- sentence stress, logical stress etc - can affect the duration of tones, but the time relationship typical of the
respective words should not be distorted. respective words should not be distorten-
Otherwise the listener may fail to ldentify the word as such, duration in speech synthesis enables us uration in speech synthesis enables us the optimal rhythmic models 1 n each of the above mentionec 19 groups of words,
2) determining tolerance zones for each of these modele. The rhythmic function of duration is best seen in those models which are represent
type. Thus, for instance, in the model
constituted by a sequence of two first constitute second syllable is either longer than the first or at least is- of the
same length. The normative time relationsame length. The normative time relation-
ship is equal to 1.3 . The equal length is apparentiy the threshold because when the second syllable is shorter than the firs
the model is rejected as false, unnatuthe model is rejected as not revealed the predominance threshold, beyond which the realisations of words are perce ived
as exaggerated or unacceptable. In the as edel of two second tones the second sylmode is also longer than the first, but
lab contrast with the above mentioned moin contrast with the above mentioned mothe same time the above limit of exceeding the length of the first syllable can li.76. It should be noted, however, that aithough this realization of the model
appears to be fairly acceptable, some appears to be fairly acceptable, some
auditors characterized the second syllab le as unusually long.
The model of two fourth tones gives a
completely different picture: the first completely different picture: the first
syllable here is longer than the second. The variation zone ts rather wide, rang ing from 1.04 to 2.1 . , the so far discusIf we try to correlate the so far diacusof interval we shall come to the conclusion that the situation in different model
is different. Thus in the model of two second tones we observe a direct propor tion (the wider the interval the longer two fourth tones the reverse proportion is true: a wider interva
with a shorter syllable. relationship of
As a rule, the duration As a rule, the duration relationsh1p
tones in isolation is preserved when dif-
ent ferent tones are used in the modelled words. For instance, the third reman to be oo when it is part of this or that word.
To what extent $1 t$ will be longer than the 0 what extent it will be longer than the other tones depends, however, on the con-
rete rhythmic model used. In the model
milab of It3 the duration of the second auration of the first syllable considerably (the proportion is I.67). There can be no question in this case of making the proportion. That would be absolutely unacceptable. In the model $2+3$ the original
duration relationship of the tones is al duration relationship of the tones (the thire tone) is longer than the first ${ }^{\text {To }}$ be out of the question, but the variation zone is rather wide (I'. I -I.7). It remains to be seen whether making the syll-
ables equal would be rejected by auditors or not.
If the third tone is used before the
first, the second or the fourth it will
be longer than the fourth but shorter
than the flrst or the second. In the nor-
mative synthesized realization of the wative syanthesized realization of the proportion is $I .2$ or it can e even increased. The first tone cannot be, however, shorter than the third tone point the proportion between the second point, the proportion between the
syllable and the first is I. 03 . hen the third tone is combined with the ourth, the former should be longer than I. 4 I to I .66 .
he fourth tone before the first, the seond or the third tone is always shorter
than any of them. In the model 4+I the hint any of them. In the model fonger than the fourth and the duration proportion is 1.4. It can synthesized word - like unit riayi the proportion turned out to be 1 . 93 , this The longer duration of the first tone there went beyond the accepted norm. It
should be pointed out that as far as the parameters of register and interval are concermed the constituent tones were within the norm and the reaction of the audirameters. The lessening of the duration of the first tone to the point when it be-
comes equal to the fourth tone or when the comes equal to the fourth tone or when the the rhythmic characteristics of words. For example, in one of the programmes of the
word aixi the first tone in the final of word aylable xí was shorter than the fourth tone in the syllable al, which im-
mediately caused a negative reaction from mediately caus
No less important is the time relationship in varitus models of the type "basio
tone + neutral tone". Even the best programmes in so far as the parameters of refister and interval were concerned were
ofen rejected by the auditors because of some wrong duration proportions. The optimal proportion in the model "the first tone + the neutral tone" requires that or even shorter than the first tone. The provortions of I. $36-$ I. 38 formed the thres hold. The time proportion was markedly
improved in the realizations with the duration relationship equal to I. 45 . The tolerance zone of the relationship between the secon. The I. 56 proportion was rejected. As far as the relationship between the fourth and the neutra thin
is concerned, 2.51 appears to be within the norm. The $I .75$ proportion was rejectd by the auditor,
Wrong time proportions interfere with the production of normative rhythmic charac-
eristics in words even if the register eristics in words even if the register
and interval relations are correct. Nor and interval relations are correct. Nor
without the normative register and inter val proportions, ensure good rhythmi the sum total of features. The close interconnection of duration and interval broportions and their combined effect are on by the auditors and the undifferentiated perception of the duration, register and interval parameters of words. Some
realizations of the words tôufa and xifu were interpreted in precisely this way the auditors. The rhythmic parameters of
the synthesized word toufa were deemed the synthesized. The auditor described the neutral tone in the beginning of the syl lable fa as too high (tou, 139-166, fa, the syllable tou be prolonged, even though the tire relationship, in this case was quite normative: 2.24 (tou - 415 fa second tone in the first syllable was probably automatically associated in the auditor's mind vith an increase of the interval proportion between the end of the second tone and the beginning of the ne tral tone. Nerely to prolong the second
tone without increasing its rising inte tone without increasing its rising interparameters of the word. In one of the reaparameters were also deemed unsatisfactory. The frequency interval between the end
of the second tone in the syllable $x i$ and of the second tone in the syllable xi and
the beginning of the neutral tone proved the beginning of the neutral tone prov
too smal (I. 08 against the normative
53). The modelled time proportions S 54 against the normative 2.II) were
unsatisfactory. The auditor insisted on lowerint the nentral tone and on increasing the interval in the first syllab-
le. The auditor failed to notice certain le. The auditor failed to notice certain sample and sought to improve the rhythmic parameters by correcting only the registe register of the neutral tone and the increased rising interval of the tone in the syllable xi arm at one and the same thing, i.e., at increasing the interval between ing of the neutral tone.
Tones act in words as prosodic factors
forming morphemes and words. Duration one of their constituents, is functional ly important in words: time proportions in its prosodic make-up. The most intimate time mechanisms of tone
are manifest in the fine spectra of speech are manifest in the fine spectra of speech
signals, responsible tor their different
and Chinese syllables are known to be perceived by ear as slightly differing in quality. In different tones and finales these dis-
tinctions are not the same but they are
indisputably functionally important to the Chinese ear in the sense of the national specificity of sounds. In any case it is rameters account for this specificity. Analysis of natural tones and their synthesis elucidate primarily the role of the frequency and amplitude parameters of the
spectrum. For instance, in the natural realizations of syllabies in our material a rise of fundamental frequency of the rising tone causes a progressive shift of
the first porment. with a male speaker the the first forment. With a male speaker the shift proceeded as pollows: at the beginn
ing of the finale f of Tone 2 the first formant was 250 Hz , in the midale it beame 300 Hz and at the end it was 350 Hz . With a female speaker the shift was even
more pronounced: $350 \mathrm{~Hz}, 400 \mathrm{~Hz}$ and 500 Hz .
Analysis of the synthesized syllables wit the finale I recognized by the auditors as natural", that is undistinguishabl their naturalness is accounted for precisely by this fine correction (correla-
tion) between the fundamental frequency and amplitude values and different formants and by the coordinated function of
all the spectral components. The measure and concrete proportions of that coordina tion are not universal and depend on the linguistic system, their main purpose sounding. It is not by chnace that the with making the synthesized signal natural with making the synthesized signal natural
or close to it. The impression of naturalness is produced by the absence of monoto ny (machine-like quality) in the spectrum it is in natural speech, is not uniform, as far as its quality is concerred, at evolves from the beginning to the middle and the end. For example, Fl, which is coordinated in frequency and amplitude with Fo $^{\text {in }}$ keeping with the rules of the
system, is represented by a set of coorystem, is represented by a set of coor-
inated values within the formant itself and among them rather than by one and the ame value throughout the signal. In coment the synthesized signal is in fact ascribed or requency and amplitude "microversal or determined by the human organs of speech but systemic and linguistic, that is characteristic of a given phonetic norm. In our case we get the syllabio racteristics. The latter are determined in the spectral structure not only by the
corresponding frequency and amjlitude coordination but aluency and amplaination: Prequency and amplitude dynamics of the
spectrum unfolds in its spectrum unfolds in its portions of time,
which correspond to different segments of
the ${ }^{\text {thd }}$
The role of the coordination of frequency, amplitude and time in the spectrum of Chinese finales of different tones is well illustrated by the synthesized tone which were rejected as unsatisfactory.
Tone, as a phonological unit which distinguishes syllabic morpheme, in its model variant is a set of features func-
tioning in unison: if within a certain period fundamental if equency values form an even contour, the envelope of amnlitude values forms the same contour. The rise (fall) of fundamertal frequency is
accomanied by corresponding changes in accompanied by corresponding changes tion of parameters often results in the
inadequate synthesis of syllabic tone. Howequate the proportion of this correiation may differ, depending on the lingul-
stic system. For example, the auditors stic system. For example, the auditors
rejected the realizations of the sharply rejected the realizations of the sharply
falling Chinese (${ }^{\text {ourth }}$ tong whose programnes envisaged falling frequency ntervals equal to 3.62 and 1.51 . The but the optimal ones in fact. The ampliude values in prisciple changed in the ame direction and, iavertheless, the as "passive, inert" and the interval seemed to be inadequate (!). Conseo reproduce the amplitude. frequency and time relationships thet were worked out by the given linguistic system. The
fall in the amplitude values at every given segnent of the tone failed to fit the norm prescribed by the fall of the undamental frequency values or to be synchronized with the time segments spectral changes took place.
nental separate tone in which the fundemental frequency ard amplitude parame-
ters changed in dif erent directions were given to the auditors for Identification
they were often confused or totaily rethey were often confused or totally reorthoepic norm. This is not to say that ack of coordination is always a defect On the contrary, it is in many cases a
normal phenomenon in connected speech. It is explained by the fact that the pa-
rameters coordinated in the units of rameters coordinated in the units or soeech pronounced separately or iferent roles in connected speech. Thus at the always of syllable fundsmental frequency in the Chinese langrage system, i.e., acts as different tones, whereas the amplitude and times values of formanios
provide for other prosodic distinctions such as the word's rhythm and intonation model this. It is necessary to learn so
lated speech in order to get the needed sounding at every given point of speech on the part of linguists because the measure of this uncoordination, too,
is being worked out within the language systems.

1. Chinese tones were synthesized in the laboratory of experimentel phone
at the College of Asian and Af icen
Sinaies (Moscow helo of a formant synthesizer

COLLEGE OF ASIAN AND AFRICAM STUDIES, MOSCOW UNIVERSITY,

ABSTRACT
Studies of the tonal-rhythmic struc-
ture of ture of Yoruba words (on the bas
disyllables) make it possible to suggest a general pattern of the rhythmic arrangement of tones and
also to formulate the basic rules also to formulate the basic rule
governing tones in this unit of speech.

The method of synthesis used in linbistic studies makes it possible to aporoach many linguistic problems at a quals problems researchers nevertheles ncounter considerable difficulties
view of the fact that, to meet the riew of the fact that to meet the
requirements of modeliing speech, it is necessary to know the so called phonetic characteristics of speech which
bring simulated soeech closer to the innguistic prototype modellied in every particular case, alongside the features raditionally referred to as functiona
phonological). Experiments in synthesis show, for example, that when modellng the syllabic tone (as well as the complex tonal-rhythmic mechaniam of words), it is necessary to take into istinctive features. In natural speech tones are known to be
adjusted to each other and for this eason disyllables, the minimal lexical unit in which the basic tonal-rhythmic are manifest, have been chosen as the
linguistic material in studying the to-nal-rhythmic structure of Yoruba. In View of the fact that latest works tones in Yorubs usually single out three (denes, name M, med medium tone, H for high tone and L for low tone), ni
tonal-rhythmic models of disyllabies tonal-rhythmic models of disyllables
 $\mathrm{H}+\mathrm{I}$. In studying the tonal-rhythmic models of great interest are those phonation segbecause it is precis are joined togethe are "adjusted" to each other, coordinating in a certain way the contour, regis ter, time and amplitude characteristics. The junctures of tones manifest most the tonal-rhythmic model as a certain semantic unit of the given linguistic
system. It should be stressed that for system. It should be stressed that for
the tonal-rhythmic structure to be modelled successfully it is necessary to take into consideration not only the equal measure amplitude, time and inter val parameters which, interacting with each other, alone can ensure that model is given simulated tonalriay or at least partially associated n native speakers with its natura rototype
J. M. Hombert analysis of the perception of tonalrhythmic structures in natural speech on
the basis of bisyllabic nouns in Yoruba hat acoustic parameters are informative different degrees. He asserts that he native speakers of yoruba use only nable them to distinguish rhythmic The first characteristic, according to Hombert, is connected primarily with Fo n the vowel of the second syllable (V2).
he second characteristic is presented by him as a combination of three para-
cation of Fo in V_{2}, the medium value of ween the end of V and the beginging of 2. As is seen, Hombert includes only fretional features, treating amplitude and tis apparently indisputable that the native speakers of Yoruba are capable of distinguishing one tone from another in the final position by the features men-
tioned by Hombert. However, they are intioned by hombert. However, they are innodels normative from the point of view of prosody. This is borne out by the anahythmic models, which strictly reproducd all the rhythmically fmportant contour, interval and time parameters and delibemeters. After listening to the sounding of these models, the auditors observed
that they could hardly be considered as normative.
Analysis of tonal-rhythmic models with the medium tone ($M+M, M+L, N+H$, shows that
is most stable rhythmically in all the combinations with other tones and retains the even contour, its own duration and menes within the three-level register scale) The Yoruba register scale for male voices close to baritone tenor can be conventio
nally divided into three ranges:
 The specificity of the $M+\mathbb{N}$ tonal-rinythmic tour is formed by two even tones, with the second syllable tone invariably beginning at the frequency of the end of the firn interval between the syllables in the medium tone model is important from the point of
view of rhythm, while any deliberately maView of rhythm, while any indiable tones results in the broken rhythm of the model. Denending on the nature of the frequency
breakage between the syllables, the auditors described the sounding they heard as a combination of the medium and high to-
nes or the medium and low tones. For the nes or the medium and low tones. $\mathrm{M}+\mathrm{M}$ rhythmic model to sound naturally and be perceived unambiguousily, its both syllables should be actualised in the medium range exactly. When the register was dell
berately changed (with all the other acoberately changed (with alcombination of these tones remaining unchanged) the audi combination of two high tones. The determination of the time reiationship between sed as a medium tone, is a key functional acoustic feature in simulating these to-nal-rhythmic models. The presence of the medium tone in disyliables suggests a cer lain strategy of synthesis, i.e., the cre ation of an exact time relationship be-
tween the medium tone, on the one hand, and the high and the low tone, on the other. Our experimental material includ being identified as high. Analysis of
this fact brought to our attention primathis fact brought to our attention prime syllables of the disyllabie, in which the first syllable (medium tone) is equel is
its duration to the second (low tone), its duration to the second (low tone), the time relationship cetween sylun of the high and the low tone Consequently, when the medium tone its duration should be longer than that of the syl erised by other tones.
One of the key rhythmic characteristics in the first syllable is the medium tone of the frequency of the end (medium tone) and of the beginning (low or rising high tone), with its indispensable prerequi contrast at the juncture of trenes. Seve cal variants of (M+I and $M+$ H) disisilables
ral vand diferent frequency contrasts and with different frequency contrasts and
without these at the juncture of syllabwithout these at the juncture of syllab-
les have been synthesised to verify this hypothesis. The auditors identified only those of the synne had no frequency rupture between the syllables and also those with the minimal frequency rupture (not longer than a second). The rest of the synthesised modecond-1ong interval of the frequency rupture between the syllab-
les can, apparently, be considered admisles can, apparently, be considered admis
sible, whereas a longer one places these sible, whereas a longer one placmative Thythm of disyllables. $M+H$ and $M+I$ tonalrhe peculisrity of the models consists in the fact that they are organised by two types of equiworked out in the Yoruba language. Different acoustic characteristics become funo tionally important in their rhythmic oranisation. All the programmes of synthe
asing the $M+H$ and $M+L$ bisyllabic models ere recognised as normative when theif onal contour was either formed of two
ven tones belonging to different regiseven tones belonging to dif arent regination of the even and the rising contour. Each type of the $\begin{gathered}\text { m+H and } \\ \text { ownitice peculiarities. In the first }\end{gathered}$ variant the functionally important facto o the register contrast between syllables equal to a rey relationship between the egisters exceeding that interval were escribed by the auditors as "rhythmical "robot-like", whereas those with a smaller年erval were percel. of two medium tones, Apparently, an in-
terval of a minor third can be considered

erthe less, this oriterion no longer
erthe less, two rhythmic models \quad H+I and $\mathbb{N}+\mathrm{L}$ - with the low tone in the fi-
nal position are set against each other nal position are set against each other In this situation the interval and the
speed of its formation rather than the
falling nature of the low tone (it rema spalling nature of the low tone (it rema
fins the same) become rhythmically significant, alongside other acoustic features involved in the differentiation of these models.
Studies of the tonal-riythmic structure of Yoruba words (analysis and synthesis possible to suggest a general pattern of the rhythmic arrangement of tones and verning tones in this unit of speech. The interaction of tones in disyllables
is based on three major rules. Two of is based on three major rules. ter-contour oppositions -- operated in all the rhythmic models and the ir pos-
sible variants, while the third rule re gulates the rhythm within only those nodels that fall under the
The specificity op the rhythmic organisation of bisyllabic Yoruba words con-
sists in the fact that in one and the sists in the fact that in one and the
same model tones interact differently, same model tones interact dor which reason one of the variants of the model can
fall under the rule of register-contour opositions, while another variant under that of register oppositions. For xample, a variant of the lables of a disyllable sounded in different registers - medium and high (he-- is governed by the rule or wariant falls under the rule of register-conour oppositions because the medium regishas an even contour in the medium regia
ter and the tone going after it has a rising contour ($-/$).
The rule of register oppositions regulates the interaction of tones in those
tonal-rhythmic models which have tones with similar even tonal contours produc d in different frequency bands, i.e., n different registers, which in their
urn account for the opposition of tones in disyllables.
The rule of register-contour oppositions regulates the tonal-riythmic models in Contours and registers. The third rule can conventionally be respondence or the equi-frequency corres-
pondence of tones, which covers and regupondence of tones, which covers and reg ates all the regist the segments of diin the tones at all the segments of the requirement of this rule by definition
boils down to the equi-frequency corres
pondence between the beginning of the consequent tone in a disyllable and the equi-frequency correspondence can take place in the so called frequency corres significant frequency breakage (that is significant frequency breakage that is Yoruba).
The phonological principle underlying the rule of the frequency correspondence of
tones elucidates both the general mechanism of the rhythmic moderaction of tones in register-contour oppositions and any particular manifestation of this general regularity. This ensures the necessary confusion in any contextual situation.

[I] syilabic Hombert. Perception of Bi-
 syllabic Nouns in Yoruba. Studies in African Linguistics, ig76, Sup. 6

astract

Alout，being a language without a word stress，forms its raytamic structure oy means of two mann things：raytnmic accent
and long vowels．there are several main fhythmic accent patterns in Aleut，long rhy thmic acent patrerns
vowels mbreaking ranks＂tnen，rhythgic
accent is counted from that nbreakn．

INTRODUCTION
Suprasegmental features of three now investigated in detail．It is obvious，how ever；that such information could give new material for typological studies as woll （cf．the comparison of Bskimo rhythmic accent patterns in［1］）

The work of this kind on Sskimo material was begun some time asol2］．The purpose of patterns of wordforms in Bering Island Ale ut ，which is，probably，a conservative
form of Atka Island Aleut $[3]$ ．The material form of Atka Island Aleut $[3]$ ．The material
was obtained during two field trips to Be－ ring Island in 1982 and 1985

Long vowels

The three short Aleut vowels $/ \mathrm{a} / \mathrm{/i} / \mathrm{i} / \mathrm{u} /$ els can be either included into morpheme signifiers or result from phonomorphologi－
 ＂he laughs＂；aalusakux［a：cu：／aK ${ }^{\circ}{ }^{\circ}$ ］the laughs at sb．＂The initial the／in the eme，the second long vowel／u：／is a result of lengthening／u／before the transitivis－ ing suffix－sa－provoking obigatory leng thening of the final stem－rowel．A long vowel in such a position can be treated as two vowe．
a morpheme－borderline between them．
morphemeotr－combinations can also．provide
Some word onditions for vowel－leng thening；for inst

cf．qankus［qánko $u 5^{\circ}$ ］＂three＂．

The Correlation of the Morphemic－and

Syllabic Structures

Phonomorphological rules of the syllab－ ic structure of the wofdform depend，to a the root－ structures are CVCV and VCV－two－syllable
 one－syllable and two－syllable roots are one－syllabie and two－syllable roots are \｛sasúeics nbe annoyed H．Roots of more than three syllables are rare，and none－sylla c roots is not found in Aleut． determined by two main principies：1）all suffixes（numbering about 120 ）can only
begin with a consonant 2 2）the way of link begin with a consonant；2）the way of link－ morphological type of a suffix．We shall Hypes of suffixes 1．Suffixes linking the stem through a
long epenthetic vowel， long epenthetic vowel，e．${ }^{\text {ing }}$ ．
 suffixes lengthen the final vowel：adalu－

2．Suffixes linking the stem through the epenthesis of normal length，e．g．－ta －ह̂i－＂the objective resultativen linking a vowel－stem，these suffixes do not change the length of the final vowel e．g．chachi－da＂cover！n［と＇aどiDa］
depends on the final sound of the stem：in case of a vowel－stem the final vowel be－ comes long；the consonant－stem links these length．One of these suffixes is in the tran sitivisor＂－sa－．A peculiar feature of the openthesis of normal length is that its
quality is not constant．It may be suppos－ different in many cases，the choice between
influenced by the vowel structure of the
 sa－kuvexayuak ux］he 1s passine with＂； ng sth．＂；iklug－a－sa－ku－र्x＂he has bumped gainst＂ikluyasakufice The first two second twowordforms－／a／．This distribu－ ion is not obligatory but rather prefer－ The choice between／u／and／a／depends on the preceding vowel：／u／follows／a／，and lu／is fcilowed by la／．This dissimiliation
according to the height of the raised part according to the hergit of the raised par es which link the stem through the epen－

Accent and Rhythmic Structure Long vowels play an important role in of a wordform．Their distribution，however， lating to a word or phrasal stress．The rhytrmic structure of a wordform is form－ ed not cnly due to long vowels but also according to a rule of distribution of ac
cented and neutral（not accented）syllabl es．
In wordforms of cVCVC－structure（is they do not include leng vowels），the tuxix $\hat{x}\left[t^{0} u ́ x i-x\right]$＂dot＂，hatix［hát：i－x］＂lips＂， al sylle al an accented syllable is shorter tiban the corresponding long vowel．
its influence on the quantity of the con－ sonant following the accented syllable． If a consonant follows a long vowel in a
wordform of similar structure，it does no change its quantity，e．g．taachix［ta：sic n］ Change its quantity e．g．elbow bone＂，hachix［hacify back＂．The first word shows an intervocalic／c／of the corresponding long consonant．This phenomenon can be seen most clearly if the consonant following the ac
In three－syilable isolated wordform the second syllable is accented，e．g． hyutikux［Gutiko $\left.{ }^{\circ}{ }^{\circ}{ }^{\circ}\right]$＂he is pouring（water kidunax $[$ k＇idunaf＂he helped so．＂，samt
sie［samis＇is＇］niumeral＂．The consonant sis［sami＇sis＇］＂numeral．The collo is also lene thened but thjis is not so obvious as only for sonants．Consonant clusters app－ earing in nonesyllabic positions do not influence the rhytrimic structure of tire
Four－syllable wordforms（with no long vowels）have two accented syllables－eing
marked more distinctly，e．g．haxsatikux
 ent on these syllables cause leng thening of the following sonant（ait least，it is surely so in the rosition after the thir In mult
rhy thmic accent puts wordforms a rule of second syllable，except accent on every cases when a long vowel appears and breaks the rhythm－ counted from that＂rinythmic break＂．
The distribution of accented／neutral character．Accent is closely ponnected with the syntactic context of wordforns，or ，
 coming up＂．The one syllable word tlang
comd thee－sylable word nagakux give and three－syllable word haqakux give ${ }^{2}$
four－sjllable stretch
enntagm four－syllable stretch（syntagm），which is rhythmic structures of the words do not contradict to the rhythmic structure of the stretch，and，so，they are not changed．When a three－syllable stretch，their own rhythm－ rhytrmic strus inevitably contradict to the rhythmic structure of the stretch，ee．g． A three－syllable structure tends to have the second syllable accented－but not in
this case（the first and third sylu ables are accented）．It can be oxplained by rule of obligatory accent of the only syll－ cause of this，the tnree－syllable stretch is accented as a multi－syliable structure （every second syllable）．If a three－syll－ （＂rot notional＂）word and a＂dependent＂n notional＂word the first syllable of the a stretch is not
 In these examples the nointing word＂wan does not prevent the speaker from putting qax is na starting point the for the tional now word Let us or the second stretch． chifanầ qatukux̂erifon：ufqatưkouj］in the river a＂right＂accent In the second wordform，our informants put an accent either to the first or to the pronunciation：ine It depends on the type of second syllable to be accented，i．e．the preserved in the stretch both wordforms are cond wordform can be uttered in a treduced－ type＂pronunciation－then，tne accent is wordform．It is important that if in the wordform the second syllable is accented， it produces a yuasi－homonym，cf．yaatukux


```
ミコゴ*
```


シゴシミロニミミ

引．

 bu．0，₹．ixミー：io．

ARNE KJELL FOLDVIK

Department of Linguistics
University of Trondheim
N-7055 Draguoll, Norway

ABSTRACT

There has been a rapid spread of dorsal pronunciation of r in South-West Norway during this century, affecting more than $1 / 10$ of the population of the country. The dynamics of the spread are described and reasons for it discussed.

In Norwegian the most common pronunciation of r is an alveolar tap, [r]. In the Oslo area it is often palatalized, $\left[\kappa_{0}\right]$. A century ago r was pronounced as an apical trill, [r], in most parts of Norway. This pronunciation is now common only in a small area between the towns of Florg and Alesund on the west coast. The apical trill in this area is a velarized one, $[\xi]$, and the alveolar tap in the surrounding areas is also velarized, $[\propto]$. In the three northernmost counties, Nordland, Trons and Finnmark an alveolar fricative or approximant is often used, $[x]$. In South-West Norway where the dorsal pronunciation is common, a variety of pronunciations of r may be heard; from a palatal, velar or uvular fricative or approximant, [j, ut, $\mathrm{y}, \mathrm{b}]$, to a uvular trill, [r].

Information from the Norwegian Dialect Survey at the University of 0slo forms the basis of Map 1. It shows the towns of South-West Norway where a dorsal r pronunciation is common and areas where informants born about the turn of the century use the dorsal pronunciation.

Map 2 is based on several different sources of information. In the first instance it was based on information, some of it extremely detailed, that the Directors of Education in 81 towns and municipalities in South-West Norway supplied in 1978. [1] Secondly, it is based on information from colleagues, students, and local informants who have offered information about their own area after radio programs about the spread of dorsal r.

When the two maps are compared it becomes clear there has been a spread of dorsal r to big areas in the South-West, but no towns hive been affected. Even if the striation of map 2 also covers fjords and thinly populated mountain areas, so that the spread may look greater than it actually has been, the area taken over by dorsal r has a population in excess of 400000 , which is more than $1 / 10$ of the population of Norway. This spread is the biggest change in the pronunciation in Norwegian
during the last decades.
The dorsal r continues spreading quickly in some areas, notably round about the towns of Bergen and Floro, more slowly in other areas, for instance inland from the towns of Kristiansand and Arendal, and seems to have come to a halt near the town of Risor, an 'apical' town of the South-East coast.

The spread of dorsal r can not be accounted for purely by the motorically simpler movement that is needed to produce it. With the latitude in dorsal pronunciation it is not surprising that speech therapist reports from the schools in dorsal areas hardly ever show r-problems, while in the apical areas r-problems are very common indeed.

The spreading of dorsal r in Norwegian is facilitated by the fact that the dorsal and apical pronunciations are equally socially acceptable and are both used on Norwegian radio and TV, but also by the fact that most peoole do not experience the change in pronunciation as a change of dialect. Un the whole Norwegians are dialect proud; pupils are by law encouraged to spaak dialect and dialect is used by pop-artists as well as politicians.

But the main reason for the spread of dorsal r would seem to be the prestige connected with dorsal towns and bigger settlements in the area and the linguistic influence that these centres excert on the rural districts. School centralization which leads to children often travelling long distances by bus to go to bigger schools more often than not situated in a town or bigger settlement, facilitates the spreading.

Even if the spread is fast in several areas at the moment there is reason to believe that it will not continue at its present rate. It seems likely that it will only continue as far as the linguistic influence of dorsal towns and settlements reaches. There are no signs of the dorsal r spreading to any of the apical towns. The dorsal r pronunciation in the capital of Oslo seems to be restricted to some upper class speakers only.

This chanqe to dorsal pronunciation is easy to reqister; far easier than for instance minute changes in vowel pronunciation. Fieldwork and
data collection concerning the spread of dorsal r will be continued.

Reference

[1] A.K. Foldvik, The pronunciation of r in Norwegian with special reference to the spread of dorsal r. Pp. 105-110. In (ed.) T. Pettersson: Papers from the 5th Scandinavian Conference of Linguistics. Acta Univ. Lundensis 30 . Lund, 1979.

Se 9.1.2

ALDA VAN ERP

Dept. of Applied Mathematics and Signal Processing,
Dr. Neher Laboratories Netherlands PTT, Leidschendam, the Netherlands

Abstract

The results of a rating experiment are presented and related to 18 phonetic variables obtained from a panel of phonetic experts. Recorded, non-emotional speech fragments spoken by ten adult male Dutch cleft-palate speakers were investigated. The verbal content was controlled in all speech fragments. In the rating experiment the cleft-palate speech fragments were rated by two groups of listeners (of whom 30 had had a training in speech therapy and 30 had not) on 19 speech scales and 15 scales pertaining to social status, social attractiveness and competence. The results show which variables cause listener group effects. Additionally, the relation between speech ratings and personality/social ratings are displayed and compared for the two listeners' groups. Moreover, the listeners' ratings are related to the (expert) phonetic variables.

INTRODUCTION

Cleft-palate speech is the speech produced by someone who has (had) a cleft palate. It is pathological in the sense that it sounds obviously deviant from speech that falls within the range that is accepted as 'normal' by the speakers in a particular speech community. It deviates from 'normal' on a number of vocal aspects pertaining to articulation, phonation, resonance and prosody.
Vocal aspects may be used by listeners to infer information about characteristics of the speaker. For example, when you talk to someone whom you have just met for the first time, it may happen that you 'get a first impression of the other which is based on how the other speaks rather than what the other says. Although it may happen that such inferences are not in keeping with the reality, they play an important role in (first) impression formation.
It is not clear to what extent typical cleftpalate vocal characteristics contribute negatively to the impression people get of the speaker in question. The present paper attempts to answer this question. To this end perceptual descriptions of the relevant vocal characteristics were related to inferences about speaker characteristics that are based only on vocal information. The process of attributing speaker characteristics from only vocal aspects appears to include not only conclusions about psychological and
social aspects, but also about physical aspects of the speaker's identity such as his or her sex, age, height, weight, physique and state of health [2]. The study reported on here does not deal with inferences about physical aspects of the speakers. It deals with personality and social aspects on the basis of vocal aspects. Moreover, the personality and social judgments in this study are obtalned from listeners only; they are not obtained by means of tests.

METHOD

At the base of the research reported on here are running speech fragments from a sample of Dutch cleft-palate speakers. Firstly, the vocal aspects of these fragments have been phonetically described. This was done analytically by a panel of experts. Secondly, the same vocal aspects were judged in an assoctative fashion. This was done in a rating experiment by various relatively large groups of ifsteners. Thirdly, the speech fragments were used for obtaining associative, inferential judgments about the speakers' personality and social aspects. This was done in a rating experiment as well, by the same listeners that also rated the vocal aspects in an associative fashion. Thus, the cleft-palate speech samples were described on three levels. Analogous to the lens model [1], these three levels of description can be referred to as 'distal', 'proximal', and 'attributional'. On the distal level is the phonetic description of the vocal aspects; on the proximal level the associative description of the vocal aspects; and on the attributional level the associative description of the personality

- and social aspects. The rating experiment was designed in such a way that the proximal and the attributional levels were distinguished.

Speech material

The data base consisted of recorded prose passage renderings by ten different cleft-palate speakers. The prose passage was an emotionally neutral reading text, and yfelded more than one minute of running speech per speaker, the verbal content being controlled. The speakers were male, had slight South-Eastern Dutch accents, and were aged between 17 and 48 years.
combined approach was followed: Both a segmen-
al and a nonsegmental description were made of he speech nonsegmental descripton were made of the speech material (see above) by four experts
In addition, 12 innguistically trained judges in addition, 12 innere used for obtaing intelligibility scores. These were based on nonsense sentences read alou ve the ten cleft-palate speakers.
The segmental description indicated which pho-
nemes were pronounced deviantly and how ofte nemes of the following typical errors were made:
(1) fronting of (1) $\frac{\text { fronting of the place of articulation, }}{}$ (2)
backing of the place of articulation, (3
 $\frac{\text { nasal explosion, and (6) denasality. }}{\text { The nonsegmental }}$ a description consisted of rating on 33 vocal parameter scales. By means of scalar degrees it could be indicated for each parameter
whether the deviation from a predefined neutral whether the deviation from a predefined neutral
point was either $0,1,2$ or 3 . The ratings are mix of quality and quantity. This means that if a particular vocal effect is very strong when it is present it would be rated as 3 if it occurred
relatively often. However, if it occurred relatively rarely it would receive a lower score. The scales pertain to: (1) supralaryngeal features
(concerning the 1 ips , jaw, tongue tip, tongue (concerning the lips, jaw, tongue tip, tongue
body, the velopharyngeal mechanism, the pharynx, as well as supralaryngeal tension and precision
of arttculation) (2) aryngeal features (conof articulation), (2) laryngeal features (con
cerning phonation type and laryngeal tension) cerning phonation type and laryngeal tension),
and (3) prosodic features (concerning pitch, and (3) prosodic features (concerning pitch,
loudness, and temporal structure). The intelitigibllity scores were expressed in percentages of
syllables that were reported correctly, averaged over the 12 judges.
The associative description
For the associative description, the speech material that was phonetically described was present-
ed to 60 female listeners. Their mean age was years, ranging from 20 to 26 years. 30 listener were students from the college of speech therap were students enrolled in the Faculty of Arts the University of Nijmegen, but not in language
courses ('UNTRAINED'). The listeners were born and raised in the South-Eastern part of the
Netherlands and were therefore accustomed to Nouth-Fastern Dutch accent. The rating experiment took place 1 n a language laboratory with individ
ual booths. The listeners were presented with the ual booths. The listeners were presented with the
recorded speech material via headphones. They did not know any of the speakers nor did they know what the speakers looked 11 ke . The 1isteners were
asked to rate each bi-polar (7 -point) scale on the asked to rate each bi-polar (7-point)scale on the
rating sheets they got in front of them. The meanings of the scale positions was explained to them in the written instructions. The instrucimpressions. In fact, they were only given apimpressions. ${ }^{\text {In }}$ fact, they were only given ap-
proximately 3 seconds per scale to respond. The rating scales were divided into two categories. One category contained scales pertaining to vocal
aspects ('speech scales'), the other contained
scales'), the other contained scales pertaining
to personality and social aspects. The two type o personality and social aspects. The two types
of scales were rated in separate sessions. elve speech scales refer to more or less generhonation typects that pertain to articulation, honation type and prosody (viz. standard, pre-
inse, inteligbble, good reading performance right, creaky; high-pftched, varied, expressive, oud, quick, smooth). Seven speech scales refer - pathological vocal aspects (viz. nasal, with sed, hoarse, lisping). In addition, there wa one question with a dichotomous response catego ry, namely: "Do you think speech therapy is re uired? yes/no"
he personality/social scales refer not so muc o the classic Evaluation, Potency and Activit
dimensions, but rather to dimensions that wer considered to be more relevant in connection
with the social acceptability of people with with the social acceptability of poople with
speech defect. Therefore, they refer to social status, (social) competence and social attrac tiveness (viz. of high social status, high1
ambitous, with qualities of leadership, self
of ambitous, with qualities of ineadership, sely
confident, reliable, intelligent, suited for public speaking, strong-willed, careful, inter
ested,
friendiy, cheerful, modest).
esulis and discussio
Firstly, I will discuss the outcomes of t test based on the associative ratings. This is done ality/social ratings, to determine whether ther is any difference between the ratings of the two groups of listeners (viz. TRAINED versus UN assoctative speech ratings and personality/social ratings will be discussed and compared for the two groups of 1isteners. Finally, the relation the pathological aspects) will be related to the associative ratings. Again, the groups of listen ers will be compared.
Before the associative ratings were subjected to tests, interrater reliabilitiles (Cronbach' alpha) were computed, separately for each scale, and separately for the two groups of listeners
For the speech scales, these coefficients generally appeared to be satisfactorily high ($>.80$) and comparable for the two groups of listeners.
The only conspicuous differences betwen the to listener conspicuous differences between the tw speech scales. Firstly for not sniffing- sniff ing, not snoring-snoring, not hoarse-hoarse, an not creaky-creaky, where the reliabilities of
the UNTRAINED IIsteners were comparatively low the UNTRAINED listeners were comparatively low
ranging from 44 for not sniffing-sniffing tomer .74 for not creaky-creaky while the relia bilities of the TRAINED listeners were highe
than . 90 . These differences were due to the fac than .90. These differences were due to the fact
that the TRANNED 11 steners findicated differences between the various speech fragments more clear than the UNTRAINED listeners. And secondly ther was a conspicuous difference for not with a
blocked-up nose-with a blocked-up nose, where
the reliability for the TRANED listeners was
lower than for the UNTRAINED listeners than for the UNTRATNED 1 steners (viz. 71 versus
91). This was mainly due to the fact TRAINED listeners did not seem to agree much among themeselves with respect to the scale post tions they assigned to individual speech frag
ments. As for the personality/social scales there appeared to be no differences between the two listeners groups that are worth mentioning Twelve scales were rated very reliably ${ }^{2}$. 91)
Three scales (viz. unfriendly-friendy ${ }^{\text {con }}$ con ceited-modest, and unreliable-reliable) were rated less reliably, with coefficients rang ing from .69 to .80 . In addition, it appeare
that in general the personality/soctal ratings were less extreme than the speech ratings. This
could mean that the listeners are rather careful could mean that the listeners are rather carefu to speakers on the basis. of only their speech. In subsequent analyses use was made of the mea of the ratings of 30 listeners on each of the 19
speech scales and 15 personality/social scales speech scales and 15 personality/social scales
respectively, for each of the ten cleft-palate speech fragments.
The t test results
The t test results revealed that statistically
the ratings of the two groups of 1 isteners (averthe ratings of the two groups of insteners (aver
aged over 30 1isteners and 10 speakers) were aged over
equally high. Therefore, the conclusion is that
there is no the the ther there is no effect for groups of listeners, nei-
ther for the speech ratings nor for the personality/social ratings. With respect to the speech
ratings this could mean that also in a normal ratings this could mean that also in a normal
social context the cleft-palate speech aspects social context the cleft-palate speech aspects
are just as salient for laymen as for speech therapists. With respect to the personality/social ratings this means that apparently listen-
ers are rather consistent in the attribution of personality/soctal characteristics on the basis of someone's speech only.
In order to determine whether there are any rela thons betweon associative ratings of vocal as pects and associative ratings of personality/
soctial aspects social aspects, product-moment correlations wer
computed. Firstly this was done, separately fo the two groups of ifsteners, for general ratings (i.e. ratings that are not only averaged over
listeners but also over scales). This general listeners but also over scales). This general
correlation was 80 for the TRAINED listeners and correlation was. 80 for the TRAIN.
.88 for the UNTRAINED $1 \mathrm{isteners}$.
In order to be able to investigate the relation between associative speech ratings and associa-
tive personality/social ratings in more detall, correlations were subsequently computed between every speech scale and every personality/social
scale, $\operatorname{separately}$ for the two groups of 1isteners. From the results it appeared that, for both groups of listeners, the more general (i.e. not
pathological) speech ratings correlate significantly with personality/social ratings far more often than do pathological speech ratings. Speakers that were judged to speak 11 ttile var ted, expressive, precise, smooth, clear, loud,
and who were judged to have a bad reading performance were judged less positively on most
that were judged to speak varied, expressive that this finding may be an artefact of the speech material that, was used (viz. a reading
text). As for there were some remarkable differences between thisteners there were significant correlation hetween ratings of a number of pathological speech aspects (viz. nasal, snorting, snoring
and judgments about certain personality/social aspects (viz. unsulted for public speaking without qualities of leadership, modest, waver Ing). For the TRAINED listeners the judged
presence of pathological speech aspects did not correlate significantly with personality/social judgments. This difference between the two groups of isteners is important insofar that it seen
to indicate that a layman is more inclined tol attribute certain less positive personality/ social characteristics to speakers with obvious Before the analytic aspects were related to the associative ratings, statistical analyses were carried out - for the
nonsegmental description and the intelligibility scores - in order to make sure that the ratings were reliable, and that the various paraneters
were relevant to the aim of the study. The reliabllity of the means of the scores was assessed by means of Cronbach's alpha.
It appeared that for the nonsegmental parameters this coefficient ranged from. 06 for protrusion
of the lower jaw to .88 for speech rate. $\frac{\text { of the lower faw to }}{\text { Only values higher than. } 75 \text { werech cotsidered to be }}$
satisfactorily high. Consequently, only ten out satisfactorily high. Consequently, only ten out
of the 33 nonsegmental parameters were considered of the 33 nonsegmental parameters were considered
to have been reliably rated, namely: nasality,
 loudness mean, linterruptedness, and rate. The parameters that were rated most severely, nasal emission and whisperiness. nasality, to assess whether the ratings on these scales on each of these of the speakers, the rating rate analyses of variance with two fixed factor namely 'speakers' and 'raters' (leve 1 of signifiers' was). appeared that the fac: r 'speak ers' was significant for all ten scale:-
ton of the mean ratings ($\mathrm{N}=4$) for each
parameters revealed that this was not caus: thes just one or two speakers who had recelved extreme
ratings while the other speakers were rate ratings while
neutral. For the average intelligibility scores ($\mathrm{N}=12$ the reliabllity coefficient, averaged over te
speakers, was 85 . The scores for the individual speakers, was 85 . Pl scores for the Individual
speakers ranged from 80% to 98% However, for nine out of ten speakers the range was betwe 92% and 98%. This points to a celling effect.
Additionally, in order to examine how the 18 different analytic variables (i.e. 7 segmental 10 nonsegmental, and 1 intelligibility variable
computed. There were nine significant correlations and in only five cases the correlation was so high that more than half of the variance in one variable was accounted for by another variable. This concerns the following variables:
(nonsegmental) nasality and (nonsegmental) nasal emission ($r=.71$), (segmental) nasal emission and (nonsegmental) nasal emission ($\mathrm{r}=.79$), (segmental) nasal explosion and (nonsegmental) loudness mean $(r=.71)$, (segmental) glottal stops and intelligibility ($\mathrm{r}=-.87$), and precision of articulation and pitch range $(r=.71)$. Because neither of these correlations are extremely high, it was decided to relate all 18 phonetic variables to the associative ratings.
To determine the relations between the phonetic variables and the associative ratings, productmoment correlations were computed, separately for the two groups of listeners.
In the first place, this was done between the phonetic and the associative descriptions of the vocal aspects. Correlations between the following parameters were significant, for either one or both of the groups of listers. Correlations higher than 1.631 are significant. The height of the correlations indicates the validity of the associative ratings of the speech aspects. The first correlation is of the UNTRAINED listeners; the second of the TRAINED listeners.

1. (Segmental) fronting of place of articulation with 1isping (.84, .81)
2. (Segmental) nassi explosion with snoring (.48, .66)
3. (Nonsegmental) nasality with nasal (.92, .83)
4. (Segmental) nasal emission with snorting (.40, .81)
5. (Nonsegmental) nasal emission with snorting (.64, .90)
6. Intelligibility with intelligible (.54, .69)
7. (Nonsegmenta1) whisperiness with hoarse(.88, .90)
8. (Nonsegmental) precise articulation with precise (.86, .83)
9. (Nonsegmental) rate with quick (.82, .80)

Apparently, for snoring, snorting, and intelligible the associative ratings of the TRAINED listeners are clearly more valid than those of the UNTRAINED listeners. For lisping, nasal, hoarse, and precise there is practically no difference.
In the second place, this was done between the phonetic description of the vocal aspects and the associative description of personality and social aspects. Correlations between the following parameters were significant for either one or both of the listener groups. Their height indicates the strength of the relationship between 'true' vocal characteristics (i.e. vocal characteristics as described analytically by experts who were trained to do the job) and inferred personality/social characteristics. Again the first correlation is of the UNTRAINED listeners; the second is of the TRAINED listeners.

1. Nassility with suited for public speaking (-.61, -. 66)
2. Whisperiness with intelligent (-.71, -.68)
3. Whisperiness with of high social status (-.66, -.69)
4. Whisperiness with with qualities of
leadership ($-.62,-.66$)
5. Whisperiness with suited for public speaking (-.62, -.64)
6. Rate with spontaneous (.56, .64)
7. Rate with modest $(-.71,-.76)$

Apparently, these correlations are much the same for the two listener groups. In addition, it appeared from the results that precise articulation and pitch range correlate significantly with every personality and social scale except for suited for public speaking, selfconfident, and modest. Their correlations ranged from .68 (e.g. for intelligent) to .91 (for careful) and were comparable for both groups of listeners.

CONCLUSION

From the results it appeared that there are obvious relations between some pathological vocal characteristics (viz. nasality and whisperiness) and negative ratings on some personality/social characteristics pertaining to social competence. These relations were more or less equally strong for TRAINED and UNTRAINED listeners. However, it also appeared that for more general (i.e. not-pathological) vocal characteristics (viz. rate, precision of articulation,and pitch range) the relations with rating on personality and social characteristics are more pervasive. Moreover, the results strongly suggest that these five vocal characteristics mediated in the attribution process. Admittedly, whether these vocal characteristics are actually used for attributing personality and social characteristics of the speakers in a normal social context would have to be investigated in a more realistic setting.

ACRNOWLEDGEMENT

This research was financially supported by the research pool of the Catholic University of Nifmegen. In addition, partial financial support was given by the British Council. Financial support for attending this congress is given by the Netherlands PTT.

REFERENCES

[1] Brunswik, E. Perception and the representative design of psychological experiments. Berkeley and Los Angeles, California: University of California Press, 1956.
[2] Laver, J. \& Trudgill, P. Phonetic and linguistic markers in speech. In: Scherer, K. \& Giles, H. (eds.), Social arkers in speech. Cambridge: Cambridge University Press, 1979.

The Flood of Japanised Foreign Words and these Futurity

Dr. William Nkira Sakow, LL.D.

International Society of ?honetic Sciences

I want to discuss the flood of 'Japanised' Foreign Hords which have appeared in the numerous advertising, social and educational fields, and to criticise from the point of Phonological and cultural viewnoint. Because, the making use of these strange words are very important from cultural standpoints, but, on the other hands, some serious flaws strikes my minds.

Explanation of Japancse pitch accent:-

 $/ /=$ phonetic botation.

For the last twenty or thirty yoars, and as an indirect resuli of the sceond world War, we, even language teachers, often have been surprised at the large number of so called Japanised foreign liords to be found in the field of advertising, and in many shops' names. liood and atilization of foreign words into public and private informational fields, seems to me, as wonderful introducing knowlege of western civilization, given to the Japanese, but on the other hands, the thought to introduce things without eritical consideration, is an abnormal thought lessriess perhans coming firom the white-qhobia of the Japanese durino Meiji Restoration era. That is to say, most of Japanese advertisers may suppose without inquiry of the matere, that advertisement with so many forcign words (both original spelling and Japanised loanwords as well), may be interested and praised by many guests, whether the foreign vocabularies are under-
stood or not by them. How hasty deed the Japanese do:

According to my these long belief, I'll selcct some hundreds of familiar Japanised loanwords from about 36,000 , and try to estimate their future usage and longevity.

At present, the Japanised loanwords are said to be so many words including every fields, but as far as 1 studied the borrowed wolds, from educational point of view, 1 think about 10,000 will be enoegh, excluding personal names, geographical names and the names of novels and arts' works. About a half of the loanwords are English, in origin from Great Britain and U.S.A., and other minors are Chinese, French, Portuguese, Dutches, Russians, Itarians, Spanishes, Germans, Koreans, Sanscrits and Latins, etc.

1. The Japanised loanwords before World Wal $1 I$.

I was born in a countryside of Gifiu Prefecture in 1912, but I REMEMBER VIVIDLY, even at present, that we, country boys, were using, in those days, twenty or more bor rowed Japanese words without thinking of them as "loanwords." For example, my mother used to say to me, 'sappo to manto o waßure nälide, Wilea!' \because 'Don't foget to wear chapean and manteau, Akira!'
other loanwords 1 can remember from my - momer days were:-

Gifsu/ - shirt, /boltan/ - botǎo (P), inilnu; - tube, /talija/ - tire, +rro, /mefrikenk" imericanflour,/pan/ - päo (P), /kolizil:/ coilne, hofrmarin/ - Formalin (G), /afukorru/ alchol (D), /dofobopu/ - drop, /safidoitixi/-- andwich, siliopru/ - syrup, /sōl:se:ži/ -sum-age, / kafiutera/ - castella (P), H Uisuretsu/ - cutlet, /kalle:ratisu/ - curried i ic, omuretsu/ - omeleite (F), /tamato/tomalo, katrokke/ - croquette (F), /bi「suketto/ - Wi-cuit, banana/ - banana, /bi布uteki/ biliach (F).
2. Japanised loanwords from 1950 to 1982.
a) Among the above mentioned loanwords, päo. (astella and some others were introduced from Portugues in 1774 , and also coffee, syrun, beer and some others from Dutch.

Many words particularly since 1950 (but
also going back to the Meiji，Period，an im－
portant fundamental period），have become mixed with Japanese words，and this has caused confusion and problems sometion．Per－ haps，if you refer to a，（om），of yapanill dvertising，（Rererence men loanwords are used compared to the number of：Japanese words．Japanes．scholars think that there
Some
is a danger that the flood of loanwords into our language may cause damage and contusion to our Japanese Mother tongue．But the
majority of these loanwords surely enrich majority of these
the vocabulary．and hence the culture of
ne the But we Japanese must pay important．
Jan． borrowed words and syllables．We must care－ fully compare the difrerences in pronuncia－ tion between the nat
pronunciation of i．t．
some of these loanwords will die natural－ 1．，through lack of use or from being out of
date，while others will live on and become a natu
filuture．
b）Loanword which were abbreviated into simple syllable by the Japanese

－Vewly made Japanised Foreign words． a）we call these words＂Wasei－Eligor＂ Japanese．＂Infortunately，however，many o these words or expressions are not under－
stood by foreigners from whose country the words are derived！For example，the sound of some of these words resembles English，
but their meaning is not understood by but their meaning is not understood by
native English speakers．The Japanese seem to like to create new words in this way． it is quite an interesting and creative use
it
it of languages．Don＇t you think so？I can
see though that other people are more crit－ ical and offended by what they see as a

 money by doing a wownan＇s walking mate，

タイン，スタンド／mern．sitando！main s				
分－4 no：yedmum no				
faifth inning by rain or an accident，				

b）Some New Trends in making loanwords ing new and interesting ways of making more loanwords in Japanese：
i）$\frac{\text { noun }+ \text { suru }}{6.0}($ Verb $) /$ suliu／$=d o$
Japanese may be able to make new expres－
 ex．：－Japanese nount ex．：－such a loanword supy．sifappu／（stop） int saiensul（sciene）suty，

 e education which respect high tech－
nical knowledge．
 a mate for marriage by compu
Kelkkon／（結媼 $=$ marriage．
come fort ant sound change for under standing the loanvords in Japanese． i）When a word moves into another country，not only the pronunciation may he new linguistic environment，but also the spelling may be changed，too：Mod
 guto kki／－groggy／grogi
According to the Japanese phonemic ，ys－ tem，\because sound（a choked semi－vowe 1）apoears by the long custom apanese people tend to use voiceless or semi－voiced instead of use
voiced．
ex．：－$/ \mathrm{d} / \rightarrow / \mathrm{t} / \mathrm{etc} / \mathrm{S} / \rightarrow / \mathrm{c} /$ ，and $/ \mathrm{g} / \rightarrow / \mathrm{k} /$ ，
Semi－voiced sounds are
／po／，／pja／／pju／／pjo／
ii）The choked sound \ddot{y} is one kind of a stop or fricative consonant having special one symable value．alottal stop in an English consonant．
 tive，パツy／pat
）It is important for us to differen－ tiate between the pronumciacho，and in the in the Japanised lountry of origin of the loanwords．
i）We must take particular care about the changes and differences in pronuncia－ of pitch and stress，and closed and opened syllables

スポークス・マン／supd：kusuman／-7 syllable pokes．man／spouksmon コスモボリタン／kofsumoporitan／－7 syllables．
cosmopolitan／kozmopolitan／-5 syllables．
ii）A little explanation of Japanese Syllabary
The syllabary（／onsetsu．mozi／）is denoted with＇kanal－characters．Below is the sys kana syllabary in the fifty sounds of the
Japanese language about 1695 A．D．

The kana syllabary（ 50 sounds）．

（mat）	（m）	$\stackrel{+}{\text {（x）}}$	（ma）	（ma）	（m）	（a）		$\stackrel{\ddot{2}}{(0)}$	$\begin{aligned} & \text { 虫 } \\ & (0) \end{aligned}$	（ ${ }^{\text {a }}$
（i）	（r）	（1）	\％	（6i）	（n）	（chi）		（min）	$\stackrel{*}{*}$	（1）
（6）	（ro）	（y0）	${ }_{\text {mu }}$	（t）	$\underset{\text { cru }}{ }$	（\％）		（a）	＊＊	品
（	（ro）	（0）	${ }^{\text {mo }}$	（he）	$\stackrel{*}{\text {（ne）}}$	（ （ ）		（e）	${ }_{\text {ace }}$	${ }_{\text {c }}$
$\underset{(0)}{7}$	（ro）	（yo）	\pm	走	mo	（o）（ $($ ）		（m）		${ }_{(0)}^{*}$

This table does not always show whole syl ables of Japanese，but vertically 5 letters，
and horisontally 101 etters，make 50 sylla－ and hor
We can see from the table that Japanese
syllables are constructed in the following：－

3）one consonant＋one glidetone vo
We know of course all syllables have al－ ways at least one vow

4．In conclusion
Within the limits of these four pages，I have tried to introduce you，my friens and
fellow phoneticians from around the world， some of the many loanwords from different countries which have become a nart of thae
Japanese language，and how these words have Japanese language，and how these words have
changed from their original pronunciation． to become Japanised．there are so many of
easy to make summary of them all in their address．But I have attempted to select a
few appropriate，and I hope，interesting examples for you＇when I say＇bye－bye，＇＇my home，＇＇golden week，and＇／sayonara／home－ a，I think of these words now as Japanese apanese people are now very familiar with uch words
in ending，I would like to say that lan－ ange is one of the best tools we have，to ther．It can and should strengthen mutual onderstanding and friendship betweem us． Language scholars can make a significant ontribution the ople and their communities．
so，let＇s increase exchanging programmes etween orr different countries．Now is the Thank you for your attention：

Reference No． 1

National Panasonic

-	
\qquad	

Key to phonetic symbols

Consonants

1	p	us in	pen/pen/	13	s	u.s in	s0/800/
2	b	us in	bed/beed/	14	2	us in	zoo/zu:/
3	1	as in	tes /it:/	15	f	as in	she //j:/
4	d	us in	did/dıd/	16	3	as in	vision/'visn/
5	k	us in	cat/krel/	17	h	us in	how/hay/
6	g	$4 s$ in	got/gul	18	m	us in	man/men/
7	1	us in	chin 4 :	19	n	as in	no/nob/
8	dy	us in	June / duu:n/	20	0	us in	sing/sio/
9	f	us in	fall/f: $/ 1 /$	21	1	ass in	log /leg/
10	v	us in	voice /vois/	22	I	us in	red/red/
11	θ	as in	thin $/ \theta \mathrm{m} /$ /	23	j	as in	yes/jes/
12	δ	as in	then/den/	24	w	as in	wat/wel/

1// represents primary stress as in about/s'baol/
1./ represents secondary siress as in acsdamic /ixkj'demik/
(r) An ' r ' in parentheses is heard in British pronunciation when it is immediately followed by a word, or a suffix, beginning, with a vowel. Otherwise it is omitted. In American pronunciation no 'r' of the phonetic spelling or of the ordinary spelling is ominted.
/-/ Hyphens preceding and/or following parts of a repeated transcription
indicate that only the repeated pars changes.

- the Introduction for a full explanation of the phonetic information.

PERCEPTION OF PARALINGUSTIC CUES OF AGE AND SEX IN MANIPULATED SPEECH: AN EXPLORATION

Leo W.A. van Herpt

Institute of Phonetic Sciences
University of Amsterdam

Abstract

An experiment is performed to explore the possibility to eliminate or control different paralinguistic phenomena in spoken texts in such a way that fundamental perceptual dimensions can be judged more or less in isolation. Specifically the effect of several acoustic manipulations of speech, coupled with different degrees of content masking, on the perception of voice and pronunciation qualities, and the attribution of age and sex are studied.

1.0 INTRODUCTION

A major problem in phonetics is the generally low correlation between perceptual ratings in speech characteristics and the supposed acoustic criteria of these attributes. To be able to identify the acoustic correlates of perceptual voice and pronunciation characteristics it is essential to have reliable and valid perceptual judgments.
Scaled values of Voice and Pronunciation (V\&P) obtained through the use of the semantic differential method have been found to be satisfactorily rellable [6] but attempts to validate the measures against an external criterion are quite unsuccessful [3]. Judgments of V\&P in connected speech are probably particularly contaminated by irrelevant factors due to halo-effects and stereotyping [8]. Both mechanisms produce systematic errors. Stereotyping transforms perception in the direction of expected behavior, and halo-effect biases judgments on the basis of one particular feature. Among possible Irrelevant influences are content and intelligibility of the text and inferences concerning emotions, age and sex of the speaker. The result is a tendency to bias ratings on all scales if one of the attributes deviates from what is expected. The resulting semantic differential thus represents a general impression rather than a strict scaling of various (independent) $V \& P$ attributes. Our work aims at increasing the objectivity of ratings of $V \hat{a} P$ cues by trying to eliminate information which gives rise to stereotyping and halo-effects. The term 'V\&P cues' refers to content-free measures of speech, especially those components of paralanguage which Trager (14] calls voice qualities and qualifiers which include such things as pitch height, pitch range, glottis control, resonance, intensity, tempo, rhythim control and articulation control. To have listeners :-
spond optimally to those vocal qualities of speech the verbal meaning has been masked in the present experiment. This has been done in several ways and degrees to eliminate or mask also several paralinguistic phenomena in order to give more prominence to other paralinguistic dimensions that have to be judged. Specifically the present exploration was designed to study the effect of manipulations of several paralingulstic speech components coupled with different degrees of content masking on the perception of fundamental perceptual dimensions of $V \varepsilon_{P} P$ and on the perception of vocal age and sex cues.

2.0 EXPERLIMENT

The experiment consists of an evaluative rating by 47 listeners based on one minute oral reading from six Dutch native speakers. Each speech sample is manipulated in seven different ways. These 42 fragments and the unmanipulated text twice are rated on fifteen seven-point bipolar semantic scales. In addition the judges indicated in each condition the supposed age and sex of the speaker.

2.1 Speech material

The speech material consists of an identical text of about one minute duration read aloud by the speakers: three men - 28,32 and 36 of age - and three women - 28, 28 and 32 of age. An oral reading text was chosen to control for between-speaker differences in lexicon and syntax. These six fragments have been analysed, manipulated and resynthesised on a Data General computer (Eclipse S/200) at a sample frequency of 10 kHz . In order of presentation the following manipulations of stimuli are performed.

1. Reverse. This procedure is comparable to playing backwards a tape recording at normal speed. The method eliminates the necessity to control the general effectiveness in conveying meaning [12], the content is fully unintelligible, but overall pitch spectrum is preserved.
2.Splice. Scherer's randomized splicing procedure basically "consists of cutting a stretch of recording tape into pieces and splicing them back together in random order" [11]. We randomized stretches of $50 \mathrm{millisec}-$ onds which results in total unintelligibility. Random splicing preserves the voice spectrum and eliminates or masks voice dynamics such as rhythm and intonation. Since nany of the pauses are broken up and since the parts are randonly distributed the tempo impression is more distorted' than under the 'reverse' condition.
2. Scramble. This procedure divides the text in seg ments of equal length - in our case of 1 millisecond -
which are altenatedy multiplied by +1 and -1 . The which are altiscontinuity causes a perceptually unple ant tone which we reduced by filtering the
low-pass at 1000 Hz (Buterworth 4th order). The content of the text is completely lost, and along with the high frequencies also a good deal of the volce
quality, though indications of suprasegmental phenomena can still be heard.
ena can still be heard.
3. Speech Babble. In this procedure a text is, so to
the say, several times piled on itself. The number of ech
oes, the distance between the starting points of the echoes and the damping factor are parameters in the program. Our stimuli are synthesized with five echoes
at a distance of one second and without damping. We at a distance of one second and
surmise that perceptual judgments of this type of surmise that percepted to long-term average spectra
stimuli may be related because this condition focusses the attention of the listener on the 'average' frequency spectrum inst to
of on pitch variation which is commonly related to intonation
intonation. The fifth and the the ninth condition are
4. Normal. Tind
identical and consist of the original, unmanipulated recordings.
recordings.
5. Filter. The three female voices have been low-pass filtered at 250 Hz ; the three male voices at 150 and
at 250 Hz . (This manipulation is only partly effective because after filtering the signals are amplified again.) From the ratings of judges it appears that alisg ti) Kramer [9] and Starkweather [13] along with the high requencies most of what is usually called voice qualrequencies most
ity is filtered ou
Whisper. The signal is resynthesized with noise as ource. Because of the spectral rolil-off of the noise ource, the frequency components in the vicinity of the very low frequencies are relatively strong, which
results in an impression of roughness in the intensity domain and poor intelligibility.
6. Vocoder. A seven channel vocoder analysis has been performed. For resynthesis of the fragments the seven
spectral envelopes are used again. Noise with a specspectrol identical to the average speech spectrum served as a carrier. The resur
reasonable intelliglbility.
2.2 Stimulus tape intelligibility. A pilot study with three expert listene showed that the intellitibility of the conditions Reverse, Splice, Scramble and Speech Babble are respe
uively nil to minimal. Filter, Whisper and Vocoder -i thely
that order - are less content-masked which might
couse the listene to concentrate on the content of cause the listener to concentrate on the content
the stimuli. Hence, a Normal condition is inserted the stimuli. Hence, a Normal condition in inserted
between Speech Babble and Filter. The ninth condit is again Normal which enables us to determine the reliability of this measuremen samples of the six speakers are presented in random order, with excenption of the Filter condition in which first the three male voices with cut-off point at 250 Hz are presented,
next the female also at 250 Hz and after that again the male voices, now at 150 Hz .
Each sample lasts 50 seconds and there is an interspeaker is announced.
order to give the listeners an impression of the ype of stimulus to bl jof the relevant manipulation. eeded by an examperist of 15 seconds of another
These examples consist
woman's and 15 seconds of anothers man's voice, rel vomantly manipulated.
2.3 The rating instrument

The scales. The rating instrument which is used to acquire the perceptual paralinguistic measures is con-
structed for the description of $V \& P$ quallity of Dutch speakers. The instrument originated from a master pool of some 800 adjectives referring to ating of bipolar ttems
speech, from which 85 scales existing of were composed 121. Scales which are semantically e dundant or statistically inappropriate further ellmination 11. F scales and showed that a reasonably stable perceptual space can be spanned on the basis of seven times two bipolar scales. Each pair is selected on acco
their similarity in meaning as expressed by their their similarity in meaning as expressed by their
closeness in semantic space. The seven pairs of scales closeness in semantic space. The seven pars (Scale
and their clusternames are shown in Table 1 . (Scale
15 is added and their clut on behalf of the present experiment.)
15 is add
scorings of scale $8:$:soft-loud' should in the present scorings of inter
case not be interpreted in a literal (physical) sense cecause all fragments on the stimulus tape
bied to approximately the same intensity.

Table 1. Clusters ${ }^{1}$) and their scales ${ }^{22}$) with Values of

Ia.	Voice Appreciation: Melodiousness 01. monotonous - melodious 02. expressionless - expressive	$\begin{array}{r} (6.16) \\ (6.32) \end{array}$
ib.	Voice Appreclation: Evaluation	(6.26)
	14. unpleasant - pleasant	(6.73)
II.	Articulation Quality - polished	95)
	04. broad - cultured	
illa.	Voice Quality: Clarity	(5.92)
	- not husk	(5.63)
Illb.	Voice Quality: Subjective Strength	
	07. weak - powerful	(5.04)
	08. soft - loud	
IV.	Pitch 09. shrill ${ }^{\text {Pr }}$	(5.04)
	10. high - low	
v.	Tempo - brisk	
	11. dragging 12. slow ar	(4.69
-	Intelligibility	
	15. good - bad	

1) Cluster are indicated by Roman numerals,
)
2) To facilitate readibility and statistical treatmen all scales are polarized with the scale term tha according to the ideal Voice value, is the mot
3) Values of Ideal Voice \& Pronunciation on sevenpoint rating scales from 121 .
The scoring form. The two scales of each cluster are The scoring form. The two scales of each clustren
separated, which brings about two parallel testhalves The two testhalves are presented on separate pages of
cales are presented in two different orders. In table scales are oriented with the positive pole to the
ight; on the scoring form the polarity of every secnd scale is reversed. The stimull are scaled through an application of the method of equa.
2.4 Procedure

解 tory of the University of Amsterdam. For this purpo
the orginal tape was copied on cassettes, so the
and aters could work individually. After the instruction, rs were famillarized with the scales and the rating procedure by scoring the semantic differential of their own voice. Then the listeners gave their ratings while
istening to the speech samples. When the listener had listening to the speech samples. When
finished his ratings of a speech sample, he Indicated perceived age and sex of the speaker. At the end of
the session the listeners scored the semantic differenthe session the listeners scored the semantic differe
tial for the typical V\&P of both a man and a woman at the age of 30 . The listening task in all required pproximety an hour and a half.
 and 22 male students of the Faculty of Arts of the
University of Amsterdam. The raters are $21-34$ years of age; mean age of women being 25.4 years, mean age of men 24.3 years. Since it is known that sex of
rater influences their judgments $[4]$, 81 , a sample size f 25 rers in each sex group was planned - in genof
eral that suffices for an effective rellability $>.90$ o the scales $[61$, [7].
Raters and speakers are chosen from the same age
category because of a possible interaction between Ilstener's age and attributed speaker's age which
might bias by way of halo-effects or stereotyping the might bias by way of halo-e
scoring on other scales too.
3.0 DATA TREATMENT

Combination of Normal Conditions. Comparison of the two Normal conditions (5 and 9) shows a high reliabllity of the scales. All mean frerences partitions of the speaker and rater samples are smaller than a fourth of a scale unit and none of the differences is significant, which implies that it is allowed to com-
bine the ratings of the two conditions to a single set of scores.
Combination of scale pairs. The correlation matrix of speakers and raters shows eight correlation coefficients $>.60$. Scale pair 5 and 6 excepted the scale pairs of each cluster highly correlated. Factor analy ses of several partitio of the sample show the same picture, hence we consider it justified to combine the scores of those scale airs occasionally.
Combination of raters or speakers. The raters clearly
differentlate between female and male speakers. Frediency distributions on all scalale except 15 IIntelligibility in condition $5+9$ (Normal) differ significantly
(P. P .01 . Against our expectations 81 sex of rater did not influence the judgments in this condition signifi-
antly. So it is allowed to combine the scores of the raters, but it is imperative to give separate descriptions of female and male speakers.
4.0 RESULTS
4.1 1 Intelligibility
The
intelligibility
tually judged by the raters, does not completely matc the ranking of the experts (see 2.2). The Filtered stimuli were considered fairly intelligible by the experts and therefore presenteg after the differently and
condition. Our listeners judged quite dife ranked Filter about equal in intelligibility to Splice. The disagreement may be explained by the use of $[10]$ band-pass filtering tends to enable the listener to pick up gradually more of the content after repeated exposure
perts.
perts.
The low-judged intelligibility of Scramble in relation to Splice is ascribed to the unpleasant impression of two Evaluation scales, whereas Splice is second best two $\begin{aligned} & \text { twaluation (Table 2). }\end{aligned}$
Table 2. Intelligibility (scaled 0-10) for female (φ) and

Conditions	(8)	(8)	Rank
1. Reverse	1.5	1.4	2
2. Splice	3.0	2.1	3
3. Scramble	1.7	1.1	1
4. Sp.abbble	4.3	3.3	5
5+9 Normal	8.5	8.5	8
6. Filter	3.1	2.5	4
7. Whisper	5.3	5.4	6
8. Vocoder	6.2	5.0	7

4.2 Effect of conditions

The $\frac{\text { Effect }}{\text { perceptual dimensions }}$ are influenced differently y the various conditions. plicing leads to a higher Appreciation (cluster la + Ib)
of the female voice, whereas conditions in which the undamental frequency is manipulated (Whisper, ocoder) lower it. Male voices, however, are rated
highest on Appreciation in the Normal and lowest in the Scramble condition. Articulation Quality (II) is not Clarity (IIIa) is - for men and women - lowered by Whisper and, less anticipated, heightened by Splice. The impression of Subjective Strength (IIIb) Is weakst for both sexes in the Vocodar condifion and, mor the same intensity, strongest when the female voice is Babbled and when the lowe (IV) when the speech is Reversed and higher when Scrambled. The same applies for the female voice as far as the scale and lower when Whispering. The perception of Tempo (V) of female and male speech is influenced differenthally by 'pitch' manipulations: Whisper and Filter slow Babble is considered brisk and quick for both sexes. A tentative conclusion from the foregoing is that lis teners accentuate, contingent on (e.g. sex or age) (speech)signal when describing speakers on a semantic scale.
4.3 Incorrect attributions of age and sex

Some conditions give rise to more incorrect attributions of age and sex than others. Table 3 summarizes for female and male speakers separately, the number of cases in which the speaker was, wrongly, estimated 50 years or older and the number of false sex attributions in all conditions. (iaximum score: $3 \times 47=141$.)

Table 3. Number of false age and sex attributions of female ($\%$) and male (δ) speakers, in all conditions.

Condition	Age			Sex		
	(9)	$\left(\delta^{\circ}\right)$	$n R^{1)}$	$(\%)$	$(\delta) n R^{1)}$	
1. Reverse	8	22	4	7	3	3
2. Splice	6	4	6	0	0	6
3. Scramble	22	36	4	32	22	3
4. Sp.Babble	4	26	0	3	0	0
5+9 Normal	1	11	0	4	0	0
6. Filter	6	47	1	1	12	1
7. Whisper	27	56	0	111	0	0
8. Vocoder	19	29	0	105	6	0

1) Number of non-Responses

The manipulations of the stimuli gave rise to about 600 false attributions of age (estimations of 50 years and older) and sex. The relation between the attributions and the perceptual dimensions find a simple expression in the frequency distributions of the ratings. For sake of brevity we will restrict ourselves to a descriptive summary of those distributions in relation to sex attributions. The conclusions given below are based on the scorings averaged over all manipulations; the conditions that create the most sallent differences are mentioned.
On the dimension of Melodiousness 'false' attributed female and 'false' attributed male are rated similarly and positioned between the 'good' attributed men and women. This shows clearest in Vocoder and Scramble. On the Clarity dimension the distribution concerning 'false' women is almost the reverse of that of the 'good' women and resembles the 'good' male curve. The 'false' men are less conspicuous except in the Scrambled condition which shows a higher clarity for 'good' women over 'good' against concordant ratings for 'false' groups. Keeping in mind that all voices are of about the same intensity, it is striking that the raters consider the female voices to be louder and more powerful than the male voices and rate the 'false' attributions somewhere in between. In the Pitch dimension the curves of 'false' attributions are again positioned between the 'good' curves, but in this case more in the direction of the 'good' male curve. This shows clearest in Scramble and Whisper. In the Tempo dimension the same picture arises, however this time with the 'false' curves more aligned with the 'good' female scores. Filter and Whisper are most indicative. Articulation Quality, Intelligibility, and Evaluation do not differentlate between good and false attributions. Concluding, the general picture that arises from this section, is that the distributions of ratings of correct attributions of the two sexes mirror each other whereas both 'false' distributions are quite identical with values between those of the correctly attributed sexes. The general direction of the 'false' curves seems to indicate whether the quality concerned is welghted heavier for men or women.

ACKNOWLEDGERENT

I wish to thank R.J.J.H. van Son (Institute of Phonetic Sciences, Amsterdam) who wrote the software to produce the stimuli in condition 1-4, H.J.M. Steeneken (Institute for Perception TNO, Soesterberg) who manipulated the speech fragments of condition 8, and I.M. de Leeuw and H.M. Nederlof who assisted in the experiment.

REFERENCES

[1] Blom, J.G. \& Herpt, L.W.A. van, "The evaluation of jury judgments on pronunciatlon quality", Proceedings Inst. Phon. Sciences, Univ. of Amsterdam, 4 (1976), 31-47.
[2] Blom, J.G. \& Koopmans-van Belnum, F.J., "An investigation concerning the judgment criteria for the pronunclation of Dutch", Proceedings Inst. Phon. Sciences, Univ. of Amsterdam, 3 (1973), 1-24.
(3) Boves, L., "The phonetic basis of perceptual ratings of running speech", Dordrecht/ Cinnaminson, Foris, 1984.
[4] Boves, L., Fagel, W.P.F \& Herpt, L.W.A. van, "Conceptions of women and men concerning the speech of men and women" (in Dutch), De Nieuwe Taalgids 75 (1982), 1-23.
[5] Fagel, W.P.F. \& Herpt, L.W.A. van, "Analysis of the perceptual qualities of voice and pronunciation ${ }^{n}$, Proceedings Inst. Phon. Sciences, Univ. of Amsterdam, 7 (1982), 1-25.
[6] Fagel, W.P.F., Herpt, L.W.A. van \& Boves, L., "Analysis of the perceptual qualitles of Dutch speakers' voice and pronunclation", Speech Communication 2 (1983), 315-326.
[7] Herpt, L.W.A. van \& Hoebe T., "Attribution of age from perceived speech", Proc. Inst. Phon. Sclences, Univ. of Amsterdam 9 (1985), 1-22.
[8] Herpt, L.W.A. van, "Influence of rater's sex on voice and pronunciation assessment", Proceedings Inst. Phon. Sciences, Univ, of Amsterdam, 10 (1986), 19-39.

19] Kramer, E., "Judgements of personal characteristlcs and emotions from non-verbal properties of speech", Psychological Bulletin 60 (1963), 408-420.
[10] Kramer, E., "Ellmination of verbal cues in Judgments of emotion from voice", J. Abnormal and Soclal Psychology 68 (1964), 390-396.
[11] Scherer, K.R.," Randomized splicing: A note on a simple technique for masking speech content", J. Exp. Res. in Personality 5 (1971), 155-159.
[12] Sherman, D.," The merits of backward playing of connected speech in the scaling of voice qualItles disorders" J. of Speech and Hearing Disorders 19 (1954), 312-321.
(13) Starkweather, J.A., "Content-free speech as a source of information about the speaker", J. Abnormal and Soclal Psych. 52 (1956), 394-402.
114] Trager, G.L., "Paralanguage: A first approximation", Studies in Linguistics 13 (1958), 1-12.

ОСОВЕННОСТИ МГХСКОИ И ХЕНСКОИ РЕЧИ В СОВРЕМЕННОМ РУССКоМ ЯЗыкЕ

玉. А. ЗЕМСКАЯ

M.B. КИТАПТОРОДСГАЯ
H. Н. PO3AHOBA

Институт русского языка АН СССР Москва 121019 СССР

ABSTRACT
The study of the peculiarities of male/female speech has until now not been undertaken for the Russian language. The contrast male/femele speech manifests itself differently on different linguistic levels and in different spheres of language. Hodern female/male speech is not linguistically homogenious. The parameter mele/female speech is superimposed upon other social characteristics of speech. The difference between male and female speech is not an absolute one. It cannot be formulated in terms of stricts rules based on a yes/no principle. The difference between male and female speech manifests itself as certain tendencies.

Социальная пихжеренциация пронизивает язык по многим параметрам:возрастным, про-币ессиональньм, образовательньм, локальным (место рожления, место жизни). Между тем одно из основных членений, разделяющее весь род людской на два класса - мужчина vs женщина, по сих пор обычно остается за пределами внимания языковедов.По крайней мере по отношению к русскому языку работ,изучашџих противопоставление мужская/женская речь, не существует. Вместе с тем это основное противопоставление человеческих личностей, находящее отражение во всех ипостасях существования человека - от сферы физиологии и психологии до сферы социальной и культурной - получает своеобразное преломление в языне.

Исследование особ́енностей мужской и женской речи, ноторые обнаруживаются на разных уровнлх языка, проводится в Институте русского языка АН'СССР в рамках общей темы"Русский язык в его функционировании.Оно осуществляется на материале современной литературной устной речи.Основным источником материала являются непосредственнне наблюдения и фиксация устной речи.В ряде

случаев применяется опрос инф্ৰорантов. Для выработки общей концепции представляется плодотворным использование результатов исследований в смежных гуманитарных областях (этнография, социология, психология, психолингвистика, педагогика).

В таких языках, как русский, различие между мужской и женской речью не накладывает запретов на использование тех или иньх грамматических форм (за исключением грам матических показателей принадлежности речи мужчине или женщине -глагольные флексии и пр.) или звуковых единиц. Однако оно проявляется на разных уровнях язынового членения прежде всего в сфере фонетики и лексики. Іротивопоставление мужская/женская речь касается также коммуникативнопрагматических условий, регулируощих использование языка. Некоторые различия между мужской и женской речью определлются речевим этикетом, правилами общественного поведения.

Судественные различия между мужиинами и женцинами наблюдаотся в стратегии и тактике речевого поведения. Мужчины и женцины по-разному строят своо речь, по-разному обращаются к знаномым и незнакомым, лицам своего и иного пола. Рыявление хонкретных особєнностеи речевого поведения партнеров комиуниации, состолщей из лиц одного пола или разных. полов (мужчина-мужчина, женщи-на-жепцина, женцина-мудчина) -необходимый этап изучения разлитии между мужской и женской речью. В настоящее время можно утгержиать, что стратегия речевого поведения мужчин и женщин касается не только кибора лексики и фразеологии. Так, супест:енно различны особенности строения текс, связанніе с переходами к новой теме. в жснской речи выпе степень ассоциативных переходов от темы к теме, мена темы больше зависит от влияния чисто ситуативных факторев.

Проблема выявления особенностей мужспой и женской речи теснейшим образом связаня с деиствием в языке механизма так называемой категории вежливости $/ 7 ; 10 /$. При этом остро встает вопрос о том, какие из обнаруженных особенностей мужской и женской речи имеют универсальный (или, по

крафннй мере，－общеевропейский，общий для цивилизованньх языков）характер，а какие нвм гтвуппам языков $/ 15 /$ ． Различия между мужской и женской ре－ чь соотносимы с существупцими в данном
обществе наборами и иерархией социальны ролей，вклочая профессиональные роли．Нес мотря на равноправие мужчин и женцин в． льные и семейные роли по－разному распре－ делены мехпу ними，что находит проявле－ ние в использовании мужчинами и женщина ми языка，в их речевом поведении． при исследовании преобладаомей и специ фической тематики бесед（женџины－мода， кулинария，дети и т．Д．；мжчины－спорт，те－
хника，политика и т．$. / 2 /$ ）．Он оказывается значимым и для выявления распределенности типовой тематики при реализации фатичес－ мода $\vee s$ спорт，политика）．Следствием подо оних различий является разная степень вла дения лексикой ряда тематических групा чин и кенщин подкрепляются анализом мате－ риалов＂Вопроснина по лексике современно－ го русского языка＂и путем опроса информа личении мупской и женской речи на уровне ексики обнаруживают сильнуш зависимость
сиявух параметров－образование и профес
сия мужская／женская речь не представлярт
собо собо единого，целостного в лингвистичес－
ком отношении обқектя Социагное рассло－
ние касается мужскойженской речи так же， как и речи вообще．
Факт различия между речью мужчин и жен－ иремени．Хотя противопоставление мужская женская речь не исследовалось подробно по отношенио к истории русского язнка п $^{\text {п }}$ отде－
льнох работах оно рассматривалось аных обратимся к фонетике．оонетииа предс－ тавляет собой тот уровень языка，в котором различие между мумской и женской речьь предстает иначе，чем на других уровнях，что этого уровня，так и тем，что такие фонетиче экие особенности речя，нак томорр，мелодияа， сно связанн не только с социальным пове－ дением мужчин и женщин，но и со строением мужского и женского организма．в то же вре－ лений（особенно в области интонации）обна－ руживается изоморфизм данного уровня с срусом）．

ннимана сегментном уровне обадарт на се－ оя внимание следуодие различия．
тить ряд особенностей в тембральной окра－ ске гласних，свяананннх с сем，что для мно－ при производстве звуков，чем для женщин

тто приводит к образованию более＂узких＂ ожно считать，например，такие особенности： 1．Растяжка п предударного［a］．B женс－ пой речи в позиции 1 предударного слога частовозможно произношение пирокого от－ ррытого［а：］，длительность которого равна дарному，или превыпает его：эмьга：з’инн， рнтересна тем，что раньше она характери－ рих чих пор встречается в речка предударного јар бниа свой－ ственна речи Д．Н．Упаково，В．Н．Пастернала） В современном мужском произношении в этой же позиции встречается часто глас－ ［ъ］．Ср．，нанример，такие факты，записан－ ние от муучин
турной нормы：
рьзга ${ }^{\text {}}$ во́ры］，это $\left[п\right.$＇ьтра ${ }^{\text {² }}$ гра́цкъь］сторо на，［патго́дъ］．

бенности опрепелярт различия в ритмике слова．Наряду с общелитератур－ ной моделью тьтлт в в современном лите－ ратурном произно и тьта⿱二小а та́．Если первая другие：тъта：та и твта та．частотна в женской речи， то вторая более широко распространена в мужском произношении．
рного［а］в современном произношении жен пин－это случй перераспределения стары

 что произношение широкого долгого $[a:]$ этой позиции，как свидетельствуоы дитературы，никогда не было свой твенно речи петербуржцев．
2．Для женского произношения также ха－
рактерна большая дифтонгичность ударных рактерна оольшая дифтонгииность ударных бенно ззметна，если на них находится фра
зовый акцент： Нас а санат
Нас в санат ${ }^{\mathrm{Y}}{ }^{\circ}$ ］рий отправляют $/ /$ ；А на

В мумской речи в этих же фразовых услови－
нх обнчно проиносятся более однородные гласные ${ }^{\text {П．}}$ обл
ІІ．В области консонантизма можно отме－ тить одну общуо тенденцид，свойственнуо
 ндениия обусловила распространение следу－
чи：І．В женской речи наблюдается апнрика－ тизация［T＇］，［д＇］（цеканье－дзеканье），ме－
 ласных в мупском проиэношении обусловй ряд звуковвх изменений лее частотных у мужчин：

ослабление смычки у согласннх－［п］оче ，［д］авайте，［［＇］еловек； звонкости под дейтвнием сосепних гласных ность наиболее ярко обнаруживается в зау арной части слова в слабой фразовой по－ иции：
у а почему и нет допустим？Почему не вы－ ［iv＇bт＇］рюмку коньяка допустим［дыпы］？ однако при эмфатическом произношении в дарных или предддарных слогах напряжен－ ［з：］а［p：］аза такан！；ух［m：］арко！；Вот ［д：］ypa！／II，149／．

внимание также бо́ль－ ая консонантная насыщенность мужской ре－ рактерна более сильная деформация гласны потоке речи，их количественная и качес вленная редукция，выпадение глас
（о театральной постановке）А．Вы мхатовс－
 ск＇и вєр＇ант в＇ид＇л＇ь фт＇атр＇ь］Б．Угу／／ ．Ну почему кошмар？Кто там играет？
［ну пйш＇му́ кав вма́р／кто́＿тьм ъгрьт］．
Таким образом，при сопоставлении сег－ собенности женского произношения наибо ее ярко проявлются в ссере вокализма，
Рассмотренное противопоставление тесно свззано с просодичесиии различиями в му которых из них．
1．При акцентном выделении слов во фра－ зе обнаруживаются различия в фонетическо коммунинативных функциях，фразовых акцен－
 речи шиироко представлена растяжка ударно－ о выделения обнаруживается в разных ман－ ах устной речи
（из научного доклада）Я думаю что перед нами вообще／очень увлекаы－ательная／очень интере́－есная проблема／／；（из телевизион－ ной передачи）Это был такой доморо－ощен－ ный орке－естр／／；（из разговорной речи）я ей поме－ерила только／я же ей по－ме－ри－ла а она говорит ба́－абупка／не снима－ай／／．
В мужской речи в акцентно выделенньх
ловах мире используется растяжка соглас－ слова
ного
из научного доклада）На русском языке／го－ ворит русский языковой индив－вид／／；（из

спортивного телерепортажа）Эта дистанция опять показала свой к－кова́рный нр－ра́в／／； из разговорной речи；о нарисованной в де－ тстве картине）Притом масляными красками／ и／п－пальцем рисовал／／ Существенно отметить，что эта предпоч－
тительность в выборе фонетических средств
наблодется и в устных научных выступле－ наблюдается и в устных научных выступле－ ниях，где различия между мужской и женско жно утверждать，что в речи мужчин совсем не допускается растяжка гласных．При выра－
жении некоторых значений она вполне естес－ твенна и даже необходима（например，при пе－ речислении／II／）．Однано высокая встреча центным выделениием вносит в мужскую реч оттенок назидательности и может вызвать отрицательную реакцию слушателей рных гласных создает условия для более дркого выряжения мелодики на этих гласных рак，по наблюдениям ．．В．Кодзасова，при вы－ вете нормативньм является использование сочетания падарщего тона или положительно－ го акцента с модуляцией
Это Ваня приехал？－Не̂̀．Пе̃тя．／5／
акценты выражены особенно рельефно за счет удлинения гласного
 Да ну ка．．．ка－ак ме！；А．Это не твоя руч－ ка？․ Нё－ет／у меня япоे－онская／／．

Модуляция голоса при растяжже гласного широко испольэуется женцинамя и в других речевых ситуациях，нап
（разговаривает ¢попугаем по кличке Бони） Ну давай поговориим／Давай поговорй，, им／ поговори＇－им конечно Бонечка／／．（Отметим， тается с гортанной смычной в середине тается с
гласного）．
3．По но
3．По нашим наблодениям，женщины чаще используот интонационные средства для вы－ в этих же речевых ситуачиях обнчно прибе－ ррестаи ленсини и грамматики．На－ пример，в женской речи широко распро
Он та－акой симпатичный！；Она та－акая про－ ти́вная！，имешиие спепифическое просоди－ ческое оформление（положительннй акцент на слове такой，часто сочетаюпииися с рас－ тоном на этом Гласном + восхопящий тон на оценочном прилагательном）．Мупчины для выражения экспрессивнои оценки чаще испо－ лично，здорово и др．）．ср．например，фраг－

мент из рассказа супругов о просмотренном фильме:
Жена: Это та́-акой фи́льм! Мук. Да/ отличная картина!

Таким образом,женской эмоциональной речи свойственна просодическая эксплицитность, тогда как для мужчин характерна эксплицитность лексическвя.

чуткость женцин к интонационному рисунку речи неоднократно отмечалась в художественной литературе. Ср, такое наблодение: "...-Везет ме некоторым! Так судачили женцины, и вопрос, кому именно везет, мог толковаться как угодно: женцины объясняются чаме дсего не словами, а интонацией, как птицџ". (Борис Васильев."Рослик пропал...")

Выводы

I. Анализ современной спонтанной литературной речи показал, что противопоставление мужскал/женская речь на фонетическом уровне является весьма суцественным и лингвистически значимым для современного русского языка.
2. Современняя женская/мужсная речь лингвистически неоднородна.Она дифференцирована по ряду признаков: возрастной,образовательныи, профессиональный, территориальннй, индивидуально-психологический. Таким образом, можно сказать, что компонент "женская речь"/"мукская речь" накладывается на другие социальные характеристики речи.
3. Различие мекду мужской и женской речью не является абсолютным. Оно не может быть сформулировано в виде строгих правил, строящихся по принципу да/нет. Различие между мужской и женской речью проявляется в виде тенденций (женской реии свойственно более.. ,мужской реии свойственно более...). Эти тенденции в принципе допускают нарушения,т.е. имеются мужчины, говорящие как зто характерно для женщин, и женщины, говорящие как это характерно для мужчин. Однако нетипичность такого говорения очевидна. Она обнаруживается в том, что женская манера речи у мужиин всегда обращает на себя внимание и нередко ведет к передразниванию.Отрицательное отнощение к такой манере закреплено в выражениях типа: "бабья интонация", "бабья манера".Отметим, что мужская манера речи у женщин, по напим наблюдениям, хотя и может вызывать негативную оценку, но обычно не ведет к передразниванию. Возникает вопрос: можно ли на этом основании сделать вывод, что в оппозиции мужская/женская речь первый член является немаркированннм, а второй маркированным? Ответ на этот вопрос может быть получен лишь при дальнеипем изучении специфических особенностей мужской и женской речи.
4. Противопоставление мукская/хенская речь по-разному обнаруживается в разных сферах языка. Оно выражено наименее резко в кодифицированном литературном языке. В некодифицированных сферах языка это противопоставление проявляется более отчетливо.

Сравнение литературной разговорной речи и городского просторечия показывает, что в просторечии некоторые специфические черть женской и мужской речи, выявленные по отношению к литературному языку, обнаруживаются более ярко.
5. Речевой механизм подвержен влиянио ряда социальных и психологических факторов, деиствуощих под знаком " + " или ""-" на проявление специфических особенностей мупской и женской речи. Иными словами, помимо сопиальных (см.п.2) и индивидуально-пскхологических черт говорящего значимыми оказываптся тип ситуации общения, гомогенность/ гетерогенность собеседников по признаку "пол", жанр речи, речевая интенция и др.

Литература

/I/ Алексеев А.А.Язык светских дам и развитие языковой нормы ХУІІ в. - Функциональные и социальныр ралновидности русского литературного языка ХУШШ в. Л., I984. /2/ Бернштам Т.А. Будни и праздники: поведение взрослих в русской крестьянской сре-де.- В кн.:Этнические стереотипы поведения. Л., I985.
/3/ Вопросник по лексике современного русского языка. М. , I964.
74/ Воронина С.Б. 'Экспериментально-фонетическое исследование явления аффрикатизации палатализованных [T'], [д ${ }^{\text {' }}$ в современном русском литературном произношении. Автореф. канд. дис.М. I984.
/5/Кодзасов С.В. Интонация вопросительных предложений: форма и функции.-Вкн.: Диалоговое взаимодействие и представление Знаний. Новосибирск, 1985.
/6) Геодакян В.А.Генетико-экологическая трактовка латерализации мозга и половых различий. - Материалы Всесоюзн, конференции "Теория, методология и практина системных исследований". М. ,I985.
7/ Лендел ж. Обращения, приветствия и прощания в речевом этикете современных венгров. - В кн.:Национально-культурная специдина речевого поведения. М., I977. 78) Мартынок А.П. Об отражении сопиальных ролей и психологических особенностей женшин в яэыке.-Вестник Харьковского ун-та, 1986, 1 290.
/9/ Николаева Т.М.Семантика акцентного вылеления. М. I982.
ІО/ Папп Ф.Паралингвистические факты. Этикет и язык.- В кн.: Новое в зарубежной лингвистике.Вы. ХУ.М., 1985. /II/ Русская разговорная речь.М., 1973. /І2/ Силина О.И.Роль социолингвистических факторов в формировании современной произносительной нормы. -В кн.: Лингвистина и модели речевого поведения. Н., 1984. /13/ Eakins B. W., Eakins R.G. Sex differences in human communication. Boston,1978. /14/ Philip M.Smith. Lenguage, the sexes and society.Oxford. Basil Blackwell, 1985. /15/ Wierzbicka A. Different cultures, different languages, different speech actes (English vs Polish).- In: Journal of Pragmatics, 1985.

DIE VOKALE KOMMUNINATIONSFAHHICKEIT IM SYSTEM DER SFRECHISPRACHLICHEN KOMMUNIKATIONSFAHICKEIT

HANS-JURGEN BASTIAN

Sektion GKM, Wb Sprechwissenschaft
Universität Greifswald
Greifswald, DDR, 2200

ABSTRACT

Die sprechsprachliche Kommunikationsfähigkeit umfabt die linguale, die vokale und die paralinguale Kommunikationsfähigkeit. Ausgehend von den phoniatrischen Kriterien der Stimngesundheit und der physiologischen Norm der Stimmfunktion, explizierenwir die vokale Kommunikationsfähigkeit als das sprachwissenschaftliche Kriterium der Stimmgesundheit. Der menschliche Stirmgebrauch ist ein biopsychosoziales Phänomen.

PHONIATRISCHE KRI'TERIEN DER STIMMGESUNDHEI'T

Die organische und funktionelle Intaktheit aer biologischen Schallquelle und im Verbund damit ein normales akustisches Feedback sowie eine normale taktil-kinaesthetische und propriozeptiv-vibratorische Rückkopplung der Sprechorgane sind notwendige Bedingungen für die vokale Kommunikationsfähigkeit. Die genannten Faktoren garantieren die optimale Unwandlung der Strömungsenergie des Luftstroms in Schallenergie und damit die uneingeschränkte Leistungsfähigkeit des Senders. Da die Lautbildung als Modifizierung einer Anregungsfunktion durch die Hohlräume des Ansatzrohres erfolgt, ist vorrangig nach der Leistungsfähigkeit des Glottisgenerators zu fragen, der den Anregungsklang zur Verfugung stellt. Stimmgesundheit bzw. physiologische Norm des Stimmgebrauchs ist ein Bereich stimmlicher Leistungsfähigkeit, der durch folgende Kriterien charakterisiert ist: Anamnese, indirekte Laryngoskopie, Stroboskopie, auditiv-visuell-palpatorischer Stimmfunktionsstatus. Zentrales Bewertungskriterium ist der klare, allenfalls gering behauchte, resonanzreiche Stimmklang in alters- und geschlechtsadäquater, mittlerer Sprechstimmlage. Ausaauerfähigkeit der Stimme, Intonationsfähickeit imallgemeinen und Lautstärkesteigerungsfähigkeit im besonderen sind nicht reduziert. Die Erholunyszeit der Stimmiunktion ist nicht verlängert. Vereinzelte Funktionsíehler aus aen leistungsbereichen Atmung, Einsatz und Ansatz aürfen nicht diagnostisch überbewertet werden. Einzelne Funktionsfehler
konstituieren noch keine Dysphonie. vieses Bewertungsschema versagt zwangsläufig immer wieder bei den -häufig gutachterlich relevanten- Patienten, die bei relativ unauffäligem Stimmklang uiber mangelnde stimmliche Ausuauer klagen. Hauptmangel dieses traditionellen Konzepts stimmlicher Leistungsbewertung ist das Fehlen eines exakten, praxisrelevanten Ausdauerbeyriffs. So avanciert der Stimmklang zum ausschlaggebenden Bewertungskriterium der stimmlichen Leistungsbewertung, obwohl von ihm nicht auf die Ausdauerfähigkeit extrapoliert werden kann. Iatsächlich jedoch existieren zwei unterschiedliche Leistungsbereiche des Stimmgebrauchs der Art Homo sapiens, die sich in der Phylogenese entsprechend den Anforderungen der sprech-sprachlich-kommunikativen Praxis entwickelt haben: Ausdauerfähigkeit und intonatorische Variabilität. viese Leistungsbereiche unterscheiden sich fundamental hinsichtlich ihrerkonstitutiven Parameter wie hinsichtlich inrer biochemischer Anpassungsmechanismen an die verschiedenen Belastungsmuster bzw. Anforderungssituationen. Ihr sprecherzieherisches und gesangspädagogisches Training foraert dementsprechend spezifische Eelastungsreize, je nachdem, ob die Vorgänge im bereich der Muskelzelle oder -wie im Koloraturgesang - die zentralen Koordinationsvorgänge im Vordergrund stehen.
Ausdauer ist die widerstandsfähigkeit gegenüber Ermüdung bei spezifíscher Belastung. Gegenüber der intonatorischen Variabilität stellt die Ausdauer die Basisfähigkeit dar. Die Ausdauerfähigkeit schlägt als gesteigerte Belastbarkeit (optimierte Störungskompensation), als Vergröberung der Reserven sowie als beschleunigte und vertiefte Erholung $z u$ Buche. Das bedeutet eine Verminderung der Störanfällig- und eine Vergrößerung der Zuverlässigkeit. Unter dem Ausdaueraspekt unterliegt die Funktion ausschließlich äer physiologischen Ermüdung. Ermüdungsvorgänge sind in aer Regel spätestens nach 24 Std. abgeklungen. Die Ausdauerfähigkeit basiert auf den Elementen ues oxydativen Stoffwechsels. Ihr Niveau wirā vor allem von der Funktionstüchtigkeit des Glottiswiderstandes karaio-pulmonalen

Systems sowie von psychischen Faktoren wie Motivation, Einstellung, Wine, Kommunikationsstrategle be dkononisierung der Organfunktionen. Die Ausdauerfähigkeit ist die
fur Grundage forn die intonatorische variabilität dat. Intensität betrifft, basiert sie auf einer Steigerung der 91 lyolytischen Kapazitä und einer Zunahmie der Muskel
Arbeitshypertrophie $/ 1,2 /$.

ZUR PHYSIOLOGISCHEA NORM DER STIMMFUNKTION Die physiologische Stimmfunktion, die sog. Orthophonie, ist bis heute nicht eindeutic
auf der Grundlage der objektiven Funktions parameter des Stimapparates definiert. In der Diagnostischen Praxis der Phoniatrie gibt es caher in der beurteriviny der sundheit einen subjektiven Ermessensbereich. Stimmsesuncheit geht, wie Gesundheit berhaupt, flieBend vom Physiologischen in Pathologische uber.

DER MENSCHLICHE STIMMGEBRAUCH ALS BIOPSY-
CHOSOZIALES PHANOMEN
ie menschliche Stinme ist ein biopsycho soziales Phinomen. Hicht rur cie jiologi schen wer tungsoraussetzunyen ins inchisti iicii uer leistungsie denek an die konstischen Faktoren - man denke an die konstiische Cryanminderwertigkeitin des Kehlterminieren die nenschinche Stimme, sondern auch cie situativen Anforderungen an die Sprech- und an die Singstimme sind gruppenspezifisch ncrmiert und damit determiniert.
Die sprechsprachliche Konmunikation hat nicht nur naturlich-materielle, tiorpholo-Gisch-organische, scnaern auch gesellschaft-
liche Bedingungen. Die menschliche Stirne liche bedingungen. Die menschiche Stiance ist nicht nur eine biologische Funktion,
Ihr Erscheinungsilat ist inner sozial und
kulturell uberformt. Das filt bereits für kulturell uberformt. Das gilt bereits für solche grundegenden Sachverhalte wie die
Artikulationsibasis oder den Lautstarkepegel in der konkreten Komruunikationssituation, der wesentlich von der räunlichen Distanz
cer Kommunikationspartner (Kanallänge!) und carnit auch von sozialen Faktoren sowie vom ubiquitären Lärmpegel (Industriegesell-
scinaft) bestimmt wird. Uberdies ist die schaft!) bestimmt wrar. so dats uber die situationsyerechte und damit normadäcuate Lauturgsstufe
tionsurazision! Sprechspannung!) tionspräzision! Sprechspannung!) situareller Art in den Kommunikationsproze ${ }^{\text {e }}$ inreher
gehen.

VOKALE KOMMUNIKATIONSFAHICKEIT SPRECHWISSENTSCHESESNDHETT
ie vokale kommunikationsfahigkeit ist Betancteil der indiviciuellen Leistungsdisist ein gesellschaftliches. Wesen. Damit sind körperliche Leistunsen zugleich soziale hañomene. Diese haben nicht nur eine Ge schichte. schichte.
die vielen heiseren Rock-, Pop- und Beatsanger repräsentieren spezifische Stimmoder. penspezifischer Wertsysteme kann die Katepenspezifischer Wertsysteme kann die Kate-
gorie "schöne Stinme" sowohl Gesundes als gorie "schone Sthme sathologisches beinhalten. Stimmbilungsideale sind imrier auf inresoren. relle Gruppenspezifik hin zu be fragen.
vokale Kommunikationsfähigkeit des Sprechers ist die -lern- und trainingsabhängige-Fähigkeit, entsprechend den Normen des Stimul-
gebrauchs seiner Sprechgemeinschaft im allgebrauchs seiner Sprechlemeintlere Sprech-
Gemeinen
(Registerwah1! Mither gemeinen (Registerwahla. Nitclere Spalitat bzw. ivasalität! Stimmeinsätze! Intonation!) und seiner sozialen Schicht und Gruppe im besonderen die Va-
riablen Stimmkiang, klang farbe sowie melodische, dynamische und rhythmische Akzentuierung einschl. 'ausengestaltung im
 tionsfăhigkeit ausdauernd zu produzieren und auf diese Weise

- den lingualen (semantisch-denotativen) Nachrichtengehalt entsprechend den Erforernissen der Rommunikationssituation und aanit des Kommunikationsgegenstand
- sowie die vom Sprecher situativ intendierte Menge an nichtlingualen (ektosezu ubermitteln und so die vokale selbstdarsterliung aes sprechers und identifikation zu ermöglichen
- sowie die Monosemierung der sprechsprachVerbund mit Kontext (sprachlichem zusammenhang) und Vorwissen des Horers, so das sprecherseitig die Realisierung de d.h. mit stimmlichen Mitteln gefördert wirä oder zuminaest nicht durch sprecher-
seitig unbeabsichtigte, emotional negative seitig unbeabsichtigte, emotional negative ieser Bedingungen ist eine Stimufunktion als kommunikativ zu klassifizieren. Kom einer Stimme zur Realisierung der hier explizierten sprechsprachlich-komnunikative otwendiskeiten. Komnunikative und physio
logische Stimmfunktion sind identisch. Die ute Stimaie im absoluten Sinne gibt es nicht. Eine Stimue ist immer nur gut in bezug aup hre Leistungsfahigkeit in konkreten, grup

ReFLRuinces
11/ D.G.R.Findeisen, P.G.Linke, L.Pickenhain (eds.), "Crundagen der Sportme-
dizin
für studenten,
Sportlehrer",
2. Auf1.0 Leipziy, 1980. Sportmedizinische Grundlasen sportli-
chen Trainings", Leipzig, 1987 .
13/ E.Unger, H.-J.Bastian, "Phoniatrische Kriterien der Tauglichkeit von Studienbewerbern 2000-2003 (1976)

natalya lepskaya

Dept. Of Applied Linguistics Moscow University
Moscow, USSR, 119899 Mos Cow,
rcII-3,
US-234

ABSTRACT
The difference in the development of speech souds with normal children and children with anariod
is revealed at the babbling stage. In this period normal children's vocalizations exhibit syluablenikes" in which we can find segments with max-conelements.
By contrast to a normal child a child with anarhria is capable of producing only mid-contrast segtents. This proves that mid-contrast syl able-likes chanism, but production of max-contrast units is the major requisition for estab/ishing the phonological opposition: vowel consonat.
The phonological system of the patient is destroyed on the level of speech production but is kept ntact on the level of speech perceptin. thares: one of them is connected with speech pro

introduction

Most authors writing on language acquisition and analysing the pre-speech stage of normal speech development discuss their data ms as phonemes (vowel and conse more correct if we
tures etc. 11. It seems to be mer analyse these facts in terms of "syllable-like", "yowel-1ike ", "consonant-1ike", because such vocalizations nei ther motorically, nor functionaly are
speech sounds and even less so-phonemes. Vowel-likspeech souns anant-1ikes are examined here within the syllable-likes, since, according to N.I. Zinkin's
data it is the syllable which is actually the unit of speech production $12 \mid$, and at the pre-speech of speech production
stage $i t$ is respectively, and at the syllable-1ike. The purpose of this investigation is to compare da-
ta of normal development (pre-speech stage) and data of normal development (pre-speech stage) and da-
ta of anarthria since this comparison may be helpful in revealing some typological features of lan guage as such and, in particular, theay light on the process,
logical oppositions.
the method of investigation and the material
For the purpose of this investigation the pre-speech
tatyana bazzhina
Dept. of Applied Linguistics
Moscow University
Moscow, USSR,
rcm-3,
stage has been divided into some sub-stages, \mathfrak{i}.e crying (0-0.2); cooing ($0.2-0.4$); ; pre-babbling
$(0.4-0.6)$ and babbling as such ($0.6-1.1$). We hav $(0.4-0.6)$ and babbling as such ($0.6-1.1)$. We have
studied vocalizations of 38 normal babies from 0.3 0.10 and vocalizations of one child with anarthria who was 7 years old. Al these vocalizations have
been recorded and then treated by the oscillograph and separator. The majority of the normal children remained under observation for a period of some months; others were observed at certa in points of
their life (for instance, at the age of 3 or 8 months etc.). The patient with anarthria was under clo se observation for more than a year. For the purpo-
se of the our investigation of the patient's vocase of the our investigation of thecial experiments. We asked the patient to analyse the sound structure
 $\mid b a 2$ soci| using alphabet; to repeat def inite
of the syllables given by the examiner $|p a|,\left|p^{\prime} i\right|$ $\left|n^{r} e\right|,|d u|,|b o|,\left|n^{r} i\right|,|m u|,|o|,|u|,|i|,|a|$, ma|. The patient's vocalizations
with his toys were also recorded.
In his case anarthria appeared as a result of the birth trauma. The patient's central nervous systen abnormality implicates the basic mechanism of spee ch synergism. The neurological and psychol inborn di-
examinations showed that the child had an examinations showed
sability of cordinating the muscles of the vocal tract and of producing intelligible speech $|3|$. His pronunciation was simitar vocas stages. But at the ame time he had normal hearing and could understand spoken language but there could be no question of is understanding Russian completely. He coule to ake short coughlike grunts to accompany his pantoimed communications. His cognitive and conmunicaledge is below the norm for his age.
THE RESULTS AND THEIR DISCUSSION
Vowel-likes inside syllable-likes |V|. Our material allows us to describe the acquisition of vowe $1-10 \mathrm{k}$ es at the pre-speech stage in normal and patholog
cal development (see Table 1). Table 1 shows that cal development (see tabie 1). Table shows
the first to appear are vocalizations producing the
impression of mid vowel-likes of non-high. From the impression of mid vowe $1-1$ ikes of non-high. From the point of view of articulation these vicly, the posi-
are the simplest: the mouth opens widely,

The Normal Development of Vowel-Likes at the
Pre-Speech Stage (from cooing to babbl ing)

\sim - nazalization; .. - moving forward

- moving backward.
tion of the tongue is neutral, the muscular strain In the course of child's deve lopment the speech organs are. perfected and this gives him an opportunity to produce not only mid vowel-likes but sounds which are more narrow and front, like $\mid \varepsilon$, . The in-
tensity of such vocalizations is smaller, but the muscular strain is greater. We also observed the tendency to smooth the marginal positions of the $|0|$ We observed the movement of the tongue forward to we observed the movement $\mid \dot{\text { in }}$, the development of $|i|$ and $|e|$
the and \mid tendency of drawing the tongue off and down and
the the tendency of drawing the tonaue
the apparance the vowel-like $|\vec{a}|$.
In the development of phonetic field of vowels one can observe the gradual differentiation of vowellikes and the appearance of the connection betwee
the production of sounds and its acoustic form.

$[x\}]$
$[P a]$
a) Patient's babbling; b) The repetition of the sylrables $|V|$
the examiner.
Table 2 shows that babbling vocalizations have a greater variety than vocalizations in his repetition. It means that the patient has some difficul-
ties in bringing his voicing mechanism under volunthe reptition there are substitutions of vowels, and the general tendency is to produce mid vowellikes without any differentiations. Labialized vo wels 1 ike $|0|,|u|$ were substituted by mid partly loudness, timbre and duration were not stable. The most difficult task for the patient was to produce owalation efficient differentiations
Analysing Tables 1 and 2 we found out that in vocalizations of normal children at the cooing and pre tient vowel-like sounds are accompanied by noisy on and off glides, glottal stop \mid | \mid or voiceless indi stinct mid sound $|S|$.
Consonant-likes insid
first consonant-likes appear in-likes $|C V|$. The at the cooing stage. We can point out in children's sounds as well as in the patient's vocalizations
the presence of partly voiced and moderatly palata
 repetition of syllables $|t a|,|t|^{\prime} a\left|,\left|b^{\prime} i\right|,\left|n^{\prime}\right|\right.$,
$|p o|$ we see the regular substitutions of the first $|p o|$ we see the regular substitutions of the first consonant component with $w /$ or 101 . Most of consonal nasal articulation, and are accompanied by the vocal on and off glides \mid Sal.
All these facts can be explained from the physiolo-
gical point of view: the epiglottis is high, phary gical point of view: the epiglottis is high, phary
ngal modulations are minimal $|4|$. For children it is impossible to manta in a fixed position of the ir speech organs, and as a result their articulation
is gliding. In normal children's vocalizations in contrast to our patient, there are many consonant-
likes - they greatly exceed those in the speech of likes - they greatly exceed those in the speech of
adults, surrounding the baby. At this period in vocalizations of Russian children, for instance, it is possible to find sounds like clicks. Normal children vocalizations have noconnection with
adult speech. This is the so-called pre-phonemic adult
level.
In normal and pathological vocalizations max- and

Sonantal elements are accompanied by the vocal on and off glides and vocal elements - by the noisy glottal stop or the voiceless indistinct sound. This results in the increased sonority in the first case and reduced sonority in the second $|5|$.

$$
c^{v} \longleftrightarrow{ }^{c} V
$$

It determines the absence of coarticulation between consonantal and vocal elements inside such syllablelikes. The appearance of max-contrast syllable-likes is impossible.
There is a similarity in vocal-consonantal vocalizations between normal babies at the cooing and prebabbling stages and the patient with anarthria. The divergence in the acquisition of vowels and consonants in normal and pathological development begins at the babbling stage.
At this stage in normal acquisition the epiglottis is descending. This is the physiological requisition for the articulatory oppositions of sounds. Changes of the speech mechanism and its connection with perception of adult's speech (echolalia) are the basis for the formation of phonological oppositions as such. In normal development in contrast to anarthria we can observe the tendency in vowel and cosonant-likes of loosing their noisy and vocal on and off glides, glottal stop. The articulation becomes even more differentiated. As a result in normal development max-contrast syllables like $|p a|$,
$|t a|$ appear. Therefore the presence of max-contrast syllable-likes in babies vocalizations is the major requisition for the opposition of sounds according to degrees of sonority, when on the one hand there are wee non-high vowels like $|a|$, but on the other one there are voiceless stop consonants like $|p|$, $|t|$. This is a manifestation of the first general phonological opposition: vowel/consonant. This opposition is the earliest in child development and is a universal one since according to R. Jakobson, it is observed in all the languages of the world $|6|$.
This opposition is absent in the patient's speech production but is present in his speech perception. At the end of the pre-babbling stage in normal development it is possible to distinguish sounds according to the types of resonators (mouth resonator - nose cavity). As a result, we can find oral and nasal vowel- and consonant-likes. This distinction in the resonator's types is the physiological requisition for the forming at the babbling stage of the phonological opposition: oral/nasal.
Then babies begin to split both consonantal and vocal components and other differentiations oppositions also appear.

CONCLUSION

At the cooing and pre-babbling stages in normal development and with our patient we find vocalizations in which features of articulation contrasts are mixed up. As a result, the appearance of max-contrast syllables is impossible. The same was established by N.I. Žinkin in the sound system of hamadryads. He pointed out that in their vocalizations combinations of a vocal element with a noisy consonant-likes do not occur; only combinations of a vocal element with a sonant-like are possible |4|.

The perfection of the speech mechanism and its connection with the children's perception of adult speech brings forth the appearance of max-contrast syllables, which in its turn stimulates the formation of the first general opposition: vowel/consonant. Various other oppositions modifying and attenuating the primary contrast of consonant and vowel follow.
The dominating influence of adults' speech on the acquisition of the phonological oppositions is proved by the presence of such oppositions in the patients' speech perception, but their absence in his speech production. This fact shows that until a certain moment the absence of speech production skills doesn't interfere with a more or less adequate understanding of speech.
These results may be used for patients' rehabilitation and in language teaching.

REFERENCES

|1) Тонкова-Ямпольская Р.В. Развитие речевой интонации у детей первых двух лет жизни. - Вопросы психологии, 1968, 3.
|2| Жинкин Н.И. Новые данные о работе речедвигательного анализатора в его связи со слуховым. "Известия АПН РСФСР", вып. 81, M., 1956.
|3| Панченко И.Н. Дизартрические и анартрические расстройства речи у детей с церебральными параличами и особенности логопедической работы с ними. АКД, М., 1974.
|4| Жинкин Н.И. Звуковая коммуникативная система обезьян. "Известия АПН РСФСР", вып. 113, М., 1960.
|5| Носиков С.М. Опыт фонетического описания лепета (организация слога и ритмической структуры). - В кн: : Становление речи и усвоение языка ребёнком. М., 1985.
|6| Jakobson R. and Halle M. Phonology in Relation to Phonetics. In: Manual of Phonetics, Ed. by L. Kaiser, Amsterdam, 1957.

IRAIDA KRUSHEVSKAYA

Dept. of Oto-Rhino-Laryngology
Research Institute of Capacity to Work
Minsk, Byelorussia, USSR,22008I
the voice formation process, and have resulted in disturbances of the neurophysiological speech mechanisms.
According to the statistic data, cleft palates are a frequent occurence: I.5-2 cases per IOOO new-born children. Face and jaw developmental defects may be caused by various exogenous and endogenous factors affecting the fetus at the early stage of its development before 79 weeks. Cleft lips and palates are one of the most serious psychotraumatizing defects since the early childhood, as they create a feeling of inferiority of their carriers.
The representatives of phonetic sciences will certainly get interested in and find useful the submitted results of investigations of a live model of an anatomic defect of the mouth cavity resonator with all the disturbances, which follow, including the muscular system function of the loud speech motor apparatus:breathing, phonation and articulation muscles. In this pathology a hearing disturbance aggravates the influence upon the phonetic system of speech. The most characteristic feature of a speech disturbance at cleft palates is rhinolalia sperta: nasalization whigh has appeared due to nasal and mouth cavities, changes greatly the acoustic characteristics of phonemes. A voice disturbance is versatile. The most prominent features are timber alterations, the presence of an unpleasant nasal resonance, a clear nasal shade of oral sounds. The nasal sounds (M,H) are pronounced quite normally. The sounding of vowels changes insignificantly. Rhinophonia may be accompanied ny rhinolalia, i.e. incorrect pronunciation and distortion of sounds in the following cases: I) if the acquired factors, developed due to a cleft palate, begin to make its influence during the first years of a child's life when the articulation mechanisms have not yet been formed; 2) if an articulation disturbance of the central origin joins; if a hearing disturbance (even of short duration), causing the formation of wrong articulation reflexes, joins during the articulation formation period. Palate developmental defects
result in voice and speech disturbance due to: a) incomplete closure of the nator function of the mouth cavity; c) accompanied hearing disturbances.
At the absence of voice caused by deformations in the mouth cavity and incomplete closure of the throat ring, funct resonator cavities.
Pathological changes of the sort palate muscles usually develop at the age of the muscles and mucous pharynx, a dystrophic process grows progressively worse
The mucous membrane of the back wall of the pharynx becomes gradually pale, atthe pharynx becomes gradualy pale, atlex is indicative of the atrophy of muscular fibers of the pharyx constrictor,
and of degenerative changes of the sensitive and trophic nerve fibers of this The chronaximetry data (time necessary The chronaximetry data time necessary stimulus) testify to a significant disturbance of the muscie functiod by increased chronaxy of these muscles from 0.32 to $0.40 \mathrm{~mm} / \mathrm{sec}$. Eventually chrona-right- and leftside muscles, if the clefts have not been operated on. The upper pharynx constrictor, whose chrona-
xy bec omes longer and longer, is subject xy becomes de日per dystrophic and functional changes, and then the muscie ceases re-
acting to an electric stimulus. In cases acting to an electr disturbances of the closing throat ring function, the speech becomes mono tonous without any melody or accent ion function have revealed a versatila respiratory impairment. At congenital clefts the phonational respiration su-
ffers most of all: at phonation children and teen-agers continue to breathe simul taneously through the nose and mouth at
the exclusively clavicular breathing. During the process of expiration a large ring the of air from 20 to 32 per cent) escapes through the nose, thus shortening the time of expiration, lowering the
air pressure in the suprafoiration be
comes' shallow and hurried. From the age of 7 - 8 a functional derangement of motor muscles is revealed: the function of
particular mascles becomes weaker, their con these muscles becomes, slow. Very often tractions arymmetric and not co-orrinate with the phonation and articulation. The time and degree of expressiveness of the above-mentionogy with regard for the defect width. Such patients have a low,
constrained, weak and thin voice with a
ivid nasal shade. Acoustic changes of the voice spectrum deprive it of a change of the voice timbre of the clef palate carriers is connected with an ana tomic defect of the supratracheal pipe,
which results in construction asymmetrie of the resonat or cavities of the larynx, pharynx, nose as well as discoordinates the function of the palate-larynx complex, in which the palate plays the role of ${ }^{\text {a }}$ phonation mechanism is so specific that at rhinolalia the voice is singled out as
a separate disturbance and is called "paa separate disturbance and is calied
lateny dysphonia" or "palatophonia". The combination of an anatomic defect of the palate, laryngeal sound formation,mo tor disfunction with an incorrect voice
behavi our provokes the development of or ganic changes in the larynx of the type
of nodulations and chronic inflammatory of nodulations and ohronic inflammatory processes motor as a cut of internal
muscles of the larynx, functional -as phonasthenia.
Violations of the integrity, anatomical
and functional asymmetries of the soft and functional asymmetries ond pharynx muscles bring with ag tolds, which is well determined with chat racteristic asynchronism of the vocal folds vibration at the electronic laryngostroboscopy. This pathology of the thenal larynx as well as the asymmetry of forms of the larynx resonator cavities 9 II. oice pathology: the larynx. The laryngeal way of forming a number of voiced consonants, their sounding by the friction of air along the odges of the vocal folds result
ctional overload of the vocal apparatus and a growth of organic motor or
. The cleft palate coarriers have a low . The cleft palate carriers have a
vice because since their childhood they consider themselves to be inferior memars of our society, are ashamed of the and face malformation and speech defects,
don't want to attract the attention of 3. Those who surround them.
${ }^{\text {The }}$ Thuscles, lifting and stretching of palate, work as antagonists insteal load becomes lower and the dystrophi process worsens.
at cleft palates the speech develops unsuffers more than other functions. The absence of a palatopharyngeal cosurn of the mouth cavity giving a nasal timbre to all phonemes. The degree of the sound
the inadequacy of closure, the mobility of the palate curtain and the co-ordinatDue to the escape of air into the mose, the pressure falls sharply and it become impossible to sound the apertures (cioconsonant phonemes. Pesides, the escape of air into the nose makes it more difficult to form a directed air flow in the
mouth, and as a result almost all the mouth, and as a result almost all the
plosive and fricative voiceless consonants are pronounced in a pharynceal way.
The mediolingual palatal and backlingual palatal sounds cannot be articulated because of the absence of one of the cloSurl components - palate. The forelingual $T, T D, D, D^{1}$ become weaker or are replaced
with ${ }_{A l}^{\mathrm{H}}{ }^{\mathrm{H}}{ }^{\mathrm{H}}$ the latest results of the pathophy siological investigations, which paphyvealed detailed peculiarities of the phonational respiration, voice and speech have been assumed as a basis of methodical recommendations developed in our country by I.T. Yermakova to correct the speech The author has taken into account that no spontaneous speech ocurs after uranoplasty, but the pathological sound formation at rhinolalia has anthropopho sound aisement of one phoneme with another)
signs. The correction of each sound provides. The correction of each sound prowing: I) an ability single it out from ot hers; 2) to corre late it with some definite articulation; 3) to correctly pronounce the articuleme; nected speech.
In spite of an obvious theoretical value or restoring speech communication of aim cloft palate carriers, and their social

Verbal devel opment dysontogenesis in children
with velopharyngeal incompetency

G.V.Chirkina

Defectology Research Institute, Moscow, USGR

Children with velophargngial incompetency make up one of the most severe
forms of speech pathology. Linguistic and psychological-pedagogical study of
the defect suggests development of advanced correction methods. Interactions of articulation and receptivenecribed.

Children with velophargngeal incompetency resuiting from cleft lip and palate
(speech therapy diagnosis: rhinolalia) (speech therapy diagnosis: rhinolalia) of speech pathology. We undertook inves-
tigation of the defect structure in lintigation of the cefect structure in lin-
guistic and psychological-pedagogical aspects in the frames of the system approwith two given disorders do not make up a homogenious group. Host common characteristics of speecin deficiency in this case are found in acquisition of phone-
tics which is developing in abnormal anatomic physiological conditions.
Children with rhinolalia are characterized by changes in oral sensitivity in
mouth cavity as well as impairments in mouth cavity as well by sensorymotor conduction tract dysfunction (what resul age). These children were found to have certain specific characteristic in pre-
ingual developmant, insufficient activity
of babbling, late appearance of speech, long laps between appear.
Peripheral defects of articulation organs result in development of compensatory when sounds are pronounced: high position of the tongue root and its backward shift in the oral covity, lips insufficiency intal consonants, excessive activity of the tongue root and larinx, tension in mimic muscles. The most essential
defect of oral speech phonetics is that defect of oral speech phonetres is that
of impairment of all this oral sounds, resulting from changes in aerodynamic. conditions of phona
Besides regular nasalization children with rhinolalia are characterized by some specifically coloured consonants (often
velar ones): what is the effect of partivelar ones): what is the effect of partigealization, i.e. excessive articulation resulting from tension in the walls of Therynx, appears also additional articulations in larinx what furnishes the speech of rhinolalics with a specific cilicies in Besides these mentioned tendencies in adaptive changes of speech, there are
found many more particular articulatory found many more particular articulatory
defects. The latter depend greatly on
positional changes in a word, phrase, text. The most typical are:

1. Omission of initial consonants
production

- Multiple various substitutions of
sounds
- Abrupt discontinuance of sounding

5. Pronounciation of hushing sounds is accomponied by hissing noise and
. Sonorous sounds in the final posi

- tion are strongly devecalized
- Manner of sound production is chan
ged: explosives are substituted by ged: explos
fricatives

8. Vibrant substituted by the second /i/ in
substituted by the second /i/ in
strong breath
9. Additional noise in nasalized sounds (hushing, hissing, aspiration, hoarseness, Backward shift of articulation fo cus (as a result of high position of the tongue root and insufficient
participation of lips in articula
10. Children having regular lessons metimes characterized by hyper cor rection phenomena, i.e. forwar
shift of articulation.
E.g. $/ \mathrm{s}$ (frontal dorsal) is substituted by /f/ (labio-dental) without changInterconnections between nasalization and distortions in separate sounds a tion are rather multifold
It's impossible to establish an immedi form of palate defect and extent of phonetic impairment. Compensatory modes children use for speech production
are too variouse, very much also depend on relations among resonators and on diversity of individual differences in the configuration of mouth
and nasal cavities. Besides that there are other less specific factors also influencing the degree of distinctness
(developmental, individual -psychological characteristics, social-psychological factors and many others).
The described characteristics of pho-
netics in children with rhinolalia sug gest the conclusion about phonetic incertainly" of speech sounds and devemenment.
Speech legibility varies from $28,4 \%$ to
$55,6 \%$. It brings around serious bounds
5,6\%. It brings around serious bounds over speech as a means of communicati
Disorders of acoustic aspects may be grouped in the following way: anatomy defects
a) articulatory disorders
aerodynamic disorders
11. Disorders related to motor control a) eurhithmic-sylabic disorder b) disorders in consonant confluence
nounciation in characteristics of proresult in disappearance of distinctive features and delayed or distorted phonologitures and delayed or distorted phonoistinction and identification of language sounds are disturbed, what impaires
phonological aspect of acoustic functional system. Disorder of interaction be-
tor affects acquisition of written speech. In writing substitutions are
found: $/ \mathrm{m} /$ for $/ \mathrm{b}, \mathrm{p} /, \mathrm{n} /$ for $/ \mathrm{t}$, $\mathrm{d} /$ and .v. What is due to absence of the oppoitions in oral speech. There are also
ther types of substitutes of vowels, other types of substitutes of vowels,
hus hing and hissing, voiced and surd sounds, what proves disorder of the whole phonematic system.
解 degree of writing disorder is defied by combination of factors: defect of orticulatory system, character and terms ies of a child, influence of verbal enironment. The children need specially rganized correction in disgraphia perormed simulteneous data were taken into consideration of the reform in principles of organization oals. Study in other aspects of verbel activi-
ty of children with rhinolalia of diffety of children with rhinolalia of diffeent age groups revealed a certain dynators, differing in its nature, degree and turn of influence. In preverbal and early verbal period the greatest nega-
tive effect is produced by anatomic-phyive effect is produced by anatomic-phyment of phonetics (I stage). In the pe-
riod of active development of verbal acriod of active development of verbal ac-
tivity deficient conditions of speech eneration, deprivation of motor compoent of speech trigger psycholinguistic iencies in speech generation of defi eption (II stage). On the III stage hen the language system has to be acquired social-psychological factors are formation exchange (education). Use of such a model supplies a speech therapis trategy and ways for prophilactics of secondary aftereffects of the defect.
```
Department of Automatics
Ivov Polytechnic Institute
vov, Ukraine, USSR, 290013
```


ABSTRACT

The absence of offective approaches to remoring human stammering makes it necessary to develop some devices and techniques of raising the efficiency of medical treat ment of speech disorders. A device is presented for the implementation of basic approaches used in logopaedics to produce stable rhythmical patterns and rates of speech processes of logoneurosis patients. The performance of the device is based on the introduction of changes into the time and frequency parameters of the speech signal.

INTRODUCTION

The disorders of the speech functions of human beings are considered serious and common diseases.

The accepted view of stammering is as of a stable pathological state of speech $[1,2]$. Nedical treatment of stamering involves a number of procedures, which are designed to destroy stable pathological states of stammering and to create new functional relations, corresponding to healthy speech processes [3]. Here we may include light and sound effects, selection of word pronunciation speed, speech delay, change of qualitative characteristics of speech, etc. According to $[2,3,4]$ an integrated application of these techniques depending on the individual peculiarities of stamering is rather effective.

The above speech treatment procedures require some dedicated technical system.

At present the logopaedic treatment makes use of separate devices for time delay of speech, producing periodical sound signals, etc. So far we haven't come across any mention in logopaedic literature of a technical device for increasing or reducing the length of speech pronunciations, in spite of the fact that "slow" speech is co nsidered a classical method of speech treatment $[4,5]$.

The creation of an integrated logopaedic device capable of producing a desired speed of speech reproduction is considered to be the basic requirement in speech therapy.
biain meatures of the device
our device is designed to implement following tasks:

- gradual slowing down or speeding up the reproduced speech while retaining its prosodic characteristics
- introduction of controlled time delays into the output sound signals;
- introduction of additional rhythmical sound or light stimulation of the preset frequency and signal amplitudes
- muffling the speech with "white" noise; - radical change of the voice quality: - control of the volume of speech signals.

The device provides two modes of reproducing the speech: variation of the speech rate and time delay. Other corrective modes (rhythm, speech muffling, sound amplification) can be applied independently or in combination with first two ones.

When varying the tempo, the device reproduces a previously recorded text at a higher or lower rate, i.e. increases or reduces the length of sounding without losing the natural quality of the voice, legibili ty, the key and other speech values. The variation coefficient can be set within the limits of $1-2.5$ with the discreteness of 0.1 .

If a speech signal is fed into the device in the real time scale, i.e. directly from the speaker, the tempo control pro duces the displacement of spectral composition of the speech proportional to the variation coefficient. The output speech signal is reproduced at the original speed but the quality of the voice changes, i.e. an "alien" voice is heard.

The mode of delayed speech enables us to obtain the input speech information at the output of the device with the delay of $100-250 \mathrm{~ms}$ (the step being 10 ms). This covers the most favorable range of delays [2] used for the corrective treatment of stammering in patients of varying degree of the disease. An additional amplification of the output sound signals increases the effectiveness of the correcting procedures.

When producing the rhythmical effect the device creates periodical sound and light signals of excitation. The sound rhythms are in the frequency range 0.5-2.5 Hz. During photostimulation light flashes have the length of 70 mc with the rhythm
of $2-5 \mathrm{~Hz}$, which is quite suitable for developing necessary correct speech habits [3].

When producing background a casual noise signal is fed into the device output. It prevents the reception of patient's own voice, thus removing pathologically stable reactions to the incorrect speech [2]. To increase the achieved results the patients speech can be recorded and played back at a higher or lower speed for a better evaluation of the deviations.

THE DESIGN OF THE DEVICE
Fig. 1 shows the functional layout of the device with the external sound recording and sound reproducing units. When the device is in the process of regulating the speech rate, the input signal is fed into it from the recorder, the latter being controlled by a special circuit according to the preset variation coefficient. Having been converted to a digital code, this signal is recorded by the two memory blocks connected in parallel, each having the capacity of $2 \mathbb{K} \times 10$ bits. Every new counting is stored in the place of the oldest one. The value of the speech segment in the memory depends on the tempo vaviation coefficient k. The recording frequency is $f_{1}=k f_{2}$, where f_{2}-reproduction frequency with a constant value of 16 kHz . The readout from the two memory units is carried out simultaneously, but to different adresses. It

Figure 1. Hardware Description of the Device
enables us to store all the input information in the output signal. The reproduced readings from the memory units are passed to the digital-analogue converter, where they are multiplied by the basic voltage, produced by the weight functions generators. It removes disconnections on the junctions of the speech segments in the output signals [6].

When the device works in the time delay mode, both of the memory units are connected in series. Digital readings of the speech signal received at the input of the device are stored in the memory with the frequency $f_{1}=f_{2}=16 \mathrm{kHz}$. The difference of the adresses of recording and reproducing is determined by a present time delay. The data obtained from the memory device are fed into the output channels of the system. The generators of sound and noise may be connected to these channels.
the control of the sfeid of sheich utterances
According to the phonetic theory of speech formation [7], most of the meaningful information of a speech signal is contained in the transient sections of sounds, the stationary segments being informationally poor. an experiment was conducted to determine the content percentage of various segments in speech utterances. The original speech signal was divided into sections of 20 ms , which equals the length of explosive sounds. On computing the degree of difference between the segments by the DEICO algorhythm [8], these sections were transformed into the output fields, the spectrum composition of which was in fact stationary. The results obtained show that with the normal speech rate the transient sections and short sounds take up about 25 percent of the whole time of the speech signal, the rest being filled with statio nary pauses and long sounds. Speeding up or slowing down the tempo in oral speech
take place through the changes of the duration of the stationary sections. The short speech elements change slightly [0]. The idea of regulating the speech rate reproduction makes use of the abundance of speech signals. By excluaing short sections of speech signals or by introducing additional short signals it is possible to reduce or increase the time of the phonation of speech utterances, at the same time saving the information content and individual peculiarities as well.

The regulatory process of the reproduction of speech information rate is shown in Fig.2. The original speech signal $x(t)$ is previously stored in some storage device (magnetic tape, digital memory, etc.) during the time of its pronunciation T_{p} at the rate V_{p}. The reproduction of the recorded information is carried out during the preset time interval T_{r} at a suitablo rate of $V_{r}=k V_{p}$, where $k=T_{p} / T_{r}$ - the coef-

Figure 2. The Speech Rate Regulation Model.
ficient of the variation rate. Since it is accompanied by the change of the froquency constituents of the signal, the function of the speech rate regulator is to recover the original spectrum in the output signal $u(t)$ at the time interval T_{r}.

We can single out two groups of methods in the regulation of speech tempo:

- the division of the signal into short uniform sections and changing their length proportionally to the preset rate regulation coefficient
- the division of the original signal into quasistationary sections with the uniform spectral composition, followed by the variation of phonation time of each of them depending on its original length.

Among the methods of the first group is a selective segmentation of signals [10]. It is simple, easily operated, but has some significant shortcomings. It may reove short sounds and even whole syllables from the speech utterances, which causes distortion of speech and considerably restricts the regulating potential. In combining the segments after the length trans formation, phase and amplituade drops occur the junctions, reducing the quality of the obtained speech.

To remove the possibility of the loss of some useful sections of signals from the speech utterances we suggest using two channel regulation with partial overlapping of the neighbouring segments. To remove the amplitude drops, each of the output sections is multiplied by the weight "window". Partial imposition of segments compensates energy losses in weighing.

The analysis of speech types used for tammering correction shows that all kinds of stamnering are characterized by the following regularities [6]

- the length of every syllable is increased;
the number of long syllables in a phrase is increased;
- the length of all syllables tends to be equal.

The first two types are positively solved in the presented device. The use of the device permits multiple reproduction of the recorded text with varying speed. On the other hand it allows to listen to an accelerated recording of the patients speech and to determine the intensity of the disorders. Other approaches to speech therapy are possible by varying the time of the sounding of speech information. To make the length of speech syllables equal requires more discriminating approach of the speech signals, which is characteristic of the second group of tempo regulation methods.

CONCLUSION

The performance of the device which permits to carry out a set of correcting logopaedic procedures is described. The most significant of them is the changing of the rate of speech reproduction. The best results in treating speech disoders are to be obtained by using regulator, which makes the length of stationary sections of sounds of equal duration. Nodelling confirmed the effectiveness of these approaches allowing to create a wide range of tempo variations while retaining high quality characteristics of the reproduced speech.

REFERENCES

2.

З. Андронова Л. З., Лохов И.И. Аंспользование огичев дестабилизации устоииивого патонии заикания $/ /$ бизиология человека нии заикания // Физиология человека
4.
5. Анцронова Л. временних характеристик видов речи, привременннх характеристик видов речи, при-
меннемпх при корркции заикания $/ /$ Пе-
6.

7. Пирогов А.А. Вонодерная телефония. Мето пи и проблемы // Д.: Связь. - тяs4.384 с.
8. ние речи $/ \boldsymbol{\prime}$ Прей А. Линейное предсказа-
9. агаһонова л.С. и др. $\dot{0}$ - некоторыхх характеристиках русско речи $^{\text {в з зависимости }}$ тема произнопения // Слух и речь в от темпа произнопения: Нлух и речь. в C. $25-3$
. Шихффман М. Регулятор темпа речи воспроизводящего магнитожона // электроника.

abstract

Modern digital signal processing technology opens the way to real-time implementation of articulatory
speech synthesizers as the phonetic-acoustic conspeech synthesizers as
version module in text-to-speech systems. An outline of a workstation for the development of such a prototype synthesizer for the German language is
given. This workstation is equipped with fast interactive graphics and acoustics processing capabilities and is used as a tool for both the study of
articulatory phenomena as such and the developarticulatory phenomena as such and the develop-
ment of simplified algorithms needed for the proment of simplified algorithms needed for the pro-
spective target
realization of the articulatory spective
synthesizer.

1. introduction

Until now most of the development in articulatory speech synthesis [1-6] has originated within a phonetic research environment. into a form susceptible for real-time implementation with modern digital signal processing technology. As articulatory synthesis is expected o y yeld high synthetic speech quality we have chosen this
line for the development of the phonetic-acoustic conversion component within a text-to-speech sys-
tem for German [8]. Our goal is not to refine the tem for German [8]. Our goal is not to refine the
knowledge of human articulation in numerous exknowledge of human articulation in numerous ex-
periments but rather to use the available knowperiments but rather
ledge for an operational speech prooduction model.
Therefore we confined the development enviTherefore we confined the development envi-
anment to be small from the beginning: a specironent to be small from the beginning: a speci-
fically designed workstation that provides closee-to-real-time operation of both the computer animat-
ed articulatory model and the acoustic signal syned articulatory model and the acoustic signal syn-
thesizer. The workstation facilitates changes in the thesizer. The workstation facilitates changes in the
detailed model and synthesizer structures while oreserving the hard- and software characteristics
of the envisaged target system.
+) On leave from Kaunas Polytechnical Institute,
system overview
In the text-to-speech system GRAPHON the arliculatory synthesizer bridges the gap between the string of phonetic, symbols derived from morpholog-
cal word parsing [9] of the input text on one side and the synthesized acoustic speech signal on the other side. To this end, the articulatory synthe-

1) Interpretation of phonetic symbols in the articatory domain by means of look-up tables containing geometry and timing parameters. Only
essential or non redundant parameters are used for the definition of a phone, leaving the final determination of the time-varying vocal-tract tours to the folowing step.
(2) Synthesis of articulatory kinematics by interpolation in the articulatory domain. Thereby non-essential or redundant parameters (e.g. lip
rounding in the articulation of a German (t]) are generated. Secondly, intermediate positions are generated. Secondly, intermediate positan
of articulary movements can be generated at an (3)
(3) Graphical display and evaluation of sequences of mid-sagittal views. Speech organ contours of generated mathematically from complete sets
parameters defined for a certain of geometric parameters defined for a certain
time step. Vocal-tract area functions are estitime step. Vocal-tract area functions are esti-
mated from linear distances measured between speech organ contours
(4) Acoustic synthesis with a wave digital filter implementation of a vocal tract model contro
by the time-varying area functions, cf. $[7]$. As the basic principle of operation has already
been discussed in $[8,10]$ only a few points of spebial interest will be dich only a few points
3. articulatory phonetics and compute

It appears nbvious 'hat a full account of human articulation is impossible: neither the neuromuscula control of the speech organs nor the dynamics their movements is fully understond. Even a phe
numenological description of their kinematics seems
uite untractable as the motion of three-dimensiona non-rigid bodies is involved. Fspecially the contin
uous change of the tongue shape and position is ard to measure and to model adequately. What is left are a few basic facts describing certain stable
articulatory mechanisms either in the steady stat [11] or in transitions [12]. The rest is hypothesis. How can this incomplete knowledge be exploited or speech synthesis? The answer is that even
rudimentary articulatory model introduces an addiional level for the representation of spech phe omena such as coarticulation, reduction, assimilaion, homorganic articulation, and other contextde-
pendent allophonic variation. This additional leve appears more suited to human intuition in the manipulation of hypotheses than the lower levels
such as an exclusively acoustic signal description. such as an exclusively acoustic signal description
Furthermore, it opens certain degrees of freedom hidden to the human experimenter at the acoustic level: some simple articulatory movements may in-
duce very complex acoustic mechanisms that would duce very complex acoustic mechanisms that would
not be recognized as basic to the speech producion process at the acoustic level as they appear
buried in the mess of signal variability.
Summarizing, the actual structure of an articu-
atory model is only partly determined by human rticulation itself whereas an even larger part is dee to the means of representation used in the deaction with a human experimenter, a graphical dislay of speech organ movements is indispensible Thus the principles of computer animation govern
largely the design of our articulatory model.

1) Animation of axionometric displays of three-di isaged "small" hould be clumsy
2) $T_{\text {wo-dimensional shapes can be adequately dis }}$ ans by their contours only, deliberately dismisses all knowledge concerning their morphology and inernal dynamics. The prevailing information about
articulator contours is conveyed by mid-sagittal articulator contours is conveyed by mid-sagittal
(cine-) radiographies $[11,13,14]$. These are taken as se starting point for modeling the vocal-tract eometry
(3) The methods for the synthesis of articulatory movements may be classified according to [15] a follows:
Image-based key-frame animation generates inter-
mediate frater diate frames from fully specified key-frames by
 shape. This principle is similar to the diphone synthesis concept in exclusively acoustic speech ynthesizers. As the velar movement shows a single degree of freedom
eled by this technique
Parametric key-frame animation has previously been used in articulatory synthesis [3] for a ynthesis-hy-script mode of operation. Stil th
uman experimenter provides fully specified keyrames but these are interpreted in a parameter domain so that interpolated frames preserve cer-
tain structural characterictics of the parametertain structural characterictics of the parameter
ized shape. This principle is similar to the (allophone) synthesis by rule concept in exclusively
acoustic speech synthesizers.

- Kinematic algorithmic animation is our approach
for the modelization of highly mobile variablefor the modelization of highly mobile variableand epiglotis. There exists no similar concept in exclusively acoustic speech synthesizers. The
synthesized frame sequence is no more specified from key-frames but from algorithmic parameter control laws. Because there is a direct open-loop
relationship between the control laws and the relationship between the control laws and the
controlled geometry and timing parameters this technique is a kinematic one. In our system, typical laws specify the durations of on-glide,
stationary, and off-glide phases in the movement of a particular articulator within a given phone [16]. These durations may assume negative values e.g. to emphasize anticipatory coarticulation or a Dynamic
placement of the aic animation requires the replacement of the above kinematic laws by models
of the internal speech organ dynamics. This ap-
proach $[6$, p. 279] goes beyond our previous proach [6, p. 279] goes beyond our previous op-
tion for simple contour line geometry. It introduces an additional level of representation, i.e.
complexity, which we consider only worthwile to complexity, which we consider only worthwile to
be studied in the context of text-to-speech synbe studied in the context of text-to-speech syn-
thesis after completing the study of pure kinematic models.
(4) Sampling of articulatory movements is sufficient at a rate of approx. 20 frames $/ \mathrm{sec}$ for the human eye. However, this rate does not fully capture the true motion of speech organs. For this purpose, a
rate of at least 50 frames $/ \mathrm{sec}$ should be used. Yet, it is important to separate the two rate requirements when implementing the computational model: every second, valuated by the graphics processing system while only 20 midsagittal contour plots must be output via the video display.

4. acoustic phonetics and signal processing

Acoustic phonetics is seemingly more tractable than articulatory phonetics as there exist highly
refined models of the vocal-tract acoustics such as [17]. More often than not, these models are deline-
ated as an electrical circuit analog which can in ated as an electrical circuit analog which can in
turn be transformed into a digital circuit. The most elegant strategy consists in the wave digital filter (WDF) concept [18] which provides a direct trans-
lation of the analog voltage and current relations lation of the analog voltage and current relations
into the digital domain. A reasonably simplified wDF version of [17] has been implemented for the development of a quasiWe adopt this procedure while modifying its implementation according to our hardware system that comprises a vector-oriented bit-sice signal pro-
cessor for the acoustic signal synthesis. This processor for the acoustic signal synthesis. This pro-
cessor is controlled by a MC68000 microprocessor system developed at our department with special
attention to the fast high-resolution ateeded for the animated articulatory model. The two processor syst, ms are coupled via a parallel interface with a transfer rate of up to 3 Mbyte/sec.
estimated from linear distances between speech or gan contours on the basis of piece-wise approxima-
tion formulae given in [4]. The vocal-tract synthesis filter is tuned according to the area function in a time-varying maner. The operath a waveform nal synthesis can be supervised wilh a wave inte
editor and linear predictive analysis module grated in the workstation utilities.
5. PERCEPTUAL Phonetics and system

There are a lot of open issues that can only be studied in perceptual experiments implementing a feedback loop for system opimization through a hu(1)
(1) How accurate must an acoustic vocal-tract marel be, given its control by a fairly coarse ar
ticulatory model?
(2) What is the adequate level of representation for various speech phenomena? Adequacy should be
defined by the human listener's judgement while the choice among several adequate representations should be made such that implemen-
tation complexity is minimized. For instance, it is not at all clear which articulatory transitions really need to be represented in the articulatory domain and which arating directly on area simplified rules operating dire
functions or acoustic parameters.
(3) Feedback control should be made possible at all system levels. This calls for comparison mecha-
nisms for mid-sagittal views and area functions as well as for sectrographic measurements. To fulfill this requirement, an interactive phonetic
editor is built with thumb-wheel control of areditor is buitatory geometry and real-time output of the speech organ contours, the
the synthetic speech signal.
(4) Special attention is devoted to rapidly timesarying speech events such as the explosion in stop consonathods as well as new time-frequency
adaptive meth analysis methods [19] are under investigation.

6. CONCLUSION

Several concepts fundamental to the design of workstation for the development of a real-time
articulatory speech synthesizer have been disuussed. At the present state of the system, articulatory kinematics can be computed and displayyd
by our graphics system at a rate of 10 frames/sec approx. Speech signals can be produced with a sampling rate of 10 kHz . For a target system with
50 frames $/ \mathrm{sec}$ and 20 kHz sampling an increase in computational capacity by a factor of 5 is needed computational capacity by a factor of off-the-shelf components (e.g. MC68020 with floating-point co-processor
and 4 DSP chips such as TMS 32010). These data show an impressive technology step when they are compared to run-time data of articulatory models
in [2] or 20 to 60 times real time in [3]. Taking up this step
synthesis.

7. References

[1] J.L. Kelly, C.C. Lochbaum: Speech Synthesis. 4 th Int. Congr. on Acoustics, Copenhagen, 121 C.H. Coker: paper G42.
and Control. Proc. IEEF $6 \underline{4}$ (1976), pp. $452-400$. [3] Ph. Rubin, Th. Baer, P. Mermelstein: An articulatory synthesizer for perceptual research. JASA 70 (1981), pp. $321-328$.
 IPKöln-Berichte $\frac{10(1980),}{}$, $12(1982), \frac{13(1986) .}{\text { T. }}$
[5] T. Thomas, F. Fallside: A new articulatory
model for speech production. Proc. IEEE Int. model for speech production. Proc. IEEE Int.
Conf. on Acoustics, Speech, and Sig. Proc. ICASSP’85, Tampa (Fla.) March 1985, pp. 1105-
1108. [61 1108. R. Carré, R. Descout, M. Wajskop
Articulatory
Modeling and Phonetics. G.A.]: Groupe de la Communication Parliee- Proc. of
[7] P. Meyer, R. Wilhelms, H.W. Strube: An efficient vocal tract model running in real time. n: 1.T. Young et al. [eds.1: Signal Processing III: Theories and Applications (Proceedings of
EUSIPCO 86), North-Holland 1986, pp. 377-380.
[8] G. Dorffner, M. Kommenda, G. Kubin: GRAPHONThe Vienna Speech Synthesis System for Arbi-
trary German Text. Proc. IEEE Int. Conf. on rary German Text. Proc. IEEE Int. Conf. on
Acoustics, Speech, and Sig. Proc. ICASSP 85 , Tampa (Fla.) March 1985, pp. 744-747.
A. Pounder, M. Kommenda: Morphological
[9] A. Pounder, M. Kommenda: Morphological Analy11 th Int. Conf. on Computational Linguistics
COLING’86, Bonn(FRG) August 1986, pp.263-268. [10] G. Dorffner, G. Kubin: Artikulatorische Spr synthese. Mikroelektronik in Osterr
Wien: Springer 1985, pp. $456-461$.
[11] G. Fant: Acoustic Theory of Speech Production.
 O. Fujimura: Temporal Organization of
Articulatory Movements as a Multidimensional Phrasal Struct
i), pp

Phonetica 38 (1981), pp. 66-83.
(13] Wangler: Atlas deutscher Sprachla
Berlin: Akademie-Verlag 1981(7).
[14] G G. Lindner: Optische Analysen der KoartikuHochschulfilm T-HF $\begin{gathered}\text { Thäntgenkinematographie }\end{gathered}$ Film, Bild und Ton, 1972.
[15] L. Forest, N. Magnenat-Thalmann, D. Thalmann Integrating Key-Frame Animation a In: T.L. Kunii [ed.]) Advanced Computer GraIn: T.L. Kunii ted.]: Advanced Computer Gra
phics. Tokyo: Springer-Verlag 1986, pp. 263
[16] G .
 Artikualtionsmodell zur Sprachsy
Fortschritte der Akustik- DAGA'85.
Bad Honnef: DPG-GmbH 1985, Do. $615-618$.
[17] J.L. Flanagan, K. Ishizaka, K.L. Shipley Synthesis of Speech From a Dy
the Vocal Cords and Vocal Tract. he Vocal Cords and Vocal
[18] A. Fettweis: Wave Digital Filters: Theory and 1191 Practice. prek, Kubin F. Hlawatsch. Wign 191 W. Wokurek, G. Kubin, F. Hlawatsch: Wigner tion Time-Frequency Analysis of Speech Sig als. Proc. 1th int. Congr. of Phon. Sciences
appendix
As a reference to our articulatory model two figures are presented: Fig. 1 shows the parameterization of the articu-
latory geometry by approximation of gan contours with simple mathematical function (circle, tangent).
Fig. 2 shows
Fig. shows a (subsampled) synthetic frame sequence for the German word [matama:tik].

Fig. 1.
a tongue apex
c tongue body
tongue body centre
e epiglottis
e
j
j
epiglottis (lower incisors
jow
jap
lip opening
o lip opening
o lip protrusio
P
\mathbf{r}
r
tong
to pue body ras radius
v velum
palate and pharynx wall are fixed reference

ABSTRACT

'Coarticulation' is the main problem in speech synthesis. In the case of German
we show that the control of articulatory pararieters is dynamic in nature, i. e.
depends on effort and time of articulatory gestures.

The purpose of this contribution is the development of a framework in which coarti-
culation' rules for the articulatory synthesis of German can be established. Starting point is the conclusion that the
traditional concept of 'coarticulation' tiaditional concept of coarticulation
must bc rejectisa as inadequate because it presumes discrete phonetic segnents as input units into a coarticulato ". module. Therefore a target oriented mcial or
ticulatory control is proposed. Input units to the control module are labelled by phonetic symbols. They are detined by
at least one target value of one parameter at least one target value of one paramete
(e. g. for bilabials) or more parameters (in the case of most other sounds)
With the exception of the bilabial (round-ed) [f] German consonants are defined by one tiarget value only, namely the con-
strictional position of the lips, the glottis, the anterior part of the tongue or the dorsum. The remaining articulatory configurations, for example the shape of
the lips and of the dorsum in the
asc of an apico-dental consonant, have to be specified accorrding to the syllabic corritext. This specification, usually termed as cohas to be formalized in an articulatory synthesis model. Since there is a lack of sufficient experimental investigations
(especiaily x-ray studies) in the onse of (especiaily x-ray studies) in the sore articulatory interpretation of sonagrams, seik-observation,
Preiiminary results suggest the hypothesis that the compiete articulatozy specitication of German consonants depends on the factors: vowel context, type of ccisonant,
position within the sylläble, sieed ot ar-
ticulation. These dependencies will be exemplified in the case of the apicodental cold and the dorso-velar (or palacalic position (c. g. [li:] as in in inebe) the most economic (and hence 'coarticulated') position of the tongue would be
the same as for $[i:]$ except for the elevation of the torgue tip. This would result in a 'l' with palatalized dorsum. Although German is not said to be character
ized by such consonants, ihe above-menled by such consonants, the above-menspeech, especially in intervccalic position, as e. g. in 'die Liebe'. There is, 'coarticulative' effect of the vowel context betwecr slow and fast articulations. In the Cas of relatively slow articula-
tion - which means slower movement of the tongue tip and greater duration of dental contact - there is enough time for the tongue body t . move towards the neutral stop consonants, but since closure and release cestures are clearly separated, relativsly fixed in time, and hence in-
dependent of speech tempo, a very distinc difference between syllable initial and final position can be observed. The articulatory position of release, e. g. in
'lieg' [li:kh], ray result from a backwards movement of the dorsum during the closure tinie interval, whereas in Kiel the appropriate palatal position for the the appropriat
following [i.
Fig. la shows the sonagram of the VCVportion of a relatively careful pronunciation of 'die Liese'. An appropriate
articulatory synthesis of the VCV-gesture can be achieved with a tongue :resilc of 1 with central position of the dorsim, as midsagittal tracings (fig. lo) C
i and i and the sonagram of the synthesis 1 and ${ }^{2}$ and the (fing. 1b) show.

- .4 . 2 presents, in a case of more rapid oronunciation, both reduction of the unstressed i in 'dic' and the palatal position of the tongue dorsum for
largely identical with that of i . Thus

b)

Fig. 1: Spoken (a) and synthesized (b) VCV-portion Liebe', relatively slow speech. Liebe', relatively slow speech (c)
Midsagittal computer tracings show corresponding target positions
we may hypothesize that the control of the tongue dorsum as a function of speech tem works differently for vowels and consonants. We observe reduction (towards ne ral) of vowels with high tempo, whereas
with consonants a similar effect appears with slow tempo.
But both phenomena can be explained by one principle: the economy of effort as a func-
tion of time. Effort may be defined in two tion of time. Effort may be defined in two espects: as the effort of reaching a position different from neutral. With high speech tempo reduced effort results in an get (vowels), with slow tempo the effort

c)

Fig. 2: The same vcv-transitions as in fig. 1 , spoken with
rapid speech tempo
dorsum (unnecessary for consonants) is re duced and compensated by a movement to a for the parameter of lip rounding. In the sequence [uli], for instance, we notice (with normal-to-slow speech tempo) a lip spreading gesture from u to la and vice
versa. In synthesizing $\left[\right.$ ulj ${ }^{\text {('0li') }}$ we would therefore expect the spreadirg gesture of the 1 to be continued ir th transitional movemen th the rather rapidly spoken utterance shows not only a remarkably reduced u (more centralized and less rounded), but also an anticipat
of the spreading gesture within the duration of the vowel. This demonstrates

Fig. 3: VCV-transitions of 'Uli';
a) spoken,
b) synthesized without anticipation of lip spreading.
the usefulness of articulatory synthesis for the study of 'coarticulation' phenomena (i. e, articulatory control as a function of time).

Peter Meyer, Reiner Wilhelms and Hans Werner Strube

Drittes Physikalisches Institut, Universität Göttingen, Bürgerstrasse 42-44, D-3400 Göttingen, Fed. Rep. of Germany

ABSTRACT

'iu produce natural sounding transitions with a speech synthesizer by simple interpolation of its control parameters, these parameters should have articulatory meanings. In this case the synthesizer must have the form of a vocal tract. We embedded such a model into a simple dynamic articulatory system and applied Kalman filtering methods to estimate the articulatory parameters. From these parameters we extract simple rules for speech synthesis. The synthesizer is based on a signal processor system and runs in real time.

THE ARTICULATORY MODEL

The articulatory model is controlled by seven parameters (a_{1}, \ldots, a_{7}) which determine a discretized 10 tube model of a vocal tract and a 7 tube model of a nasal tract. Parameters a ${ }_{1}$ and a_{2} describe the tongue body and the shape of the pharynx in a simpified manner by linearly superposing two basic vocal tract shapes and a constant neutral shape. The different places of articulation in the palatal and alveolar region can roughly be described by them. The front palatal and dental articulation is described by parameters a_{3} and a_{4}, a_{4} represents the place of the tip of the tongue and a_{3} is treated as a parameter of the strength of articulation. a_{5} and a_{6} determine the radiation from the vocal tract, which is simulated by discretized horns terminating the vocal and nasal tract. a ${ }_{7}$ determines the coupling of the nasal tract to the vocal tract.

MODEL FITTITHG

In order to get transitions of parameters suited for speech synthesis, the model must be fitted to natural speech, that is, we have to find a mapping from an acoustic parameter space to the space of articulatory parameters. It is known from theoretical and practical considerations that this mapping cannot be unique. Thus, we have to restrict ourselves to searching for trajectories that do not contain jumps and that give a representation of measured short-time spectra in a least squares
sense. Our method to find this mapping is based on Kalman filtering and Kalman smoothing. We extended the 7-vector of articulatory parameters to the 21-state vector of a dynamic model which is a critically damped 2nd order system with unknown white noise input and unknown control input, Formally:

$$
x=\left(x_{1} ; x_{2} ; u\right)^{\prime}, x_{1}=\left(a_{1}, \ldots, a_{7}\right)^{\prime}
$$

x_{1} : vector of articulatory parameters,
x_{2} : delayed articulatory parameters,
u : unknown control input.
$x_{n+1}=\Phi x_{n}+w_{n}$,
$w_{n}+$ vector of white noise with
$\left\langle w_{n}\right\rangle=0,\left\langle w_{n} w_{n}^{\prime}\right\rangle=Q$
fihe transition matrix is

$$
\Phi=\left(\begin{array}{ccc}
2 A & -A & (I-A)^{2} \\
A & 0 & 0 \\
0 & 0 & I
\end{array}\right)
$$

A is a diagonal 7×7 matrix of $\exp (-T / \tau)$;
I: frame length, τ : time constant.
The trajectories of the dynamic system are to be estimated in accordance to natural short time spectra. Thus, based on utterances of one speaker that are digitized with 10 kHz after preemphasis, we estimate ARMA coefficients every 2.5 ms using a Hamming window of 25 ms , and we take the smoothed logarithmic ARMA spectra as a reference. The resulting sequence of short time spectra is called the real measurement process $z(t)$.
The analysis procedure computes the acoustic velocity transfer function of the model's vocal and nasal tract, given the actual estimate of the state \hat{x}. The logarithmic spectrum of the transfer function, which is called $h(\hat{x})$, is the model measurement. Then we formally assume that the measurement process $z(t)$ is produced by the model and disturbed with noise:

$$
z(t)=h(x(t))+r(t),
$$

and thus is related to the 'true' state x. r is a random vector with zero mean and covariance R, it is assumed to contain measurement noise and all model inadequacies as well.
The computation of $h(x)$ requires some computational expense. For this purpose the vocal tract is described by four-terminal networks

Fig. 1: The articulatory model. Left: Constant neutral and two basic shapes.
Right: Tongue-tip component in its two extremal points of articulation.
in the view of electrical circuit analogue. The transfer functions from the vocal source sumed) to the mouth and to the nostrils can be computed, and $h(x)$ is obtained by adding the partial trans spectrum. apply the linear Kalman filter algorithms, an iterated Kalman filter is more convenient. It requires that at each step of iteration the
matrix $H(x)$ containing the partial derivatives matrix H(x) contaning the parnerically at the actual estimate of x. As $h(x)$ is of high dimension (we take a 64 -point FFT), we make use
of an inverse covariance Kalman filter. The of an inverse covariance
Let \bar{x}-be the estimate of the state at time t with covariance P^{-}, before the actual measure
ment z is incorporated. Starting with $x_{0}=\bar{x}^{-}$it iterates:
$\mathrm{x}_{\mathrm{k}+1}=\mathrm{x}_{\mathrm{k}}+\left(\mathrm{H}^{\prime} \mathrm{K}^{-1} \mathrm{H}_{\mathrm{H}}+\left(\mathrm{P}^{-}\right)^{-1}\right)^{-1}$
$\cdot\left(H^{\prime} \mathrm{K}^{-1}\left(\mathrm{z}-\mathrm{h}\left(\mathrm{x}_{\mathrm{k}}\right)\right)-\left(\mathrm{P}^{-}\right)^{-1}\left(\mathrm{x}_{\mathrm{k}}-\overline{\mathrm{x}}^{-}\right)\right.$
for $k=0, \ldots$, K. $^{\hat{x}^{+}}:=$xK $^{\prime}$.
$\mathrm{P}^{+}=\left(\mathrm{H}\left(\mathrm{R}^{+}\right)^{\prime} \mathrm{R}^{-1} \mathrm{H}\left(\mathrm{R}^{+}\right)+\left(\mathrm{P}^{-}\right)^{-1}\right)^{-1}$
The inverse covariance R^{-1} of the measurement noise r is simply defined as a time varying diagonal matrix. It plays the role of a weigh ting function for the particular measurements to a (computationally rather tedious) smoothing algorithm by requiring that the estimate of state $\hat{\mathbb{x}}$ at time n is not only determined by the measurement history up to time $n+m$. For one update of the smoothing algorithm a Kalman filter, starting with the present state of the
smoother, first runs forward up to time $n+m$, then, using the adjoined backward dynamic
model, backwards to time n. At each measure ent it makes an update of its state. Th
state of the smoother is then updated by as sembling its actual state and the state of the backwards filter.

incorporation of articulatory constraint

As could be expected, the described procedure works sufficiently for most of the pure vocations and for nasalized transitions some con traints have to be incorporated into we know, e.g. that the velum must be open at an interval and closed at another, we 'tell the Kalman filter that we measure the behavior
of the velum paraneter, that is, we include of the velum paraneter, that is, we include surement history $z(t)$ and give them more or less influence by defining the corresponding anner all parameters that are functionally related to the state of the model can be precribed, such as place of articulation and

AIIALYSIS OF FITTED ARTICULATORY TRAJECTORIE
For analysing and testing the fitted articulatory trajectories, the vocal tract model was mstem consists mainly of a fast signal profast parallel interface and a 16 -bit D / A-converter. The signal processor is fast enough to calculate the vocal tract model in real time. lator-to-filter" transformations are done on a laboratory computer (Gould 32/9705). The filter parameters are transferred to the sign processor system at a frame rate of $200 / \mathrm{s}$.
It was possibie to resynthesize intervals an adapted trajectory as well as fixed parameter sets. On this way it was possible to ex-
tract subjectively constant parts of vowels or consonants.
Fig. 4 shows extracted vowels in the plane of the first two articulatory parameters (a ${ }_{1}$, a_{2}). If we interprete the first parameter as
front versus back, the second as a high versus low parameter, the positions of the vowels are close tongue hump positions. In this plane
sorie vowels like $/ \mathrm{e}: /$ and $/ \mathrm{i}: /$ or $/ \mathrm{a} /$ and $/ \partial /$ are very close. They differ from each other in are very close. (the tip) parameter. For example this parameter is higher for /i:/ than for
/e:/ which can be interpreted as an articulale:/ which can be interpreted as an
tion more in the front of the tract. For the most cases the transitions between
phonemes are regular. Attempts to find a fixed phonemes are regular. Attempts to find a. fixed
dynamics for the articulation failed. Every transition seemed to have a different dynamics. The best and most easy description of the transitions was linear interpolation or a
critically damped second order system with varying parameters.

Fig. 2.
Fitted utterance / 1a:1e:1i:10:/. Time runs from bottom to top.

The weth ijpures on this iage: chosen by inand. It determines the ency of the input signal thich represents the transier rofir the gluttis to the radiation. Shis paraneter also deterneseases gior iow vocalization. he ricative e:citation parameer is computed vy the ilticing
ocedure based on simpie asumpticns aucut the reiation turbulent ncise strengtli.

Fig. 3.
Starting at the voice onset of /ta/

Fig. 4. Points of articulation of some German vowels in the plane of a_{1}, a_{2}.

Fig. 5. Points of articulation for liquid /1/ embedded in different vowel context like /a:la:/.

The adapted articulatory parameters show strong effects of coarticulation. We examined different VCV-transitions with the liquid /1/ like /a:la:/./e:le:/... Fig. x shows the points of articulation of the l's in the plane of the first two parameters. The articulation is close to the position of the surrounding vowel. The main articulation is done by the third, the tongue tip parameter. For all shown articulations this parameter produces a constriction of the 8^{\prime} 'th or the g^{\prime} th tube segment of about $0.5 \mathrm{~cm}^{2}$. This effect can be seen if
we look at the articulation of the l's in the plane of the first and third parameter where they lay on a straight line. Similar results can be found for other consonants, for example for the nasal $/ \mathrm{n} /$.
Strong articulatory effects can be found for the articulation of plosives which is close to the following vowel. This effect is extreme for the plosives $/ \mathrm{p} / . / \mathrm{D} /$ which are articulated nearly in the same way as the following vowel with a mouth opening of zero.

SYNTHESIS

For speech synthesis purposes we stored 36 parameter vectors of different German phonemes in a table. This table contains also information about voiced or unvoiced exitation, the strength of the fricative exitation, duration, voice onset times etc. Only for few transitions it is possible to make a synthesis by interpolating between these parameter vectors. So we add further vectors which all represent the same consonant to describe coarticulatory effects, such as the articulations of different / // in Fig. x. If we synthesize a transition from a vowel to a consonant we interpolate to the representant which is nearest to the vector of the vowel. If we want to synthesise a VCV-transition we interpolate during the 'constant' consonant part to the representative which is nearest to the following vowel vector. These rules are described by addresses to the consonant vectors written in a 36×36 matrix. This matrix also contains information about the duration of the transition.
Parameters like voice onset times for plosives and strength of fricative exitation are chosen subjectively.

SPEECH MOVEMENT RESEARCH USING THE NEW X-RAY MICROBEAM SYSTEM

ROBERT D. NADLER
Waisman Center
University of Wisconsin Madison, WI, USA 53705

JAMES H. ABBS
Depts. of Neurology and
Neurophysiology
Waisman Center
University of Wisconsin
Madison, WI, USA 53705

OSAMU FUJIMURA
AT\&T Bell Laboratories
Murray Hill, NJ, USA 07974

Abstract

A new X-Ray Microbeam system for studying tongue movements and other articulatory gestures has been constructed to serve as the core instrument of a shared speech production research facility. Preliminary speech movement data has been obtained and this system is currently capable of tracking multiple articulatory pellets (up to 12) at aggregate sampling rates of about 1000 per second. Radiation exposures are very low due to the narrow x-ray beam and localized computer-controller scans used for tracking. The facility includes parallel capability for data display and analysis for multiple experimenters.

[Support for this facility is provided by NIH-NINCDS grant NS-16373.]

NEED FOR FACILITY

The progress of research into human speech production is severely limited by a number of factors inherent in the speech production process itself. In-depth physiological investigation of critical speech processes (e.g., neural activation, muscle activity, movement, in vitro biomechanics, etc.) cannot be conducted optimally because there appears to be no truly suitable animal model. Because the human speech apparatus has multiple overlapping functions (breathing, chewing, swallowing, and speech), functional inferences made from anatomical investigations provide only fragmentary and potentially confusing results. For example, while the masseter and temporalis muscles are capable anatomically of substantial jaw closing forces, they are generally inactive during movements of the jaw for speech production. These limitations require that many of the significant physiological issues surrounding human speech production be addressed with human subjects under normal conditions of speech.

Figure 1
Simplified drawing of the X-Ray Microbeam system. The system (except for the HVPS) is completely covered with 1-4 inches of lead for radiation protection. The total weight of the machine is about 15 tons.

While speech production processes are inherently difficult to investigate, recent advances have demonstrated that the careful application of analysis and interpretation techniques adapted from systems physiology, biomedical engineering, and signal processing provide a means to exploit the limited availabe data. That is, in the last able speech events have become increasingly utilized by the speech physiologist.
To advance this important work, we have developed an x-ray system with increased capabilities to obtain large samples of the relevant movement, EMG, aerodynamic, and acoustic data simultaneously, data with which to elaborate and refine preliminary models and further test
their viability. The X-Ray Microbeam system that pretheir viability. The X-Ray Microbeam system that pre-
viously existed at the University of Tokyo [1] provided preliminary studies with suggestive information demonstrating the strength of this melhod $[2,3,4,5]$.

X-RAY SYSTEM

Figure 1 is a simplified drawing of the x-ray generator. lts major components include a $600 \mathrm{kV}, 5 \mathrm{~mA}$ power supply, a source electron gun and accelerating column, deflection, a thin (800 micron) water-cooled Tungstun target for photon generation, x-ray pinhole, and Na detector.
Sampling of the x -ray detector output, control of the beam deffection and x-ray scanning, and implementatio of the pellet spherical pattern recognition/background
subtraction is done with specialized digital hardware controlled by two fast microsequencers which in turn are remotely controlled by the main computer processor through a shared four-port memory. This implementa tion has been designed (in particular, the 600 kV acceleration voltage) to allow us to track pellets in the presence of common tooth filling amalgams. Development of the specialized algorithms and support computa tional hardware to provide this capability is currently under way.
As shown in Figure 2, small ($2-3 \mathrm{~mm}$) gold pellets are placed, for example, on the tongue, lips, maxillary and
mandibular teeth, and velum. The x-ray generator emits a narrow x-ray beam whose two-dimensional position on the object field of the subject's head is computer controlled. The x-ray beam passes through the object field and is detected by a scintillation counter. The output of the scintillation counter reflects the relative radiopacity of the image field through which it passed.
Based upon the previous pellet positions or the pellet position determined during an initial scan, the main computer transmits a set of initial X and Y coordinates to the digital scan controller. The first obtaining the x ray image generated using a locally restricted raster scan (as shown in Figure 2). This image, after background subtraction, is subjected to a global template recognitio algorithm to determine the pellet location winnine scan area. Tying in the main computer that utilizes

Figure 2
Mid-sagittal view of speech articulators with attached gold pellets. Small computer generated scan showing

Computer Image of
Microbeam Scan Pattern
previous pellet displacement, velocity, and acceleration Each of the other pellets are scanned in turn with associ-
ated image processing to provide time-motion tracking of all the pellets.
Radiation dosages to the subject are limited to very low levels due to a combination of many factors. They include the relatively small size of the x-ray beam (approximately 1 mm at the subject mid-sagittal plane), the limited time (pixel exposure is 10 microseconds maximum), the beam is allowed ox expose cavity, tissue not in the immediate vicinity of a pellet is not exposed, and secondary photon scatter (Compton effect) is reduced by the high energy of the primary photons (photon energies below 100 KeV are filtered out). Multiple measures and estimates indicate that the system at an acceleration voltage of 400 kV and an electron beam current of 5 mA will yield average total of 8.4 mR for 15 minutes of data acquisition. Other measures, such as the peak radiation exposure fo a given small volume of tissue $\left(1.0 \mathrm{~cm}^{3}\right)$ in the worst case, are also very low ($11 \mathrm{mR} /$ minute or 165 mR for 15 minutes of data). These exposure levels compare experimental procedures. For example, a single dental bitewing yields an entrance exposure of 650 mR while the same 15 minutes of speech data with cineradiography would require a prohibitive entrance exposure of 7.5 R . Given these measures and comparisons, we are confident that the radialion exposure as a observed.

ACQUISITION OF OTHER SIGNALS

 Instrumentation associated with this facility also allows for simultaneous detection/transduction and condition ing for the following spoustic signal, (2) an accelerometer/ throat microphone signal, (3) up to four channels of aerodynamic signals or signals from other strain gage transducers and (4) up to ten channels of electromyography (EMG). A custom designed A/D subsystem which acquires this analog data at aggregate rates up to 125 K samples/second (15 bits, isolated) has been built to pro-vide this capability. This implementation provides for vide this capabinty. across up to 64 channels that is
differential sampling time-synchronized with the x-ray system pellet movement data. A multi-channel D / A subsystem is also provided for audio playback of speech acoustic data as well s analog output of physiological data.

NETWORKING AND ANALYSIS CAPABILITIES

 A general purpose networking system (consisting of Ethernet and Pronet local area networks) provides high bandwidth inter-computer communication capabilities for both data acquisition and analysis functions. Each processor on the network (data analysis graphics workscentral file servers. SUN graphics workstations provide a bit-mapped 1024×1024 monochrome display and are well suited for manipulation of multi-channel physiological and acoustic data. A custom designed data base hasEDDY MUST WORK BETTER ON MONDAY

Simultanously acaired acoustic speech signal and X - and Y -coordinate data from $\mathbf{5}$ pellets simultaneously acquired acoustic spestem. See text for details.

Figure 4
Cart sian coordinate plot of the same data from Figure 3. A head reference pellet is also included.
been constructed with b:nary descriptive and data files designed for optimum storage efficiency and access. In addition to the general windowed/mouse environment provided by the SUN workstation, graphics applications have been developed specifically for multiple data signal display, manipulation, and analysis. In addition, the ' S ' statistical package (licensed from AT\&T Bell Laboratories) provides an interactive computing environment and statistical data analysis language as well as a wide variety of specialized graphics capa :lities.

EXPERIMENTAL RESULTS

Figures 3 and 4 present an example of typical data acquired using the x-ray microbeam system. This experiment used three tongue (TB, TM, and TT), a mandible (MAN), a lower lip (LL), and two maxillary reference pellets (MAX). Each of the data pellets was acquired at 100 samples/second, the reference pellets at 50 samples/second, along with a single channel of speech acoustic data at 10,000 samples/second. These data have not been digitally filtered or corrected for head movement. Normally, at least two head reference pellets are sampled so that articulatory pellet movement data can be corrected for head movement (translation and rotation in the mid-sagittal plane) prior to data analysis.

REFERENCES

[1; Fujimura, O., Kiritani, S., and Ishida, H. Computer controlled radiography for observation of movements of articulatory and other human organs. Comput. Biol. Med. 1973, s, 371-384.
[2] Kiritani, S. Articulatory studies by the X-ray microbeam system. In M. Sawashima and F. S. Cooper (Eds.), Dynamic aspects of speech production. Tokyo: University of Tokyo Press, 1977, 171-194.
[3] Harris, K. S., Tuller, B., Bell-Berti, F., and Kelso, J. A. S. Some temporal rules in speech production. Paper presented to the 105 th meeting of the Acoustical Society of America, Cincinnati, Ohio, May 1983.
[4] Hirose, H., Kiritani, S., and Sawashima, M. Patterns of dysarthric movements in patients with amyotrophic lateral sclerosis and pseudobulbar palsy. University of Tokyo Annual Bulletin, 1980, 14, 263-272.
[5] Fujimura, O. Relative Invariance of Articulatory Movements: An Iceberg Model. In J. S. Perkell and D. H. Klatt (Eds.), Invariance and Variability in Speech Processes, London, Lawrence Erlbaum Ass., 1986, 226-234.

TENSOPALATOGRAPHY DYNAMIC TECHNIQUE AND
 ARTICULATORY TENSION STUDY COMPARED WITH
 SPEECH ACOUSTIC PARAMETERS (SYLLABLE
 PRODUCTION IN SPOKEN SPEECH AS AN
 ARTICULATORY STRUCTURE)

SKALOZUB I.G., PAVLICHENKO A.N., TERYAYEV D.A.

Dept. of Filology, Laboratory of Experimental Phonetics Kiev State University
Kiev, Ukraine, USSR, 252017

The paper presents phonetico-experimental data concerning dynamic tenso palatography technique which makes it possible to correlate the dynamic articulatory processes as the last link of the syllables, words, syntagmas in speech production with their physical characteristics. Analysed were tensooscillograph records of Russian syllables with the vowel "a" and with initial stop front lingual consonants differing in their hard, palatalized, voiced, voiceless and sonant features.

The study and a statistical analysis of the data received yielded in: 1. The syllable is produced as an articulatory integrity. 2. The syllable includes an eggregate factor manifesting itself in a lesser/greater homogeneity of the components due to muscular tension. 3. Syllables differ according to the mode their articulatory tension develops.

The Kiev State University Experimental Phonetics Laboratory (KSUEPHL) experimental phonetics study of over some recent decedes has aimed at a detailed describing the speech production articulatory aspect which was due to both practical tasks (to understand articulatory standardization, to correct pronunciation) and an important objective dealing with syllable- and word-structure.

A syllable, a minimal structural unit of a spoken speech stretch, has an aggregate factor enabling to find its wholeness and continuity as an original chain structuring lexical and syntactical language events.

The study of syllables and words dynamic manifestations makes us possible to treat them resulting from the final chain speech production - one of the speech activity processes. An articulatory process thus turns out to be immediately related to the language (phonological) speech study: the syllable/word articulation presupposes the producing of language units functioning as spoken text components elsewhere.

The academecian L.V.Shcherba theory
suggests that the syllable production and division is dependent on the muscle tension impulses which are responsible for a consonant power changeability within a syllable. /10, 4/

This hypothesis experimental test made us to design a technique enabling us to record articulatory tension and its progress within a syllable, a word and word sequence.

The papers and books on phonetics have not yet had experimental evidence concerning the tension growth within a syllable, though the syllable peak (a vowel in most languages) is believed to be made with the most tension possible. There were some ideas presented as to the consonants articulation heterogeneity which is due to the tension. Ho

Yet there are no data available on vowels heterogeneity based on the feature in point. The consonants tension is assumed to result from their being voiceless/voiced; from the syllable being stressed/unstressed; from their position in a syllable or a word (opening/closing). $13,1,2,4,9,10,8 /$

Strong-ended consonants, voiceless and consonants in stressed syllables opening a word are believed to be more tense.

The KSUEPHL has designed a technique for the tongue pressure on the palate (palatum durum) to be investigated.

The power exercised by the tongue muscle is known as a mechanical one. Thus with consonants this power can be defined as the pressure upon some rigid surface. A technique combining tensometric processing with palatography and oscillography has been created to answer a number of points: how articulatory tension changes in lingual consonants within articulated syllables and words; the way the muscle tension manifests itself within a syllable; what the syllable peak is (whether it is a definite and the most tense point, the attainment of which is immediately followed by a relaxation, or whether it is a segment more or less elongated); the way the motor impulse of muscle tension is being produced, whether there is the incessability of the impulse and what it is
manifested in.
The technique is called tensopalatography.
described -7) makes it possible to correlate the physical characteristics of reeech (of syysilables, words and sense
speech
groups) to simultaneously groups) to simultaneously registered ar-
ticulatory organs movements. The oscillogram is recording not only acoustic signals but the tongue pressure impuls upon the roof of the mouth as well, articulatory tension, the articulatory duration and compare these features with ignals acoustic duration,
The sensory (sensing)
the pressure electric measuring elements were minute (2 mm base) wire tensomet es. The
bled us to value the tongue pressure impulses. The recording apparatus used wascillograph record simultaneously showed pressure signals from two measuring e. (Cents and the speech acoustic pictu. (comp. 12 and 5).
palate plate there has been made a stanardization of consonants and vowels ar rulatory contacts according to the dence taken from the KSUEPHL phonetical archives. The contacts in question were three speakers, the participants of the experiment, had three separate palates
specially made. Each of the palates with specially made. Each of the palates with
two (front and side) detectors attached to it served as an integrate detector (see fig. 1) through the two channels
of which the osciliograph record had

Figure ${ }^{1 .}$ a) The artificial palate tors; 1 front detector, ${ }^{2}$ - side detecori b) Tensooschillograph record of the syllables from the pressure detectors, 3 coustic signal from the microphone
nals registered. The registered tongue having the front, the peak and the cut
superimpose with acoustic signals bounsuperim
daries.
Th

The impulse form and such of its parameters as amplitude and peak dura-
ion burdened with one or several pede tion burcened with one or several pedeyllable components structu Different impulse forms were analysed; this resulted in descerming six impulse types: 1) a rectangular one haing the peak length with relatively low a minimal; peak duration, an increasing front and a descending cut off; 3) a bel ormed one also having a minimal peak yet having soft prominent front lines
and cut of; 4) impulses with a complicated compound form having but one peak; 5) complex impulses with two peaks;
6) blending impulses having adjoining peaks. (See fig.2).

us
Figure 2. Types of the impulses.

Further tongue pressure impulses analysis and measuring made us have the parametres as follows: a front duration, a peak duration, an articulatory intepeak. The front duration and the pressure increase velocity were defined as
correlated values: the less the duration correlated values: the less the durationtthe greater the velocity and consequentbeginning.
he cut off duration determined the pressure descending time, tension hetero geneity/homogeneity at the juncture of consonant and a vowel. The angle between the zero-th and the beginning front cated the pressure progress speed; the engle growth corresponds to the pressure increase speed growth. The impulse peak duration was interpreted in terms of: a) a peak line uniformity/non-uniformity; b) the duration of the level part of the peak;) the existence of the rise peak durion.
The uneven peak line growth indicates the uneven pressure manifestation ively stable segment. and measuring the boundaries correlation and measuring the boundaries correlation tory and acoustic duration. The tensooscillograph record of syllables with inilopment of their first components, cononants; their acoustic signal being registered in zero-shape. It makes it incoincidence of the final segment in the pressure impulse and the start of the acoustic signal for the syllables diffe
ring in modal indications: the voiced beginning syllables, voiceless beginning yllables and sonant beginning syllables.
The basic indicator employed was an acoustic signal. All the impulse pressure observed after the acoustic signal switched on were assumed to be retarding valuating procedure. Plus index was at tached to the parametres being ahead of the signal attack. Thus, the technique problem of interdependent articulatory and acoustic features. $/ 61$
Investigated were Russian vowel
syllables and those with initial predorsylables and those with initial predorsal palatalised stop consonants (the first type of impulses) (see fig. 3). The analysis aims at having
tension articulatory characteristics and tension articulatory characteristics and correlation of the articula
ustic duration of syllables.

imp. 1
${ }_{1}$ IMP:
 Figure 3.
gated syllables

The syllable analysis based on imulses shape yielded the description to ollow. The lnital components of all
 impulses. Hard consonants syllables pre ferred the 1,4 shape (rectangular im-
pulse with a graduated front and a vertical cut off), syllables with initial palatalized stop consonants preferred he 1,2 shape (rectangular with a step Initial voiceless hard syllables differed from those with initial voiced nd nasal contio bolonging to th 1,4 class, while
sonants - to the 1,2 class which indi-

Cates the lack of identity in the growth
and decline of tension in the syllables. The palatalized stops syllables and those with voiced and voiceless differed from hard consonants syllables by their
belonging exclusively to the 1, 2 class; belonging exclusively to the ${ }^{\text {nower the voiced and voiceless cut im }}$ in pulse was usually longer. The homogeniety ced syllables for both tested groups (hard and palatalized) shows that voiced and nasal syllables differ from voiceles as having a special, smoother tension
growth at the consonant-vowel transition The tension growth in voiceless syllables with initial hard and palatalized consonants is of overrall nature - an
abrupt transition at the consonant-vowel abrupt tre
hard The analysis of all syllables with hard and palatalized consonants with res to distinguirh long syllables impulse manifestations with retaining one and
the same amplitude and a relatively un the same amplitude and a relatively unHere belong the initial voiceless sylla-
bles and those with hard and palatalized consonants. The second group contains
the syllabies with the initial voiced consonants.
the sylables with the initial voiced
and nasal consonants having the impulse Shape whose tension is found less stable
concerning their peak duration manifesconcerning their peak duration manifes-
tation and respectively. a short period
of homeneneous emplitude.

The first syllables have more consonantal features, the second group is
of mixed character, i.e. of a consonantvowel nature. We can now state that the
tension change. (the overfall during consonant - vowel juncture) is more pronounced with the voiceless syllables and less pronounced with the voiced syllatension change feature manifests recip-
rocal derivational relations between the rocal derivational relations between the
syllable components. on the one hand and of voiced and sonant ones on the other hand presents them as having different growing modal features. analysis of the parameters describing the modal features growth: the front du-
ration, the cut off duration, the ampliration, the cut off duration, the amplirelation between the peak duration and that of the amplitude; the correlation amplitude; the correlation of the cutoff duration and that of the amplitude. of integral impulse length and the syllable acoustic length.
Initial voiceless hard syllables
and those with initial palatalized con sonants are different classes in terms of their absolute mean front length:
the front length in hard syllables (HS)
the fonstantly lesser than that in palatalized syllabless (PS) which shows a grea ter pressure growth in the initial seg-
ment of HS. The absolute value of HS meal ment of HS. The absolute value of HS mean
cut-off duration is less then that of PS mean cut-off duration, the length of HS and PS cut-off being less than that of the front.
ut-off, while both the is longer than the onger than their HS counterparts. This vidence distinguishes syllables. This to the degree of tension at the con-sonant-vowel juncture, With PS this is atively greater growth velocity, which
an be read in the front-cutoff ratio FC ratio).! $F>C$, front-cutoff ratio
Relative values resulted from the
omparison of the peak duration and the comparison of the peak duration and the
aximum amplitude of voiceless HS impulaximum amplitude of voiceless HS impulfollows: $\frac{4 b}{\text { Tomparison }} H S$ of the front and the
 amplitude C/A with HS and PS positively
distinguishes HS into a type with a more distinguishes HS into a type with a more
tense first component growth, when combitense first component growth, when combiminent (contrastive). The latter characterizes occlusion as a consonant marker. lizing the tension dynamics describes the nitial syllable components as a process apable to affect the acoustic signal duTh
im
ory

There is a regular greater articulatory impulse and acoustic sigeater articula- duration observed in PS, while HS show lesser ar-
ticulatory and acoustic signals duration respectively. The second group of syllables with initial voiced consonants, har and palatalized, and sonants, hard and
palatalized, recorded with identic amplification and from the same artificial palate, was described similarly. sing voiceless syllables proved to be regular for syllables with initial voiced and sonorous consonants. First of all it has to do with the following parameters tude value; the cut-off duration / the amplitude value; the peak length/ the mplitude value; a total articulatory As it was already mentioned, the voicelees syllables are contrasted to
those of the voiced and the nasal for ha ving different modal dynamic features. for sommon feature both for voiced and for sonant syllables impulses is the peak tio can be written as follows:

$$
\begin{aligned}
& \text { be written as follows: } \\
& \frac{\tau b}{T_{m a x}}(d a)>\frac{\tau_{b}}{\tau_{m a x}} \text { (na) }
\end{aligned}
$$

Similar
exponents ratio of the parameters in point were found when D'A and N'A were co
pared. The parameters comparison show greater ties of the hard voiced and the palatalized voiced consonants with a vowel the follow. the voiceless stops, of the voiced consonants and the nasal sonants is growing in different ways,
which displays both intrinsic feature which displays both intrinsic features tures as the articulatory entireties. The greatest liasion of the componen (which is indicated by the cut-off value (which the amplitude cut-off ratio).

The voiced and the nasal syilables are contrasted to the voiceless ones as a sief feature of which being realized in greater derivational ties between the
components. components.
oscillograph records of the syllables with initial voiceless, voi-
ced and nasal consonants different types of relations between the articulatory of relations between the articulatory
peak duration and the amplitude peak (see A); between an integrate duration of the tension impulse and the acoustio indicated as follows:
$a \frac{\tau b}{J \max }(t a)>\frac{\tau l}{J_{\max }}(d a)>\frac{\tau l}{J_{\max }}(n a)$
$B \frac{\tau_{\text {art }}}{\tau_{a c}}(t a)>\frac{\tau_{\text {art }}}{\tau_{a c}}(d a)>\frac{\tau_{\text {art }}}{\tau_{a c}}(n a)$
The most autonomous (see A and B) are the initial voiceless components;
the voiced and the sonant sylable enabl us to assume a noncontrastive, relative
homogeniety of the components (see above homogeniety of the components (see above
C / A; F / C) which brings about a greater interdependence between them and is manifested in the vowel duration growth. The similar relations are likely to have
sulted from its greater articulatory sunsion. The its greater articulatory between the syllable components is based on the feature of a higher or lower homo-
geniety of the articulatory tension development. Therefore the syliable is articulated as a naturally organized integrity of interdependent components. The
syllable has an agregate factor manifesting itself in a greater or lesser similarity of the syliable components based
on the muscular tension, which fins its expression in a specialiy structured impulse of the tongue pressure
classify syllables in terms of relations of their components. In the class of syllables with hard consonants it looks as follows: DA $>\mathrm{NA}>\mathrm{TA}$.
the the analysis evidence suggesta that
studying palatography is suitable for studying the tension feature in its dy-
namic manifestation within the articula-
ted syllable, word and sense group. The factor working within the sylilable and uniting its components undoubtedly proves syllable, but aliculatory entirety of the in speech production.

The table of syllable tension

$\begin{aligned} & \text { Syllables } \\ & \text { Parameters } \end{aligned}$	ta	da	na	t'a	d'	n'
Front (F) msec	36	59	61	64	91	118
Cut-off (C) msec Amplitude (A) mm	34	$\begin{aligned} & 50 \\ & 42 \end{aligned}$	$\begin{aligned} & 52 \\ & 41 \end{aligned}$	$\begin{aligned} & 58 \\ & 37 \end{aligned}$	65 36	65 32
Articulatory duration of signal (D art.) msec 3		325	325	352	326	339
Acoustic dura- tion of signal (D ac.) msec	334	438	420	310	452	448
$\begin{array}{r} \text { Parametres } \\ \text { ratios } \\ \hline \end{array}$						
Front:Cut-off Front:Amplitude	1,1	1,2	1,3	1,1		1,9
	0,8	1,4	, 5	1,7	2,5	. 7
Cut-off:Amplitude	0,8	1,2	1,3	1,6	1,8	2,1
D art.: D ac. 1	1,0	,7	0,8	1,1	0,7	0,8

Note: the table gives statistic data obtained from tensooscillograms with
constant amplification on the same
sarticial palate of one speaker.

reference

via". Aбеле A. К вопросу о слоге. "Sla2'. Бо́городинкий В.і. Фонетика русского язнка в свете эксперимен 3. Бодуэн де Куртенэ И.А. Введение в язнковедение. В его кн.: Избраннне труди по оощему
c. $246-293$.
4. Зиндер Л.Р. Общая фонетика. М., 1979. - Кузммин. ํ.И. Динамическое палатограф̆ирование. - Вопросд пскхологии, 1963, 6. Јиив ${ }^{\text {Г. . }}$. Ээк А. 0 проблемах экспериментального изучения динамиии речеоораованного комиофлуографирования и спектографирования речи. - Изв. АН Эс 7 . Рузг З. Электрические тензометры
сопротивения. М. 964 с. $15-44$.
 тикуляция звонких и глухих согласнвх в
ллогах русской речи: (По данннм кинорент

генографирования). - Русское языкознание, Киев, I98I, вып. 2 с с.94-ІО0.
9. Скалозуо J.I., Јебедев В.К. Тензометрирование как прием исследования давления языка на нёбо при речи. В нн.: Механизмы речеобразования и восприятия сложных звуков. М. -J., I960, с.56-62.

IO. Щерба Л.В. Фонетика франгузского языка. М., 1953. - 3II с. 11. Sawashima M.Temporal Patterns of Articulatory and Phonatory Controls. Ann.Bull.RILP, 1979, 3, p.1-13.
12. Stetson R.H., Hudgins C.V. and Mosos E.R. Palatograms change with rates of articulation, 1940, Arch.neerl.phonet. exper., 16: 52-62.

COMPLIEX SIGNAL REFLECTION IN THE PERIPHERAL PART OF THE HEARING SYSTEM AND DESCRIPMION OF PHONETIC ELEMENTS

LYUDMILA BABKINA BORIS DENISON SVETLANA GOROKHOVA ALEXANDR MOLCHANOV

Dept. of Physics
Leningrad state
University
Leningrad, USSR

Leningrad
Polytechnic
Institute
Leningrad, USSR

Dept. of Physics
Leningrad State
University
Leningrad, USSR

ABSTRACT

Frequency structure of signal reflection in the peripheral part of the human hearing system is evaluated in terms of the combined cochlear potential observed at the ear-drum level. The reflection appears to include components missing in the signal spectrum. The explanation proposed implies the possible effect of a hearing feedback which, unlike the hearing reflex, provides for the appearance of signal envelopes propagating along the cochlear partition as separate waves.

The study of signal processing in the peripheral part of the hearing system (PPFS) is essential for getting an insight into the mechanism of human soundinformation perception. Complex signal reflection in PPHS is of particular importance. Here signal reflection will be defined as a spatial distribution of exciting effects along auditory-nerve-fiber endings, formed as a result of the signal transformation by hearing mechanisms, allowing for feedback effects.

Until recently feedback mechanisms had been overlooked in simulating signal transformation processes in PPHS. The implications were that a result of signal processing in PPHS is a frequency-coordinate transformation similar to spectral analysis which is correlated with the excitations of auditory-nerve-fiber endings. A reflection of this type is also extensively used in phonetic studies in the form of dynamic spectrograms.

Recent electrophysiological experiments, however, have provided evidence for the propagation of vibrations, corresponding to complex-signal combination tones even at low stimulation levels, in the cochlear hydrodynamic system /7/. The fact that frequency components missing in the signal spectrum may appear in the signal reflection is incompatible with the idea of PPHS as a linear system which deals only with separating the signal into frequency components.

In the literature available combination frequency vibrations are often viewed as a product of signal distortion in its
non-linear transformation in the cochlear vibration system. However, experiments with narcotized animals involve certain difficulties in determining the informational significance of the combination vibrations observed. To investigate the role of combination vibrations in signal reflection in PPHS it is necessary that the fact of their existence should be established and their level estimated. When using phonetically meaningful sounds as stimuli, the existence of a certain component in the reflection can be correlated with a certain characteristic of its perception. Of particular importance is to establish that vibrations with frequencies missing in the signal spectrum do exist in human PPHS, and to lay down a model of the mechanism causing their occurrence.

In this study the method of electrocochleography involving analog and digital accumulation was used in combination with fast Fourier transform /4, 8, 3/ to obtain combined cochlear potentials (CCP) and to analyze the frequency structure of vibrations in the human cochlea.

Assuming that receptor structures of organ of Corti interact in an electromechanical way with the cochlear hydrodynamic system, a variable component of combined cochlear potentials is considered to reflect the motion of cochlear mechanical structures under the effect of the stimulus or vice versa./6/.

The experiment was intended to identify, in the signal reflection in PPHS, the components missing in the sound stimulus spectrum by means of analyzing the CCP appearing at the human ear-drum under the effect of a complex sound stimulus.

Fig. 1 shows two-tone stimulus spectrum (I) and typical CCP spectra successively for one subject, given two values of volume of sound.

Fig. 2 shows the spectrum of vowel "a" (I) and the CCP spectrum (II) for the same subject. The comparison of the stimulus spectra with the CCP spectra reveals that the latter include components missing in the former. With a two-tone stimulus, a component of this kind is
primarily the $f_{1}-f_{2}$ frequency component. The level of the newly appearing compon-
ents has a value close to that of the level of response to spectral components nt in the spectrum.

Fig. 1. Two-tone stimulus reflection in
the spectrum of CCP measured at the human ear-drum.
I two-to
I- two-tone stimulus spectrum; II - CCP
spectrum at the 100 db SPL stimulus levspectrum at the 100 db SPL stimulus lev-
eli; III - CCP spectrum at the 85 db SPL stimulus level; IV - spectrum of noises
measured at the human ear-drum level in
an analogous accumulation mode. The pattern of the stimulus spectrum is shown in relative normalized counts in Y-axis. Qu-
antization range -156.4 mcsec .; number of counts in a sampling - 256 ; number of
accumulated samplings - 1024.

Fig.2. Vowel spectrum reflection in the
spectrum of CCP measured at the human sear-drum.
I - spectrum of vowel "a"; II - CCP specI - spectrum of vowel "a"; II - CCP spec-
trum at the 95 db SPL level of volume of sound. The measuring conditions are identical to the
fig. 2 d Fig. 2 demonstrates that the general pattern of the spectrum of response to a
vowel is significantly different from that of the spectrum of the vowel presen-
ted at the input of the ted at the spectrum of the vowel pres
system. system.
The mo
the results convenient way of discussing the results obtained is to make use of PPHS. The functional structure of such a
modei was described in $/ 10,11 /$. comparmod to the earlier models of signal transformation in PPHS $13 /$, the model under
discussion includes a mechanism realiz ing the feedback which significantly affects signal reflection in PPAS.

Consider the possible properties of the mechanism in question.
The possibility that in addition to flex there exists in PPHS a feedback eff ected along the signal envelope was firs suggested in $10 /$ The mechanism realizing feedback". It was also shown that the action of this mechanism may account for the effects such as residual tones and rophonic potential 112 . . It is obvious that the inhibition of the first harmonic of microphonic potentstence of the hearing feedback, provided the value of a difference-frequency component stipulated by its effect is compar harmonic of the stimulus. The experiment al results shown in fig. 1 indicate that the amplitude of the $f^{2}{ }^{-f}$ f $\begin{aligned} & \text { frequency com- } \\ & \text { ponent of } C C P \text { spectrum }\end{aligned}$ and that of the f_{1} ponent of CCP spectrum and that of the I values of the same order of magnitude. Thus, experimental evidence has been obtained for the assumption that the in-
hibiting effect may be accounted for by the effect of the difference-frequency component of CCP spectrum. Again, the va-
lue of this component being great, it is possible to assume that its informational significance is by no means less than
that of the $C C P$ spectrum components caused by the effect of those components which are present in the stimulus spectof residual tone perception is available. The fact that the relative amplitude of the CCP spectrum component resulting spectrum does not include such component is not dependent on the stimulus level indicates that the component in question is caused by the action of a speciareped
parametric mechanism dealing with separa-
tion of the signal informational characteristics rather than by non-linear disto eristics rather than by non-linear di
rtions in transforming the signal in
A problem to be solved concerned experimental identification of the paths tak en by the signal envelope to get back to
the analyzer part of PRIS, i.e. to the cochlea, upon being formed. One possibility suggested in $/ 10$, $11 /$ was the "cochfacial nerve - stapes - cochlea" circuit. he newly obtained experimental data mak it possible to consider the "cochlea-
receptor cells (acting as envelope extrareceptor cells (acting as envelope extra-
ctors) - cochlean circuit as well. er way, getting to the inner ear by eithalong the basilar membrane and form the moximum deflection at a corresponding
re a new envelope can be extracted whose
variable component will again pass along
the feedback circuit and will be summed the feedback circuit and will be summed amic equilibrium refiection of the stimulus is obtained. Thus, the hearing feedof the model of PPHS analyzer part and the whole system should be viewed as a arametric non-linear signal analyzer, side with other factors, on the type of signals being analyzed. Realization of the hearing feedback model requires conction of the rules of its formation and introduction of PPHS in the analyzer part of the model.
A possible technical realization of in $/ 1 /$. As follows from the fundamental scheme of the model/1/, the output signal ents missing in the analyzed signal, their frequency values characterizing the components. Occurrence of reflection com ponents resulting from secondary interacions is also possible
Correlating vowel spectra to the freqPFHS shown in fig. 2 , it can be seen that the latter include spectral components missing in the stimulus when the frequenrum are close enough. Thus, the CCP spec-
requency components.
frequency components
The foregoing impiies that envelope extraction in non-linear analyzer chann-ncy-selectivity erred to in the literature as that of sharpening of cochlear gain-frequency the earlier studies / 3 / make it possible, by using non-linear transformations, to lay down a model ensuring a sufficient unt for the difference between the shape of zuaditory-nerve frequency-threshold curves and GFC of cochlear hydrodynamic sysRecent experiments $/ 13 /$ have demonstr-
ated, however, that at low signal levels ated, however, that at low signal levels
the cochlear GFC themselves appear to the cochlear GFC themselves appear to nerve frequency-threshold curves.
The only seemingly possible way of ac-
counting for the above effects is me the existence of an electromechanical interaction of receptor cells with cochleaction to formstems, presuming the interresponse leading to regeneration process ${ }^{\text {es. }}$
evidence, a model of the experimental
nism must also make allowance for the whole complex of properties recognised in the earlier studies of signal processing in PPHS disregarding feedback effects.

The baticic principles of a model of cochlear GFC sharpening mechanism amount to the following.

1. At low vibration levels cochlear GFC are to be close to auditory-nerve freque-ncy-threshold curves.
2. At high vibration levels cochlear GFC are to be close to those measured by von Békésy.
3. The structure of spatial-frequency signal reflection in PPHS is characterized by the location of auditory-nerve fibers with given characteristic frequencies in the low-frequency slope area of the ampl-itude-coordinate characteristic of the basilar membrane /6/.
4. The effect of one harmonic signal involves an increase of neuron pulsation frequency above the threshold value only in a relatively narrow range near the values of the signal frequency close to the characteristic frequency.
5. With the effect of two signals, one being tuned to the characteristic frequency of the neuron observed and the other being a test signal, neuron pulsation frequency at low test-signal intensities is considerably higher than the spontaneous one throughout the range of test signal retuning.
6. The increase in test signal intensity with certain kinds of detuning is accompanied by the formation of inhibition areas. The width and depth of the areas increase with an increase of test signal intensity.
7. The inhibition areas are asymmetrical in relation to the characteristic frequency, being deeper towards the high-frequency region.

The above requirements are met by the model of PPHS GFC formation which includes a frequency-coordinate transformer /5/ with a frequency-dependent voltage transformation device $/ 2$. The degree of feedback can be controlled as described in /9/. A calculation has revealed that the scheme allows sharpening of PPHS GFC by a factor of 20 to 24 , while preserving a phase characteristic close to the linear one.

From the above considerations the following conclusions can be drawn. Signal reflection in PPHS appears to be a result of both a complex interaction of non-linear mechanisms of vibration processing in the inner ear and the effect of feedback circuits due to electromechanical interaction of receptor systems of organ of Corti with cochlear partition vibration system, as well as of the circuits realizing hearing feedback. Since the formation of signal reflection in PFHS involves the appearance of components missing in the
spectrum of the stimulus signal and may be accompanied by secondary interaction of these components, one should expect the reflection to differ considerably from the stimulus spectrum, particularly with speech signals whose form is fairly complex.

REFERENCES

/1/ L.N. Babkina, A.P.Molchanov. Spectrum analyzer. Patent 792172. Bulletin No.48. 1980 /in Russian/.
/2/ L.N. Babkina, A.P.Molchanov. Frequency -dependent voltage transformation device. Patent 1275316. Bulletin No.45. 1986/in Russian/.
/3/ L.N.Babkina, A.P.Molchanov, T.I.Tereshchuk. Mathematical models of signal transformation in the peripheral part of the hearing system. In Sensornye sistemy, Leningrad, 1982 /in Russian/.
/4/ I.N.Babkina, A.P.Molchanov, T.I.Tereshchuk. A comparative analysis of the gain-frequency characteristic of human microphonic potentials obtained experimentally and by mathematical modelling: Fiziologiya cheloveka, 1983, No.2, 223231 /in Russian/.
/5/ O.Ye.Buslovsky, V.K.Labutin, A.P.Molchanov, Ya.I. Panova. Frequency-coordinate transformer. Patent 223164. Bulletin No. 2. 1968 /in Russian/.
/6/ H. Davis. An active process in cochlear mechanics. - Hearing Research 9 (1983), 79-90.
/7/ G.L.Gibian, D.O.Kim. Cochlear microphonic evidence for mechanical propagation of distortion products ($f_{2}-f_{1}$) and ($2 \mathrm{f}_{1}-\mathrm{f}_{2}$). - Hearing Research ${ }^{2}{ }^{-1}$ (1982), 35-39?
/8/ K.W.Humphris, P.B.Ashcroft. Extratympanic electrocochleography. - Acta
Oto-Laryngologica, 1977, v.83, No.3-4, 303-309.
19/ A.P.Molchanov. Adaptable supergenerator. Patent 355730. Bulletin No. 31. 1972 /in Russian/.
/10/A.P.Molchanov, L.N. Babkina. On the possibility of existence of a hearing feedback in the peripheral part of the hearing system. - Doklady AN SSSR, 1977, No.4, 958-961/in Russian/.
/11/A.P.Molchanov, L.N.Babkina. Electric models of cochlear mechanisms, Leningrad, 1978 /in Russian/.
/12/ N.N.Sanotskaya. Microphonic potentials of cat's cochlea in two-tone harmonic signals of different phase spectra. - Fiziologicheskij zhurnal im. Sechenova, 1977, No.7, 976-983/in Russian/. 113/ P.M.Sellick, R.Patuzzi, B.M.Johnstone. Measurements of basilar membrane motion in the guinea pig using the Mössbauer technique. -JASA 1982, v.72, No.1, 131141.

L.F.M. ten Bosch I.J. Bonder L.C.W. Pols

Institute of Phonetic Sciences, University of Amsterdam

ABSTRACT

A phonetic/phonological model has been developed for describing the structure of natural vowel systems in terms of configurations consisting of N points in the formant space. These configurations (abstract vowel systems) are defined as solutions of an optimalisation algorithm. This search algorithm uses an optimality strategy that is based upon two extralinguistic principles, one dealing with the articulatory effort, the other with perceptual ease. The model is evaluated by comparing the model results with available phonological data.

INTRODUCTION

The model that we present is developed in order to find basic structure principles underlying the architecture of vowel systems. It uses as a starting-point the dispersion model of Liljencrants and Lindblom (1972). They tried to describe natural vowel systems by maximizing an acoustic distance measure between N points, all of them positioned within a predefined fixed region in the formant space. The novelty of the present model is the extension of the acoustic principle (with respect to vowel dispersion only) with an articulatory minimal effort principle.

In the following three sections, we will gradually unfold the model. Section 1 poses the two basic structure principles we are using. Section 2 describes the model itself: 2.1 deals with the technical translation of the basic principles into an appropriate mathematical formulation and a search algorithm for the abstract vowel systems; 2.2 describes the comparison of these abstract systems with the vowel systems from natural languages; and 2.3 will briefly deal with the implementation of dynamic aspects of vowel systems: the long/short-opposition and the diphthongs. In section 3 we will give a summary of the present results. In section 4 we conclude with a discussion.

1. THE PRINCIPLES

We use two principles dealing with the structure of vowel systems which are supposed to be of primary importance:
(a) : minimality of effort of (static) vowel pronunciation;
(b) : minimality of inter-vowel confusion.

Vowel systems are said to be 'optimal' if they optimally satisfy both principles simultaneously.
Evidently, the consequences of these principles separately are conflicting: (a) yields minimal overall articulatory vowel distances, whereas (b) leads to maximal inter-vowel distances. In order to be able to handle both principles in an appropriate way, they have been translated into specific mathematical formulae. Some of these formulae directly deal with both the formant position of vowels and the vocal tract area function, other ones are based upon arguments concerning probability and optimalisation techniques (see section 2.1, the search algorithm).

2. THE MODEL

2.1. The Search Algorithm

Each vowel system is represented as a point in a so-called 'state space', in which principles (a) and (b) define an optimality strategy. The search for optimal vowel systems can be considered as looking for stable solutions in this state space. In order to specify the search algorithm, we introduce the following formuiae (classified into basic, derived and evaluational ones) :
2.1.1. basic formulae

These formulae play the most elementary role in the model.

The inter-vowel acoustic distance dr between $v 1$ and $v 2$ is defined as follows:
$(d F)^{2}=\left(\log \left(F_{1}(v 1)\right)-\log \left(F_{1}(v 2)\right)\right)^{2}+$
$\left(\log \left(F_{2}(v 1)\right)-\log \left(F_{2}(v 2)\right)\right)^{2}$

Only the relative positions of vovels in a vowel system are relevant. The logarithms the perceptual behaviour of the basilar membrane. This closely relates dF to empirically determined acoustic distan
measures involving mel or bark scales.

The expression for the inter-vowel confu-
sion probability p(v1, v2) reads: sion probability $\mathrm{p}(\mathrm{v} 1, \mathrm{v} 2)$ reads:
$p(v 1, v 2)=\exp (-\alpha * d F(v 1, v 2))$
α being a positive scaling parameter. Before actually evaluating vowel systems
we first introduce the following probwe first introduce the following prob-
abilistic concept. We hypothesize an exponential relation between the inter-vowe
confusion probability p and the confusion probability p and the inter-
vowel acoustic distance dF. This relation
can be can be globally verified by inspecting the perceptual vowel
several languages.
We define the articulatory effort $d A$:

This expression relates the shape of the vocal tract (which is approximated by the
straight 4-tube, consisting of 4 segments
 (21) figure to an
2.1.2. derived system formulae

In order to be able to define the structure principle for vowel systems as a
whole, we introduce the system counterparts of dA and dF .

The expression for the total articulatory
system effort DA reads:
$\mathrm{DA}=\max (\mathrm{dA})$
(4)

The articulatory effort value of a vowel system is defined as the maximal value of
the articulatory effort values of its members.

Fig 1. An example of a general n-tube with

The ictal perceptual system discriminality
DF will be $D_{F}=\Pi\left(1-p\left(v_{i}, v_{j}\right)\right) \quad(1 \leqslant i<j \leqslant N)$

1-p(v1, v2) denotes the probability of
vowel v1 and vowel v2 not being mutually confused. Therefore DF is a measure for system. Consequently we have $\mathrm{DF}_{\mathrm{F}}^{\mathrm{N}=\mathrm{vowe}} \mathrm{i}$ case of perfect discriminality and $D F=0$ 2.1.3. evaluation formulae
we have to minimize We have to minimize the articulatory lity measure DF simultaneously. Therefor we introduce the penalty parameter Q rela

- (Da) $2+{ }^{2}$
$Q=(D A)^{2}+S *(D F-1)^{2}$
(6)

This type of expressions is well-known
from optimality theory and is in fact a natural choice here. Indeed, minimization of Q logically implies minimization of D towards zero and optimization of DF to convergence of this process is controlled by the slack variable s (s being a large positive number). Optimal vowel systems
are locally found by iteratively improving are locally found by iteratively improving
the position of all vowels in the systen while decreasing the value of Q.
2.2. Evaluation Part

The evaluation part of the algorithm des cribed above in fact consists of a meas urement of the goodness of fit of the more phonologically specified data fro language databases ([3], [4]). For the time being we confine the evaluation to
vowel systems without dynamic structure (without short/long opposition, without diphthongs). Presently, these latter effects contribute less to a general insigh
as they are second-order consences In the model a method is implemented fo actually effectuating the phonetic/phono logical comparison. It is based upon essentially the same probabilistic motiva
tions as already used in formula (5). Th result of the comparison is expressed in terms of the similarity probability (de-
noted SP) of the respective abstract pho netic vowel system and a phonological sys
nem tem after having optimally paired each un
labelled v_{i} in the model system with的 system.
$S P=\Pi \exp \left(-\alpha * d\left(v_{i}, v_{j}\right)\right)$
(7)

If $S P=1$, the similarity is perfect. The
model evaluation now consists of the e model evaluation now consists of the e-
valuation of all $S P$ values between a model solution containing N vowels and all known phonological N -vowel systems. The present result of
figure 2.

 Fig. 2 . Goodness of fit of the present
model in terms of the Sp value.
The heavy line a connects all the found maxima, b shows some possible ramifications. N denotes the number of
in the model system and the phono logical reference system.
one observes the decreasing SP value
for increasing values for increasing values of N. Probably
this phenomenon can be traced to the declining fit of the model itself
the increasing number of linguistic the increasing number of
possibilities for large

> 2.3. Dynamics The description of the dynamic part of voel systems appears to involve more linguistic details then are contained in the model described above. The model has proved to be inadequate for predicting
actual diphtongs and long vowels in a specific language, but it merely defines
and bounds the set of physical possibiand bounds the set of physical possibiInties out of which a language may select.
I_{n} order to study these possibilities in more detail we use a vowel structure ma-
trix of which the entries represent the trix of which the entries represent the ong vowels and diphthongs. The short
vowels constitute the elements along the wo axes. Evidently, long vowels emerge as geminates along the main diagonal and
diphthongs off the diagonal. In order to diphthongs off the diagonal. In order the acoustic gain relative to the articulatory
effort. We give the results of such a cal effort. We give the results of such a cal
culation in figure 3. One may observe preference for diphthongs to start in the a/-region (i.c. to show decreasing first la/-region (i.c. to
formant frequency).

Fig 3. Gain of acoustic contrast in relation to articulatory transitional
effort. The transitions are now described as concatenations of two short vowels out of the indicated set of four short vowels. Horizontally, we denote the vowels vertically the short vowels in final position are shown. All entries quotients of acoustic contrast and rticulatory effort) have been They give an indication of the prefrence of the corresponding combi-
ation of short vowels. ation of short vowels. erence for transitions to start in the a-like region of the formant space is demonstrated by the values figuring
in the first column relative to those in the first column . The overallpreference for gemination can be de duced from the values along the
diagonal. In general it does not have diagonal. In general it does not have correspond to actual long vowels such
like /a/, /e/ etc. This identificalike is in fact a phonological item. The quotients have been specified up to only one decimal place in order They only have relative significance.
3. RESULTS OF THE MODEL

In the figures 4, 5 and 6 we give the preand 7 respectively. The closed contours represent contour lines of the articuatory effort function dA. One observes:

- the preference for the vowel /a/,
the preference for
followed by $/ i /$ and $/ \mathrm{u} /$;
- the preference for vowels along the lines $/ a /-/ i /$ and $/ a /-/ u /$;
the limitation of the available vowel
space without predefining
boundary in the formant space.

F 2	0.5	1.0	1.5	2.0	2.5 kHz

Figures 4, 5 and 6 show the model solution in the formant space. For reference the grey area indicate the region which is used by most languages. The staight line denotes the line $\mathrm{F} 1=$ F2. The other two lines are contour lines of the articulatory effort function dA, which gives an idea of the theoretically shaped vowel space by using an effort principle (see the text). In case of the 7 -vowel system, some of the vowels are positioned outside the grey area, as a consequence of the subtile imperfection of the balance between the two principles (a) and (b) (see the text).

4. DISCUSSION

In our project, we explicitly deal with the model in relation to other recent vowel dispersion theories as well as with recent improvements. The present results have led to the following two suppositions:
a) natural vowel systems may adequately be considered as derivations of specific 'abstract' vowel systems, while
b) the structure of these abstract vowel systems is defined by two extra-linguistic principles:

- reduction of perceptual vowel confusion probability and
- reduction of articulatory effort.

The present model certainly does not pretend to be the final answer to the question of the structure of vowel systems in general but it may stimulate a further fundamental approach to the subject. In our presentation we will briefly mention some of the parallels with recent phonological theories, e.g. [5]. Our model does not predict all linguistic details of vowel systems as it is not based upon such linguistic or other language-sensitive principles. However, some important tendencies are clearly demonstrable: tendencies in the appearance and behaviour of vowel systems are described by combining a few, indeed simple arguments concerning articulation and perception. The main question will be the search for a convincing theory relating vowel systems as they are actually observed on the one hand to the results of a stipulative or normative model at the other hand.

ACKNOWLEDGEMENTS

This project is sponsored by the Netherlands Crganization for the Advancement of Pure Research zwo (project no. 300-161030).

REFERENCES

[1] Dunn, H.K. (1950). The calculation of vowel resonances, and an electrical vocal tract. J. Acoust. Soc. Amer., vol. 22., pp. 740-753.
[2] Bonder, L.J. (1983). The n-tube formula and some of its consequences. Acustica vol. 52, pp. 216-226.
[3] Crothers, J. (1978). Typology and universals of vowel systems. In: Universals of human language. Ed. J.H. Greenberg. Vol. 2. Stanford University Press, Calif., pp. 93-152.
[4] Maddieson, I. (1984). Patterns of sounds. Cambridge studies in speech science and communication. Cambridge University Press.
[5] Kaye, J., Lowenstamm, J. and Vergnaud, J.-R. (1985). Vowel systems. Paper presented at the 1985 GLOW colloquium, Brussels.

institute of Linguistics, Chinese Academy of Sacia Seiences, Na. 5 Jiangumennei Dajie, Beijing, China

A3STRACT

The present paper oescribes the Exponential Dynamic Model tor compound voweis swem as dipntmonss ane triphtiongs. Witn this Moeel, actual formant treauencies of ail the allapinges occurred in difterent phonaiagical and pionetic contexts can be senerated. The 9 diphthongs and 4 triphthongs in Standard Cininese canstituted ay 30 ailophomes can thus be generatec with the target vaiues of 6 phonemes. This Model is apoiicadie to speern syntinesis, sa that aata memory size can be oecreased, and voti inteliigibi,ity ane naturalness of the synthesized diphthongs or triphthonss Ean de improved.

INTRODUCTION

The changing of sound calar in compound voweis like diphthongs and triphthones is mainly proouced by the cantinuous mavement of the speech articulators, i.e. by tine continuous movement of the vacai tract. According to the acoustic theory of speech production, a given set of formant frequencies correspond to a given shade of the vocal tract. Therefore,the time-varing enaracteristics of formants can reflect the cynamic features of the compounc vowels. Because of the practical need in speecn synthesis and automatic speecn recognition, it is necessary to formulate a tunctional mocei for oescrioins the time-variation of the formant treawencies in oynamic vowets. Ane only atter the formulation of such a model can we discuss the process of transtarmatian detween the discrete speecin code and the continuaus speecn saunc waves.

This paper proposès an Exponentia: Jynan: ycee дasec =- tne ana:ysis of tne formant trequency gata jf the 9 diontnones anc 4 triantionss in Stancarc Chinese. Parameters tor the Madei were obtained tnMausn amalysis-ay-syntmesis, anc the oynamic trajectories of tormant treauences are in ciose approximation with the observed data. The utilization of this Mocel in the Synthetic System far Stanaara Cininese has both improved tine quality of the synthetic sauma ana reaucea the memary size for the syntmetic parameters.
=ORMLLAS OF THE EXPONENTIAL DYNAMIC MODE:
The ooserved time-varing trajectories of the formant freauencies inoicated that the formant frequencies of a diphthong are constant!y chansing from one set of target values ta anather set, and the overal tencency of such cymamic trajestories is to have relatively stable parts at the geginning and the end ot the vowel and to change rather aoruptly at the transitionai part. And, comparea with the tyoical farmant vaiues of the phonemes composing a given ciphtinong, the starting and ending frequencies of the formants are only appraaching the tarset values rather than actualiy reaching them. This condition is very like a curve oatained by joining two reverse e expanential functions. We thus hypathesise that a formant trajectary at a given diphthong ean be approximated by the tollowing formulas (Fig.1).

EyNTMETLC PROO＝AND APPLicaticin
Ta verity the vaicity of tmis Exot－
Jentionic Macei，we nao a syntnetic nential synamichace siment with the sotware system for
 a cascade tormant synthesizer；with 10 KHz $0+5$ ampli ＋samplin
ision for $\stackrel{+}{+ \text { rea }}$ was operated on a BCM－3 microcomputer．the
treauencies of the tirst thee tormate arequencies of the tirst three tormants
treat the target pinonemes used for synthe－
tor for the 6 target phonemes used for synthe－ sizing the 9 diphthangs and 4 triphtnangs
in Standard Chinese are listed in Table 2 ． The f4 and f5 were fixed at 3500 Hz and The F_{4} and ${ }_{4500} \mathrm{~Hz}$ respectively．

Table 2 Frequency values af the tirst tnree tormants tor the bentizar tne 9 oinnt．monss anc 4 trii

Chinese is a tone language，and the were generated by a Tone Model［2］ were all the syilables containing compound vowels in Standard Chinese were suress
tuily tully synthesized．Fig． 5 shows the spec－
tragrams of tour syllables，both natura

Fig． 5 Spectragrams of four syilabies containing diphthongs and triphthongs．The upper part for the
 thong or a triphthang. It can be seen that the farmant transition at those campauna voweis are very smoath. Listening tests alsa indicated that both intellisibility and naturallness at the synthetic syllaDies were very ciose to those of the naturai anes.

OISCLSSIONS

For synthetic application, there are two related features in this Exponential Dynamic Mocie: : tirst, reltively tew target values needed in input and starage, and secand, better representation at the coarticulation effect. Speech analysis smows that one and the same phoneme in ditferent compound vawels has ditterent sound values. For exampie, the actual value of lail and lial are [ai] and [iA] respectively. Even two given voweis narrowly transeribed as the same sound in two eitferent oynamie voweis, e.g. the [i] in [iA] and [iaa] can have difterences that should not be ignared. It means then, for synthesizins the 9 diphthongs and 4 triphthongs that arectose to the natural ones, we will need $9 * 2+4 * 3=30$ sets of target values. However, thanks to the ability of "aparoaching rather than actually reaching" the target values in the Exponentiai Dynamic Model, as few as 6 sets of target values listed in Table 2 are almost enougn for tinis purpase. For instance, in synthesizing/ai/, [A] and [i] are used as target values; to is right in the middle and is melatively small. As a resuit, the beginning point is ciose to a open front vowel [a] rather than [A], and the ending paint is a lawer front vowel [I] rather than [i]. In synthesizing/ia/, [i] and [A] are also used as tarset values with toclose to the beginning part ana a
relatively great , and the result is be that the twa extremities are close to [i] and $[A J$ respectively, and the /a/part is relatively iong and stable. In the acoustic vowel diagram in Fig. b, the dynamic tracings are drawn for the synthetic /ai/, /ia/, lao/, /ua/, /iao/ anc /uail which use [i], [A] and [u] as the target values. The diagram shows that the begimnings midde and ending paint of each of the compaung voweis are just in their right places. In this sense, the synthesis口f dynamic vowels with this Model is a synthesis with phanemic targets.

As a comparison, the trajectories generated by tine exponential dynamic model reparted in reference [3] and [4] always starts tram the same tirst target value, disregarding the ditference in factors iike second target values and so an. The coarticulation effect. is thus inaeequately rearesented.

REFERENCE

[1] Yang Shun-an and X_{u} Yi (1987): A sottware system far synthesizing Chinese speech, Prac. 1987 Inter. Cont. on Chinese Intormation Processing, Aus. 4-b, Beijing, China.
[2] Yang Shun-an (1986): The effect of the dynamic characteristics of vaice source upon the quality of synthesized speern, Zhongguo Yuwen, 1986 No. 3 , PR. 173-181 (in Chinese).
[3] Rabiner, L.R. (1968): Speech synthesis by rule: An acoustic domain approach, Bell System Tech. J., Val.47,pp.17-37.
[4] Fujisaki, H. ot al. (1973): Automatic recagnition of connected vawels using a functional modei of the coarticulatory process, j. Acoust. Soc. Japan, val. 29, pp. 636-637.

Fig.6 Acoustic vowel plot for the four diphthangs (/ai/, /ia/, /aa/,
and /La/) and the two triphthongs (/iag/and /uai/).

ALEXEY TYAPKII

Institute "Sapsibnipiagroprom" Novosibirsk 64, P.O.B. 95, USSR
Post Index 630064

ABSTRACT

Some problems of the formant structure modelling of vocalic soundtype systems (VSTS) by methods of multidimensional analytic and descriptive geometries as well as theories of convexes and inequalities are treated.

GENERAL CONCEPT

A concept of the acoustic structure modelling of VSTS was presented ina mostgeneral form formerly. By modelling we understand in this case a multistage process involving diverse aspects of the formant structure transfer of VSTS through mathematical structures and their graphic representation. Philosophy of modelling has exhaustively been considored elsewhere. Here, some basic problems, pertaining to principal modelling stages, are examined.

MODELLING AS A PROCESS

Sampling

The most effective acquisition of formant frequencies is to accomplish in a computer's memory coupled with an automatized formant frequency extraction yielding high precision readings. This stage deals also with statistical estimates of the formant data derived and with an evaluation of representing centroids (centers of gravity) of soundtypes as well. Measuring formant frequencies in spectrograms causes errors, is quite laborious and should preferably be avoided. However, problems of linguistic selection and phonetic realization of samples have undoubtedly to prevail at this stage.

Option and Construction of Models

There are three special kinds of modelling the F-structures of VSTS, producing correspondingly three types of models. Option of a particular model type depends on its purpose. Thus, the typology of the models in question covers the following types:
(I) models of single soundtypes and of their systems through single models formed with approximating polinomials of 1st and 2nd degree; (II) models of VSTS formed with vector-to-point soundtype representation; (III) models of VSTS tormed through axonometric constructions.

The modelling consists in formation of closed convex images in a multidimensional modelling space under employment of geometrical methods. In principle, a topological approach is also possible. However, geometrical constructions are important means of activating and stimulating the intuitive euristic image-bearing thinking.

Let us introduce a formant space of n dimensions with the Euclidean metrics therein. Then, the distance between two soundtypes X and Y with the formant frequency values X('F1, 'F2, ...' Fn) and Y ("F1, "F2, ..."Fn) is expressed as

$$
\begin{array}{r}
\mathrm{L}=\left(\left({ }^{1} \mathrm{~F} 1-\mathrm{F} 1\right)^{2}+\left({ }^{1} \mathrm{~F} 2-\mathrm{FF} 2\right)^{2}+\ldots\right. \\
\left.\ldots+\left({ }^{\prime} \mathrm{Fn}-\mathrm{PF}\right)^{2}\right)!/ 2 \tag{1}
\end{array}
$$

The modeling F-space is necessarily isometrical if the coordinate axes therein are linearly scaled. With this goal in mind, both the natural frequency values as well as their logarithms linearly scaled are applicable. Since the image clarity and the complicacy of models are conflicting claims, subspaces of less than n dimensions are to be introduced. Thus, introducing, for instance, subspaces of 2 dimensions in the F-space of n dimensions, we have P subspaces which are actually modelling F-hyperplanes:

$$
P=\sum_{q=1}^{q=n-1}(n-q) .
$$

Single Soundtype Models

These models as well as such of VSTS through single models reflect the distribution of formant frequencies in the modelling F-space under condition of plural realization of soundtypes. Construction of models consists in an adequate linear or/and unlinear approximation of soundtypes
in the F-space with closed convexes and in working out equivalent sets

Linear Approximation. The problem of linear approximation of sourdtypes in the modelling F-space consists in forming convex
areas by means of hyperplanes of less dimensions than the F-subspaces are in compliance with the formant data of soundtypes
Hence, e.g. a 3 -D F-space contains, in Hence, e.g. a 3-D F-space contains, in
accordance with (2), three 2-D F-subspace and $O-D, 1-D$ hyperplanes as simplexes embodied in points and vectors, s. Table 1. Apparently, simplexes may be formed with
hyperplanes of no more than $n-1$ dimension hyperplanes of no more than n - 1 dimension Any hyperplane can be described then as

$$
a_{1} F_{1}+a_{2} F_{2}+\cdots
$$

$$
+\cdots a_{n-1} F_{n-1}+a_{n} F_{n}+a_{n+1} \geqslant 0
$$

When reffering to modelling 2-D F-subspaces and 1-D hyperplanes, a model will be formed with 1-D simplexes given through
algebraic sets compraising inequalities of
the following form: following form

$$
\begin{equation*}
a_{11} F_{k}+a_{12} F_{k+1}+a_{13} \geqslant 0 . \tag{4}
\end{equation*}
$$

Forming a v-dimensional simplex of (v-1)-dim, hyperplanes, a minimal number of hyperplanes, forming the simplex, can
$h_{\text {min }} \geqslant \mathrm{v}+1$
(5)

The coresponding number of inequalities,
describing this soundtype, amounts then to:

$$
\begin{equation*}
H_{\min } \geqslant P(v+1) \tag{б}
\end{equation*}
$$

The sign of inequality in (3) and (4). indicates the sharing of the F-space into two F-subspaces: the polynomial has nega-
tive values in one F-subspace and positive ones or zero in the other. A set of incribing a complex of limited convex F--subspaces, forming a polyhedral (if $v=2$, onvex area of solutions of the set modelling a soundtype given. Obviously, a more
extended set of modelling inequalities contributes to a better approximation of oundtypes.
$\frac{\text { Unlinear Approximation. This type of }}{}$ h-1 dimensional closed convex (hyper) suraces of the second degree, or quadrics, ities and abed through quadratic inequaesponding enclosing the point sets, cor--space of n dimensions. It inclun in the ral conoidal types: hyperboloidal, parabooidal, and ellipsoidal approximations. Preferably, an ellipsoidal approximation
should be used as yielding closed convex hypersurfaces. However, this procedure is ather laborious, so that a meaningful use f 2-D subspaces, consistently with (2), to be preffered. The quadrics used will have then the index $1-\mathrm{D}$, and the approximation of soundtypes will make use of
second degree curves: 1-D ellipsoids (elecond degree curves: 1-D ellipsoids
ipses) or even 1-D spheres (circles). ascale and Brianchon's theorems are help ul when constructing approximating ellip tions are also applicable. A second degree inequality in a most
general form is as follows:

$$
\sum_{i, k=1}^{n} a_{i k} F_{i} F_{k}+2 \sum_{i=1}^{n} b_{i} F_{i}+c \geqslant 0 \text { (7) }
$$

First, it can be reduced to the form
$W_{1}{ }^{\prime} F_{1}^{2}+w_{2} \cdot F_{2}^{2}+w_{3} '_{3}^{2}+$ ${ }^{+}+w_{n}{ }^{\prime} F_{n}^{2}+w_{n+1} \geqslant 0$ (8)

Table 1
anstructs

| ELEMENTARY | INEAR MODELLING |
| :--- | :--- | :--- |
| (SIMPLEXES | |,

UNLINEAR CLOSED CONVEX IMAGES
Modelling geo- : Dimension of! Approximating inequality in $\overline{\text { Formal characteristic }}$ Modtical image ! modelling of Approximating
 Ellipsoid $+2 a_{13} F_{k}+2 a_{23}{ }^{F} k+1+a_{33} \leqslant 0$ traction factor, area, ravity center position The same; volune
$a_{11} F_{1}^{2}+a_{22} F_{2}^{2}+a_{33} F_{3}^{2}+2 a_{12} F_{1} F_{2}+$
$+2 \mathrm{a}_{23} \mathrm{~F}_{2} \mathrm{~F}_{3}+2 \mathrm{a}_{13} \mathrm{~F}_{1} \mathrm{~F}_{3}+2 \mathrm{a}_{14} \mathrm{~F}_{1}+$
$+2 \mathrm{a}_{24}{ }_{2}{ }_{2}+2 \mathrm{a}_{34} \mathrm{~F}_{3}+\mathrm{a}_{44} \leqslant 0$
image-bearing thinking and euristic fac-

When reffering to $2-D$ and 3-D modelling (sub) spaces, (8) is reduceable to the of an indicated in Table 2 . In the conal ation, we have:
$\frac{F_{1}^{2}}{t_{1}^{2}}+\frac{F_{2}^{2}}{t_{2}^{2}}+\frac{F_{3}^{2}}{t_{2}^{2}} \cdots+\frac{F_{n}^{2}}{t_{n}^{2}}$

Plane VSTS Models
Structural models of VSTS are construo ted by means of elementary linear constructs (s. Table 1) when higher forms of abstraction are substituted for lower one model natural to transformation of single soundtype models and by reducing them
$0-0$ simplexes in the n-dim. modelling space. This implies that higher dimension simplexes of single soundtype models are substituted by lower dimension simplexes porate into sets of hicher dimension simplexes, thus forming spatial models of the F-structures of VSTS. It is obvious that in 2-D (sub) spaces the use of moder (sub)spaces that of simplexes of 0 to 3 dim. is possible. In any case, a structural model is cut out through hyparplan with every vertex representing a single soundtype. A geometrical interpretation of the F-stic parane-
ters as well allow some acoustic problems in the n-dim. F-space to be solved by mean

Axonometric VSTS Models
Axonometric models are essential for a spatially condensed picturelike portraying -space $(\mathrm{n}$ 3). Though the problem of vicience support through graphic aids in science is rather vague, it is not reas
tors in research work and education. However, the solution becomes too complicated so that their use is limited by illustra-
tive and demonstrative goals. Also, there tive and demonstrative goals. Also, there of multidimensional descriptive geometry methods to the modelling of the tures of VSTS. Rather promising in this retures of VSTS. Rather promising in this respect sempodels on the basis of a pair of
nometric moll
usually available, reciprocally orthogonal, usually avallang images.

VERIFICATION AND IDENTIFICATION
These modelling stages are required to prove the agreement between the soundtyp to be modelled and their models. The mo delling process is consider as finished if only the following chain has been preserved: (a) soundtype X, (b) model A, B...' (c) soundtype Y.... The relations are of fundamental importance and manifest themselves in the course of the
verification of the dyad (a) and (b) or/ verification of the dyad (a) and (b) (b) and (c). As a result, an agreement or a disagreement between the soundtypes X and Y
can be stated, the relationships between can be stated, the relationships bet
the soundtypes and the models being the soundtypes and the models being Principally, the following relationare to be expected: (I) reflexivity, (II) transitivity, (III) antisimmetry. These qualities of a rodel are usually combined
with each other, but if being absent, they imply the presence of a converse quality as it will be clearly shown below. The model qualities mentioned above signify the
following: (I) a soundtype is a model of
its own: (II) a model's model is a model fits own; (II) a model's model is a model
if the prototype; (III) a model in general of the prototype; is a homonorphic image of a soundtype is a homomorphic image of a soundey and can be substituted for the latter
within the limits of its characteristics of significance which permit to state a structural analogy. Thus, verification and identification both are counterpart processesand qualify the relationships between soundtypes and their models as follows: (i) $b: a=a: b, b: a \neq a: b$ (verification, antisimyetry/simmetry); (ii) $b: c=c: b$, $\mathrm{b}: \mathrm{c} \neq \mathrm{c}: \mathrm{b}$ (identification, antisimmetry/ simmetry; (iii) if $b: a=a: b$ and $b: c=c: b$, then $a=c$ (transitivity/antisimmetry)

In this way, 1) if the model A is separately adequate to soundtypes \bar{X} and $-Y$, then $X=Y$ (transitivity, antisimmetry); 2) if the model A is not adequate to at least one ot soundtypes X and Y, then $X \neq Y$ (absence of transitivity, simmetry); 3) if the model A is adequate to a soundtype X while the model' B is adequate to a soundtype Y, and $A=B$, then $X=\bar{Y}$ (reflexivity, transitivity, antisimmetry); 4) if in the preceding item $A \notin B$, then $X \notin Y$ (absence of transitivity, simmetry).

Summing up, we may state that the above--mentioned relationships as well as the deformations of models are subject to investigation by means of:A) characteristic parameters (s. Tables 1 and 2); B) geometrical affine transformations of the models fincluding 1) parallel tarnsfer of the F-structure in the F-space, 2) rotation of the F-structure in the F-space; 3) contraction or expansion of the structure along the coordinate axes in the F-space/.

SUMMARY

A brief account of means and ways of the mathematical modelling of the acoustic structures of vocalic soundtype systems by methods of multidimensional analitical and descriptive geometries, theories of convexes and inequalities has been presented. The modelling stages may well involve the use of computers and graph plotting devices as working tools. In general, the geometrical approach traced proves to be an effective means of the mathematical modelling of vocalic soundtype systems in research work, demonstration and illusration processes.

BIBLIOGRAPHY

Batoroyev K.B. Analogii i modeli v poz-nanii.-Novosibirsk, 1981.

Bonnesen T., Fenchel W. Theorie der konvexen örper.-Berlin,Heidelberg, New--York, 1974 (Berlin, 1934).

Borsuk K. Multidimensional analytic geo-metry.- Warsaw, 1969.

Chao Yuen Ren. Models in linguistics and models in general. In: Logic, methodology and philosophy of science.-Stanford, 1952.

Dambska J. Le concept de modèle et son rôle dans les sciences.-Revue de synthèse, 1959, vol. 80, n° 13-14.

Hesse M.B. Models and analogies in science.-I., N.-Y., 1963.

Kuipers A. Model en inzicht.-Nijmegen, 1959.

Serge C. Mehrdimensionale Räume.- Enzyklopadie der mathematischen Wissenschaften, 1920, Bd. 3, H. 7, SS. 769-972.

Sommerville D.M.Y. An introduction to the geometry of n dimensions.- I., 1929.

Straas G. Modell und Erkenntnis.-Jena, 1963.

Tiapkin A.D. Matematicheskoye modelirovaniye formantnykh struktur.-In: IV vsesoyuzny simpozium "Metody teorii identifikacii v zadachakh izmeritelnoy tekhniki i metrologii", tezisy dokladov, September 10-12, 1985, Novosibirsk, pp. 253, 254.

Valentine F. Convex sets. -N.-Y., 1964.

[^2]

VLADIMIR VOLOSHIN

Lab. of experimental phonetios
Odessa State Univeristy
Odessa, Ukraine, USSR 270021

It has been commonly assumed that any speeoh realisation is a random proaess which is described in terms of a functional dependence of the variable in time, whose parameter valve can be presented with the help of the parametrio equation:

$$
\begin{equation*}
X[t]=f\left[A_{i} B_{i} D_{i} C_{i}\right] \tag{1}
\end{equation*}
$$

where A - oonstint parameters, unchangeable in all realisationał
Bim interfering faotors, varying from one realisation to another by some unknown law of distribution;
C_{l} - occasional interference, varying in separate elenents of the utterance and desoribable by normal distribution;
$D_{i}-$ the unknown parametert boing sought, whioh determine the realisation as belonging to a given linguistio phenomenom.

In oase ocoasional interferences are minimised, they will ilightiy influenae the oharnoteristion of the phanomenon under study, and the parametrio model may presented as a model with additive interferences

$$
\begin{equation*}
X[t]=E\left[D_{i} A_{i} B_{i}\right]+C_{i} \tag{2}
\end{equation*}
$$

where $E\left[D_{i} A_{i} B i\right]$ - range of parameters, describing the realisation being formed with no interferenoes present.

With varicus values of the parmeters defined, funotion E[Di Ai Bi] gives a set of speoifio realisations as an ensemble, presenting phenomenon analyeed.

The parmetric model is described in the pror sent paper in term of disorete values of the fundamental frequency and intensity. These are assooiated with a definite number of points within esch structural slement of the utteranoes 3 measurements within the initial unstressed syllables 7 meamuraments within the head of the utterance (the firet streased myllable and all the stressed and unstreased tyllables preceding the moleus, 4 messurements within the moleus and 2 within the tail. In total 16 measurements within each utterance. As a result the so called dynamic or temporal serien was obtained.

Oocasional interferences wore reduced by the requirements of the procedure being kept fairly equ-
acteristios, but it was just as impor are signitermine which of these characterivive utterance and ficant in discriminating expressive utterance and those read monotonously.

Lab. of experimental phonetics Odessa State University Odessa, Ukraine, USSR 270021

ABSTRACTI

The approximated intonation contours allow. one to visualise the most typical features of the melo dy and energy structure of the utterance in the form, directly appliable in automatio recognition and synthesis of speech prosody.

In a series of experiments disorssed in the present paper typioal intonation contours of various cowmanicative types of phrases in Russian and Fing lish expressive conversation (as compared to the monotonous one) have been determined.

The most adequate methods of approximation of intonation contoure have been analysed. Analytical expression whioh offers opportunity for presenting each intonation contour as a mathematioal model has been suggested.

INIRODUCTION

In studing the intonation structure of speech a number of probleas arise. Alongside with the problem of determining the physical nature of the phes nomenon under etudy and defining typioal intonation contours it is extremely important to elaborste the form of presentation of the intonation countoure whioh should be preoise and easy to apply.

The purpose of this paper is to compare the intonation structure of phrases read with expresempt to those read monotonously and to make an at of typical intonation oontours of expressive speech.

INTONATION CONTOURS OF EXPRESSIVE SPEECH

In our atudies, five adult male apeakers of British English and five speakers of Russian reoorded a set of Baglish and Russian written dialogues ree ad with expression, lively and animatedly and then a set of the same dialogues, read monotonously, without expression. 20 statements, 20 questions (jes, no) and 20 request ware pioked out of these dialogues (a total of 600 utteranoes) and used for this experiment. The acoustio charsoteristion(fun damental frequency, duration and intensity) were measured for the two sets of the data. The problem was not simple the of desoribing the acoustio aharacteristios, but it was just as important to dem
af through the whole exerininent. Than realiainitity
 adidition only those ut terances which were acourato
 The average values of the fundemental frequenoy. and intensity were taken as a basisental frequenoy zed intonation oontour which reflects the main res
gularities of the phenomenon under study. sularities of the phenomenon under study.
The results of these experiments
the eaoustic peoularities of or expressive speech tin vivid reflection in the dynamio series of the fun
damental frequenoy, damental frequenoy, i.e. in the melody contour of
various cormunicative types of phrases. It will be noted that the quality of speeoh (expressive or mo
notonous) determines the fre notonous) determines the frequency level of the ut-
terance, the speed of the fundamental frequency within the head and the nucleus, the looation of the
mel 1 dical peak of the melndical peak of the utterance. These oues have
been found typical of both Enclish and ben found typical of both English and Russian and
it may be uygeested that they are typologioal. Figures ${ }^{1}$ and 2 represent melody contour (dynatonous speech. The solid curve represerts and monorage fundamental frecuenoies of statements, the dashed curve of quequions, the dotted ourve of quests. Struatural elements of the uttervace $(P / h-$ us, t-tail) were plotted as absoissae. Average normalized fundamental frequency as ordinates. Average fundamental frequency values were norma-
lized with the help of the equation:

$$
\begin{equation*}
X_{n}=\frac{X_{i}-X_{\min }}{X_{\max }-X_{\min }} \cdot 15 \tag{3}
\end{equation*}
$$

where X_{i-} selective value of the characteristio;
$X_{\text {max }} X_{\text {min }}-$ limit values of $^{\text {of }}$ the characteris-

Fig. 1. Average normalized values of the funda-
mental frequency of utteranoe in expressive (left) and monotonous (right) Russian speeoh.

Fig. 2. Average normalized valūes of the funda-
mental frequenay of utterances in expressive (1eft)
and monotonous (right) English speach
The experiments sugcest that it is possible to speeoh. ds to the values of intensity, the analysis re-
veals a relatively distinct difference between veals a relatively distinct difference between expressive and monotonous speeoh, the level of inten-
sity both in English and in Russian being oonsiderably higher in expressive speeah. being oonside On the other hand, the form of t rve has show remarkably 1 ittie variation from uterance to utterance, from speaker to speaker, from
one communicative type to another in expressive and nonotonous speech. Commonly it has the shapse of a gradually descending curve (fig. 3). The fact that group, a phrase, eto. - are characterized by a sinilar envelope of the intensity makes it possible to conclude that the form of the intensity ourve is of paramouth importance in organizing units of spe-

Fig. 3. Average normalized values of intensity
of statements in expresing of statements in in expressive (solides of intensity
tonourve) and mono
((dashed curve) Rusian (left) and English tonous (dashed curve) Russian (left) and English
(right) speeoh.

Though the average values of the acoustio oha
racteristics reveal the racteristics reveal the main regularities of the
intonation contour it mould not intonation oontour it rould not be sufficient to
analyze only the average values. One should also analyze only the average values. One should also
study the varieties of aooustic cues in definite speech realizations.
utteranoes of the same a nummer of realizations of ensemble within which it is possible to seleot from
one to four main ine to four main variants, differing to some extent some cases the variants are equivalent and interchangeable in others they are dependent on the degree of expressiveness, on modal and emotional $00-$

pressive speech (speaker $\mathrm{PM} \mathrm{M}_{1}$).

Fig. 5. Ensembles of intonation oontours of statements
pressive speech (speaker $E M_{1}$).

Fig. 6. Ensembles of intonation contours of roqueste in Russian (left) and English (right) exp-
ressive speech (speakers RM_{1} and $E M_{1}$ correspondin8ly).

Attention should be drawn to the fact that speny possibilition to make speech expressive. A quan ny possibilities to make speect expressive.
titative study of the intonation structure of speech has suggested that besides the above mentioned
acoustio acoustio cues of separate expressive utterances
acoustic charanteristios of the whole text might acoount for the differenoe between expressive and monotonous speeoh. Valid data were obtained showin that aooustio oharacteristics within the text pro-
vide effeot of expressiveness of speech. of particillar interest in the present study, however, is that the correlation of the fundamental frequenoy and intensity values at the border of sense groupe
and phrases constituing the text, the correlation and phrases constituing the tert, the correlation
of caountio measurements of int tial and final unse
trese tressed syllables of different phrases of the text,
etc. indioate whether the text is expressive or moetc. indioate whether the text is expressive of equi-
notonous. Besides the alternation of different equinolonous. Besides the alternation of cours of one and the same communicative type of the phrase within phrases with different level of intensity makes speech expressive.

These questions, however, are beyond the scope
of the present paper.
approximated intonatton contours Our final experiment aimed at the problem of ap-
proximation of the intonation contour of the uttaranoe. There is a strong evidenoe to sưzest that
to be associated in the mind of the speaker with the communicative type of the utterance, its modality and emotional colouring, the desree of expres-
siveness and other linguistic and extralinguistic faotors. It seems that initial and final values of faotors. It seems that initial and final values of
the fundamental frequency and intencity, as well as.
the configuration of the curve are direct cues in the configuration of the curve are direct cues in
"planning" the intonation contour of the utterance. "planning" the intonation contour of the
Taking it into consideration the ves of the physical characteristios at the beginning and at the the end of the utterance, as well as the configuration of the curve were taken as a basis for appro-
ximating the intonation contours of expressive speeoh. Variants of the trajectory of fundamental frequ-
ency and intensity measurements, obtained in the present study, could be readily approximated as olopre to the original as possible by analytical expressions, desoribing the inas squares.
the help of the method of least suar the help of the method of least squares.
The method of analytical approximation includes: (1) establishing the character of the dependence and seleotion mizing trajectory deviations of the analytical ex-
pression from natural speeoh contour: (3) evaluating the constant coeffioients that determine the rajeotory of the changes in the stuay. tory of the fundemental frequency ohanges have been
developed experimentally and calculated by the formula:

$$
y[t]=f_{i n} e^{-\alpha t^{2}+\beta t}+f_{\text {fin }} e^{-k i t}
$$

There Fin, Ffin-values of the parameter at the beginning and the end of the speech sample: t - successive number of time - segment values: α, β, K-constant ooefficients, seleoted for
each realization in terms of the intonation oon-
Forr. the analytical expression desoribing the
For trajectory of the intensity ohanges it is possible

$$
\begin{equation*}
y[t]=A_{i n} e^{-} \tag{5}
\end{equation*}
$$

A 解 ning of the speech sample.

In case of complicated curves (those having more that two turning points) the approximining and the end of each structural element taken for the values of $\mathrm{F}^{\prime \prime}$. $\quad \alpha, \beta, K-$ determine the profile Coeffioients α, β, K - determine the profile
the ourve and account for the occational interof the ourve and account for the accational inter
ferences and the parameters of the model sought for. ferences and the parameters of the model sought for
Coofficient ol varies in the range: .01 $\div 3$; $.1 \div 5 ; K-2 \div 14$.

Particuler values of the ooefficients used in Table 1.

Table 1. Analytioal expression of intonation contours approximation

The results of calculations are ploted in Fig. 7-10.

Fig. 7. Melody countours of statements in Russian (left) and English (right) expressive speech (solid curve) and their approximated variants (dashed curve).

Fig. 8. Melody contours of questions in Russian (left) and English (right) expressive speech (solid curve) and their approximated variants (dashed ourve).

Fig. 9. Melody contours of requests in Russian (left) and English (right) expressive speeoh ($80-$ lid curve and their approximated variants (dashed curve).

Fig. 10. Intensity contour of statements in Russian (left) and English (right) expressive speeoh (solid curve) and their approximated variants (dashed curve).

CONCLUSION

It appears from the foregoing analysis of the intonation structure of Russian and English utterances that differences in perception of degree of expressiveness are always associated with respective differences in the characteristics of the intonation contour of the phrase and those of larger spesch units.

The analytical expression suggested enables to approximate the intonation contour of various types of expressive utterances close to the original intonation contours, preserving all their main properties. As compared to approximation by polynomial, the present method is more simple and effectual.

The presentation of the intonation contour as a mathematioal model makes it possible to use it direotly in the synthesis of speeoh prosody.

REFRENCES

/1/ Bengrande K.D. Text Discourse and Process. London: Longman, 1980. -231 p .
/2/Vazen M. Statisticheskaja approksimatsia. - M. Mir, 1972. - 295 s.
/3/ Kovalev V.P. Virazitelnije sredstva hudozestvenoj reohi. -Kiev: Rad. Sohkola, 1985.-136 s.
4/ Torsueva I.G. Sovremennaja problematica intonatsionnych issledoranij //Voprosy Yazicoznaniya, 1994. -N 1. - S. 116-126.

DANG ${ }^{*}$ V.C., CARRE R.
Laboratoire de la Communication Parlée, ICP Unité Associée au CNRS, INPG-ENSERG, 46 Avenue Félix Viallet, 38031, GRENOBLE CEDEX, FRANCE.
${ }^{*}$ Present address : Khoa vo tuyên, DHBK, HANOI, VIETNAM.

ABSTRACT :
Lateral inhibition is a side-band effect of excitation of the auditory system by a complex signal. Indeed, single neuron response is modified by the signals issued by surrounding neurons due to the complex stimulation. In this paper, we present works on this subject using a simplified model over natural and synthetic speech sounds. A spectral lateral inhibition is used to enhance spectral peaks. Preliminary tests on temporal lateral inhibition (lateral inhibition in time-domain) show an enhancement of t ime-domain contrasts. This information might be used to find stable regions in the speech signal.

1. INTRODUCTION

| In the past years, it has been | | |
| :---: | :---: | :---: | :---: |
| recognized the existence of a lateral | | |
| inhibition | function | in | inhibition function in neuronal processings and several works have been developed on the modelling of this function (GREENWOOD \& MARUYAMA - 1965 , GREENWOOD \& GOLDBERG - 1970 , MORISHILE al. - 1972 , TOKURA \& al. -1977 , CAELEN $\begin{array}{ll}1979, & \text { VOIGHT \& YOUNG }-1980, \quad \text { PALMER \& } \\ \text { EVANS - } 1982, & \text { MARTIN \& DICKSON - } 1983 \text {, }\end{array}$

 response is modified by the signals issued by surrounding neurons due to the complex st imulation.

KARNICKAYA \& al. (1973) have applied a "lateral inhibition" model on the auditory spectrum equivalent and have observed that spectral contrasts are increased. They have used a three-range window : a central positive one and two lateral negative ones, gliding in the frequency domain.

MORISHITA \& al. (1977), SHAMMA (1985) have tested neuron network models.

LFBFDEV \& al. (1985) have built a performant recognition system by taking into account the time-domain and frequency-domain masking effects.

In this work, a simplified inhibition model similar to that of Karnickaya's is tested. in the frequency domain and in the time domain, to point out contrast effects on the spectrum. This three-range window model can be compared with the cepstral technique where the inverse FFT + square windowing + direct FFT block corresponds to a sin(x)/x operator with a positive central lobe and two main negative lobes.

2. EXPERIMENTS

Original speech signal is low-pass filtered at 5 KHz , sampled at 10 KHz , weighted by a Hamming window and processed via FFT. The spectral components e(t,j), at the FFT output ($t=t i m e, j=f r e q u e n c y$) are then processed by a lateral inhibition system.

In the frequency domain, the spectral lateral inhibition filter contains one central region and two lateral inhibition regions. as represented in figure 1 .

Figure 1. Spectral lateral inhibition filter.

The filter output $s(t, i)$ is the weighted sum of the inputs $e(t, j)$ in the central region minus the sums of the two lateral inhibition regions :

$$
\begin{aligned}
& C .3 \sum_{i} e(t, j) \\
& j<B 3
\end{aligned}
$$

C1. C: are amplitude constants The three range filter is applied on
the FFT spectral components and the fill er is gliding on the frequency scale. Bi, B and B.3 are set in a Bark scale. been tested :
Type 1 : the time domain filter is exactly corresponding to the frequency domain
$s(t, i)=\underset{+C T 1}{-D 1 \Sigma_{1}} e(t, j) \underset{t C T 2}{+\boldsymbol{\Sigma}_{T 2}} e(t, j)$

$$
-{ }_{t \in T 3}^{\text {D }} \sum_{i} e(t, j)
$$

D1. D3 are amplitude constants and the
Constants are duration constants. Figure represents are duration constants. Figure
the time-domain lateral ebederis law, which is a modification of al. (1985)).
Type 2: the output element S_{2} (i) in a computed over the sum of the absolute lues of processed bet ween the spectra components processed at time i and i-
the output of the first element $s(i, j)$, equations a and b define $s_{2}(i)$

$$
\begin{aligned}
& \text { a) } s_{1}(i)=\sum_{j=1}^{N}|s(i, j)-s(i-1, j)| \\
& \text { b) } S_{2}(i)=-\underset{j \in T 1}{-1 \leq} S_{j}(j)+\boldsymbol{L}_{j \in T 2} \mathbf{S}^{(j)}
\end{aligned}
$$

i,
figure 2.
Ti,

Figure 2. Time-domain lateral inhibition

spectral lateral inhibition.
a) Study of the model parameters.

In order to study the role of the model parameters. ala/ i/, du/ rowe
spectra were calculated for different values of one parameter among the others. The objective was to find the right value
corresponding to a better contrast effect corresponding to a better contrast effect
on the spectrum. The optimal values fo on the spectrum. The optimal values fo
the window ranges are 1 Bark, and the amplitudes C1, C2, C3 are $-0.2,1,-0,3$. These values are closed to those propose

Figure
distance (vowelution of the spectral values.

Such parameter values were tested to
verify the good stability of verify the good stability of synthetic euclidian distance between two successive spectra was calculated for different values of each parameter (figure 3). This equal 1 Bark and when c values are around

ligure 4. Distance between the formant values (for synthet ic vowels) and the
spectral peak values, for different B values.
The parameters were also tested to
verify the good accuracy of the spectral verify the good accuracy of the spectral
peaks. For different synthetic vowels with
specified forme
distances between these frequencies and the peak frequencies of the spectral represent at have a first minimum at around
distances Bark for the B values and at
Results on synthetic vowel signals.
b) Results on synthetic shows the spectral presentation Bark integration (curve. 2), ${ }^{T}+{ }^{1}$ Bark integration ${ }^{\text {a }}$) and FFT lateral inhibition

range of the model is only one fit value, the contrast is more important and the harmonic structure app
frequencies (figure 8)

lateral inhibition (CVCVC: (babas/).

-
The type 2 representation is given figure 9 with duration ranges of 5 ms. lateral inhibition gives peaks at the place of temporal event detection.
could be used for ever

figure 9. Time domain lateral inhibition. igureral range 5 ms CVCVC : /babab/ /aba/ part.

4. CONCIUSIONS

The results obtained show that lateral inhibition is able to increase temporal and spectral irregularities. Increased spectral irregularities enhance the spectral peaks. Thus, the speech spectrum is simplified. According to the parameter values of the model, the low frequency harmonic structure can be observed.

In the time domain, according to the parameter values of the model, lateral inhibition enhances either the boundaries of the stationary sounds or small temporal events.

5. REFERENCES

(1) Chistovich L.A, Lublinskaya V.V., Malinnikova T.G., Ororodnikova E.A., Stoljarova E.I and Zhukov S. Ja. (1982). Temporal processing of peripheral auditory patterns of speech.
In "Representation of speech in the peripheral auditory system:", ed. Carlson R. and Granst rom B., Amsterdam, 165-181.
(2) Dang V.C., Carré R. and Tuffelli D. (1986).

Research on preprocessing by a lateral inhibition.
12th. Int. Cong. on Acoustics, Montreal.
(3) Karnickaya E.G, Mushnikov V.N., Slepokurova N.A. (1973).

Auditory processing of steady-state vowels.
Symp. on Auditory Analysis and Perception of speech, Leningrad.
(4) Lebedev V.G. and Zagoruiko N.G. (1985).

Auditory perception and speech
recognition.
Speech communication, 4, 97-103.
(5) Morishita I. and Yajima A. (1972). Analysis and simulation of net works of mutually inhibiting neurons.
Kybernetic, 11, 154-165.
(6) Tokura T. and Morishita I. (1977). Analysis and simulation of doublelayer neural network with mutually inhibiting interconnections.
Biol. Cybernetics, 25, 83-92.
(7) Shamma S.A. (1985).

Speech processing in the auditory system, II: Lateral inhibition and the central processing of speech evoked activity in the auditory nerve.
J. of Acoust. Soc. of Am., 78, 1622-1632.

EIENA A. RADIONOVA

Lab. of Hearing Physiology, I.P.Pavlov Institute of Physiology, Leningrad, USSR, 199034

Speech sound signals are much better reproduced in the summed neuronal activity than in the activity of single neurons. The most complete reproduction is observed at the lower levels of the auditory systom. At higher levels only information concerning the signal periodicity may be partly rotained.

At present it is well known that sound signal parameters may bo but poorly reflected in the impulse responses of single neurons of the auditory system. This is the case even for simple pure-tone signals. For instance, as it was found for the cat, at least about half of nourons from the cochlear nucleus (which is the first auditory brain level, receiving the whole auditory information from the ipsilateral cochlea of the inner ear via the auditory nerve fibers) show a pronounced nonlinear relation between the signal frequency and the impulse response value: at signal intensity of 50-80 aB this function has several (up to about ten) maxima separated by different frequency intervals over the frequency range from about 1 to 20 kHz . Besides, the time patterns of a single neuron responses often show very slight differences (if any) over a wide range of signal frequencies. At higher levels of the audito-
ry system the correspondence between the sound signal parameters and the single neuron responses declines even to a greater extent. The above properties as well as some others, make each neuron, When alone, unable to indicate what kind of a sound signal comes to the ear. Meanwhile the summed response of a number of neurons may give appropriate information about the signal presented to the ear. This possibility was first proposed as the so called "volley" principle /1/ and was then supported by the experiments with the "Frequency Following Response" (FFR) registered from the lower levels of the auditory system as the summed response of a group of neurons with the near spatial positions within a given brain region.
The FFR is the result of the activity of a number of neurons whose impulse responses are synchronized with a certain phase of the tonal signal. The upper frequency limit of this synchronization was reported as at least 5 kHz for the auditory nerve fibers, about 6 m 6.5 kHz for the cochlear nucleus level, with a pronounced diminution of this value at the higher auditory centers: to about 1.5 kHz at the midbrain level (inferior colliculus) and to about 1 kHz or even less resp, at the medial geniculate body and the auditory cortex levels $/ 2 /$. Thus, the widest frequency range reproduced in the FFR is related to the lower levels of the auditory

system.

It was found that FFR not only followed the tone frequency but could also reproduce the wave form of rather complicated sound stimull. This was especially well observed at the cochlear nucleus level with complex harmonic signals containing 2 to 6 harmonics, as well as with the sound speech signals. For instance, when two-tone complex of the second and the third harmonics (or of some others) was resented while varying the signal wave form through variation of the phase of the higher harmonic, the FFR evoked b this complex signal usually reproduced rather precisely the waveform of the signal, with almost all the details: for each oscillation in the complex signa wave a cooresponding deflection in the FFR could be observed.
However, in some cases nonlinear phenomena took place, when one of the signal harmonics, usually the lower one, was fuliy suppressed in the FFR. It seems of in terest that this suppression depended on the phase of the higher harmonic and could be observed within a certain ph range only. range only
Inspite of some nonlinear features, the FFR of the cochlear nucleus can reproduce rather well the sound speech presented to the ipsilateral ear. The speech reprodu ced in the FFR is well distinguished, the masculine and feminine voices can the distinguished as well and even the well can be sometimes identified aco person the voice reproduced in according to sodic charactericed in the FFR. The prosodic characteristics of the speech are also well reproduced in the FFR of the cochlear nucleus.
Thus, it may be concluded that at the cochlear nucleus level the sound speech signal can be rather fully described in the summed activity of the population of the neurons. The characteristic frequencies (CFs) of neurons forming such a po-
pulation should be relatively similan since these neurons are obvioslyy positioned rather near each other as their summed activity, the FFR,is recorded ith the help of the same electrode. Beides, for the best reproauction of the peech signals, the CFs of the neurons whose activity forms FFR should lie at the upper frequency limit of the speech sound range (for instance, of about 4 kHz) or higher: such neurons would respond to the wide frequency range be low the values slightly higher than the Crs. The neurons with the lower CFs would not respond to high components of the speech signals. Therefore only populations of neurons with sufficiently high characteristic frequencies would repro duce sound speech in their summed FFR. At the higher level of the auditory system, namely, at the central nucleus of the inferior colliculus (IC) speech sounds may be reproduced in the FFR much more roughly than at the cochlear nuclous level. The sound speoch, as it is reproduced in the FFR of the inferior colliculus, is not distinguishable now, though speech prosodic characteristics are well pronounced when the FFR is listened to through the audio reproduction號 liption of the sound speech in the FFR are obviously connected with the restricted frequency range (not higher than $1.5-1.7 \mathrm{kHz}$) reproduced in the FFR at the level of the inferior colliculus. This, in turn, may be connected with the properties of single neurons forming the FFR: the neuronal impulse activity is much lower than the activity at the coc lear nucleus level, its variability is reater level, its variability is coater, as well as nonlinear effects a in particular to neuronal inhibitory aterconnections.
When analysing the inferior colliculus FFR to complex sound signals containing

6 harmonics it may be scen that, unlik cochlear nucleus, the FFR from the does not describe the complex waveform n detail. Usually oniy the periodicity the signal waveform is reproduced in年 FFR quite well, especially the perio ical sharp changes in the signal ampliore more delicate, though rathe . ssental produced for example by pay still be of the signal components but with reflected in the many details lost
ts to the highest, cortical level of the auditory system, the FFR may be registe red nere only in a narrow low frequency rod instance, of about $100 \mathrm{~Hz} / 3 / 0$ cortical PFR can reproduce onis the low Cortical frequency envelope of eluding, withnals, the speech souns in ir waveout any details conceraing form. The fact is, that neurons of the highest levels of the auditory system, the medial geniculate body and the auditory cortex, are greatly specialized oncent different sound parameters. concerning are responses are varia Besides, thelr resp to areat extent, and nonstationary to with inhibitory effects result in great fuese nouronal properties ritude restriction of both the FFR ample and frequency range, which makes the sound speech reproduction impossible the summed neuronal activity at these auditory regions.
Thus, Thus, rather complete analogue deronal FFR tion of speech signals lower levels of can be observed only at levels the auditory system. At higher levelia restricted description based on definite signal features seems to substitute step-by-step the full description of the signals: now only pronounced chanees in the signal envelope or transients may ine reflected in the summed neuronal resbe rerlec in may be thought that
at higher levels of the auditory system there would be a possibility to extract an the lower in a levels concerning worn signals, the speech sigtion of complex signals, the spet how nals incluaine. It is ill it may be suppo it could be done. punction of the higher (together with some suditory centers (tocers) would be to other brain hien or at least sound imaform eeneral in human ges, i.e. mental pletures of thep voice, of the animal ary, souna etc., which should be necessaril connected with a loss or diminution the information relating to particula details of the real sound signals.

AFERENCRS

11/E. G. Wever, "Theory of Hearing", Wiley, 1949.
/2/ E. A. Radionova, "NeurophysioloStudies of the Monaural Phase Sencility of the Auditory system". In sitivity of the Aunak 1982, 72-86 sensory syste

Rus) Arezo $13 / \mathrm{M}$. Stelnsch "Phase-locked CortiH. G. Vaughan, Jr., Human speech Sound cal Kesponses to a Romes in the Monkey". and Low-rrequency lones in the

A.A.Kharlamov

Moscow

The goal of the report is to show pos- disadvantages.
sibilities of the associative bionic approach to construction of the model of the speech signal processing contral mechanisms. The basis of this approach is the data processing in the dinamic associative memory block (DAMB) and its usage for constructing hierarchical structure (HS) for phonetic, lexical and syntactical processing of speech.

INTRODUCTION

The analysis of the data representation methods that has been used in the speech recognition system shows that graphs (matrix) representation is the best. For example in the form of an evidently given graph or a hidden Harkow model. The methods in question have some disadvantages: data representation inflexibility, graph labour consuming forming or need in large computer power. Hardware realisation of graph (matrix) data representation by the system of DAMB
is free of these

The DANB construction is based on some biological facts about structure and properties of neurons and their pulls. The uniform structure and a simple data processing algorithm allow to produce the DAirB using the microintegral technology as an integral system on the sylicon plate.

THS MODEL OF THE SPEECH SIGNAL PROCESSIVG central lieciantsus.

The main functions of DA:MB and HS formed of them are: storage of data with compact packing, reproducing it with the help of context association, and the statistical processing of the input data by picking out the number of different occurency frequency elements (i.e. vocabularies); extraction of vocabulary word relations in the input data - that allows to reconstruct the inherent input data structure. The above functions give us the possibility to model phonetic, lexical and syntactical levels of data processing by the HS of DAMB. It is supposed that the acous-
tical speech signal is preprocessed, optihal in each specific case, which is not discussed here.

The model in question consists of two data processing chanals: the coarse one and the precise one. When training the precise chanal performs compilation of a phonotype vocabulary $\{P\}$ and on its base the vocabularies of lexical level sublevels: i.e, the word vocabulary $\{L\}$ and the morph one $\{M\}$. When training the coarse chanal forms the syllable-phoneme vocabulary \{SP\}. The unit segmentation of the corresponding levels is performed by DANB as the natural feature of the data processing in them. The type of a unit is determined by the DA: B parameters (of a hiperqubs dimension).

In the process of recognition the data in the input of the lexical level is represented in terms of syllable-phoneme vocabulary, i.e. syllable representation, as a number of syllable type sequences in the corresponding words, or morphs $\mathrm{Isp}_{j}=$ $=\left(S P_{I}, S P_{2}, \ldots, S P_{i}\right)$. The whole number of lexical level input is divided into the subvocabularies according to the equal syllable representation principle, these subvocabularies are indexed by this representation $L^{S p}$. If the vocabulary consists of only one lexical unit or there are high level constraints (contextual), which allow us to choose the necessary alternative , the recognition process is stopped.

Let us assume $\mathrm{I}_{\mathrm{k}} \equiv \mathrm{I}_{j}^{S p}$.
If it is necessary to choose a lexical unit from the subvocabulary $\{\mathrm{L}\} \mathrm{I}_{j} \mathrm{sp}$, which is indexed by the given syllable representation $L_{j}^{S p}$, the precise chanal is used. In this subvocabulary the lexical units I_{k} and $L_{1}\left(I_{k}=\left(P_{I}, P_{2}, \ldots, P_{m}\right.\right.$, ...)) are divided by one or more phonetic element types P_{m}. To divide phonotypes the preprocessing form is used which is associatively related to the phonetic element type P_{m}. This division uniquelly determines the lexical level unit L_{k}.

The higher levels (from the lexical point of view), the syntactical, for instance, bring in additional (contextual) constraints on lexical level unit L_{k} choosing. In the process of training in the syntactical level the words and morphs relations (i.e. inflections) vocabulary $\{\mathrm{F}\}$ and the type phrase vocabulary $\{\mathrm{Pr}\}$ are compiled.

The above mentioned structure can be realized as a $H S$ from DA:BB.
the damb formailzation,

The DAMB is a net of neuroliked elements (NE) with the input signal time summaring, which is accomplished by shift register of n cells - the model of the generalized dendrit . The DAMB consists of 2^{n} NEs and each of them models one of the n-dimensional unitary hiperqube node
in the signal space.
The binary sequence $A=\left(\ldots, a_{-I}, a_{0}\right.$, $a_{I}, \ldots, a_{i}, \ldots ; a_{i} \in\{0, I\}$), the input sequence for the $D A \mathbb{B}$, is mapped into the hiperqube as a directed sequence of the nodes - trajectory $\hat{A}=F(A)$. Each n of the symbols from the sequence (a_{i-n-I} a_{i-n-2}, \cdots, a_{i}) corresponds to the node \hat{a}_{i} with the given coordinates. The initial sequence A can be restored from this trajectory $A=F^{-I}(\hat{A}) \cdot F$ mapping has the property of associative addressing to the data with the help of context association (n sequential symbols).

The DA波 can operate in one of the following three modes: (I) training or perception; (2) reproduction; and (3)structural processing.

The training mode.

In the process of training Nis of the DAMB change their inner state under the influence of an input sequence. This changing means that the memory function H is inserted to the nodes of the hiperqube. That is why the trajectory is stored (i.e. in the current node the sequence next symbol is stored in case the record is autoassociative, or the sequence current symbol is stored in case the record is he teroassciative).

Let us provide function H with the thresholding properties. This allows to
process the data, that is stored in DAMB, statistically. The processing allows to compile the vocabulary of ivents $\{\hat{B}\}$, from the input of the DAMB' as the number of sequences $\{A\}:\{\hat{B}\}=F(\{A\})$. Under the influence of the threshold value h of function H words of the vocabulary are either the union of input ivent trajectories (in that case the whole data is stored), or fuzzy or precize intersection (in this case more or less common part of data is stored). The identical parts of the sequences or events are mapped into the same chain, and different parts are mapped into the different ones. As a result a directed metrized graph or a graph-word is formed at the nodes of the hiperqubes. The trajectory attenuating models the forgetting process.

The reproduction mode.

The stored data reproduction using of $\mathrm{F}^{-\mathrm{I}}$ mapping allows to recognize the input soquence by comparing it with the reproducing one according to a measure system. Only the pretrained DAMB can operate under reproducing. The n-member segment of the DALB input addresses to one of the hiperqube nodes (to one of the NB) where some data is stored (the inner states were changed). The trained NE answer, added to the input n-member segment, determines a new address and thus a new node

The structural processing mode.

Under the structural processing the input sequence is compared with the compiled in the DAMB vocabulary with the sequence segments changed by zero sequences, if these parts of sequences, corresponding to the parts of trajectories, coincide with the node sequences (chains of the vocabulary graph-words). Thus the special $\mathrm{F}_{\mathrm{c}}^{-\mathrm{I}}$ mapping allows to eliminate the vocabulary data from the input sequence, and to preserve only the relations of the vocabulary words. The abbreviation sequence (AS) $\mathrm{C}=\mathrm{F}_{\mathrm{c}}^{-\mathrm{I}}[\mathrm{F}$ (A) , $\{\hat{\mathrm{B}}\}]$ is formed. The mechanism of the AS forming allows to use the DALBs for structural data processing within the DAMB hierarchical structure, as some rarefied parallel data flows can be united into one flow without losses.

The hierarchical structure of the DAMB.

There are some parallel processes $\{A\}^{I} \oplus\{A\}^{2} \oplus \cdots \oplus\{A\}^{q}=\{O Z\}$ - that is the situation - in the HS input. The vocabularies $\{\hat{B}\}$ of the most frequently occured situation $\{O\}\}$ events are formed in the first level DABB. After the vocabularies compilation, if sequences $\{A\}^{9}$ are given in the first level dA in inputs, the AS are formed in their outputs. These AS
converge in the second level DAMB inputs and compile the vocabularies $\{\hat{D}\} r,(r=$ $=I, \ldots, R ; R<Q)$ in the DAMBS. Thus the input situation model is formed in the HS as a repeatedly enclosed directed metrized graph. In that graph the graph-words of the low level vocabularies are enclosed into the corresponding parts of the high level graph-words. The HS curtale the input data in the down-up direction and vice versa. That HS property allows to reproduce the stored situation with the help of association both from high level and low level. (Thus the HS can be used as an analyser and an effector as well).

CONCIUSION

The report is devoted to the development of a theoretical model of data processing at the phonetic, lexical and syntactical levels. That model allows to create a device for structural speech signal processing. That device automatically performs compilation of vocabularies of those level units, reconstruction of those level grammars, and recognition of the input events by matching them with the compiled vocabulary units.
interval of spectral information accumalation in perception Of NON -STATIONARY VOHELS
inne chistovich taisa malinnikova

RLENA OGORODNIKOVA

Lab. of Speech Physiology, Pavlov Institute of Physiolozy

 Leningrad, USSR, 199164ABSTRACT
The results of identification ex periments indicate that the interval of the auditory spectrum accumulation exceeds 20 ms . The data is compatible with the supposition that the accumulation interval is comparable to the duration of the vowel.

INTRODUCTION

This work is a development of the study of the spectrum shape processing started by L.Chistovich. She suggested a new approach to this problem which allowed to demonstrate that the information about spectrum shape was accumulated over the vowel length, but cumulated over the vowel length, but the data concerising the accumulation mechanism was rather contradictory (see /1/ for a review).
The fact of accumulation can be explained by either one of the following hypotheses:

1. The running auditory spectrum is considerably smoothed in time before extraction of the phonetically relevant parameters.
2. The parameters characterizing spectrum shape are extracted from practically unsmoothed auditory spectrum and then are accumulated. It is evident that in this case the extracted parameters depend strongly on the sampling instants. The choive between these hypotheses will influence the direction of future studies. If hypothesis 2 is correct, it
probably mears that the sampling is aym chronized to the furdamental tone, and it is necessary to investigate the symchronization mechanism. If hypothesis 1 is correct, the sampling with constant interval or the sampling at the ends of the segments (synchronized to segmentation marks) is to be considered.
Te discuss here the previously obtained data /2,3/ and present new experiments deaigned to test these hypotheses (some of the experiments were suggested by L. Chistovich).

In all the experiments discussed here the same type of the siennals, specially desizned to have no dynamic cues (formant transitions), was used $/ 4 /$. To simplify their description we shall introplify their description
The sigall is a train of n formant pulses. One-formant pulse s_{i} is a short tonal pulse with triangular time envelope, F_{i} is the tone frequency, L_{i} is ita intensity. $v_{i j}=s_{i}+s_{j}$ is a tiro-formant pulse, $w_{i j k}=s_{i}+s_{j}+s_{k}$ is a three-formant pulse. Tha stationary signals, consisting of identical pulses, are denoted $S_{i}, V_{i j}$ and $w_{1 j k}$ respectively. Signals ($s_{i} s_{j}$) contain s_{i} and $z_{j} ;\left(s_{i} v_{j k}\right)$ contain s_{i} and $v_{j x} ; n_{i}$ is the number of s_{i} pulses in such signals. T_{0} is the interval between the onsets of two identical pulses, T is the interval between the onsets of any two successive pulses, t is the in(or v_{j}). The results compatible with hypothesis 1
were obtained in several experiments / 1 were obtainest striking is the fact that increasing n_{i} in ($s_{i} v_{i j}$) causes the same changes in identification as increasing L_{i} in $\mathrm{V}_{\mathrm{if}} / 3 /$. The main result against $i_{i} i_{i j} 1$ was obtained in the experiment on identification of $S_{i}, V_{i j}$ and ment on for $T \approx 10 \mathrm{~ms} / 2 /$. Signals $\left(S_{i} S_{j}\right)$ ($S_{i} S_{j}$) for $T \approx 10 \mathrm{~ms} / 2 /$. were not identified is more, $\left(S_{i} S_{j}\right)$ were nemes as i°. mostly identired as S_{j}, or with [6]. Obviously such result is possible only if hypothesis 2 is correct and the auditory spectrum is so little smoothed that a Corment pulse does not affect the next alae 10 ms delay. The great num[t] responses was explained by er of th] responsian subjects of ten use the fact that Rus indefinite vowels. [t] as a label for indefinite vowels. As this is the only experiment directiy contradicting hypothesis 1 , we tried to check its results in Experiments 1 and 2 EXPERIMENT 1
In this experiment we obtained the idenIn this experiment wignals S_{i} and $\left(S_{i} S_{j}\right)$ for a wide range of $F_{i} F_{j}$. First, we wanted to check if ($S_{i} S_{j}$) would be identified as S_{i}, S_{j} or $[t]$ for other values of $F_{i}, F_{j}\left(F_{i} \ll F_{j}\right)$ than those used in $/ 2 /$. Then, there were some indications in $/ 2 /$ that the "local center of gravity effect" (LCGE) could be observed on ($\mathrm{S}_{\mathrm{i}} \mathrm{S}_{j}$). LCGE (LCGE) could be observed on ($\mathrm{S}_{\mathrm{i}} \mathrm{S}^{j}$. manifests itself in the fact that a nal with formant irequencies $\mathrm{F}_{1}, \mathrm{~F}_{2}$, $\mathrm{F}_{2}-\mathrm{F}_{1}<3 \div 4$ Bark, is phonetically similar to a one-formant signal with formant frequency $F, F_{1}<F<F_{2} / 1 /$. If a) hypothesis 2 is correct, and b) LCGE is a result of smoothing of the auditory spectrum in the frequency domain, LCGE should disappear when the formants are sufficiently separated in time.
Stionels of Tests 1,2,3: $\mathrm{n}=12, \mathrm{~T}=20 \mathrm{~ms}$ or

In ($\mathrm{B}_{\mathrm{i}} \mathrm{B}_{\mathrm{j}}$) $\mathrm{j}=\mathrm{i}+2, \mathrm{n}_{\mathrm{j}}=4,6,8$.
Sismer Test 4: $n=8, T=20 \mathrm{~ms}, F_{i}=0.3$, $0.45,0.65,0.85,1.15,1.5 \mathrm{kHz}$. In $\left(S_{i} S_{j}\right)$ $0.45,0.65,0.85,1$
$j=i+2, n_{j}=2,4,6$.
$j=i+2, n_{j}=2,4,6$. The results of Tests $1,2,3$ were found as no significant differences were found between the tests. The results of tests $1,2,3$ do not agree with $/ 2 /$. All the 3 subjects responded to ($S_{i} S_{j}$) quite differentloctically always identified $\mathrm{i}_{1}, \mathrm{~S}_{3}$ and S_{5} as $[u],[a],[i]$, (the corand 50 trials fer $1.1 ., 0.99$ for A. $0.96,1 .$, are 1, ,., 1 for 3 values of n_{3}) rate for B). Maximal (for 3 values of n_{3} of (neither [U] nor [α]) responses to $\left(\mathrm{s}_{1} \mathrm{~S}_{3}\right)$ is 0.43 for $\mathrm{A}, 0.62$ for B. Maxima rate of (neither [a] nor $[1$,$] responses$ to $\left(S_{3} S_{5}\right)$ is 0.87 for A, 0.46 for . . subject C frequently identified ($S_{i} S_{j}$) with $[t]$; A and B practically neve.
this phoneme. In respect of LCGE the results were qua litatively the same as for stationary, gignals. LCGE was observed in Test 4, here $F_{j}-F_{i} \approx 3 \div 3.5$ Bark: $\left(S_{i} S_{j}\right)$ were per-
 ceived as similar to ${ }_{i+1}{ }^{\text {. }}$. ${ }^{\text {a }}$ distributidistance between the rep ons served as a measure (3 subjects $\times 4 \mathrm{~F}_{\mathrm{i}}$ In 8 cases out of 12 (3 subjects $\times 4 \mathrm{~F}_{\mathrm{i}}$ F_{j} combinations) at least one of to S_{i+1} than to S_{i} or S_{j}. In the 4 remaining $c a-$ ses the distances from $\left(S_{i} S_{j}\right)$ to S_{i+1} and to S_{i} or S_{j} were approximately equal (and in . Thus, ICGE does not disappe(and mail) formants are separated in ar whe
EXPERIMENT 2
In this experiment we tried, using the same F_{1}, F_{2} combination as in $/ 2 /$, to find the minimal time lag t at which $\left(S_{1} S_{2}\right)$ begins to be perceived as a mixture of S_{1} and S_{2} and not as V_{12}.
Signals of Test 1: $\mathrm{F}_{1}=0.75 \mathrm{kHz}$. For S_{1},
$\mathrm{S}_{2}, \mathrm{~V}_{12} \mathrm{n}=6, \mathrm{~T}_{0}=20 \mathrm{~ms}$. For $\left(\mathrm{S}_{1} \mathrm{~S}_{2}\right) \quad \mathrm{n}_{1}=\mathrm{n}_{2}=$ $=6, \mathrm{~T}_{0}=|t|+20 \mathrm{~ms}, t= \pm 5, \pm 10,{ }^{2} 15$, $\pm 20 \mathrm{~ms}$. We found that for all t values the ($\mathrm{S}_{1} \mathrm{~s}_{2}$) response distribution is not a mixture of responses to S_{1} and S_{2}. All the 5 subjects identified S_{2} with ${ }^{[}[i]$ (response rate $p_{[i]} \geqslant 0.93$); for all (s_{1} $\left.S_{2}\right)_{p_{\text {cij }}} \leqslant 0.125 .3$ subjects identify S_{1} with $[0]\left(p_{\text {cos }} \geqslant 0.95\right)$ and never use $[0]$ in responses to $0^{\circ}\left(\mathrm{s}_{1} \mathrm{~S}_{2}\right)$. Only E.z. gave a lot of $[t]$ responses to $\left(S_{1} S_{2}\right)$, but she also responded to V_{12} with $\mathrm{p}_{\mathrm{ct}}=0.5$. Other subjects had $p_{\text {ct }} \leq 0.125$ for all signals. The responses of two subjects were almost independent of $t: p_{C E I}$ fluctuated from 0.58 to 0.87 for $|\mathrm{t}|=0 \div 20 \mathrm{~ms}$. others exhibited a strong dependence of identification on t. Increase of $|t|$ increased $p_{[f]}$ and decreased $p_{[E]}$ for S. Zh ; increased $p_{[t]}$ and decreased $p_{[E]}$ for E. Z; T.M. changed responses from [a] to $[\varepsilon]$ and then to [2$]$. Thus, the results of one subject (E.z.) only are similar to those obtained in $/ 2 /$. The dependence of identification on t is, we suppose, really the dependence on duration or/and pitch, which were not constant. The re sults of Test 2 support this supposition. Signals of Test 2: $F_{1}=0.75 \mathrm{kHz}, F_{2}=$ $=2.5 \mathrm{kHz}, \mathrm{T}_{0}=16 \mathrm{~ms}, \mathrm{n}_{1}=\mathrm{n}_{2}=12, \mathrm{t}=0, \mathrm{t}_{4}$, +8 ms . Four of the subjects of Test 1 took part in Test 2. The table shows the variation of $p_{[\varepsilon]}$ when t was varied from -5 ms to +5 ms in test 1 and from -4 ms to +8 ms in test 2 .

	T.M.	S.Zh.	E.Z.	I.Ch.
Test 1	0.37	0.38	0.2	0.23
Test 2	0.2	0.17	0.07	0.1

As can be seen, though the t range for Test 2 is larger, variation of $p_{\text {cej }}$ is always smaller when duration and T_{0} of signals are kept constant.
experiment 3
The goal of this experiment was to find out if ($\mathrm{S}_{2} \mathrm{~V}_{13}$) could be identified with the same phonemes as H_{123}, and if varying n_{2} in ($\mathrm{S}_{2} \mathrm{~V}_{13}$) would lead to the same changes in identification as varying I_{2} in ${ }^{7}{ }_{123}$. It is only possible if hypothesis 1 is correct and the auditory spectrum is integrated over several formant pulses. Such an effect was observed for $V_{i j}$ and $\left(S_{i} V_{i j}\right) / 3 /$. As $\left(S_{2} V_{13}\right)$ contain no three-formant pulses, the equivalence of varying n_{2} and L_{2} would be even a stronger argument for hypothesis 1 than /3/. Signals: $F_{1}=0.3 \mathrm{kHz}, \mathrm{F}_{2}=1.1 \mathrm{kHz}, \mathrm{F}_{3}=$ $=3 \mathrm{kHz}, \mathrm{n}=12, \mathrm{~T}=14 \mathrm{~ms}$. For $\mathrm{F}_{123} \quad \mathrm{~L}_{1}=\mathrm{I}_{3}$ $\Delta I=I_{2}-I_{1}= \pm 20, \pm 10,0$ dB. For $\left(S_{2} V_{13}\right)$ $\mathrm{L}_{1}=\mathrm{I}_{2}=\mathrm{I}_{3}, \mathrm{n}_{2}=3,6,9$.
The responses to ${ }_{123}$ strongly depended on ΔL. When ΔL decreased from $+\infty$ $\left(S_{2}\right)$ to $-\infty\left(V_{13}\right)$ the obtained sequences of most probable responses were [aci] for T.H., $\left[a \varepsilon_{t}\right]$ for E.Z., $\left[a \varepsilon_{t i}\right]$ for E.K. and I.Ch., [attu] for S.Zh. All the subjects identified ($\mathrm{S}_{2} \mathrm{~V}_{13}$) with the same phonemes as : ${ }_{123}$, and increasing n_{2} in $\left(\mathrm{S}_{2} \mathrm{~V}_{13}\right)$ had the same effect on the identification as increasing ΔI in $W_{123^{\circ}}$ To evaluate this effect quantitatively we approximated the $\left(S_{2} \mathrm{~V}_{13}\right)$ response distribution P_{n} by the weighted sum of tw (closest to P_{n}) W_{123} response distributions: $P_{n}=k_{1} P_{1}+k_{2} P_{2}$. The obtained k_{1}, k_{2} and residual error d^{2} are shown in the table. Indices of k indicate ΔI of corresponding A_{123}.
It can be seen from the table that d^{2} are quite small. Increasing n_{2} is equivalent to increasing ΔI, but ΔL range corresponding to variation of n_{2} from 3 to 9 is different for different subjects (from $0 \div 10 \mathrm{~dB}$ for I . Ch, to $-10 \div 20 \mathrm{~dB}$ for T.M.). Thus, all the 3 experiments are compatible with hypothesis 1 and contradict hypothesis 2. The duration of
the time window used for smoothing of the running auditory spectrum should, according to Experiment 2, exceed 20 ms .

		${ }^{\text {+ }} 20$	k_{+10}	$k_{0} \quad k_{-10}$	d^{2}	
E.K. 9		0.09	$\begin{aligned} & 0.98 \\ & 0.44 \end{aligned}$	$\begin{array}{ll}0.69 \\ 0.76 & 0.33\end{array}$	0.004	
					0.042	
					0.042	
E.z.		0.07	$\begin{aligned} & 0.88 \\ & 0.17 \end{aligned}$	0.90	0.003	
	6				0.016	
	3			0.610 .37	0.001	
T.M.	9	0.96	$\begin{aligned} & 0.02 \\ & 0.29 \end{aligned}$	$\begin{aligned} & 0.88 \\ & 0.120 .92 \end{aligned}$	0.001	
	6				0.086	
	3				0.024	
I.Ch.	9		$\begin{aligned} & 1 . \\ & 0.52 \\ & 0.04 \end{aligned}$	$\begin{aligned} & 0.60 \\ & 0.97 \end{aligned}$	0.091	
			0.094			
			0.016			
s.zh.	$\begin{array}{ll}9 & 0.09 \\ 6 & \\ 3 & \end{array}$			0.85		0.008
			1.		0.082	
			$0.67 \quad 0.47$		0.054	

The results of Experiment 3 corroborate the data of $/ 3 /$ and suggest the duration of time window comparable to the duration of the signal. If this is the case some sort of amplitude compression or normalization must precede the smoothing, as the identification of ($S_{1} V_{1 j}$) very weakly depends on the amplitude of v_{1} weakly depends our results concern only pulses $/ 3 /$. All our results conce The forthe spectrum shape processing. The formant transitions are probably processed by the system with quite different temporal properties.

REPERENGES

/1/ Chistovich L.A. Central auditory processing of peripheral vowel spectra. - J.Acoust. Soc.Amer., 1985, .77, pp.789-805.
12/ Chistovich L.A., Ogorodnikova E.A. Temporal processing of spectral da-
ta in vowel perception. - Speech Communication, 1982, v.1, pp.45-54 /3/ Chistovich L.A., Malinnikova T.G. Processing and accumulation of spectrom anformation over the vowel rum shape inforn Communication, 1984, v.3, pp.361-370.
14) Чистович Ј.А., Чихман В.Н., ОгородЧистович J.A., Чихман В.H., огород
никова Е.А. Новый попход к определению фонетияесной блиэости стимулов и его пцоверка в автоматизированном эісперименте. - Физиол.журн. СССР, 1981, т.67, с.7C4-7IC.

Lab. of Brain Functional Asymmetry, I.M.Sechenov Institut of Evolutionary Physiology and

ABSTRACT

The purpose of the study was to analyze cerebral asymmetry in speech sound processing. It is suggested that of a qualitative nature: left hemisphere provides for correct phonemic analysis while right hemispheric competence material, its quick global recognition. The research was performed in normal subjects and in patients of psychiatric sive therapy.

In the beginning of the century the outstanding neurophysiologist hand in the science of language .V.Shcherba were surprisingly mous in suggesting that tc know the examine its disturbances. I.P.Paviov's vords refer to the complex forms of V.V.Shcherba - to language. Emer in the middle of the century, neuro inguistics seems to integrate both applications of the idea. On the one processing caused by pathology it reveans cerebral organization of speech functions, on the other - the data ob able questions of linguistic system tructure. Among the founders of neuroxperts of science of this century philologist R.Jakobson and century neuropsychoogist A. Luria. It was they who demonstrated the great value of "negative
data" - both linguistic and cerebral

Aphasiological tradition has postuanted that all linguistic skills are the while the right hemisphere (RH) has nohing to do with language. The last decades produced a lot of data undoubtedly speech processing. Nowadays it is a generally accepted thesis though accompanied y alternative viewpoints: (1) the abili he difference lyplicating in the dege of LH, unctions duplication (in full or in part); (2) the difference in hemispheric contributing to speech activity. We adhere - the second viewpoint. The purpose of he present research was to reveal the in volvement of each of the two hemispheres
in phonetic material processing. Two pro edures were used.
ects. The method testing of normal subj-
mispheric domin hemispheric dominance for verbal proces-
sing (perception). Lists of words and nonsense words were presented monaurally to both left ond right ear in turn. Reaction time (latent period between stimulus
and response) was registered. A hemisphere wes decided to be bistered. A hemisphe nalysis if reaction time for the stimuus heard from contralateral ear was shor
II. Testing of linguistic skills after unilateral electroconvulsive therapy, used in psychiatry. The seizures were ad clinics. By this means develops a situ tion when for $30-50$ min one hemispherc of the patient is suppressed and incapable of tact and even reciprocally aided. Ewsry patient has been subjected to both right nd leftsided shocks; it was possible to
uxtapose the suppression effect of LH and RH in one and the same subject, as well as to compare it with speech functi table below illustrates monaural testing that points to the fact that there are no time
verbs

STIuvil	mean reaction timb		p
	RIGHit mar	ligre cas	
youns ambectives vERBS	974 ± 5 784 ± 5 778 ± 3	918 ± 5 789 ± 4 773 ± 4	>0,05
	828 ± 4	827 ± 4	>0,05
narsminse words	1022 ± 4	1043 ± 5	$<0,001$

This suggests that the degree of each hemispheric involvement in meaningful words analysis is the same. The perception of nonsense words proreaction time is much shorter when the se are presented to the right ear, It which shows dominating role of should be mentioned that the reaction should be mentioned the noeded to process nonsense words is much longer than that for the meatwo main differences in processing words and nonsense words: (1) words are equally well processed by both hemis- LH heres, while nonsense words in To analyze nonsense words one needs more time. What lies at the basis of such a da erence? Let us consider the on of the hemispheres.
The examination of verbal material discrimination revealed that after words, suppression the comprenension consonantal
logotomes and phonemes (both and vnvel.) is impaired. This phenomenon
is in way due to hearing disturbances: is in way due to hearing disturbances. the sensitivity test the sid
deficit depending on tion.
hemispheric suppression.
hemispheric suppression. discrimination analysis gives grounds for understandint the reason of discrimination impairment after LH suppression. Fig. 1 demonstates
typical failures in recognition of spetypical sounds, i.e. phonemic substitutions It can be seen that in their nor-

Fig.1. Failures in recognition of speech quent types. The schemes below represent quent typer. subjects (inactivated hemis-
the state of suck).
vowels by front vowels, voiceless consonants by voiced ones, dentals by bilanants, velars by dentals. Errors in speech sound recognition are, the the reverse, no way due to chance, kind of regularity we see neutralization of some phonemic oppositions. After LH suppression the
amount of errors increases along with the amount of errors idening of the range of errors: front vowels are now confused with back vowels, velars with bilabials, accordingly LH inactivation leads to a considerable decline in discrimination ability caused by phonological system feature analysis. What is important is feature anatralization of phonemic oppoaitions observed after LH suppression, is. never seen in patents norma speech sounds recognition after RH suppression is of a ifferent nature: its facilitation is ustrated by fig. 1 . Misinterpretations concern of high back or front vowels. Su a facilitation of functions after is due to LH reciprocal acsuppression.
Let us consider now the investigation of phoneme boundaries for stationary owels. We used 46 vowel-like stial $F 1$ and F2. The subject had to classify each presented stimulus as one of the phonemes. The control testing revealed the same geinvestigation on normal subjects. LH nor RH inactivation affected the average formant posicmarkable differences with regard to magnitude of uncertainty(fic 2)

[^3] e
\qquad
egard to magnitude of uncertainty(IIg.c)

\qquad

Fig. ${ }^{2}$. Zones of uncertainty ($\bar{x}_{+} \delta$) in the regions of phoneme boundaries af-
tormance by the
for formence by the left and right ear resin Fig.1.

Thus, after LH suppression th range of areas of uncertainty range of areas of were most outspoken in the regions they se to F2. In our opinion it is the rement. Knowing that F2 is closely correlated to the dimension front-back we can understand the impairment of frontpression of RH leads to narrowing (or even disappearance) of the areas of unrization impairment.
on the whole LH inactivation rereverts the hearing to an infrehumer, state when the ability to infrahuman significance of $F 2$ is lost. RH interpret the vation and LH functions improvement leeven if compared with patients ${ }^{\text {a }}$ natu ral conditions. Thus the research shows that phonological coding is the functipreferable for perception of nonsens words: to discriminate them nonsense the most accurate phonological encoding,
since there is no other way for the ception of nonsense words. Then we perassume that RH's spech perception is of
a different kind: it proceeds without phonemic encoding. In what way, then?
most probable procedure is to take the most probable procedure is to take the Slobal, Gesialt perception strategy. The research points to the fact that while discrimination of words and syllables of er RH inactivation improves, the numberncreases: phonemes, syllables and accent ould be misplaced and the former ones ven totally omitted. Similar mistakes peech production; these are: wrong rb thmical patterns both of words and sentences, monotonous or, vice versa, irreshow prosodic perception impairment: with disfunctional RH the identification of ntonational patterns - both rendering gramnatical meanings - interrogative, impecially, emotional moods - decreases onsiderably. Under these conditions disrimination of male/female, young/old, paired.
Fig. 3. illustrates the perception of synthetically produced phonemes $/$ a/and $/ i /$
with two varying (high and low) fundemtal frequencies.

Fig. 3. Discrimination of synthetic vophonemic /i/ as to their pitch (1) or phonemic quality (2) after unilateral
ECT. (I) and (II) and the schemes are the same as in Fig. 2
could not determine whether the subjects
ere produced by a male or a female but easily identified phonemic quality of he stimuli. On the other handity iden nactivation was impaired while pitch recognition became more accurate in comparison with patients ons. The experiment demonstrates how hemispheric functions specialize even in dealing with the smallest sound seg ment. We can suggest is the RH that is responsible for parais the Ruistic and prosodic perception. It is well known that prosodic - supraseg-mental-features play prords - accent con the sound shaping of wividual words, whereas intonation contours gic features arrange elements to form the units of a higher order: phone - to form a word, words - to form a talt way of perception must be real zed by RH structures. However, such
strategy could be used only for previstrategy could be faech material. It it impossible to discriminate nonsense words using this way of perception,
In relation to the theoretical issues considered in this paper itis obvious that both cerebral hemispheres the ke port in forming sound shape of language. LH provides for correct phone continuum to functionally relevant segments. The role of RH is to realize
global or so called template recogniglobal

To sum up, the results of the present study sugges for speech perceptiin. RH mechanism provides for quick orientation in familiar speech materi al. LH mechenism secures accuracy of unfamiliar speech samples; but lose in speed of perception. Under usual communicative conditions both mechain optimum speech perception.
 И EE IPMMEHEHV ДII HOZABJEHИЯ ШГMA

आодОВИК ЕВГЕНЙ К

Институт кибернетики им. В.М. Глушкова АН УССР
Kиеев, СССР 252207

АННОТАГИ:
Дополнение традипионной полюсной модели (модели линейного предсказания) речевого сигнала моделью квазипериодического сигнала возбуждения, некритичной к наибодее частым ошибкам в выделении основного тона, позволяет использовать периодичность вонализованной речи для ее внделения из смеси с пумом.

BBETIEHME

Традииионная полюсная модель отражает квазишериодичность сигнала возбуждения на вокализсваннвх интервалах сомножителем ($1-\mathrm{z}^{-4}$), столпим в знаменателе передаточной фунншии речевого тракта. Таким образом, сигнал возбуждения считается строго периодическим с периодом основного тона L . Известно, однако, что свойство периодичности наблодается в реальном сигнале лишь в определенной мере, иногда больше, иногда меныше. С одной стороны, форма сигнала изменяется от периода к периоду, с другой изменяется и сам период

Вследствие такого рода отличий реального квазипериодического сигнала от модельного строго периодического в процессе анализа вознинавт ошибки в определении основного тона. Все опибки могут быть разбитн на три класса
I) "малне" оштбки в предөлах $10-15 \%$ от истинного значения периода;
2) опибочнне значения, кратние периоду или частоте основного тона;
3) грубне ошиби, не коррелирухиие с истинным значением периода.
Помимо тказанннх проблем на этапе анализа неадекватность строго периодической модели внзнвает некоторую неөстественность синтезируемого вокализованного сигнала.

Попытти /I/ использованұя на основе этои жесткой модели свойства квазипериодичности для корренции вокализованннх речевнх сигналов, искаженных аддитивным пумом, наталкиваются на следуюпие трудности:
I) необходимо точно определять период ос-

новного тона п признак тон/пум по за-
шумленному сигналу, что и в отсутствие пума является сложной задачей;
2) непонятно, нак устанавливать соответствие между отсчетами сигнала из разннх периодов и с накими весами следует их усреднять.

Навязывание строго⿺ периодичности с зачастую опибочным периодом приводит к "смазыванию" динамики ситнала п снижению разборчивости.

Таким образом, имеется потребность в моделй квазипериодичности, которая отражала бы изменчивость сигнала от периода к периоду, изменение самого периода, а такж была бн ненритична к ошибкам в определении периода основного тона.

MOIENL

Первнй шаг в направлении такой модели можно усмотреть в работе $/ 2 /$, в которой выражение ($1-z^{-L}$) заменяется на
 $\mathrm{I}_{\mathrm{L}}, \delta_{\mathrm{I}}$ I L определяштся по речевомы ниал. В /2/, одало для усовершенстована фактич вования корреляционноло мо основного тона и уона возоуждения. На самом риодического сигнала возоумдния учесть в деле такой вариант позволя пормы сигнаодели изменчивость периода и моддня модечной к опибкам.
В настоящей работе предлагается заме-

 причем ляться по речевому сигналу.

Во временной области предлагаемая
модель голосового источника имеет вип:
$w_{n}=-\sum_{i=0}^{1} e_{L-i} w_{n-L+i}-\sum_{1=0}^{2} E_{2 L-i " n} n-2 L+i+e_{n}$, (I)
где e_{n} - входной сигнал типа белого шіума,
w_{n} - квазинериодический смтнал голосового возбуждения
Поскольку в предлагаемой модели учииваөтся периодичность и с периодом l. периодом 2 L , вероятность груоих ошиок, нокоррелированних с истинным периодом нора здесь малосущестонн, 2 L . Tа, равен ли им образом, модель некрит мо тина удвоени K довольно частым оши тона

Результируюцая модифицированная полосная модель получаетсл, если квазитериодический сигнал w_{n} подать на вход обнчной линейной прогнозирушюй модели:

$$
\begin{equation*}
x_{n}=-\sum_{i=1}^{m} i_{i} x_{n-i}+w_{n} \tag{2}
\end{equation*}
$$

Передаточная фуниция модифииированной полосной модели имеөт вид

$$
n(z)=\frac{1}{\left(\sum_{i=0}^{m} i_{i} z^{-i}\right)}
$$

$$
\left(1+\sum_{i=0}^{1} b_{I,-i} z^{-(L-i)}+\sum_{i=0}^{2} E_{2 I,-i} z^{-(2 L-i)}\right)
$$

ИДЕНТИФИKАІИЯ МОДЕЛИ
эыта оценивания параметров модели по отрезку речевого сигнала x_{n} на осно-- правдоподобия ил
 метода линейногиния следукцего критерия:
$P(a, g, L)=\sum_{i, j} n_{i-j} \sum_{r} a_{r}^{a} r+j \sum_{s} g_{s} g_{s+i}$,
где $r_{i}=\sum_{n} x_{n} x_{n+i}, a_{0}=\sigma_{0}=1$,
$c_{i}=0$,
i $\notin\{0, \mathrm{~L}-1, \mathrm{~L}, 2 \mathrm{~L}-2,2 \mathrm{I}-1,2 \mathrm{~L}\}$.
длл решеншя этой задачи предлагается терапионннй алгоритм, наждая итерация корого состоит из двух этапов.

На первом этапе при доинсированннх нначениях параметров модели голосового ислнчени (на начальной итерации полагаем $=0$,)) осуществляется минимизадия $i_{i}=$, параметрам а , определяоиим резоо паралойства речевого тракта, что свонания

$$
\begin{equation*}
\sum_{i=1}^{m} \tag{5}
\end{equation*}
$$

$$
\sum_{j=1}^{m} R_{i-j}^{g} A_{j}=-k_{i}^{E}, 1 i n,
$$

тде $R_{i}^{g}=\sum_{j} R_{i-j} \sum_{S} g_{s} \delta_{S+j}$ - корреляишонная бунидия сигнала x_{n}, из которого путем обратно这 бильтраи

На втором этапе ори осучествляется значениях параметров я ${ }^{\text {а }}$ мом молелио голосово иинимизапия по параметрам модел этом для го источника I и L каждого возможного значения $\frac{L}{}$ наметрам g ся минимум критерия (4) по параметрам в ся минимум крит рия (4) следуащей системы

уравнений：

$$
\mathrm{i}=\mathrm{L}-1, \mathrm{~L}, 2 \mathrm{~L}-2,2 \mathrm{~L}-1,2 \mathrm{~L}
$$

где $R_{i}^{a}=\sum_{j} R_{i-j} \sum_{r}^{a^{a} r^{a} r+j}$－коррелячион－
ная функдия сигнала，из которого путем обратной фильтрашии устранена формантнал инథ̆ормагия．

Значение L ，наилучшее для дисиро－ ванного значения параметра а ，определя－ ется путем перебора

Поскольку на каждом этапе отыскивает ся глобальныи минимум по соответствущеи обобщенной ноорпинате，значөние критерия монотонно уменьтается от итерапии к ите－ рации，или же ше изменяется，если найдена точка локального минимума．Незначительное изменение критөрия в результате выполне－ ния очерөдно⿺ итерапии и неизменность па－ раметра д могут быть приняты за усло－ вие останова итерапинного алгоритма．

ДННТИФИКАІИЯ МОДЕЛМ ПО ЗАІІММ－ IEHHONT PEYEBONY CKIHAJY． КОРРЕКДИЯ СИIНАЛА

Рассмотрим теперь задачу коррениии вокализованного сигнала，искаженного ад－ дитивным пумом．Пусть на полөзннии сигнал x_{n} ，порожденний модифидрованной по－ лосной модельш，наложен аддитивннй пум d_{n} с пзвестной спентральной плотностьы， так что фактически наблодаемым является сигнал y_{n} ：

$$
y_{n}=x_{n}+d_{n}
$$

Задачу выделения полезного сигнала x_{n} поставтм нак задачу отнскания макси－ мально правдоподобных оценок сигнала x_{n} и параметров модели a ， g ， L

После пөрехода в спектральную область и выполнения простих преобразований функ－ ITM правдоподобия получаем критерий，под－ лежапшй минимизацпи：
$f\left(X, A, E, L, F_{e}\right)=2 N^{2} \ln J_{e}+$
$+\sum_{n}\left|v_{n}\right|_{n} \|\left._{n}\right|_{n} i^{2} / \sigma_{e}^{2}+\sum_{n} j_{n}-\left.x_{n}\right|^{2} /\left.\left.\right|_{n}\right|^{2}$,
где X_{n} и $Y_{n}, 0 \leqslant n \leqslant N-1$ ，－ддскретіне спектры Фурье искомого и наблддаемого сиг налов соответственно，
$\left|p_{n}\right|^{2}$－известный энергетический диск－ ретнн⿺辶 спектр пума，
σ_{e}^{2}－дисперсия сигнала возбуддения на входе модифицрованной полюсной модели， подлежащая определенио

$$
\begin{aligned}
& A_{n}=\sum_{s=0}^{m} a_{s} e^{-j \operatorname{sn2} 2 / \mathbb{N}}, \\
& G_{n}=\sum_{s} g_{s} e^{-j \operatorname{sn} 2 \pi / N}, s \in\{0, L-1, L, 2 L-2,2 L-1,
\end{aligned}
$$

Особенностью внведенного критерия яв－ ляется наличие подстраиваемого спектра G_{n} ， обратного спектральной характеристике го－ лосового источника

Для минимизаиии критерия предлагает－ ся итерационньй алгоритм，кащдая итерагия ноторого состоит из четнрех этапов，причем на каждом этапе определяется глобальный минимум по одной из четврех оообщеннах переменных x_{n}, a, g, L и σ переменных $\mathrm{X}_{\mathrm{n}},{ }^{\text {п }}, \mathrm{g}, \mathrm{L}$ п σ_{f}
при фиксированных значенилх остальных．

I－й этап．Минимизация по x_{n}
$x_{n}=\frac{\theta_{n}}{n} \frac{\sigma_{e}^{2}}{\left.\left|\mu_{n}{ }^{2}\right| \beta_{n}\right|^{2}} /\left(\frac{\sigma_{e}^{2}}{\left.\left|\mu_{n}\right|^{2} \beta_{n}\right|^{2}}+\left.\beta_{n}\right|^{2}\right)$
П－і этап．Минимизация по а CBO－ дится к решенио системы уравненый（5）с ноэффидиентами

$$
R_{i}^{E}=\sum_{n}\left|x_{n}\right|^{2}\left|G_{n}\right|^{2} \cos (2 \pi i n / N) .
$$

ㅍ－步 этап．Минимизапия по параметрам источнина осу耳ествляөтся точно так же， как в описанном выпе алгоритме идентифм назти модифицированной полюсной модөли по незапумленному сигналу，при этом

$$
R_{i}^{2}=\sum_{n}\left|X_{n}\right|^{2}\left|\Lambda_{n}\right|^{2} \cos (2 \pi i n / N)
$$

IV－і连 әтап．Минимизация по
$\sigma_{e}:$
$\sigma_{e}^{2}=\sum_{n}\left|X_{n}\right|^{2} \cdot\left|A_{n}\right|^{2} \cdot\left|G_{n}\right|^{2} /: n^{2}$
как п в случае первого алгоритма кри－ териіи монотонно уменымается от итерации к терами，либо остается неизменным，еслй значения обобщенных переменных соответст－ вначения локальному минммуму．Условие останова такое де，как и в первом алторитме．

На основании полученной оцении спөкт－ ра незапиммленного сигнала X_{n} путем ра пезашо преобразования бурье можно вы－ толит огени отсчетов псходного речево－ го сигнала во временной области．

ЗAKJIOYEHME

Предложенная модель мажет бить по－ лезна прри анализе речевых сигналов，по－ скольку она позволяет осуществить развлз ку формантной информациии и информации， рвяаннои с квазитериодическим сигналом связанноио созоувнния．

Ностотиотом модели является ее Достоинством модели в определенй пе－ уода основного тона тйа удвоения перио－ риода основного тона оти，а также отсутст－
 знаке тон／иум．

С точкыи зрения задачп коррентии за－
 отоли ратно то，что степень периодинности веса ти усродноних различннх периодов
 сигиалои， вклочапитих элемент пропзвола

Jитература
／I／．Лмм Iд．C．，Оопенхаим А．В．Коррентия п сжатие спектра запумленних речевых

，Kinan S．Y Coldberg A．J．An Fnhanced LPC Vocoder with No Voiced／Unvoiced TrC Voch vol ASSP－32，N 4， 1984.

v．MAKHONIN

Institute for problems of information transmission $101447 \underset{\text { SCII－4 }}{ } \quad$ Moscow USSR

ABSTRACT
Most of techniques for speech enlance－ ment using noise suppression suppress
discontinuously modulated discontinuous．ly modulated speech oscil
lation too．At result of discontinuously modulated oscillations suppression the quality of selected speech signal is de－ reased．One way of enhancing speech in tional decomposition of a frame of noisy speech and to attenuate a particular tra nsformed component depending on how much exceed an estimate of the background noi exceed an estimate of the background noi
se．Using a Walsh－Hadamard blocks connec－ ted by strings of zeroes results in a new
class of suppression curves which permits a tradeoff of noise suppresion against speech distortion．The algorithm has been mplemented in＂Ealips C－330＂minicompu－

INTRODUCTION

The security of vocoders，speech recog－ less than natural speech synthesizers is speech testing that technicians ignore high frequency part of telephone spectra lations is low，but these oscillations tril－ smit an important information for human hearing becouse of voise modulations． nvertion and the discontinuous an A／D co on of speech oscillations select speech riments proper play and hearing expe riments．
Differ
for enhancing the noisy speech．The result seem to point out the superiority of blo especially concerning heavy noise environ ment．Lines of Iradamard matrix are strings and elements of these strings are +1 and harmonics，while others seem like clipp－
ped phase shift keyed modulated oscilla－ ions．
Thus one string of ± 1 had been taken ly together with string of zeroes produce equence of block clipped waves．The set of such sequenses and a frame of samples
the set of scalar products． ing of step in frame processing is neglect－ tions power are components those pulsa－ background thresholds．Neglecting reduces noise components，while strongest poly－ signal and its wavefresent voised speech sequence of such accords．
The work presented here is continuation ago during a stage in UUB out ten years ago during a stage in ULB／ 2 ／and late variations representation few researches have been done $/ 5,6 /$ ．One was performed

OUTline of the polytonal transformations
The described computational tehnique has been employed according tehnique by frame processing mode．While samling frequency $=20 \mathrm{kHz}$ and frame duration $=$
51.2 msec each frame consist of 1024 sam－
ples．Frames are overlapped on half of fra－
me size，i．e． 25.6 msec ．
The frame is transfr into set of
The frame is transfr rmed into set of and elements of an elementary subsequence While transformation is block－cascade Walsh－Hadamard transformation，the ele－
mentary subsequence consist of 1 inside and 0 －es outside of blocks，accordingly． For example，if tone period $=128 \mathrm{sam}$－ ples，line seven from an Hadamard tran eight columns has been chosen and the cho－ sen block is second，the elementary sub－ sequence is represented as follows
$0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1$,
$+1,+1,-1,-1,+1,+1,+1,+1,-1,-1,+1,+1,-1,-1$,

0，0，0，（in all 128－16 $=112$ zeroes ），$-1,-1$ ， $+1,+1,-1,-1,+1,+1,+1,+1,-1,-1,+1,+1,-1,-1$, ot cetera up to 1024 th ．
After transformations of 1024 samples After transformations of（ 20 tones＊ 8 li－ nes $* 8$ blocks $=1280$ elementary subseq－ uences）have been fulfilled the second cascade of transformations to ed．By those sectimations pitch pulsations sincronuously to tones scanned．Estimati－ ons taken from this set are cosponding thresholds，those are gre－ arresponding thresholds then thresholds to seleeted，oth－ ers to be neglected
come equal zeroes．
come equal zeroes． Next steps are related Win To choose tones estimations corresponded to scanned tone collected together to transform in loga－ al pulsation levels with corresponding thresholds and select tones those level． are greather．．．and so on．
computations in format as data represent ed in Tables $\mathbb{N} 0$ No $1,2,3,4,5,6$ or to re－
write a linear combinaton of sel ected os－ Write a linear combinaton of selected os－ illations on the disk memory and
ert records hy D／A converter for hearing ert records
So，a usace of described computation process permits to select so many tones nessesary to represent signal size to uppres noise oscillations．

comments mo tables

A table or results of polytonal analysis consists of two parts， 1 eft with＂stars＂ instead of zeroes and integer nombers which represent pulsation lenard matrix． Signal time is growing from row to row on the amount of overlap between frames，i．e． summary
SUMMARY
A polytonal analysis－synthesis system to robust speech processing．The experi－ ments using the new model of speech sig－ nal indicate its power in syncls．

REFERENCES

1／Речевые тести II их применение
12／Melchonine V ．on the representation of 2／Medhonine V．On the representation of iscontinuous speech acoustical RA12／1 Rapp．diacti
Brux． 1978.

13／нахонин В．А．Изучение микровариации 13／иахонин В．А．Изучение микровариа симо－
 Гренобль I98Iг．стр． 303 －3І亡 дина наблюдения микровариации．Советско－ франгшзский симтозиум＂Акустическии диало

 ／6／Арнотьд В．И．Теория катастроб． из耳－во МІУ ．．Раупсепп．К．Зависимость ка－ чества синтезированноі́ речи от тонкой отруктури изменения основного тона．Тезис АССО－І4．ЧастьІ．Изд－во КТІ，Каунас І986I CTp／H．Nagabuchi，T．Kobayashi，F．Itakura Effect of the comb－filtering noise reduc tion method in speech analysists．Rep． Acoust．Soc．Jap．1980．S80－54．

APPENDIX

Table File：＂HA＂female speaker
File：＂HA＂female speaker Step of pitch period increasing $=1$

Table 2 ＂MA＂female speaker Length of minimal pitch period＝77 Step of pitch period increasing $=1$
Threshold for modul．selection $=0.25$

＊＊＊92＊55＊＊＊＊＊＊＊＊＊＊＊＊	94	3				00	00
	89	5		0	0	0	
	87	6		20	0	0	0
＊＊＊＊＊＊＊＊95＊3＊＊＊＊＊＊＊＊	90	5	O	1			
	91					0	
＊		9			O		
	78	14				0	
	90		0		0	\bigcirc	
	85				－	0	

	95							
	94						0	
92＊＊＊＊＊6＊＊＊＊＊＊＊＊＊＊＊	$\begin{aligned} & 95 \\ & 89 \end{aligned}$							
	88		0	1	0	0	0	
＊9＊33＊＊	88					0		
＊＊＊93＊＊＊8＊＊＊＊＊＊＊	88				0	0		
＊92＊6＊351	90				O			
	81					－		
	86			1	0	0		
	82	12						
	88						0	
	86							
＊＊＊＊＊＊＊＊＊9246＊＊＊＊＊＊								
	86							
		15	2					
	73					0		

$* * * * * * * * * * 9 * * * * * * * * *$	76	16	1	3	0	0	0	0
$* * * * * * * * * * 92 * * * * * * * *$	87	7	2	1	0	0	0	0
$* * * * * * * * * * * 91 * * * * * * *$	88	7	0	1	0	0	0	0
$* * * * * * * * * * 9 * * * * * * * * *$	89	5	2	0	0	0	0	0
$* * * * * * * * * 945 * * * * * * * *$	54	32	4	4	0	0	1	1
$* * * * * * 9 * * * * * * * * * * * * *$	88	6	2	1	0	0	0	0
$* * 98 * * * * * * * * * * * * * * * *$	80	12	3	2	0	0	0	0
$9 * * * * * * * * * * * * * * * * * * *$	85	9	1	1	0	0	0	0
$9 * * * * * * * * * * * * * * * * * * *$	78	15	1	2	0	0	0	0

finl
File: "MA" male speaker
Length of minimal pitch period=110
Step of pitch period increasing=1
Treshold for modul.selections $=0.1$

```
****943*************
******915***********
*****9**************
****91**********3***
****g***************
**93*3*7************
**988***************
****91*4************
*****978************
*******98***********
**********96*5******
***************94327
```

89	66	0	1	0	0	0	0
91	5	0	1	0	0	0	0
82	11	0	1	0	0	0	0
74	13	4	1	0	1	0	1
70	13	5	2	0	0	5	0
44	3111	2	1	1	5	1	
44	2314	4	1	7	2	0	
45	1910	9	1	4	5	1	
51	1323	1	1	2	4	0	
68	9	7	2	1	3	5	0
56	20	9	2	0	1	6	0
61	17	4	6	1	4	1	1

Table 4
File "TVM" male speaker
Length of minimal pitch period=112
Step of pitch period increasing $=2$
Treshold for modul. select. $=0.1$

```
*****94*************
***********91*******
****9***33241*******
*******9552**********
*****967*************
****9283******5*****
**9*87**************
****97**************
****98**************
*****97****4*•!**
*****9452***********
******96**5*********
***********g44******
****************9*4*
```

92	4	0	0	0	0	0	0
88	7	0	1	0	0	0	0
90	6	0	1	0	0	0	0
89	6	0	1	0	0	0	0
91	5	0	1	0	0	0	0
85	8	0	2	0	0	0	0
83	7	0	2	0	1	1	0
8310	0	2	0	0	0	0	
85	7	0	1	0	1	0	0
87	12	0	2	0	0	0	0
8211	0	2	0	0	1	0	
8211	0	2	0	0	0	0	
86	8	0	2	0	0	0	0
87	8	0	1	0	0	0	0

Table 5
File "HA environment.
Length of minimal pitch period $=166$
Step of pitch period increasing=3
Treshold for modul. select. $=0.25$

$9 * * * 5 * * * * * * * * * * * * * * *$	60	13	9	8	2	2	0	0	
$* * * 97 * * * * * * * * * * * * * * *$	60	7	5	0	4	4	4	0	
$* * * * * 96 * * * * * * * * * * * * *$	36	33	5	1	7	2	2	1	1
$* * 7 * 4 * * * * * * * * 5 * * * * * *$	52	25	8	3	2	2	2	1	
$* 94 * 8 * * * * * * * * * * * * * * *$	46	31	5	7	2	2	2	1	
$9 * * 3 * * * * * * * * * * * * * * * *$	74	9	3	5	3	0	0	0	
$9862 * 51 * 1 * * * * * * * * * * *$	64	15	4	4	2	2	2	2	
$96 * 7 * * * * * * * * * * * * 2 * * *$	55	18	8	6	4	1	2	2	
$92 * * * * 83 * * * * * * * * * * * *$	58	21	8	4	2	1	1	0	
$976 * * * * * * * * * * * * * * * * 2$	61	19	8	4	1	0	1	2	
$98 * 4 * * * * * * * * * * * * * * * *$	61	21	4	4	2	1	2	1	
$96 * * * * 6 * * * * * * * * * * * * *$	55	15	5	5	4	6	2	2	
$* * * * * * * * * 91 * * * * * * * * *$	64	14	9	3	1	1	2	1	

EXTRACTION OF SPEECH IN ACOUSTICAL INOISE BY MARKOV FILTERING
A.V.MININ

Y.N.PROKHOROV

Moscow Telecommunication Institute, USSR, 111024

This paper presents a general approach to the improvement of speech intelligibility in broad band acoustical noise. By using the methods of Markov filtering the digital processing algorithms of noise-added speech are being synthesized and their experimental study is being carried out.

INTRODUCTION

The telephone communication systems and the systems of automatic man-machine communication by voice often operate in a severe broad bend acoustical noise situations. The organising protective measures and the compensation techniques do not always provide the effective noise suppression. In such cases the signal-noise ratio (SNR) of the microphone output may be $0-3 \mathrm{db}$, and the intelligibility S may be $40-50 \% / 1,2 /$. The special digital processing for noise reduction is applied but it doesn't allow to increase intelligibility sufficiently so far /1,2/. The aim of this paper is to develop the effective processing methods by using Markov filtering.

PORMULATJON OF THE PROBLEM

In interval the duration of which is about $20-50 \mathrm{~ms}$ the mixture of signal

$$
\begin{align*}
& \text { and noise is } \\
& z_{t}=x(\vec{\lambda}, t)+n_{t}, t=0, \pm 1, \pm 2, \ldots, \tag{1}
\end{align*}
$$

where $\vec{\lambda}=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right)^{T}$ - is a vector
of parameters describing the articulation apparatus state $(A x A) ; \boldsymbol{x}(\vec{\lambda}, t), n_{t}-$ the sample sequences of speech signals (SS) and noise. Because of the low accuracy of articulatory organs the parameters take a continuous set of values.
For the automatic recognition (reception) of corrupted speech the values of parameter $\vec{\lambda}$ should be classified. However, in the process of extraction it is quite enough while using z_{t} to formulate such signal $u\left(\vec{\lambda}^{*}, t\right)$ on hearing of which the maximum intelligibility is achieved: $S_{\text {max }}^{(z)}=S^{(u)}$, where $S^{(X)}, S^{(u)}$ - is the intelligibility of signals \mathcal{Z}_{t} and $\underset{\rightarrow}{u}\left(\vec{\lambda}^{*}, t\right)$ respectively. Since $\underset{\vec{\lambda} *}{a}$ vector $\vec{\lambda}$ or an respectively. sincen function $\left(\vec{\lambda}^{*}\right)$ is classified in. the process of human perception, the value of $\vec{\lambda}^{*}$ should be chosen in such a way that $\varepsilon_{\lambda}^{2}=E\left[\vec{\lambda}^{*}-\vec{\lambda}\right]^{\top} Q_{\lambda}\left[\vec{\lambda}^{*}-\vec{\lambda}\right]=$ min where E - mathematical expectation operation, $Q_{\lambda^{-}}$a weighted coefficient matrix. The minimum attainable value $\varepsilon_{\lambda}^{2}$ is defined by Kramer-Rao's inequality.
So the problem of speech extraction is interpreted as the construction of the
best estimation of $\vec{\lambda}$ and the creation of the signal $u\left(\vec{\lambda}^{*}, t\right)$ with $S^{(u)}=$ max. A gene ral diagram of the extraction device is given in fig. 1 , where CD is a controlling human ear perception system device.

Fig.1. A General Diagram of Speech Extraction

SIGNAL AND NOISE MODELS

For the best evaluation of $\vec{\lambda}$ the adequate models of signal and noise are required. The simplest model of the broad band noise is a Gaussian sequence n_{t} with $E n_{t}=0, E n_{t}^{2}=\sigma_{n,}^{2} E n_{t 1} n_{t 2}=0, \forall\left(t_{1} \neq t_{2}\right)$. The more precise model is the process of autoregression

$$
\begin{equation*}
v_{t}=\sum_{i=1}^{L} \alpha_{i} v_{t-i}+\mu_{t}, L=2 \div 10 \tag{2}
\end{equation*}
$$

where α_{i} is evaluated a'priory by the noise realization by means of a leastsquare technique with limitations. One can use the orthogonal projections as the forms of limitations/3/.
The signal is modelled by a nonlinear autoregressive process

$$
\begin{align*}
& y_{t}=\beta \varphi\left(y_{t-1}\right)+b_{y} \eta_{t-1} \tag{3}\\
& x_{t}=\sum_{i=1}^{m} a_{i} x_{t-i}+c y_{t-i}+b \xi_{t-1} \tag{4}\\
& \vec{\lambda}=\left(\beta, a_{1}, a_{2}, \ldots, a_{m}\right)^{T}, m=2 \div 10 \tag{1}
\end{align*}
$$

The function φ is found on the synthesis
stage from the condition:
$\min E\left|\varepsilon_{x}(t) \varepsilon_{x}(t-\tau)\right|$,
$\varepsilon_{x}(t)=x_{t}-\beta \varphi\left(x_{t-1}\right), \tau=$ const The result is shown in fig. 2 .

Fig.2. The funation of Excitation
To reduce the number of the parameters evaluated model (3), (4) may be written in the following way:
$x_{t}=\sum_{j=1}^{N} \lambda_{j} \psi_{j}\left(x_{t-1}, x_{t-2}, \ldots, x_{t-m}\right)+b \xi_{t-1}$ where $N=2-6$ and the orthogonal functions ψ_{j} are found experimentally. To do this on the speech signal of a concrete speaker the set of the parameters values is defined in models (3),(4), then a set of autoregression functions is given
$\psi\left(x_{t-1}, x_{t-2}, \ldots, x_{t-m}\right)$, and the Karunen-Loev basis is built for it.
the evaluation of the possible intelilgiBility

The intelligibility $S_{m a x}^{(z)}$ ated in $S_{\text {max }}$ may be evaluated in the presence of noise with an average flat spectrum. Consider
$z_{t}^{(1)}=x(\vec{\lambda}, t)+n_{t}, z_{t}^{(2)}=f[x(\vec{\lambda}, t)]+n_{t}$.
Chose the function f so that $S^{\left(\mathcal{Z}_{2}\right)} \approx S_{\max }^{\left(z_{2}\right)}$ For example f may be the central clipping function. According to the articulatory tests $S^{\left(z_{1}\right)}, S^{\left(z_{2}\right)}$ may be found for different $S N R_{1}, S N R_{2}$ and the threshold of the clipping $x_{\text {thr }}$ Putting down the Kra-mer-Rao's inequalities the formulas for $\varepsilon_{\lambda_{1}}^{2}\left(S N R_{1}\right)$ and $\varepsilon_{\lambda 2}^{2}\left(S N R_{2}\right)$ can be obtained. In the situation where $\varepsilon_{\lambda 1}^{2}\left(S N R_{1}\right)=$
$=\varepsilon_{\lambda 2}^{2}(S N R)$ we can find a family of curves with the equal reception accuracy: $S N R_{1}=\varphi_{\varepsilon}\left(S N R_{2}\right) \quad$ with parameter $x_{\text {thz }}$. How the estimation $S_{\text {max }}^{\left(z_{1}\right)}$ can be obtained in the following way: by using $S N R_{1}, x_{t h z}$ and function $\varphi_{\varepsilon_{2}}$ we cen find $S N R_{2}$, where, $\hat{S}_{\text {max }}^{(,)}=$ $\varepsilon_{1}^{2}\left(S N R_{1}\right)=\varepsilon_{12}^{2}\left(S N R_{2}\right)$. Then $S_{\text {max }}=$ $=\varepsilon_{\chi_{1}\left(z_{2}\right)}^{\lambda_{1}}\left(S N R_{2}\right) \leqslant S_{\max }$ and $\Delta S^{\left(z_{1}\right)}=\hat{S}_{\max }^{\left(z_{1}\right)}$ $=S^{\left(z_{2}\right)}\left(S N R_{2}\right) \leqslant S_{\max }^{\left(z_{1}\right)}$ and $\Delta S\left(I_{1}=S_{\text {max }}\right.$ - $S^{\left(Z_{1}\right)}$ is a possible benefit in intellig bility in digital proces
rupted speech $\boldsymbol{Z}_{t}{ }^{(1)}$.
the filtering algceithis
For the simplification we can take $g(\vec{\lambda})$ as a mutually unique continuous (unknown) function. It can be shown that in this case $u\left(\vec{\lambda}^{*}, t\right)=x\left(\vec{\lambda}^{*}, t\right)$
and ase man sperch syntheintlead of (3), (4) sizor operating according (3), (4) Thus, the extraction of algorithm No.1: formed according to the ${ }^{\text {testimation of }}$ - synthesis $x\left(\vec{\lambda}^{*}, t\right)$ " "estimation of λ - synthesis $x(\lambda, t)$, (analysis-synthesis). If $b E \xi_{t}^{2} \ll E x_{t}^{2}$, then the algorithm No. 1 is very olose effectiveness to the mutual evaluation of $x, \vec{\lambda}$ y or to the "adaptive filtering" , λ, y orth $N o .2$. If there are pauses the algorithm and the consonents in in conversation and forithm No. 3 "a mutual speech, then the algorl filtering of evaluation of parameters, speech and classification of tone-conso-nant-pause" is quite optimal.
The above mentioned algorithms are synthesized by the maximum of a'posteriory probability criterion in $/ 4,6 /$ by using Harkov filtering technique $/ 5 /$.

EXPERTMENTAL RESULTS

Testing of algorithms No.1-3 are performed Testing of alth the sampling on the speech signal with the number of
quantizing levels 2^{12}. In fig. 3 the power spectral densities of the initial $\left(G_{x}\right)$, the processed $\left(G_{x}^{*}\right)$ signals and the noiseadded speech (G_{z}) are shown for the word "geücmbue" (algorithms No.3, 1). In fig. the curves of likelihood function Λ and the current signal power $E X_{t}^{2}$ recieved the currenticulatory tables of syllables on the articulatory are shown. The probawithout any pauses arcation error of tonebility of a classification $3 \cdot 10^{-2}$ with a consonant-pause is about 31 with a zero threshold. In Table No, 1 the results of tests are shown, where $\triangle S N R$ is a beneflt

Fig. 3. Signal spectrum G_{x}, G_{x}^{*}, G_{z} Thammanman : Hammanmot

$N O \cdot$	$3-1$	2	3
$\triangle S N R$ 7	$6-7$	$10-12$	

in $S N R$ ，the number of algorithm 3－1 is a sequential application of the algo－ rithms N3 and N1．These results are achieved for the noise with close to an average flat spectrum and model（3），（4）． In pauses the mixture of z_{t} is multiplied to a coefficient $q<1$ ．The coef－ ficient of noise power in filters is chosm experimentally．
In Table No． 2 the signal－error prediction ratio（SER）for models（4），（5）which is achieved on the initial speech signal is given．There the results of algorithm No． 2 with（5）in noisy environment because of the engines operation．
In Table Π is percentage of the real favours given by the listeners to the processed signal．The number of listeners is 20－25．

Table 2

Model	SER， dB, for N				
	2	4	6	$\%$	\triangle SNR
(4)	21,3	24,7	26,5	-	$2-3$
(5)	26	27	27,3	$85-88$	$3-5$

CONCLUSION

The method of intelligibility improvement in noisy environment is worked out．The in noisy environment is worked out．The cessing for noise with long－term average flat spectrum is evaluated．By using the Markov filtering techniques the algo－ rithms of mutual speech filtering，the parameters evaluation and the classifica－ tion of tone－consonant－pause are deve－ loped．The algorithms provide the improve－ ment of the corrupted speech intelligibi－ lity in broad band noise and can be tech－ nically done on the mikroprocessor devices Am 2900.

BIBLIOGRAPHY

1．H．Suzuki，J．Igurashi，Y．Ishii．＂Extrac－ tion of Speech in Noise by Digital Fil－ tering＂，J．A．S．of Japan，v．33，No．8， 1977，pp．405－411． 2．D．Graupe，J．Grosspietsh，S．Basseas． ＂Self Adaptive filtering of Environmental Noises from Speech＂，Proc．AIAA／IEEE 6－th Dig．Avionics Syst．Conf．，Bultimor，MD， 1984，N．Y．，1984，pp．263－269． 3．А．В．ㄴинин，О．Н．Прохоров．＂Оцениа пара－ метров речевых сигналов методом наимень－ ших квадратов с ограничениями＂，Электро－ связь，防，1986，с．26－29．
4．D．H．Прохоров．＂Статистические модели и рекуррентное предсказание речевых сигна－ лов＂，Радио и связь，I984．－СТС，вып． 20. 5．A．P．Sage，J．L．Melse．Estimation Theory with Application to Communication and Control，N．Y．，MeGraw－Hill， 1972. 6．月．В．Назаров，1О．Н．Прохорсв．＂淂тоды циф－ ровой обработки и перепачи речевых сигна－ лов＂，Радио и связь， 1985. ．

Hisao Kuwabara
ATR Interpreting Telephony Research Laboratories Twin 21 Bldg. MID Tower 2-1-61 Shiromi Higashi-ku Osaka 540 Japan

Tohru Takagi

NHK Science and Technical
Research Laboratories
1-10-11 Kinuta Setagaya-ku
Tokyo 157 Japan

ABSTRACT

An analysis-synthesis system which is capable of independent manipulation of acoustic parameters has been developed to investigate the contribution of these individual parameters to the speech quality. Formant frequencies and their bandwidths were used as the acoustic parameters to characterize the vocal tract configuration, and pitch frequency as the voice source. This paper describes a way how to control the voice quality of natural speech by manipulating the fommant frequencies. Formant trajectories extracted from a natural speech were modified to alter their up-and-down oscillation to some extent, and the resultant speech wave was synthesized by the above mentioned method to present to listeners for the judgment of voice quality. It was found that the speech intelligibility was improved to some extent when the movement of time-varying formant pattern was slightly emphasized, but too much emphasis would cause degradation of the voice quality.

1. INTRODUCTION

This paper deals with a way of controlling the voice quality of natural speech. An analysissynthesis method has been developed which is capable of independent manipulation of such acoustic parameters as formant frequencies, their bandwidths and pitch frequency [1]. Using this system, voice quality of natural speech has been controlled by changing formant trajectories that are supposed to have a close relation to such voice qualities as intelligibility, cleamess and so on.

According to our previous study [2], acoustic characteristics of professional announcers speech, which is considered to be the most intelligible or the clearest, lies in the dymamics of pitch and formant frequencies. The dynamic range of these features for the announcers speech is signifi-
cantly large compared to that for the nonprofessional speakers. Correlation analysis between psychological and acoustic distances reveals that the formant trajectory has the largest correlation with the voice quality of the announcer's speech sounds, followed by pitch frequency. This result suggests that the quality of speech sound of non-professional speakers may possibly be improved by altering the dynamics of formant trajectory patterns.

Based on the experimental evidence mentioned above, an experiment has been performed to change and inprove the quality of natural speech making use of the analysis-synthesis system. Formant trajectories are extracted first from voiced portions by LPC method and the dymaics of these trajectories are altered depending on the formant pattern itself. The method for altering the fommant pattern is the same as that we have proposed earlier for the nomalization of vowels in connected speech [3]. This method is applied to the formant trajectories extracted from natural speech, and the quality-controlled speech sounds are synthesized using the analysis-synthesis judgment.

2. ANELYSIS-SYNTHESIS SYSTEM

Fig. 1 iilustrates the block diagram of the analysis-synthesis system. Low-pass filtered input speech was digitized in 12 bits at a rate of 15 kHz . A short time LPC analysis based on the autocorrelation method was perfomed to obtain LPC coefficients and the residual signals. Formant frequencies and their bandwidths were estimated by solving a polynomial equation. A modification of the spectral envelope is equivalent to a manipulation of the coefficients that would result in a frequency response of the filter equal to the modified envelope. These acoustic parameters

Fig. 1 Block diagram of the analysis-synthesis system to modify formant frequencies.
(pitch periods, LPC coefficients, formant frequencies, bandwidths, residual signals) wer stored for later synthesis.
Let $z_{i}=r_{i} \exp \left(j \omega_{i}\right)(i=1,2 \ldots \ldots, p)$ stand for the roots corresponding to the formants to be changed. Formant frequencies and/or their angular frequencies ω_{i} and by changing related coefficients poles $\widetilde{\mathrm{z}}_{i}$ becone the roots of a net pall

$$
\begin{equation*}
z^{p}+\widetilde{a}_{1} z^{p-1}+\ldots+\widetilde{a}_{p-1} z+\widetilde{a}_{p}=0 . \tag{1}
\end{equation*}
$$

Calculation of $\widetilde{\mathrm{a}}_{\mathrm{i}}(\mathrm{i}=1,2, \ldots, \mathrm{p}$) is performed simply by camparing terms of the same order on both sides of the following equation,

$$
\begin{array}{r}
\left(z-\widetilde{z}_{1}\right)\left(z-\widetilde{z}_{2}\right) \ldots\left(z-\widetilde{z}_{\mathrm{p}}\right)= \\
z \mathrm{p}^{\mathrm{p}}+\widetilde{\mathrm{a}}_{1} z^{p-1}+\ldots
\end{array}
$$

$$
\begin{equation*}
\cdot+\widetilde{\mathrm{a}}_{\mathrm{p}-1} \mathrm{z}+\widetilde{\mathrm{a}}_{\mathrm{p}} \tag{2}
\end{equation*}
$$

The modified vocal tract model $\widetilde{V}(z)$ is then given by,

$$
\begin{equation*}
\widetilde{\mathrm{V}}(\mathrm{z})=1 /\left(1+\sum_{i=1}^{P} a_{i} z^{-i}\right) \tag{3}
\end{equation*}
$$

where $\left\{\widetilde{a}_{i}\right\}$ are the solutions of equation (2). The modified vocal tract model $\widetilde{\mathrm{V}}(\mathrm{z})$ has the desired frequency characteristics. If the spectral manipulation is too large, some discontinuities are found to occur at the boundary of each frame, which eventually cause a typical buzzing. To cope with this, a simple time domain manipulation has been performed. In this experiment, half the analysis window is set as the period of frame shift. Output speech wave from the modified vocal
tract model $\widetilde{\mathrm{V}}(z)$ for each frame is multiplied triangular time window. The is multitiplied by a triangular window is camposed so that the sum of the gain at any instant within the overlaped portion between two successive frames becomes The resultant speech is obtained by adding
k-th FRAME
$\mathrm{k}+1$-th FRAME

\downarrow ADD

SYNTHETIC SPEECH WAVE

$$
\xrightarrow[t_{0}]{\text { Ahat }}
$$

Fig. 2 Method of obtaining high quality synthetic speech
successively speech waves between adjacent two frames. This process is illustrated in Fig. 2.

3. ALTERATION OF FORMANT TRAJECTORY

3.1 Formant Trajectory Extraction

Low-pass filtered input speech was digitized at a rate of 15 kHz , and the linear predictive analysis was made to find formant frequencies. adopted with order 14 for the inverse filter was and the frame period, 10 ms . Silent intervals and voiced/voiceless distinctions were made based on the speech power and the first order PARCOR coefficient, respectively. Formant frequencies for each frame were extracted from a set of 7 poles using the method proposed by Kasuya et al [4] and a smoothing was made by averaging fommant data
over three over three consecutive frames.
$\frac{\text { 3.2 Formant Trajectory Change }}{\text { Modification }}$
Modification of formant trajectory was conducted in such a way that the preceding and present value with the same contributed to the differences from the present were equal, and that the amount of contribution was proportional to the difference from the present acoustic feature [3]. This process is 11lustrated in Fig. 3. Suppose the curve $x(t)$ be an actual time-varying pattern of a formant frequency, the new value $y(t)$ is defined as the sum of the original value $x(t)$ and the

Fig. 3 Illustration of how to change the formant trajectory.
additional term of contribution by contextual information. The contribution is assumed to be a weighted sum of differences between values at thus, resent time t and at different time $t \pm$. Thus, $y(t)$ is given by

$$
\begin{equation*}
y(t)=x(t)+\int_{-T}^{T} w(\tau)(x(t)-x(t+\tau)) d \tau \tag{4}
\end{equation*}
$$

W(T) is weighting function which is given as
$w(\tau)=\alpha \cdot \exp \left(-\tau^{2} / 2 \sigma^{2}\right)$.
In this study, $T=150 \mathrm{~ms}$ and $\sigma=52 \mathrm{~ms}$ were experimentally decided. Given $\alpha>0$, the dynanius of the original fommant trajectory is
wille for $\alpha<0$, it becomes de-enphasized. the three Equation (4) is applied to eacconsonant (but formant trajectories wilnout) distinction.
4. PERCEPTION OF QUALITY-CONTROLLED SPEECH

As described in the previous section, dymamic ovenent of formant frequency is one of the most important acoustic factors that characterize clear and intelligible voice. Change of voice quality to improve the cleamess of intelligibility should, therefore, be done by modifying the dymanics of formant frequency. In on voice quality describe a perceptual exper

[^4]signals were obtained to present to listeners for uality judgment. Following is the process of speech synthesis.
(1) Speech waves are digitized with 15 kHz sampling rate and 12 bits accuracy. Analysis is made based on the system shown in Fig. 1 with a mans analysis frame multiplied by the Harming 20ms analysis frame multiplied The orders for window and 14 for male and 10 for female voices, and the predictor coefficients and the residual sigals for each frame are stored.
(2) Formant frequencies of the first three are calculated fram the predictor coefficients for each frame, and their trajectories over he en [4] word are estimated using a tracking algorithm [4]
(3) Equation (4) is applied independently to each formant trajectory and new frequencies down to each frame are calculatain, by the method described oofficients are obtain, formants higher than the fourth and voiceless consonants remain unchanged.
(4) A vocal tract model is formed using the new predictor coefficients, given in equation (3), and the speech signals are obtained by inputting the residual signals to the model.

A nonsense word /a oi u e/which consists of A nonsense word five Japanese vowels was used a concatenation of the speech material. As mentioned before, same discontinuity would occur at the boundary between discontinuity would if we simply connect speech two successin the two frames without overlap, which signals cause degradation of speech quality. Fig. shows a method how to avoid this sort degradation.

In equation (5), constant α represents a scale factor which controls the anour formant modification when it is applied to a pattern trajectory as in equation (4). of formant movenent $\mathrm{for} \alpha=0$, and de-emphasized positive, unchanged fig. 4 represents an example for negative ralectories of a speech sample used in of formant trajectorles experiment before and after the perceptal applying Eq. (4).
4.2 Result of Perceptual Experiment

The above mentioned nonsense word was used as speech material and two speakers, mal speed. female each, read the ranging from -15.3 to 15.3 seven different values, ranging fran selected as the factor α to
including zero were sel

Fig. 4 An example of formant trajectory modification: original(solid lines) and modified(dashed lines).
get synthetic speech samples to be examined. Five female listeners, who never heard the speakers voices before, participated in the experiment. For each speaker, seven speech samples were paired and the listeners were asked to judge which one of a dyad sounded more intelligible or clear by comparison.

Fig. 5 Results of perceptual experiment on voice quality for 1 . 1 ale and female speakers.

Fig. 5 shows the result for speech samples of each speaker. The abscissa represents the factor α and the ordinate is a psychological distance. This distance is similar to JND (Just Noticeable Difference) distance, and 1 means that the perceptual difference between the two stimuli is greater than 50 percent chance level.

Being $\alpha=0$ the reference of comparison, the results show that, in general, the voice quality becomes intelligible as the factor α increases. For male speaker's voice, however, it goes maximm when $\alpha=10.2$ and goes down rapidly for larger α. This speaker dependency is caused by the degradation of quality by emphasizing the frequency movement too much and partially losing the phonetic quality.

In general, voice quality was found to be improved for the factor somewhere between 5 to 10 . The factor greater than 10 , however, sametines gives the speech an improved quality but sometimes degraded quality depending on speakers.

CONCLUSIONS

Time-varying dynamic pattern of formant frequencies which is the main factor to contribute to the clearness or intelligibility has been modified using an analysis-synthesis system and perceptual experiment has been performed on the voice quality. It was found that the voice quality was improved to some extent when the dynamics was properly emphasized.

References

[1] H. Kuwabara, "A pitch synchronous analysis/ synthesis system to independently modify formant frequencies and bandwidths for voiced speech," SPEECH COMUNICATION, Vol. 3 (1984) pp.211-220
[2] H. Kuwabara, K. Ohgushi, "Acoustic characteristics of professional male announcers' speech sounds," ACUSTICA, Vol. 55 (1984) PP.233-240
[3] H. Kuwabara, "An approach to nommalization of coarticulation effects for vowels in connected speech," J. Acoust. Soc. Amer., Vol. 77 (1985) pp.686-694
[4] H. Kasuya et al, "An algorithm to choose formant frequencies obtained by linear prediction analysis method," Trans. IECE Japan Vol.J66-A (1983) pp.1144-1145

SPEECH ENHANCEMENT*

by

Jae S. Lim
Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science
Cambridge, Massachusetts, USA

ABSTRACT

There has been considerable interest in recent years on the problem of enhancing degraded speech. This interest is motivated by several factors including a broad set of important applications and the apparent lack of robustness in recent speech compression and recognition systems. One objective of this paper is to provide an overview of various techniques that have been proposed for enhancement of speech. Another objective is to suggest some directions for future research in the speech enhancement problem.

I. Introduction

The objective of speech enhancement may be to improve the overall quality, to increase the intelligibility, to reduce the listener fatigue, etc., and there exists a wide variety of contexts in which speech enhancement is desirable. For example, environments such as offices, streets. and motor vehicles in which the interfering background noise has been introduced are common, and the interfering noise generally degrades the intelligibility and quality of speech. Other examples in which the need for speech enhancement arises include correcting for reverberation, correcting for the distortion of the speech of underwater divers breathing a helium-oxygen mixture, correcting for the distortion of speech due to pathological difficulties of the speaker, and improvement of normal undegraded speech for people with impaired hearing.

Engineers and researchers in various disciplines have shown considerable recent interest in speech enhancement. Among these are engineers working on speech communication problems such as developing robust vocoders and audiologists helping people with impaired hearing. This recent interest is due in part to rapid advances in hardware technology that allow sophisticated signal processing algorithms to be implemented in real time. This interest is likely to continue as speech enhancement systems find more practical applications. One main objective of this paper is to provide a review and survey of past and current research on speech enhancement.

The approach to speech enhancement taken varies considerably depending on the context in which the problem arises. For example. the type of processing indicated for enhancing speech degraded by additive noise is different from that suggested for enhancing speech degraded by echoes. This paper addresses speech enhancement in three different

[^5]broad contexts which were selected for their common occurrence in practice and for the existence of some major research results. Section II considers the problem of enhancing speech which has been degraded by additive noise. Fven though this problem has received considerable attention in recent literature and is rich with sophisticated signal processing. major unsolved problems offer considerable room for further research. Section III considers the froblem of enhancing speech degraded by reverberation or echoes. Systems that are successful in reducing room reverberation or telephone network echoes have been developed and discussed in this section. Section IV considers the problem of slowing down or speeding up the apparent rate of speech. Potential applications exist in which even undegraded original speech is enhanced by such processing. For example, people with impaired hearing or who are learning a foreign language may prefer the slowed-down speech to the original undegraded speech. Section V concludes this paper with an attempt to identify some of the potential future research topics on the speech enhancement problem.

II. Enhancement of Speech Degraded by Additive Noise

The problem of enhancing speech degraded by additive noise received considerable attention in the literature in the past ten years and a variety of systems have been proposed. Such an interest in this problem was motivated partly by the desire to improve the robustness of vocoders such as linear prediction vocoders which degrade quickly in performance as
noise is added and partlo additive noise in speech appeared to be a relatively simple problem. In this section, we discuss some of the representative speech enhancement systems which attempt to reduce the additive noise. We first discuss the case when the degradation is due to additive random noise and then the case when the degradation is speechlike noise.

Let $s(n), d(n)$, and $y(n)$ denote speech. additive noise. and degraded speech. respectively. so that

$$
\begin{equation*}
y(n)=s(n)+d(n) \tag{1}
\end{equation*}
$$

where $d(n)$ is uncorrelated with $s(n)$. One approach to restore $s(n)$ from $y(n)$ is to exploit the long-term characteristics of $s(n)$ and $d(n)$. Specifically, the average speech spectrum decays with frequency at approximately 6 dB/octave and assuming that the power spectrum of the background noise is known or can be estimated such as from the silence intervals of the degraded speech, a time-invariant Wiener filter may be used to estimate $s(n)$ from $y(n)$. The Wiener filter is the best linear filter in the sense that no other linear filter leads to a smaller mean square error between $s(n)$ and $\hat{s}(n)$. the estimate of $s(n)$. under the assumption that $s(n)$ and $d(n)$ are samples of stationary random
processes. The frequency response, $I(\omega)$, of the non-causal,
Wiener fither is given by

$$
H(\omega)=\frac{P_{s}(\omega)}{P_{s}(\omega)+P_{d}(\omega)}
$$

In equation (2). $P_{s}(\omega)$ and $P_{\rho}(\omega)$ represent the power spectrum of the signal and the additive random noise uncorrelated with the signal respectively. The Wiener filter can be
quite effective in applications in which the spectrum of the signal and the background noise do not overlap significantly or the back ground noise is narrow-band such as in the case
of sinusoidal interferences al interferences.
Another approach to speech enhancement is to exploit some perceptual aspects of human speech. One such system
was proposed by Drucker [1]. Based on some perceptual tests. Drucker concluded that one primary cause for the
intelligibility loss in speech degraded by wide-band random ntelligibility loss in speech degraded by wide-band random
noise is the confusion among the fricative and plosive sunds which is partly due to the loss of pauses immediately before the plosive sounds. By high-pass filtering one of the fricative
sounds, the $/ \mathrm{s} /$ sound, and inserting short sounds, the /s/ sound, and inserting short pauses before the
plosive sounds, Drucker claims a significant improvement in interligibility. The system considered by Drucker assumes hat the locations of the plosive and fricative sounds are accurately known, whi
tion for degraded speech.
Another class of speech enhancement systems exploits he notion that it is principally the short-time spectral mag nitude rather than phase that is important for speech intelli-
gibility and quality. In this class of systems speech is first windowed, the short-lime spectral magniuded
and of speech is estimated from the windowed degraded speech. and then ennanced speech is obtained by inversse-
transformin the estimated short-lime transforming the estimated shori-time spectral magnitude
combined with the phase of the windowed degraded speech. A number of different methods to estimate the short-time spectral magnitude of speech from the windowed degraded
speech have been developed both theoretically and spelch have been developed both theoretically and heurist
cally. In one method referred to as "power spectrum $\mid S^{|S(\omega)|^{2}}{ }^{2}$ it estimart-time spectral magnitude of speech
$\varepsilon_{*}\left(\omega| |^{2}=\mid\left. Y_{\omega}\left(\omega| |^{2}-\left.E| | D_{w}(\omega)\right|^{2} \mid\right.\right.$ for $\left.\left|Y_{\omega}(\omega)\right|^{2}\right\rangle E| | D_{\omega}(\omega)\right|^{2} \mid$
otherwise

In equation (3). $\left|\hat{S}_{w}(\omega)\right|^{2}$ is an estimate of $\left|S_{w}(\omega)\right|^{2}$,
$\left|Y_{w}(\omega)\right|$ and $\left|D_{w}(\omega)\right|$ are the Fourier transform magnitudes of the windowed noisy speech and the windowed add tive noise, respectively, and $E\left[1 D_{w}(\omega){ }^{2}\right]$ denotes the aver
age $\left|D_{w}(\omega)\right|^{1}$. A speech enhancement system based generalization of equation (3) is shown shytem in Figused on a
figure, if the result a fter subtraction of 1 . In the figure, if the result a after subtraction of in Figure 1,2 In the
than zero, it is set to zero. When the constan 1 I 1 is less figure equals 2 , the system corresponds to the power spec trum subtraction method. The system in Figurerer 1 was
evaluated by $[2]$ using nonsense sentences as evaluated by [2] using nonsense sentences as test material
when the degradation is wide-band random noise for when the degradation is wide-band random noise fo
$a=2,1,1 / 2,1 / 4$. The results of the test show that the intel ligibility is not improved at the S / N ratios at which the
intelligibility scores of unprocessed intelligibility scores of unprocessed nonsense sentences range
between 20 and 70 percent. However. processed speet betwen 20 and 70 percenc. However. processed speech with
$a=1$ or $1 / 2$ sound distinctly "less noisy" and of "higher quality" at relatively high S / N ratios T The system in Figure
with $a=1$ was also evaluted $[3]$ with $a=1$ was also evaluated [3] when the degradataion is
due to helicopter noise. The results based on Diagnostic due to helicopter noise. The results based on Diagnostic
Rhyme Test indicate that at the S / N ratio at which the intel ligibility score of unprocessed speech material is about 84

Figure 1. Generalization of Power Spectrum Sublrac tion Method for Speech Enhancement
percent. the system does not improve intelligibility, but improves quality. Other methods of estimating the shorl-
time spectral magnitude of speech have not been carefully evaluated using a subjective test. but appear to have similaperformance to that of the system in Figure 1.
Another approach to speech enhancement is to exploit the observation that waveforms of voiced sounds are periodic. Specifcally. the periodicity of a time waveform
manifests itself in the frequency domain as harmonics with the fundamental frequency corresponding to the period of the time waveform as shown in Figure 2. In Figure 2(a) is shown a segment of a periodic time waveform, and in Figure
$2(b)$ is shown the associated magnitude spectrum. As is evident in Figure 2 (b) , the energy of a periodic signal is concen-
rated in tands of frequences inated in bands of frequencies. Since the interfering signals in general have energy over the entire frequency bands. to
the extent that accurate information of the fundamental frequency is available, a comb filter as shown in Figure 2(c) clan
reduce noise which is based in the comberving filtering signal. An adaptive fitt and which part
tally tially accounts for the fact that voiced speech is por-
approximately periodic has been developed by Frazier ot al.
and approximately periodic has been developed by Frazier, et al.
4]. This algorithm with a small improvement was evaluated in $[5]$ using nonsense sentences as test material

gure 2. (a) A Periodic Time Waveform
(b) Spectral Magnitude of the Waveform in (a)
(c) Frequency Response of an Ideal Comb Filter

The pitch information used in the processing was obtained from the noise-free speech. The results of the test show that ven with accurate pitch informantiligibility at various S / N achnique tendite the decrease in intelligibility, speech proatios. Despite the decrease in ind "less noisy" due to the
essed by an adapive filter sounds
s.
Another approach to speech enhancement attempts to xploit the underlying"model for speech production. In this approach, speech is typically modelled by the response by an
linear system, representing the vocal tract. driven by excitation function which is a periodic pulse train for voiced
sulds and wide-band random noise for unvoiced sounds. as sounds and wide-band random noise for unvoiced sounds as
is illustrated in Figure 3 . Since the vocal tract changes its is illustrated in Figure
shape as a function of time. the digital filter in Figure 3 that
and represents the vocal tract is in general time-varying. How-
ever, over a short interval of time, the digital filter may be ever, over a short interval of lume, the digitian . In a spech
approximated as a linear time-invariant system. approximated a chnique that exploits the underlying model of
enhancement tect spech. the parameters of the speech model are first estimated
and then speech is generated by a synthesis system based on and then speech is generated todel or by designing a filter
the same underlying speech model the same undiriting speed parameters and then filtering the
with the estimated model noisy speech. Several different speech enhancement syster
have been developed by using this approach with the vocal have been developed by using this approach wite the wit
tract modelled by an all-pole or pole-zero system and wither the spech model parameters estimated by the maximu likelihood method that accounts for the presence of noise
The performance of thes systems has not been evaluated by a subjective test. Informal listening. however, indicates tha the quality of speech is improved eech intelligibibily is not clear

The speech enhancement systems discussed above ar pplicable to the case when there is one degraded input
When more than one input is available for processing hen more than one may be possible. For example, each of
urther enhancement the individual inputs may be processed separately using the
speech enhancement systems discussed above and then ppropriately combined. In addition to processing different puts separately. signal processing algorithms have been developed in which the correlation of noise in seveval in some limited applications. One such algorithm is the adaptive
lith
specifically, connoise cancelling algorithm discussed in (6). Specifitas the sigider an environment in which the primary input has and the
$s(n)$ and noise $d(n)$ uncorrelated with $s(n)$ and nal $s(n)$ and noise $d(n)$ uncorrelated whed with $s(n)$ but
reference input has noise $r(n)$ uncorrelaten correlated in some unknown way with noise $d(n)$. adaptive noise canceller adaptively
$r(n)$ to estimate $d(n)$ and this estimate is subtracted from the primary input to form the signal estimate. The adaptive noise-cancelling concept is illustrated in Figure 4. The adap

Figure 3. A Speech Production Mod
line (or finite impulse response) filter adapts the filter coefficients by minimizing the power in $\hat{s}(n)$.
shown that minimizing the power of (n) in fact minimize the mean square error between $s(n)$ and $s(n)$ and
rihms $[6]$ have been developed to estimate the filter coefficients. The adaptive noise-cancelling algorithm has been applied to a simulated environment in which a person sp into a microphone in a room where strong achoustic formed the ence was presury. A second microphone was placed in the room away from the speaker and close to the source or he formed interference and the signal in the soconderoment achieved in the reference
this experiment using the adaptive noise-cancelling technique is quite dramatic. The noise canceller has been derne, which [6] to reduce the output power of the interference. Whic $h 0$
otherwise makes the speech unintelligible, by more than 20 $d B$ rendering the interference in the primary input barely dB, rendering the interference in in improvement in perfor-
perceptible. Despite such a dramatic mance and the system's capability 10 adapt noise statistics and movements of microphones. the adap the
noise-cancelling technique is limited in practice since the reference input typically contains the signal $s(n)$ as well as the noise. in which case the noise canceller will attempt cancel the signal as well as the degrading noise. attempts to improve te performance in progress. Some
cancelling techniques are currently
 noise cancellation. Some researchers attempt nvironments where existing nodication. The results of these
be used with minor med current research efforts are expect.
open literature in the near future.

In the above, we have discussed speech enhancemen sstems applicable to the case when the degradation is due to systems appacicm noise. The problem of enhancing speech
additive random degraded by speechine nora considerably more difficult than peting speakers is in general considerabl various reasons. The
the additive noise degradation case for vecreal characteristics speechlike noise has the long-time spectral characteristics similar to those of the speech and consequently systems such
as the Wiener filter which exploit the differences in the as the Wiener filter which explo of speech and the back ground noise are not effective. In addition, the speechione
gre
gise varies rapidy in its characteristics as a function of noise varies rapidly in tharateristics of the degrading noise
time and estimating the chare time and estimating the charactern enhancement systems which
is quite dificult. Since spech ender of is qumpt to estimate the short-time spectral magnitude of speech of an underlying speech model generagrading noise, good estimate of the characteristics
they can not be used effectively to combat the speechlike noise.

ure 4. An Adaptive Noise Cancelling Algorithm

One approach which has been developed 10 combat
pecifically the interference from a competing speaker speciically the interf erence from a competing speaker
atempts oxploin the periodicity of voiced speech and has
been developed by Parsons been developed by Parsons [7]. In this system, voiced speech
is windowed and a high-resolution short-time spectrum is is windowed and a high-resolution short-time spectrum is
obtained. In the short-time spectrum, the periodicity of obtained. In the short--ime spectrum, the periodicity of
speech exhibits itself as local spectral peaks some of which
are due to the main are due to the main speaker and some others of which hare
due to a competing speaker. Parsons developed a technique due to a competing speaker. Parsons developed a technique
in which each of the local spectral peaks in the highresolution short-time spectrum is distinguished between the main speaker and the competing speaker. Then speech is genreaks of the main speaker. Since the essence of Parsons' sys-
年 tem is location and selection of speech harmonics of a speaker from the high-resolution spectrum of degraded speech, it can be approximately viewed as a frequency domain
implementation of a pitch information extractor and an adaptive filter by Frazier. Even though the system by Parsons has not been evaluated by a subjective test. the adaptive
filter by Frazier has been evaluated by Perl nonsense sentences as test material when the degradation is due to a competing speaker. The results indicate that even with accurate pitch information, the adaptive filtering tech-
nique decreases the intelligibiliy at the S N nique decreases the intelligibility at the S / N ration at which
the intelligibility of unprocessed nonsense sentences ranges

The adaptive noise-cancelling system may also be used
hen the degradation is due to a compeling speaker when the degradation is due to a competing speaker. Assumng that a reference input contains only the speech of the
ompeting speaker. it is expected that the competing speech can be significantly reduced
ili. Enhancement of Speech Degraded by Echoes
In this section, we discuss some of the representative systems which attempt to enhance speech degraded by
echoes. One approach which has been applied to echoes in signals is based on the homomorphic system theory by Oppenheim. Schafer. and Stock ham [9]. In this approach
a signal combined by a convolution of two a dignal combined by a convolution of two components is
first transformed so that the two components become additive and then a linear filter is applied to separate one con ponent from the other. Specifcally. let $s(n)$ and $h(n)$ denote a signal and a train of pulses.
degraded by echoes. can be represented by

$$
y(n)=s(n) \neq h(n)
$$

where " z represents the convolution when $y(n)$ is a sum of $s(n)$ and its delay. then $y(n)$ can be expressed as
$y(n)=s(n)+\alpha \cdot s\left(n-n_{0}\right)=s(n) \neq\left(\delta(n)+\alpha \delta\left(n-n_{0}\right)\right)(5$ where $\delta(n)$ is a unit sample sequence. By z-transformin tion, and then inverse z-transforming logarithmic operaexpressed as
$\hat{y}(n)=\hat{s}(n)+\hat{h}(n)$
(6)

By linearly filtering $\hat{y}(n)$, this approach attempts to recover
$\hat{s}(n)$. from which $s(n)$ is recovered $s(n)$ such as speech and for a rather restricted class of $h(n)$
such as $w h e n h(n)$ is minal such as when $h(n)$ is a minimum phase signal with a large
equal spacing between the two consecutive pulses a equal spacing between the two consecutive pulses, a goo
estimate of $s(n)$ has been demonstrated. For example, for speech artificially degraded by equation (5) with $\alpha=0.5$ and
n_{0} corresponding to so msec.. a significant echo suppression
has been demonstrated. Even though this aprech has been demonstrated. Even though this approach is theoretically interesting, its app.
rather restricted class of problems. Another approach to suprress echoes in speech has been
developed specifcally for the purpose of suppressing echoes
in long distance telephone communications in long distance telephone communications. A reasonable model of speech degradation due to echoes in long distance
telephone communications is given (10) by -

$$
y(n)=s_{d}(n) * h(n)+s(n)
$$

(7)
where $s(n)$ is the speech signal to be recovered. $s_{d}(n)$ impulse response of of another speaker, h, n) reptents he time. and the echo canceller has access to $s_{d}(n)$ and $y(n)$. In this approach, the echo path impulse response is approxi-
mated by a tapped delay line filter $h(n)$ and the filer coefficients of $h(n)$ are constantly updated by attempling to reduce the error bet ween $y(n)$ and $s_{s}(n) \neq t \cdot(n)$ during the
intervals $s(n)$ appears to be absent. The entanced speech is. then, obtained by subtracting $s_{d}(n) * h(n)$ from $y(n)$. The success of this algorithm for the specific purpose it was
developed is evidenced by the developed is evidenced by the fact that a single chip VLSI
echo canceller that implements the algorithm has been fabriecho canciller that implements the algorithm has been fabri-
cated [10]. The chip measures 313 by 356 mils and contains
35.000 . 35.000 devices.

When speech is degraded by room reverberation, the degraded speech $y(n)$ can again be expressed by equation (4)
with $h(n)$ representing the room impulsed respone with $h(n$) representing the room impulse response. Unfor-
Unately, homomorphic processing discussed above cannot be applied to this problem. since the room impulse response
$h(n)$ does not belong to the restricted class for which homomorphic processing is applicable. Among various different approaches considered to solve this problem, one
approach which appears to be quite successful exlpoits the notion that the room impulse response $h(n)$ has different characteristics when the signal is picked up at diffe ions and requires signals from two microphones. More
pecifically, let the signal at the second microphone be denoted by

$$
\begin{equation*}
z(n)=s(n) \neq g(n) \tag{8}
\end{equation*}
$$

By representing $h(n)$ and $g(n)$ in terms of earlier arrivals ind $z(n)$ can be exprested arrivals $h_{l}(n)$ and $g_{l}(n), y(n)$ $y(n)=s(n) * h_{e}(n)+s(n) * h_{l}(n)$

$$
z(n)=s(n) * g_{e}(n)+s(n) * g_{l}(n)
$$

y exploiting the empirical observation that there is a strong correlation between $s(n) * h(n)$ and $s(n) * \xi_{c}(n)$, but little rithm that reduces $s(n) * h_{l}(n)$ and $s(n) \neq g_{1}(n)$, an algo-
bines $s(n) * \xi_{l}(n) \quad g_{l}(n)$, but combines $s(n) * h(n)$ and $s(n) * g_{e}(n)$ in an appropriate manner has been developed [11]. The performance of this algorithm
has been evaluated by Bloom [12] for people with normal hearing and hearing impairment in a very reverberail lassroom environment. Preliminary results of reve erest indi-
ate that intelligibility is not improved. Empircal listening at the processed speech clearly demonsitrates, however, that
on the echoes due to classroom reverberation have been
significantly suppressed
v. Time Scale Modification of Speect

In the previous two sections, we discussed algorithms
hat account for a specific type of speech degradation.
amely additive noise and reverberation. In the present secion we discuss a specific class of signal processing algorithms
liten that can potentially enhance speech in various orn speeding
hanging the time scale of speech. slowing down or sper thanging the time scale Examples in which speech is enhanced by changing its time scale include slowing it down to learn a hearing impairment. and speeding it up to read written hearing impairment. and speeding the opiginal speech is nol
material to the blind. Even though the oritan degraded in these examples. speech is enhanced, in the sense
that the listener would prefer the processed speech. by that the listener wou
changing is time scale.
Probably the simplest method of changing the time scale of speech is to record speech at one speed and then play it back at a diff erent speed. Since this has the effect of scal
 this method is used to produce only a 10% time-scale change.
the pitch change is easily perceived and speaker identification the pitch change is easily perceived and speaker identification
can be impaired. A time-scale change greater than 35% can be impaired. A time-scale change greater
results in rapid deterioration of speech inteliligibility.

Another simple approach is to cut speech tapes into seg ments. repeat or dissard the segments periodically, and the reioin the segments later. It has been reporled that such
methods preserve $[13]$ both intelligibility of speech at methods preserve [13] both intelligibilitity of speech at a
time-scale change of 100% or more. Retention of such high spech intelligibility is due primarily to the fact that speech as a high degree of redundancy, and the retained speech seg ments preserve the short-time spech spectrum tod to period
extent. An ingeneous electromechanical method cally discard speech segments has been developed by Fair
banks et al 13$]$ and has been used in practice for some time lanks, et al [13], and has been used in practice for some tee ments for time compression is of ten referred to as the "Fair banks method". Using the current digital technology. the Fairbanks method
forward manner.
Even though the Fairbanks method preserves the intelEven though the Fairbanks method preserves inifation,
igibility of speech at high rates of time-scale modifict the quality of speech suffers noticeably. Since speech segments are periodically discarded withoulting speech of ten has
of the speech waveform, the reuult disconinuities at the segment boundaries and speech is spectrally disiertred. To reduce boundary discontinuity and
speccrral distortion problems. Scot and Gerber [14] developed spectral distortion problems. Soot and Gerber 1 method in which speech segments are discarded or repeated a method in which hpeech segments are discarded or repetion is
pith-synchronously. In this method, pitch information
ister first synchinnonously. In this method. prom and an integer
fumbech waverom
number number of pitch periods are repeated or discarded. The
pich-synchronous method noticeably improves both ihe pith-synchronous mettood noticeably improves boun ver
quality and the intelligibility of the processed spech over the Fairbanks method. Various commercial systems currenitly av
method.
A different approach to the cime-scale modification problem is to firss filter speech by a bank of bandpass filters, modify the time scate of the output of each filter. and then
combine the resuling outputs. This approach has severa combine the resulting outputs. This appeche. For exam-
important advantages over those discussed above ond of freple, any distortions caused by processing in one band of fre
quencies has litite effect on other frequency bands. and thus quencies has little effect on other frequency bands. and intelliThe short-lime spectral components improtat controlled. In addition, any periodic signal can be edecomposed into a series of complex exponentials. and the output of each channel can be made to contain at most one exponential by properly
choosing the bandwidths and center frequencies of the bank of filters. Since the time-scale modification is simpler for
exponential with one frequency than for a general speech
waveform, this can be exploited in the approach. Malah [15] presents a method in which the spech is decomposed int complex exponentials, and then only retio in each channel
exponential is modified by the same ration exponentiaf affing the amplitude and time duration of the exponential. This is accomplished by a simple time-doma algorithm. When the modified exponentials are the original
the resulting speech has the same duration as speech but all the frequency components have been lineariy scaled. The linear frequency scaling can be corrected changing the playback speed, which results in comprestion expansion of iond appears to have good performance.

Another approach to time scale modification of speech is (STFT) domain. The STFT is a time-frequency representa(STFT) domain. The STFP is a tume is often referred to as
tion of a signal. and its magnitude "digital spectrogram". Spectrograms display many features of spech such as fundamental requence known to be very quencies as a function of time, wh In one method [16]. the STFT of speech is modified and speech is synthesized from the modified transform. This method is related to the
telthed by Malah, since with proper interpretation. the STFT eethod by Malaht to the output of a bank of bandpass filters. In is equivalent to the output of ade and phase of the STFT are
his method. both the magniude his mifed. ior the application to time-scale modification of
modifed. peech. the required modification for the STHI magnitude
very straight-forward. The required modification for the VITT phase is quite involved and careful attention has to be paid to the modicalio of performance
To avoid the diffculty associated with the modification
竍 of the STFT phase. another method was developed. In this
method [17]. only the STFT magnitude is modified and speech is synthesized directly from the madinted
niude. The modification of the STFT magnitude changes the time scale without affecting the local spectral characteristics time scale without affective the quality and intelligibility of
and will tend to preserve speech. An exampe 5 (a) shows the spectrogram (STFT magni-
Figure 5 . Figure Figure ${ }^{\text {tude }}$. of a speech signal. Figure $5(b)$ shows the modified spectrogram obtained by compressing the time scale of spectrogram in Figure $5(a)$ by a factor
the frequency scale. Figure $5(c)$ shows the spectrogram of the frequencis ester
the speech signal estimated from the modified spectrogram in Figure $5(\mathrm{~b})$. This method. although considerably more
expensive computationally than others. appears to have the expensive computationong existing algorithms. Simulation
best performance amon best periormance of this method demonstrate that high-quality rate-
rest changed speech which retains the natural quality and speaker-dependent feares. beveration, can be generated for compression ratios as high as $2.5: 1$ and expansion ratios as
con high as 4:1. In addition, the method is robust to speech processed speech is not perceived to increase in intensity and the noise characteristics are not perceived as different. The method has also been appplied successfully to
In addition to potential applications to the speech nhancement problem. time-scale modification of speech has number of other applications. For eraion of speech sound duration without affecting the short-time spectral duration eeristics of spech. Other examples ines. The algorithm dis-
change for

(b)

ain

Figure 5. (a) Spectrogram (STFT Magnitude) of "Line up at
the screen door.
(b) Modified Spectrogram for Time-Scale
(c) Spectrogram of speech estimated from
the Modified Spectrogram in (b)
cussed in this section are also applicable to these and other
examples.
v. Areas for Future Research

In the above three sections, we have discussed some representative speech enhancement algorithms. Even though
these discussions are not exhaustive, they illustrate the genthese discussions are not exhaustive. they illustrate the gen-
eral approaches that have been considered and indicate some eral approaches thal have been considered and indicate some
directions for future research. In this section, we discuss a few topics for future research related to the speech
enlianicement problicm.
Tha

The objective of speech enhancement is generally an improvement in some aspects of human perception such as improvement in speech intelligibility or quality. Since the
human perceptual domain is not well understood. a careful human perceptual domain is not well understood a careful
system evaluation requires a subjective test. which can be system evaluation requires a subjective test. Which can be
tedious and time consuming. This is one of the reasons why many spech enhancement systems have not been carefully
evaluated. Furher understanding of the
domain and development of simple procedures to evaluate
the performance of a speech processing system will be usefu not only for speech enhancement, but for speech processsing

Various speech enhancement systems discussed in Sec
II and III appear to improve speech qualiy, but tions II and III aprear to improve speech quality, but no
speech intelligibility. Intelligibility improvement when the degradation is due to wide-band random noise or speech-lii oise. in my opinion, requires a fresh new approach io the speech enhancement problem. One such approach is
exploit more information about speech. Even though som algorithms such as power spectrum subtraction method and
comb filtering attempt to exploit some characteristics of omb filtering attempt to exploit some characteristics of speech. there is considerably more knowledge about speed
signals that may potentially be incorporated in speec enhancement systems. Cooperation of researchers with sig al processing background and researchers with speech bach of tinanf for such an effor
In the area of time scale modification of speech. the perexploiting the notion that when a human speaks at a slower ate, not all segments of speech are ariculated uniformly
more slowly. For example, unvoiced sounds, which are sho duration in human articulation, appear to be affected les han voiced sounds, which are relatively long. Even though existing algorithms are capable of changing the time scale of
speech at different rates for different speech segments, the uestion of what rates should be applied to each speech seg ment 10 achieve a certain overall rate of time scale
modification is not well tuderstood
In this paper, we have attempted to provide an over-
of the variey of techniques that have been proposed view of the variety of techniques that have been proposed
for speech enhancement. A more detailed and complete
treatment of signal procesing aleriths for spech enhancereatment of signal processing algorithms for spech enhance
ment can be found in [18, 19]

References
[1] H. Drucker. "Speech Processing in a High Ambient Noise Tinvironment". IEEE Trans. on Audio and
tics. vol. AU-16, pp. 165-168. June 1968 .
[2] J. S. Lim, "Evaluation of a Correlation Subtraction Method for Enhancing Speech Degraded by Additive
White Noise". IEEE Trans. on Acoustics, Speech and Signe Noise. IEEE Trans. on Acoustics, Speech and
[3] S. F. Boll, "Suppression of Acoustic Noise in Speech Using Spectral Subtraction." IEEE Trans. on Acoustics, Speecr
and Signal Proc., vol. ASSP-29. pp. 113-120. April
[4] R. H. Frazier. S. Samsam. L. D. Braida. A. V. Oppenheim Ennhancement of Speech by Adaptive Fillering"
Proceedings of the Int. Conf. on Acoustics, Speech and Signal Proc., pp. 251-253, Philadelphia. PA, April 12-
14. 1976.
[5] J. S. Lim. A. V. Oppenheim, L. D. Braida. "Evaluation of an Adaptive Comb Filtering Method for Enhancin Speech Degraded by White Noise Addition', IEEE
Trans. on Aceustics Trans. on Acoustics, Speech and
ASSP-26. pp.354-358. August 1978.
[6] B. Widrow, et al.." "Adaptive Noise Cancelling: Principles and Applications.
16902-1716. December 1975.
[7] T. W. Parsons, "Separation of Speech from Interfering Speech by Means of Harmonic Selection
Am., vol. 60 . pp. $911-918$. October 1976.
[8] Y. M. Perlmutter. L. D. Braida. R. II. Frazier. A. V Oppenheim. "Evaluation of a Speech Enhancement Sys
tem. Proceedings of the IEEE Int. Conf. on Acoustics, Speech and Signal Proc., pp. 212-215. Hartford. Conn May 9-11. 197
[9] A. V. Oppenheim, R. W. Schafer. T. G. Stockham, "Nonlinear Filtering of Multiplied and Convolved Signals,
Proceedings of the IEEE. vol. 56 . pp. 1264-1291, Proceedings of of
August 1968.
[10] D. L. Duttweiler and Y. S. Chen, "A Single Chir VLSI Echo Canceller." The Bell System
59. pp. 149-160, February 1980 .
[11] J. B. Allen, D. A. Berkley, J. Blanert. "Multimicrophone Signal Processing Technique to Remove
Room Reverberation Irom Speech Signals." J. Acoust Room Reverberation Iront Speech Sisnals.
[12] P. J. Bloom, "E:valuation of a Dereverberation Process by Normal and Impaired Listeners". Proc. of Int. Cont At Acoustics. Spech and Sigral Pric., I
At anta. . i. . March 30, 31. April 1. 1981
[13] G. Fairbanks, W. L. Everitt. and R. P. Jaeger. "Metho for Time or Frequency Compression-Expansion of Speech". IRE Trans. on Aud
AC-2, pp. 7 -12. January 1954.
[14] R. J. Scott, and S. E. Gerber, "Pitch- Synchronous R. Sime-Compression of Speech". Proc. Conf. on Speech.
Communications and Processing, pp. 63-65. April 1972.
[15] D. Malah, "Time-Domain Algorithms for Harmonic D. Malah, "Time-Domain Algorithms for Spech Sig-
Bandwidth Reduction and Time Scaling of Sper Band:width Reduction and Time scals
nals". IEEE Trans. on Acoustics, Spech and Proc., vol. ASSP-27, pp. 121-133, April 1979,
[16] M. R. Portnoff, "Time-Scale Modification of Speech Based on Short-Time Fourier Analysis. 1I:EE Trans. Accustics. Speech a
374-390. June 1981.
17] D. W. Griffin and J. S. Lim, "Signal Istimation from Modified Short-Time Fourier Transform". IELE Trans. Acoust., Speech,
243. April 1984.
[18] J. S. L.im and A. V. Oppenheim. "E:nhancement and Bandwidth Compression of Noisy Speech. Pheroc. of the

[19] J. S. I.im, editor. Speech Enhancement, Prentice-1lall. [19] J. S. limm, e
Inc., 1982.

Department of Phonetics and Linguistics School of Oriental and African Studies University of London, London, England

ABSTRACT
It is proposed that one of the units of speech perception is an invariant auditory word pattern.
This consists not of the whole spectrum but of a limited number of acoustic cues that are audi-
torily salient, together with those that are salient but carry contrastive function in the language. Speech processing takes place by pat-
tern recognition and pattern matching. For this tern recognition and pattern matching. For this phonetic level, LR1, and a lexical-phonological level, LR2. Cues are abstracted from the acoustic
signal and are synthesized into patterns: these signal and are synthesized into patterns: these
are checked against patterns at LR1. If they match, they are then matched with patterns at
LR2 and indentification LR2 and indentification of the word is achieved.
The organization of patterns in a network is The organization of patterns in a network is
shown for a sample of a child's phonological system, and how recognition of some words takes place is illustrated. An example of a mispercep-
tion is also given to show how confusions occur between words of same patterns.

It is known that there is much redundancy in speech and that speech processing is very rapid. Context,
knowledge of the language, knowledge of the topic shared knowledge, etc., are acknowledged to play a major role in the interpretation of speech. Because
speech processing is so rapid, it is clear speech processing is so rapid, it is clear that in
terpretation of the acoustic signal segment by seg ment is not possible. Furthermore, no one-to-one acoustic correlates have been found for phoneme se
ments. Word by word processing is still too slow to ments. Word by word processing is still too slow to
explain the speed with which speech is processed. is possible that the auditory processing of speech is similar in nature to visual processing in the
interpretation of written texts by reading. It is recognized that in reading attention is not given to each letter of each word, nor even to each word and that scanning takes place-not in a serial pro-
gression but with the eyes moving back and forth as they abstract the most essential information from the text to make sense of the message. Words have visual shapes which aid recognition. It seems that
one may similarly look for auditory shapes of words that can be recognized in auditory scanning of the acoustic signal. There may similarly be auditory
shapes of sentences where attention is not Shapes of sentences where attention is not given to
the whole of the acoustic signal but abstractions are made at points (stressed high information words) expenditure of time and energy. It is proposed that
it is auditory word patterns that are abstracted at such points in the acoustic sign
Auditory patterns are essentialiy acoustic skeletons composed of auditorily salient cues and such, less language. Thus the pattern will consist of part of the spectrum of the word, not the whole spectrum. tensity, e.g. peaks will indicate the number of syllables, greater intensity of some peaks and lesser of others will mark strong and weak stress; duration
will mark some syllables longer than others; fundawill mark some syllables longer than others; fundanental frequency will indicate the pitch pattern;
first formant will indicate the various degrees of penness of vowel, i.e. whether more close, more pen, or the same as in adjacent syllables; cues
for different classes of consonants will differentiate them from each other, e.g. a fricative from a nasal, a nasal from a plosive, etc., etc. Such cues
in different sequences comprise the diferent word patterns. The cues are relative, i.e. it is not the pattual intensities, actual frequencies, actual durations, etc., that are relevant, but the relation-
ships between the cues, which are fixed. The patships between the cues, which are fixed. The pat-
eerns are therefore invariant and remain the same regardless of variables such as if speech is com-
pressed, as in fast tempo, or whether spoken at a ery slow tempo: whether, spoken whether spoken at very slow tempo; whether spoken on a man's low
pitch or a woman's high pitch, and whether prohounced in the standard dialect or some provincial dialect. Words in the phonological system of a
language may be described in terms of invariant language may be described in terms of invariant
auditory patterns. There may be several words be longing to a single pattern or only one or two. For Clan, may be classed as belonging to the same pattern, plosive with fricative release + vowel +
nasal, oasal, PFVN. The fricative release may be lateral or central, and the vowel may be long or short,
open, close, or mid with glide to close. Words 1 ike open, close, or mid with glide to close. Words like
ot, kick, deep, bat, boot, belong to another pattern, plosive + vowel + plosive, PVP, and so
forth. forth.
rieval in a network which has rapid and easy reresentation (network which has two levels of repand syntactic levels) the first being phonetic for eceiving the acoustic signal and for synthesizing is for storing the phonological patterns for matc
dentification of words. The adult processing system, with a vocabulary of The adult processing system, many thousands of words is extremely complex, so many hlustration, a sample of a child's very early
for illus very simple phonological system will be used
demonstrate the proposed network and how recogdemonstrate the proposed network and hew recog-
nition takes place. The child, aged betwen $1 ; 5$ and ${ }^{\text {nition takes }} 1 ; 6$, had monosyllables and disyllables involving mostly nasals and plosives. Fig. work which is lexical-phonological. How such levels of representation are constructed by the child and how processing takes place in relation to these levels of representraction of LR1, patterns are synthesized on the basis of auditorily salient fea tures of the acoustic level. A cetual discrimination, oblige him to pay selective attention to what is most acoustically and auditorily salient at first. The patterns are stored at LR1 for future matching Patterns of LRI are more fully specified at LR2, and meaning is included. LRI patterns are matched with patterns at LR2 in the process of recognitern, a
If there is no match for the synthesized patter If there is no match for
ig. 1 shows the monosyllablic and disyllabic paterns of the child's LRI and Fig. 2 shows the organization of one monosyllabic pattern, the
tern, in LR2. The way recognition takes place is by
, tern, in LR2. The way recognition
following pathways along which choices are made
and which constrain the possibilities and
identification of the particular word. The pathways identification of the particular word.
fork the words are shown by different marings (see key on figures). It will be seen that the PV pat
tern words follow the same path up to the point tern words follow the same path up to the of vowel
where they divide according to the degree of openness, marked by α for low vowel, ε for mid and I for high vowel. The next choice is at the three-
way contrast carried by place of articulation, viz. way contrast carried by place of articulation, viz.
labial p, apical t, and dorsal k. The last choice is of contrasts carried by frontness y, backness w, and neutrality as to frontness and backness, o,
the pattern is then identified as the particular the pat
word.
In the case of a child, the early forms are based mainly on the auditorily salient features of wor
which are fleshed out within his current capawhich are fleshed out what fits his current network. As he becomes able to give more attention to less salient features, his forms of words and patterns change and his network is therefore constan
being re-structured. For instance when [bzu] 'boat' acquires a final plosive, it moves from the PV pattern to the PVP pattern, and when [gu:] $]$ goose ac-
quires a final fricative, $[g u: \theta]$ and $[$ gu: $\phi]$ a new quires a final fricative, (gu: incorporated into the network, viz. PVF (plosive + vowel + fricative) which will belong newly acquired words like [bif]
'beef' and [gauf] 'cow' and 'calf'. Eventually the beef' and [gauf] 'cow' and 'calf'. Eventually This concept of invariant auditory pattern can thus
offer an explanation of how the acquisition of phonology takes place.
nology takes place.
Further evidence in support of the invariant auditory word pattern can be found in studies of mis-
perceptions (see [1]; also for references for sup-
port from other disciplines). Examples show how much the listener contributes to the interpretation from what he thinks the acoustic cues of the pattern and the maximum use of any other available infor nation. A brief illustration is given of the way the interpretation of and together with use of conpattern recognitiog, and other factors. It will e shown how non-linguistic information influences he interpretation of a pattern which
Context: Saturday morning. A and B are in the bathContext: Saturday morning. A and B are in the there is a loud noise of rushing water which has a masking effect. A and B had just been talking about hanging the positions of their parked cars to en-
e
en train. The following conversation then takes place. : We must get the E. 45 cream today
B. Today? why today?
B: Why not?

A: Why on a Saturday?
A: Why on a Saturday? I said 'We must get the F.45 cream today.
A: Oh, I thought you said 'We must get the 3.45 A: Oh, I thought,
A was still geared to the semantic field of trains and train times and did not realize the change of topic, and as B and her husband often came leaving on Sunday, A misinterpreted the pattern common to 'cream' and 'train', viz. plosive with
fricativ fricative release + vowel + nasal, $\mathrm{PFV}, \begin{aligned} & \text { as } \\ & \text { She also interpreted } \\ & \text { ' } \mathrm{E} \text { ' }[\mathrm{i}:] \text { as }\end{aligned}$ three' $[\theta$ ri:]. Voiceless non-salient [$\theta \mathrm{r}$] would easily be masked by noise and a listener would therefore be ready by noise and where needed, as here, where ' $[$ i:]
'restore' it whuld only mean ' 3.45 ' in terms of forty-five' cuuld only mean train possible that detailed pattern matching wou be skipped as the context so clearly predicted
'train'. In fact, B was referring back to the pre 'train'. In fact, B was referring back to the precious day's conversatich she had recommended to A. This example shows how the processing of the invariant auditory word pattern in combination with the use of non-acoustic information can speed up
the rate of spech processing. Because of adults
the he rate of spech processiex plonetic, phonological, semantic and syntactic systems, and their
fast rate of speaking, adults need to use the maxim possible short cuts in processing. The concept f invariant auditory word pattern makes it possble to explain how short cuts in processing can be
ade and why speech processing can be as rapid as made
it is. ntonation patterns have long been described as a imited number of invariant tunes and the problem of normalization across a child's use of the tunes does not arise. Similarly, the proposed auditory word pattern is
also invariant and the problem of normalization across variables such as age, sex, speech rate, an across variables loger arise.
dialect need no longen

[1] N. Waterson, 《Prosodic Phonology: The Theory and Its Application to Language Acquisition
Gpech Processing $\rangle,$ Grevatt \& Grevatt, 1987.
zdema paliova
Lchrstuhl für Lincuistik und Phonetik,
hilosophische Fakultät der Karlsuniversitä
11638 Prā̆, I'schechoslowakei

zuSAmenfassuing

Der Tonhöhenverlauf gehört im 'tschechischen $z u$ den relevanten lierkmalen, die die Wahrnehmung der Wortgrenzen be dingen. Dabei charakterisiert er das Wort als Ganzes, und nicht nur die sogenannte betonte Silbe. Diese Feststellun kann experimentell bestätict werden.

einleitung

1.1 Unter den prosodischen Lierkmalen in der linguistischen Beschreibung des Gesprochenen I'schechisch ist der Vortakan die onders durch seine Gebud bezu auf die Wortgrenzen wird seine delimitative Funktion angenormen. Es fehlt jedoch eine zuverlässige Erklärung seiner phonetisch-akustischen lierknale, d.h. der Beziehung zwischen Sprachsignal und Perzeptionsergebnis. Zweifellos ist der plexe Erscheinung 13 . wohl der Höhe, als auch der störs so Dauer des Tones auf die Perzeption des Wortakzents wurde experimentell bestätigt /1/.
1.2 Andere Experimente haven jedoch auch gezeigt, da3 die Whanehrung einer Silbe als akzenttragend nicht direkt mit ihren Lautqualitaten erklarbar ist, auch beiden benachbarten in Relation zu den sentlichen Einflu3 Silben setzt. Vieder breitere Kontext und sichsichtich Eigenschaften wie z. B, die Wortes /2/. In diesem Zusamenhang wurde die Iypothese aufostellt, da3 die

Klangestalt der elementaren rhythrmi schen Einheiten auf der Wortebene (Takte) in Eewissem lia3e standardisiert ist, d.h. da3 einige Schallstrukturen vom cenommen werden als andere Schallstrukturen.
1.3 Die angeführten Erkentnisse haben wir auf der Grundlage von Material aus der natülichen Sprachen gewomen, wobei der Einflu3 der syntaktischen und semantischen Komponenten beseitigt wurde. Bei diesem Laterial sind alle Tonqualitaten veranderlich und der Versuch, analysieren, führt dotte eingehender zu Anzahl von zu unterscheidenden mpon mit jeweils Eeringer Anzahl der zugehörigen Falle. Deshalb untersuchen wir derzeit die einzelnen Schalleigenschaften getrennt unter Verwendung von synthetisch erzeugtem ĭaterial.
Das haterial fur die in folgenden angefuhrten Tests wurde in Lusammenarbeit mit Dr. Ing. li. Ptáček aus den Forschungsinstitut für Kommunikationstechnik im Prag erstellt. Die verwendete Apparictur war der von ihm konstruierte Synthesator Ho P-2.

RETHODE

Vir gehen in diesem Beitrag von den Ergebnissen unseres ixperiments zum Tonhöhenverlauf aus.
2.1 Grundlage dieses Experiments war eine Serie von Hörtests, in denen tschechische Muttersprachler (Philologiestudenten der Philosophischen Fakultät der Karlsuniversiẗ̈t Praz. Alter 18-21 Jah-
re) Silbenketten in die elementaren rhytimischen Einheiten auf Wortebene (Takte) zerlegen sollten. Der Tonhohenverlauf in diesen Silbenketten wurde als Variable in fünf aufeinanderfolgenden Vierteltonstufen realisiert, was die gröte mogliche Veranderung elnas wir Tons darstellt. Dabe1
2.2 In der ersten Etappe (Serie A) 2.2 In der ersten Etappe (serie A) dienten als haterial durch fünfmaliges iiederhote jebilciet vi:etisch und in ihrer länge kurze tschewhische Sätze oder selbständige Satzteile (also in Bezug auf die Satzintonation selbständige Tongruppen) darstellen können.

Die Serie A beinhaltete 80 verschiedene Intonationsvarianten dieser Silbenketten. Dabei waren alle Typen der Veranderung von F_{0}, die bei einer sind gliedrigen Silbenkette moglich sina, vertreten (unter benachbarte Silben nie dieselbe Tonhöhe aufweisen). Dabei wurden die Hörer in ihrer Entscheidung durch die cegebenen Instruktionen eingeschrankt Sie. sollten sich für eine von drei ho glichkeiten entscheiden: die Gliederung der Silbenkette im Verhaltnis. 2:3 (also nach dem Rhythmusschema $x x$ axa Verhaltnis $3: 2$ (also nach dem schema xxx xx) beiden Varianten.
Die Serie A dauerte 19 Hinuten und Versuchspersonen durchgeführt.
2.3 In der aweiten Etappe (Serie B) dienten als Material kurze $\$ tschechische Sätze oder selbständige Satzteile (Tongruppen) in denen die Bestimmung einer Wortgrenze bedeutungsunterscheidend ist
Z.B. "včera to/ pili./ neradi". - wörtlich übersetzt: gestern haben sie das nicht gern getrunken;
"vcera /topili/neradi" - wörilion gern geheizt.

Im Tschechischen verkörpert dieses Beispiel den Unterschied zwischen de Rhythmusstrukturen $\dot{x}_{\mathrm{xx}} \mathrm{x}_{\mathrm{x}}$ und $\mathrm{xx} \times \mathrm{xx}$.

Pür die Serie B wurden 13 solcher Ïtze mit einer Länge von 2 bis 4 Takten Eatze mit einer Aufgabe der Hörer war zus, sich in jedem einzelnen Fall für eine der beiden möglichen Bedeutungen zu entscheiden.

Die Serie setzte sich aus drei voneinander unabhängigen Tests mit einer jeweiligen Länge von 18 Minuten zusammen In einem Test war jeder Satz immer in verschiedenen Varianten des oinzelnen laufs enthalten. Fur einen el ModifiSatz wurden also 12 verschiung gebracht kationen von F_{0} o zur Anwendung wobei fur Satze mema dieselben Varianiertem roühenverlaufs verwendet wurden. Inscesamt kamen in der Serie B 36 verschiedene Varianten des F_{0}-Verlaufs zur Anwendung. Ihre Auswahl erfolgte auf der Grundlage der Ergebnisse der Tests aus Serie A.

Jeder Test der Serie B wurde von 30 Versuchspersonen absolviert. Von ihnen absolvierten 15 Personen alle 3 Tests.

ERGEBNISSE

3.1 Die einzelnen Beispiele sowohl der Serie A als auch der Serie B wurden in verschiedener Weise bewertet. Der Vergleich der unterschiedlichen Horergruppen innerhalb jeder der beiden Serien weist eine statistisch sehr signifikante Übereinstimmung auf (Wilcoxon, 0,01). In beiden Fälleq war die Aufgab also für die Versuchspersonen Die maximale Ubereinstimmung bei der Bewertung eines einzelnen Belspiels be trug in der Sers auf der Grundlage der 93\%: naturlin.
In beiden Serien zeigte sich eine In beiden Vorzug zu geben. In der Gesamtbetrach tung der Serie A registrieren wir eine Bevorzugung der Rhythmusstruktur xx xxx eesenüber der Struktur xxx xx \quad die Denigegenuber wurde in der und zwar um Struktur xxx xx fast 20%. Bei Serie B mu 3 man allerdings auch den Einflu3. der füsse können nicht ausgeschlossen wer-
3.2 Die Ergebnisse der Serie A bestätigen, da3 die Eestimmung der Kortzrenze durch den Hörer nicht auf Grund der fionhöne der ersten silbe der bei dieser Bestimmung entstandenen Hörter erklärt werden kann. Es zeigt sich diesbezüglich eine gewisse Tendenz, wonach die erste Vierteltion höher liect, als die veraus gecancene silbe das allein ist jedoch für die Zerlegung der silbenkette in Wörter nicht ausreichend (nur in 20% der theoretisch möblichen Fälle sctzte sich diese fendenz tatsächlich durch).

In der Serie A war bei 23% der Deispicle eine Ưbereinstimnuns von mehr als 65% der Hörerurteile zu verzeichnen. Hei cer Analyse dieser Eeispiele wurden einige Tendenzen des Tonhöhenverlaufs festgestellt, die die Entscheidung, ob Grenze befindet, grenze befindet, positiv bzw. negativ ten, in denen die negativ wirkenden Tendenzen stärker als dic positiv wirkenden sind. Wichtig ist ofiensichtlich, da3 die beiden benachbarten wörter bezüglich ihres Tonhöherverlaufs alzeptierbar sein sollten. So war z.B. innerhalb eines dreisilbigen kortes (zwischen der 2. und 3. Silbe) eine Veränderung von F_{o} um einen halben l'on für die Hörer annehnbar, zwischen zwei Wörtern war eine solche Veränderunc dasegen kaun annehnbar
(vgl./4/).
3.3 Auf der Grundlage der in Eerie A Gewomen prkentnisse wurden die Varianten des Tonhohenverlaufs für die Serie ausgewählt. Die Auswahl war von der Verisuch motiviert, bei jedem Satz beide Varianten der Gliederung und damit der Bedeutung $z u$ erhalten.

In der Serie B wurde sogar bei 70% der. Deispiele eine Ubereinstimruc von mehr als 67% der Hörer erzielt, bei 41% über 73\% uber 73%
Gliederung uns theoretisch erwartcte santauswertung der in Serie B beobachteten lrgebnisse eindeutio bestätigt ($\mathrm{X}^{2}, 0,01$). Auch bei der selbständigen

Bewertung der Sätze im Einzelnen tra ansere Vorhersabe überwiegend bei 3 sätzen war die jifferenzierun zwischen den beiden möglichen Gliedieruncsvarianten statistisch nicht wiciinant.
Fie birkunc der vomontion Varianten es fonhöhenverlaufs unterschied sic twas von den Ergebnissen der Serie A. So hatten von 12 Varianten, an Hand de rer die in, 7 Sätzen enthalteten Strukturen xxx xx und $x x$ xxx unterschiede wercen sollten, neun die erwartete un ine enteegengesetzte Wirkung (X ,OS). zwe Varianten firten zu eine Lie Ergebnisse best
Die trgebnisse bestätigen die Releda3 auch die unterschiedliche weiterhin des Vortes in der übergeordneten Intonationseinheit beachtet werden mu3. So ist in unseren Laterial z.b. eine Zerleğun in zwei aufeinanderfolgende dreisilbig Uörter leicht zu erreichen. Dagegen wird eine Unterscheidung der Strukture
 wenn noch ein einsilbiger Takt folet.

Schlussholghtivigen

Aus den Ergebnissen unserer Unter suchungen kann man schliejen:

Der Tonhöhenverlauf innerhalb einer wilbenlette stellt einen relevanten Fak eler fur die Zerlegung dieser Kette in Wortebene dar.

Der Tonhohenverlauf des ganzen Taktes hat in unserem Haterial eine grö3ere Bedeutune, als die melodische Charakteristik einzelner akzenttracender Silben Es Gibt Varianten des Tonhöhenverlaufs, die die Wahrnehmung einer Silbenkette
als einheitliches und andere, die eine ses unterstutzen erschweren. Dabei nomet es auch daraut an, da3 die beiden benachbarten trakte bezüGlich ihres Tonhöhenverlaufs für die Horer akzeptierbar sind.

In unserer weiteren Arbeit wollen wir nun versuchen, auf der Grundlage der erzielten Ergebnisse Formeln anzugeben die für die automatische Synthese des Tonhöhenverlaufs in tschechischen Sätzen verwendet werden könnten.

literatur

1/ Janota P. - An Experiment Concerning the Perception of Stress by Czech Listeners, AUC - Phonetica Prasensia I, 1967, pp. 45-68
12/ Janota P., Palková Z. - The Auditory Evaluation of Stress under the Influence Context, AUC - Phonetica Pragensia of Contex, 1974, pp. 29-59
$13 /$ Ondračkova J. - On the Problem of
the Function of Stress in Czech, ZPSK 1961, 14, 1, pp.45-54

14/ Palková Z. - Fundamental Frequency Variation as a Factor of Word-Stress Perception, Proc. of the $23^{\text {rd }}$ Acoustic Conference on Physiological and Psycho logical Acoustics, Acoustics of Speech and Husic, pp.182-185
artikulatorische korrelate des fester und losen anschlupes im deutschen
LATE DES FESTEN UND LOSEN
(ANHAND DES RÖNTGENFILMS)

LARISSA PROKOPOWA

Schewtschenko-Universität Kiew

Das Referat behandelt die artikulatorischen Korrelate der Sprechbewegungen der
Zunge anhand des R8ntgenfilms bei der Deuund lose AnschluB der Konsonanten im Deutschen.

Da der sogenannte feste und lose Anschlub er Konsonanten in Deutschen als Element der intersilbischen Struktur des starken wird, ist es notwendig, die Deutung der Standpunkt der allgemeinen Silbenstruktur aus zu verwirklichen und zwar in Termini der Sprechbewegungen der zunge. In die vorliegende Untersuchung geht die Annahme ein, dab diee Spezifik des kon durch die Spezirik der Sprechbewewungen
bedingt wird, wobei der feste und der lo bedingt wird, wobei der feste und der lo-
se AnschluB der Konsonanten sich ebenso aus den Besonderheiten der sprechbewegungen ergibt. Um Informationen uber die Suzifik der Sprechbewegungen zu erlangen allgemeinen Zugen rekonstruieren. Es kommt bis jetzt in Frage, wie solche Bezuverlassigen artikulatorischen Merkmalen zu identifizieren waren. Die Untersuchung ist gerade dieser Problematik gewidmet un (R\&ntgenanlage "Gigantos" von der Firma Siemens. Geschwindigikeit 50 Bilder pro Se kunde. Es wurde die Miethodik der Abme
sung jedes Bildes anhand des radialen Koordinatensygtems von dem physiojog isghen
 von Barinowa (Abb. 2) das die dem MeBgerat in Prozentangaben fixiert (Entfernung vom Zungenrucken bis zum Gaumen), wodurch ver Mundhyhle beoin verschiedenen Sprechern auf gehoben werden Als Sprechmaterial dienten deutsche wirter
von 3 mannlichen und 2 weiblichen native Sprechern gesprochen. Es wurden die soge
$0: 0, \mathrm{e}: \varepsilon$ in der Umgebung der Verschlubund Engekonsonanten untersucht, also KvK, denen Sillen angehbren kBnnte: KVK,KV:-K, typen vertreten waren: offene, geschlosse ne und die sogenannte quasi geschlossene missen.

Abb. 1 Das radiale Abb. 2 Das MeBKoordinatensystem geryt von Berinowa Das Hauptziel der Untersuchung bestand der lussenden Bewegung des Konsonanten am Anfang der Silbe zu der schlieBenden Beder hy in drei Silibentypen festzustellen, eh hypothetisch mit dem artikulatorichen radiale Koordinatensystem erwies sich als ausreichend: jede losende sowie an zwei Koordinaten fiziert t, d, n, tsan den Koordingten 75^{5}, $15^{\circ} ; \mathrm{k}$, an den und, we 1 che oft nur an der Koordinate 20° fixiert wurden. Die spezifischen Hebungen des zungenruckens bei der Artielben Koordinaten beobaghtet: u:, v- gn eg Koordinaten $90^{\circ}, 120^{\circ}$; i: $, ~ I, 7,5^{\circ}$ ungenlage,ε ware der mittleren Grenzkoordinaten wichtig. Fur die Vokale a: a war die Konsonantenumgebung entsche end und zwar in der Umgebung von t, n_{0} ausschlaggebend.

Relativ eindeutis erfolgte die Idàntifizierung des artikulatorischen wo die Maximalwerte der Senkung den Silbengipfel an deuteten.
die Unstellung des vorderen Artikulators wo zuerst die VergryBerung der Werte und dann- die allmphiiche Verminderung. Moment des Maximalwertes zusanmen, was einumschla des Maximalwertes
bestutigte. Nur bei den Kurzvokalen mit
der iner geringezi Dauer (40,
 rtikulatorischen Umschlage verbindung chlieBende Bewegung in der Verbindung al -u:g, vk, vt, sowie is:t, It. Der eigentliche Widerspruch ester Vokal und der homorganische Konsonant er Vokal und der homorganische nitert werden und allmthliche Verminderung der Werte gibt keinen Anlab eur die periphelegung der Umstellung. Nar sekundare Merl mal in den Vordergrund und erfullt die Funktion des primaren an der Harktkoordinafall der Umstellung an der starken Koartikutation infolge der Verschmelzung des Vokals mit dem homorganischen
zu interpretieren. Es wdre notwendin, noch zu interpretieren. Es ware non zu unter-
zwei Arten der Koartikulation zu
scheiden und zwar Anpassung der peripheren scheiden und zwar Anpassung der peripheren
Teile und all emeine Hebung oder Senkung Teile und allgemeine Hebung Nebenkoordinader Zunge an den Haupt- und die Bewegung
ten. Periphere Teile kynnen an den Hauptkoordinaten verstarken oder schwachen. Verfolgen wion an der Koordinate 120 whrend der $\mathrm{Be}-$ wegung von u:. Wit dem Strich sind die angemerkt: $35,24,15 / 0 \mathrm{zug}($ mittel $)$ angemerkt:
$60140,40,35,24,15 / 10$ Zug(mittel)
$60150,40,28,20,22,10 / 10$ zugehen
$60 / 48,40,30,30,10 / 10$ Zug (ochs)
$60 / 50,50,45,20,18 / 0$ Zugang 0/ $15,19,12,19 / 60$ (zu)gut(ekormen) Iiedrige Werte kennzeichnen die Hebung des ungenruckens bei der Artikulation u: im es vorangt(ekommen) unter dem EinfluB indungen Zug- eine tiefere Zungenlage
ervorruft. Jbrigens wuren einige spezifu vermerken. ine starke Koartikulation entwickentische mahmen der Silbe und der kinfluB auf den den Anlaut als umgekehrt, z.B. sten Einflub Wort mutig t unter einem starken keine des ç-Lautes, vithrend Koartikulation zu finden sind. Das bedeutet, daB die Koartikulation sonanten regressiv geregelt wird.

Wie es zu vermuten wite, vollziehen sich die Bewegungen im vorderen Teil der Mundh, e: bei der Artikulation der wodurch die Umstellung nicht so krab zum Ausdruck kommt und an der Hauptkoordinate bleiben die Lierkmale meistens aus. Milung an den ten die Merknale der Umster.
peripheren Koordinaten aur die Merkmale der Unstellung schon an den Hauptkoordinaten fixiert, an den peripheren lele auf, 0 en treten auch sekunare Kinaten $30^{\circ}, 4$ sowie 90 und 120 einheitlich mit. bei ie Identifizierung der Umstellung bei Ma : imalwerte bedeuten hier die maximale senkung, die sekund ${ }^{2}$ ren Merkmale ar Identi peripheren Koordinaten tragen zur Identiister
vertes also ist eultig nur fur a: a, o:
fur andere Vokale gelten die Unstellungsfur andere Vokale gelten die Unstellans werte als Merkmale der Tabelle 1 sind Ergebnisse der Plazierung des artikulatorischen Sillbengip-
fels dargeste 1 l , woraus folgt, daB die fels dargestelit, woraus folgt, dab die Plazierung gar nicht stabilichen Mittel punktdes Vokals zusammenfallen $h \neq n g t$ von Die Verteilung der Plazierung hangt von dem Silbenschnitt ab: ingipfel in der ersten Halite der Vokaldauer, in der ge-
schlossenen Silbe ist der silbengipfel schlossenen plaziert. In der quasigeschlossenen Asymbe sind gemischte endre vermuten, daB das Energierelief der Silbe zur Plazierung des Silbengipfels im Einklang stehen solite; die schimpuls in der geschlossenen Silbe, also mit grbberer ervirklich werder Erforschun ie Ergebnisse der schlieBenden der Gechwindigkeit der schliebenden Bewegun t der ilbe sind als Zahlenangaben der Zungenage in den letzten 20 mses vangspunkt sente die Annahme, daB die Uberwindung iente die grbBeren Entfernung eine gryBere Geschwindigkeit der Sprechbewegas in den tigt. Die einen Unterschied gabe, der aber nicht fur alle verbindungen ende Bewegung eine iich, wenn diernung in Verbindungen a:t, grubere Entfernung in wiedergibt, so entsteht das entgegengesetzte hes bedeutet, dan gerade eine relativ grbBere EntferdaB gerade eine rech dem tangul grome

Tabelle 1
Plazierung des artikulatorischen Sil-
bengipfels in drei
Silbenschnitten bittelwerte der zungenlage in den let hittelwerte der Zungenlage in den
zten 20 msek vor dem Verschlub und Trägheitsverzögerung

Homorganische lösende und schließen Bewegung der Konsonanten			
kv: -K	52\%	43,4330	20
K	75\%	48,59>	40 msek
(Vati, Tat, Schatzi...)			
KV:-K	40\%	26	20
kVK	85\%	60,60	20 ms
$\begin{aligned} & 57 \% \\ & \text { (mutig, miuti, } 29,360 \\ & \text { tut...) } \end{aligned}$			
KV:-K	30\%	19,20>0	20 ms
KV	85	15,18>0	40 ms
KV: K	57\%	29,29>0	
(Viehzucht, Lied, litt...)			
KV:-	30\%	22,22>0	40 mse
	70\%		20 m
KV:-K			
K	60\%	3,56:0	40 msek
	40%	50,4	

Heterorganische lösende und schlieBende Bewegung der Konsoranten
$\begin{array}{llll}\mathrm{KVK} & \overline{70 \%} & 20,15>0 & 40 \mathrm{msek} \text { a: } \\ \mathrm{KV}: \mathrm{K} & 53 \% & 28,29.0\end{array}$ (Tag, mißachten...)
$\begin{array}{llll}\text { KV:-K } & -0 \% & 12,15,0 & 20 \text { msek u: } \\ \text { KVK } & 60 \% & 10,180 & 60 \text { msek }\end{array}$

$\begin{array}{llll}\mathrm{KV}:-\mathrm{K} & - & & \\ \mathrm{KVK} & 83 \% & 20,20-0 & 40 \mathrm{msek} \\ \mathrm{KV}: \mathrm{K} & 60 \% & 20,19>0 & 40\end{array}$ (Pieck, Pick, antik...)

KV:-K $(-$, Gott, $45,48 \geqslant 0) 20 \mathrm{msek}$
Ebenso zweideutig sind die Ergebnisse
mit dem konsonantischen Auslaut g / k. Abo en Auslaut g/k.Abe Ergebnisse ohne weiteres auber Acht zu lassen. Erstens, wenn diese Erscheninung in der Kontraststellung, d.h. Im Rahmen tet wird, so tritt eine rel schnellere Bewegung auf 1m Vergleich mit der
lösenden Bewegung. Der Unterschied gilt $\begin{array}{lll}\text { nicht nur für } & t \\ \text { toll } & 0<40,46 & 53,56>0 ; 0<36,38 \\ \text { s. } & 55,60,0\end{array}$
 Zugané $0<10,2048,42>0 ; 0 \div 28,2048,38 \cdot 0$

Sogar für die quasigeschlossene Silbe is ie $0<18$ Verhaltnis oft vorhanden
$\begin{array}{lll}0<37,20 & 0 & 26,29>0 \\ 0<37,41 & 0 & 60,60>0\end{array}$
eitere Beispiele in der Kontraststellung: Bettecke 0 16,20 und Bettdecke 020,22 ;
Zugang o 28,20 und Zugankero 20 gen, daß die 28 und Zuganker̄o 20,18 zeischiliffen sind und es ist gen fein gechlossen, daß eine gerin Verzöggeuf die silbennaht deutet. Verzogerung Aus der Tabelle 1 ist es auch ersichtlich, gezogen wurde. Diese Erscheinung fol auch aus der Ungleichmäßigkeit der Spr bewegungen. Abgesagt davon, dai einige Tei. le des Zungenruckens während der Artikulasich die Bewegungen sogar an den Hauptoordinaten nicht gleichmähf, d.h. nicht leiche Entfernungen in gleichen Zeitabchnitten, sondern mit Hemmungen. Einige assengen sind entgegengerichtet, aber cheinen.
Betrachten wir a rtikulation des ∇ vokals e: im Wort b- der Hier werden die werte von 40 msek bis 100

 Die unterstrichenen Werte bezeichnen die Dle unterstrichenen Werte bezeichnen die
allgemeine Senkug des Zungenruckens an
bestimnter bestimnter Koordinaten, nach der wieder
eine Hebung des vorderen Zungeruickens eine Hebung des vorderen Zungenrückens eintritt, die mit dem Verschluß in weitegerung geschieht immer nur nach der Umunterscheidet sich im Susabmengipfel, und unterscheidet sich im Zusammenhang mit de steht eine Tragheitsverzöezerung segen das Ende der Vokaldauer, in der quasigeschlos geschlossenen Silbe kann iuberhaupt aus bleiben, was oft geschieht, oder in der End phase der Dauer. Manchmal kann man die Konsonanten finden, z.B. während der Artikulation ts fm Wgrt sighatzi:
 $\begin{array}{llllllll}80 \text { msek } & 12 & 0 & 0 & 52 & \frac{62}{5} & 65 & \frac{68}{50} \\ 100 \mathrm{msek} & 12 & 0 & 0 & \frac{64}{50} & \frac{1}{59} & 65 & 60 \\ \text { Im Zeitabschnitt } & 80 & \text { msek } & \text { senkty } & \text { der } & \text { Zungen }\end{array}$
 20 msek Es kommt in Frage, ob mit di rung eine Silbennaht oder cines VerzögeUnsfellung angedeutet wirdides Silbengip-
fels bestatigt die bekannte Beschreibung yon E Sievers, der den Effekt des festen Anschiubes darin sah, daB der entsprechende Vokal am Gipfel der Man konnte meinen, daB eine schnellere schlieBende Bewegun im Moment der naximalen Schallonn. zu diesem Eifekt beitragen kann. den Resultaten der experimentellen Untersuchungen von O.Essen und festen AnschluB fonsen, dab Konsonant mit gröBerer Energie erzeugt wird als nach dem losen anschasen Die Diskussion uber den fescen und AnschluB der Konsiskussion uber die Bede genomuen Vokaldauer im Deutschen ahnlich zu sein. Das Merkmal der Dauer ist inchluBes, weil beide keine Spur der abAnschlubes, weil soluten Eigenschaften haben und nur durch den Vergleich zum Ausdruck kommen. Die nogtiltige Bewertung dieser Kontext und von dem Aussprachestil, den der Spreche b. Als Element des Kurzvokals und des olgenden Konsonanten im Deutschen kilbische Erscheinung betrachtet werden.
ie Erforschung der fein geschlirfenen Sprechbewegungen verlangt eine wie es schon in dieser Pilotuntersuchung geeigt worden war, konnen weitere der di Die Sprechbewegungen werden nicht nur von den physiologischen Faktoren bedingt ${ }^{\text {b }}$, sondem auch von den speziaischen sion unprosodik geregelt. Die Koartiku Der beste Beweis dafur wäre ein Vokal aus der ungekehrten Reihenfolge der kleinen kaum gezu synthetisieren. Wort zug bei der umgekehrten Reihenfolge der Segn
im liort gut zu produzieren.
Akustische Korrelate des festen und $10-$ sen Anschlubes konnen durch die enp werden.
two issues in estonian phonology - quantity and palatalization

MATI HINT

Department of Estonian Language and Literature Tallinn Teacher Training Institute

ABSTRACT

There are two problems in the Estonien phonology, solutions of which are typically non-unique - quantity and palatelization. Both contrasting quantity and pelatalization occur in stressed syllables and affect morphophonology. The non-unique interpretations of quantity and palatalization reflect various phonemic qualities of these phenomena.

QUANTITY

The scheme of phonological analysis should give a classification of syllables with regard to their segmental and prosodic structure.

In the recent years several new schemes and descriptions of Estonian prosody have been presented. These schemes express differing conceptions of their authors about this complex subject. Leaving aside the descriptive adequacy of different schemes, it is possible to examine their phonetic naturalness.

The following principles are involved: (1) the binary branching is more natural than a tertiary one; (2) prosodic modification of long syllables is more natural than the modification of short syllables; therefore, it is more natural to give segmental specifications of a syllable before the prosodic analysis, not vice versa.

The following is an attempt to estimate some schemes of prosodic analysis of Estonien from these points of view.

HINT /2/

Types of syllables:
(1) short stressed syllables (Q1);
(2) long stressed syllables (Q2);
(3) long stressed syllables with an extra quantity (tense pronunciation, Q3);
(4) short unstressed syllables;
(5) long unstressed syllables.

Examples:
$\begin{array}{llllllll}4 & 4 & 2 & 5 & 4 & 3 & 5\end{array}$ kalaleminnakse ment to fishing one goes in the evening karjus 'karjus metsas ishepard shouted in the wood

In this scheme the phonological stress and quantity are treated as two separate prosodic phenomena, the phonemic stress being a precondition for quantity distinction in long syllables $/ 2 /$; +stress may be either a main or a secondary stress (this additional branching does not affect the system of quantity contrasts).

VIITSO/4/

(1) short light-accented (Q1) syllables;
(2) long light-accented (Q2) syllables;
(3) long heavy-accented (Q3) syllables;
(4) long extra heavy accented (Q4) syl.;
(5) short unaccented syllables;
(6) long unaccented syllables.

In this scheme stress and quantity are incorporated into a unique prosodic complex - accent. There appear to be some inherent difficulties in this scheme:
(1) all the stressed syllables are ac cented, but if there is a difference between the main and secondary stress, and if both the accents and stresses are unpredictable within the word, then it follows that the number of accents should be doubled according to the number of stress degrees (main and secondary stress);
(2) long syllables need for their three different accents tertiary branching - if the first differentiation in this scheme were between short and long syllables, then the long syllables would clearly need tertiary branching;
(3) Q4 has been suggested by Tiit-Rein Viitso for several years but it has not been proved experimentally (descriptive inadequacy); it seems that this doubtful quantity (accent) degree does not fit into an ordinary prosodic scheme, either; without Q4 the scheme would look much more plausible.

EEK \& HELP / $1 /$
 ith the Viitso's analysis, except the terminology, and Q4 which Eek and Help ave abandoned as unsubstentiated. During many decades this scheme has been sug-
gested by Valter Tauli (whose terms were light and heavy stress, cf. /3/).

The comparison of these conceptions underlines the following pecularities of Estonian prosodic system:
(1) there are both short and long syllables with light accent (lax pronunciation); this is the main point in the schemes by Valter Tauli, Tiit-Rein Viitso, and Arvo Eek \& Toomas Help; in Hint's conception these syllables are considered to be unmarked in respect of syllabic quantity;
(2) short syllables do not participate in quantity contrasts; this is most distinctly revealed in Hint's scheme;
(3) it is possible to interpret the Estonian prosody as heving only one accent or extra syllabic quantity (Q3); this is best revealed in the scheme by Arvo Eek and Toomas Help; in Hint's conception this is expressed by specially marked +extra quantity;
(4) extra syllabic quantity is possible only in long stressed syllables; this is clearly pronounced in Hint's conception.

Palatalization

Palatalization in Estonian is a phonological correlation (in Trubetzkoy's terminology) of limited positional occurence. Its realization in different Estonian dia-
lects brings forth the different aspects of its phonological nature.

The palatalization in Estonian is characterized by the following:
(1) the list of palatalizing consonants varies greately in different dialects: in South Estonian dialects $/ \mathrm{p}^{\prime} \dot{m} \mathfrak{t}^{\prime} \mathrm{n}_{\mathrm{s}} \dot{\mathrm{s}} \mathrm{l}^{\prime} \dot{\mathrm{r}} \mathrm{k}^{\prime} /$ may be palatalized; in North Estonian dialects palatalization occurs only in dental consonants; Standard Estonian palatalizes $/ t^{\prime}$ ś $l^{\prime} \mathrm{n} /$; there is no palatalization in the Northern Costal dialect;
(2) the patterm of palatalization before $/-i /$ or $/-j /$ differs in various dialects: in the Mulgi dialect (South Estonia) and in the Islands' dialect there is no palatalization before an overt/-i/ or $/-j /$; in other dialects there is on automatic palatalization before $/-i /$ and $/-j /$

These differences cause great variations in the functional load of palatalization in different dialects. At the same time, the palatalization or non-palatalization before $/-i /$ and $/-j /$ is an overt reflection of various phonemicizations of palatalization, that is, whether in a position before $/-i /$ or $/-j /$ the phonetic palatalization represents a palatalized or non-palatalized phoneme.

It is easy to see the morphophonemic consequences of one or another interpretation. Compare, for example, the pattern of palatalization in the word kast 'box'.

In Standard In Islands ${ }^{\prime}$ Estonian dialect

Nom. sg. /ikaśt/ +pal /ikaśt/ +pal
Nom. sg. /kast/ +pal
Gen. sg. /kaśti/ +pal /kasti/ -pal Part. sg. /'kaśti/ +pal /'kasti/ -pal Part. pl. /'kaśte/ +pal //kaśte/ +pal

The palatalization in Estonian deserves attention for its low functional load. The following table illustrates the percentage of palatalized consonants in the only position where distinctive palatalization occurs - in the position after a nucleus of main-stressed (first) syllable (where both single consonants and the first components of consonant clusters may be palatalized: /'klaase/, /'lol'le/, /'kaśte/).

The data are based on a statistically reliable sample of literary texts (total of 14.563 words: Q1 - 4.249, Q2-2.898, Q3-7.416).
In the table +pal max stands for maximum count of palatalization, that is, palatalized segments are interpreted before $/-i /$ and $/-j /$ and elsewhere as realizations of palatalized consonants;
+pal min indicates minimum count of palatalization, that is, automatic palatalization before $/-i /$ and $/-j /$ is interpreted as realization of non-palatalized consonants;
-pal min presents percentage of nonpalatalized counterparts of this phonological correlation.

In the table only +pal min represents distinctive palatalization; its rate in Q1 and Q2 words is practically zero.

Palatalization percentage
$\begin{array}{llllll} & / \mathrm{t} / & / \mathrm{s} / & \mathrm{hn} / & / 1 / & \Sigma \\ \text { Q1 +pal } \max & 0.6 & 3.4 & 2.2 & 7.0 & 13.2\end{array}$ $\begin{array}{llllll}\text {-pal min } & 8.0 & 3.4 & 8.8 & 14.5 & 34.7\end{array}$ $\begin{array}{llllllll}Q 2+p a l & \operatorname{mex} & 1.9 & 2.1 & 2.1 & 5.5 & 11.6\end{array}$ $\begin{array}{llllll}-p a l \min & 11.3 & 6.2 & 13.2 & 16.6 & 47.3\end{array}$ $\begin{array}{llllll}Q 3+p a l & \operatorname{mex} & 1.0 & 2.0 & 1.4 & 2.0 \\ 6.4\end{array}$ $\begin{array}{llllll}+\mathrm{p}=1 \mathrm{~min} & .28 & .46 & .14 & .27 & 1.15\end{array}$ $\begin{array}{llllllllllllll}\text {-pal min } & 17.1 & 13.9 & 10.2 & 10.0 & 51.2\end{array}$ Both ways of counting may be of interest for the low reading of palatalization. In spite of this there is no tendency to eliminate the palatelized. consonants from the phonemic inventory of Estonian. In the lexical system the palatalized consonants obviously have more pronounced role (contrasts such as tall 'lamb' and tal'l 'stable', kott 'large shoe' and kot't 'sack').

REFERENCES

/1/ Arvo Eek, Toomas Help, "Rütminihked eesti keele kujunemisloos". Tallinn 1986. /2/ Mati Hint, Viron prosodisen systeemin perusluonteesta. - "Virittäjä" 1986, p. 428-440.
13/Valter Tauli, "Stendard Estonian Gremmar". Part I. Uppsela 1973.
/4/ Tiit-Rein Viitso, "Läänemeresoome fonoloogia küsimusi". Tallinn 1981.

The main principles of a phonetic word organization in Biblical Hebrew are
discussed, with rules for vowel chan ges as to the place of the stress formulated. A basic analogy in the of a sentence is postulated, for that cific accent properties alongside with a special vowel change paradygm dependent on different positions as to are characteristic for both.
I.I. There exists more or less general agreement about the importance of ana of a text and its constituents, i.e. sentences, tacts, or syntagms, phoneNevertheless, the rules opergting within such units as phonetic words and concerning their pronanciational stru cognita for an overwhelming tejora inlinguistic descriptions (thus, very few attempts, if any, have been so far made to propose a calculus of phonetic ge). The present paper is concerned of the organization of phonetic words (see 2.1.,2.2.), to propose the rules for constituting bigger pronounciational specific prosody, i.e. accent characte ristics, prd to discuss specific prosodic patterns of a sentence, with the words and/or syntagms according to the position within a sentence (see 3.), all on the material of Biblical Hebrew (hen a phonetic word, we, the organization of cation of BH morphological units assifi their "constructive class" (see 2.1., phonetic word and to clagsify sperifi positions within a sentence andor a
phonetic word as to its prosody and the type of vowel changes, it appears necessa nemics (or archiphonemics, see $2.2,3$). The main conclusions of our study which might be of a certain interest for
future Hebrew studies as well future Hebrew studies as well as for stu-
dies in the field of typology of sentence prosody are presented in the last section (see 4).
terest for BH material is of a great interest for the analysis of sentence proteristics of the text, for the texts in tion marks, which is a rare thing for a text in an ancient Semitic language, but with accent marks as well. The BH distinguishes two systems of accents-poetical verbs) and prosaic ones (as in other Books of the Bible) (see for details $13 /$, of prosaic accents only basing on the text of the Tanah in Tiberian vocalization (early X cent. A.D.) without taking ning specific vocalization problems concerdages, swa medium etc) and other slight inconsistencies within the text of the Bible, for on the whole it appears obviorules for phonological, prosodic (see just 2.1. To study the structure of phonetic
words, it is necessary to classify the units of the language into constructive as to accentual independence and to phonological processes operating on the inter-unit boundary (a common stress be-
ing held for a main parameter to distinguish a separatc phonetic word). In BH, we distinguish three constructive clas ses of units and three types of inter tine. the only units capable of constituting an independent phonetic word all (here belong a great many lexical units,
uch as dābār 'word', śămár 'he kept')and unaccented ones (here belong some prepo sitions as (al 'upon', tahat 'under' et lia, and some adverbs, as gam 'also sy this opposition is relevant but for a syn-
tagmatic level (the interunit boundary for
find bases will be marked with \#\#) ${ }^{2}{ }^{2}$. Affitial, such as noun pl.masc. -im, fem, -ot)
 fixes fprefixes), noun suffixes -on, -an é ixeshpre boundary is marked with + (for ack of space weril not discuss her prefixes, suffixes and traopposition of . 3. Clitics, falling into roclitics (as ha- (definite article wa
 y denominated: prefixed prepositions) atic enclitics (here belong direct object pronouns used with the ver.
bcundary is marked with $\#$.
Eanh type of boundary is characterizd by specific processes in pperation. The peculiarity that another phonetic word may be inserted into the phonetic word given
bases, clionly before it. Unlike bot alone form a phonetic word. both affixes and clitics are ascribed a rang as to their place. Thus, placed nearer to the base than desinences its a set of clitic, each clitic his its specific rang, cp. an admissible number of the rang as to the base given in brakets: wa(1) se (2) $\overline{\text { a }}$ (3,4) rir from war (1)-
and which-totheown. . ', as opposed to a wrong sequence
 ing on a ciltic boundary F) (comp. the rengs for clitics in clitic complexes
littite and other Anatolian languages, well as in Berber, Cushitic eta). The ity of different types of clitios, affixes and bases with one another; a more tailed discussion of the probem paper. An ideal phonetic word admissible would be: $\mathrm{Cl}(\mathrm{I}) \mathrm{Cl}(2) \mathrm{Cl}(3) \mathrm{Cl}(4) \mathrm{ftf}(\mathrm{I}) \mathrm{Aff}(2) \mathrm{B}-$ ff (I) iff (2) Cl, where Clistands for a po-
sition reserved for clitics orly, hff- for thion reserved for chitics that of a Base,
that of an affix, for figures in brackets stand for rangs.
can consist also of CL $\#+$ taff (a phone tic word of such a structure behaves as
 allocations with repetitions' in and ible wich equals 2^{2} Naturally, not
use of the restrictions on compatibility use of the restrictions on compatib). Here are some examples of allowed phonetic
words: $1 / \mathrm{B} \# \mathrm{CL}$ samaras' he preserved
 o.different $\begin{aligned} & \text { B+Aff }: \text { samalogical processes of vowe }\end{aligned}$ change on the $\#$ and + boundaries!, CL\#CL\#CL\#B+Aff:wa
which -in-book+our'
2.2 . for the further study in the prosody of phonetic words, it would be necessary to study the main stress patterns proper to it. In general, the main of
stress would tend towards the end of stress would tend changed, there occur phonolegicall changes
conditioned vowel changes. These conditioned ve given in a special pararygm, called an archiphonemic paradygm. Let's call an archiphonem interpreted with phoneme (in the sense of Prague School 'soundtype') belonging to set of phonemes dist context. The units (i.e.archiphonemes) with a comon set of phondlogical rules (or a comon context) are unitod into one archic honemic paradygu, so, the position as t paredygm of (see below) tosether with openness of the syllable is the mare con-
icontext-forming feature. one more context-forming feature the type of in text - forming boundary (see 2.1., II, ?/ for different vowel changes on
and $\#$ boundury). (One should remark in bra and \# boundary). (nge shing between phonologically conditioned vowel changes and norphologically conditioned ones provides us with a most powerful tool for the dorphology of $\overline{B H}$, as well as that of hodern hebrew, allowing f..ex., to reduce the number of
noun decicnsional classes to 4 from about 340 and vernal ones to 2 from about Most phonetic words consisting of a ${ }^{\text {B }}$
 , obtained by phonologicalı rules from
 (as lemma 'why') and a few real exception a phonetic word contains a clitical and/ or an affix boundary before the base, it does not affect the stress and thus the vowe 1s (with an only except declensional prefix waw conseverbal declensional prix boundary lies cutivum* . If an following situations cen occur: a) atrix belongs to 'unstressed'
 no changes occur; b) affix belongs to 'stressed'ones, hen the stress is moved

(The information as to whether an afix
is 'stressed or iunstressed' is due to is 'stressed or 'unstressed' is due to
special morphological dictionary.) Men.
the strossed is trandin the strossed is transferred to the suffix,
vowel changes according to an Apchiphonemic paranges take place (let's call it AP I). For lack of space, the whole AP will not be presented here. Wholl but $\vec{A} \rightarrow$ in an open sylable in archiphoneme preceding the stressed ore, ${ }_{n} \rightarrow$ in an ope
syllable not immediately befofe the stress. applying the rules to an AP version obtain a coprect form danarim, abe being an automatic vowel; $A \rightarrow Q$ in en A open one, ${ }^{i}$ IT \vec{a} in a closed syllable not immediately before the stressed one, so
 The ap rules are to be applied begin ning from the are to be applied begi If a clitical bundary lies after a B, or B+ilf, the stress is removed to the
clitic, and the vowel change operating come from a different onge operathus(let's call it an ip 2), A $\rightarrow \varnothing$ in syllable not immediately before the
stressed one, and $p \rightarrow$ à in a syllable stressed one, and ip $\rightarrow \bar{a}$ in a syllable

 between two APs for a phonetic word. he structure of pass to the analysis of tagme, or tacte, and the sentence proody properties. h syntagm may be equal the frame of a wentence excede it. Within f a sentence is usually marked with : everal positions can be identified, an or we refard a sentence as an accentual e treated as analogous to the positions as to the stress place within a phonetic n unaccented position, a strongly stre: ed (or a 'pausal') position and a norally stressed (or a 'non-pausal') one. ausal forms in BH :c. pausal and nonhe earliest descriptions of BH (see position (i.e., a position of a pausal pausal form is required) has evor been proposed eivery position in a sentence ent marks used to a spentify it set of phonetic word
\qquad identify
within upying normally stressed positions has econdary atress (the accents, but for a n cevery closed syllable with a long vo wel, as in battim 'housest, the seconda
ry stress not affecting any ir The phoneunder consideration may combine with so called 'weak disjunctive accents' marking the logical organization of the sent in (here belong accents as zakkef, geres and some other). If a phonetic word occurs in unstressed position, it is autoinatically united with another phonetic word or a unaccented base (see above) may not constitute a separate syntagm. The unstressed position is marked by the s.c. ' conju-
notive accents', lying on the second(i.e. stressed) constituent of a syntagm, the graphic marker of the unstressed position between the constituents. A secondary stress may appear on the constituent in an unstressed position, unless it is an unaccented base. F.ex. $3 /$ Gen.I, 5 wayhiming came (where - stands for linea makkef, x is meteg on a phond tier wingeq accent merha marking an unstressed position for y.thin'be, was').
in " ptonetic word and/or a syntagm stands in a strongly stressed (pausal) position a sentence andor in the end of a logically complete passage. S.c. 'strong disare used to identify the position in ques tion. The most interesting property of BII from the point of view of properthoneindependent A Ps with specific vowel change paradyem for each position. Thus, in a strongly stressed position no vowel chan-
ges occur and the whatever structure atress is never removed possess, and another vocalism is characteristic of it in comparison with other
positions. Cp. following examnles of syntagms in strongly-stressed positions: $4 /$ Kings II, 11, 14: wattikrar critalaya ${ }^{\text {let }}$
 (x-silluk, and shouted: Treason, treason!
kaser-a specific form used in a strongiy stressed position $\neq f$ the
word keser); ; $5 /$ Jer. 22,29 : (erec (ered , ard keser ; ; 5/ Jer. 22,29: 'erec 'erec

 ferent vowel patterns in : pausal:' emar-

The unetressed paid.
The unetressed position also possessea to the AP I of pattern; its ap is close tion. The only complication about the vowel patterns occurring in unstressed with the morphenemes. Set of noun declen-
sion, for there are specific more
forms of nounce(those of construct state)
which are found only in thig position. in a sentence (and/or that of a syntagm) appears, to constitute one more convex for ning ' (in the above sense) parameter for an AP. In this respect ene in BH is analom gous to that of a phonetic word, compare also the analogy of the opentagm and/or a condary stress wic word and that of the s.c. 'week disjunctive accents'in a sentence. A specific archiphonemic paradyem is chanetic word as to the stress, as well as for different positions of a phonetic word in a sentence; in woth cages ese final position.
. By the way of analyzing the principies of a phonetic word organization sentences we have arrived at a conclusion of a basic analogy between the structure of a phonetic word and that of a eenten
at least on the archiphonemic level of presentation. This analogy may be of some interest not only for Hebrew studies but perhaps for historical and typological The studies of sentence prosod
analogy in question
rominda us of an analogy in the structure of hierarchicall.
regulater inits of aifferent kind -i.e. regulaten inits of different kind -i.e., by some linguists Can a structural analogy between the hierarchically regulated units oi a drineory or pronunciational organization of the lan guage, and not with the paradygua son-
organization of the languege in the se of $/ I /$ - be maintained, too? (nnqway se of $1 /$ - be mantang to analyze from this point of view other laws nd at centenof pronounciation organization ce, as well as the ruies for phacs within then; consider, f.cx., the rule for placing clitics in a speciad position in the sentence in many Indo-europern and tro-asiatic languages; the ban for unstresaed baser to occupy a eentence-
final position in Wodern Hebrew and so on).

[^6]
лыекмй пединститут им К. Пренкшаса

Peзme
Па значитєльної территории щятайтского диалента аттрағпия упарения препставля-

 дать первычний импулс для аттракции ударепия, однако, если и пинять "куршекуо" гипотезу, то все же следует признать, что речии более просто и убепительно оовлснается Не язнковими контактали, а внутриязы-
 ределенные морологические багторы, а тан-
se характер празовой интонаиии.

Orнои из важнеитих черт просодии семя ударепия - сго оттяжвасется аттран-

 гов сий тает, что аттракіпия преполавляет собой совершенно регулярнее и законченное лиючнии. не допускаюшее почти нинамих истрении оказывется, что данная закономерность на уровне спонтаниой, живой речи не иил в современном северожемайтскоия ударепредставляет сооод не статическое (законемное), а шинамическое явление. В настоя ем исследовании рассматриваются мменно озможные прлчяны этого явления. диарроил тичсскимитезн поовержотся точньмй статиого анализа магни нодоннох оаиистематичеанной свяаной речи. Зсе статистическде аинвс обработанн с помомь: элеитропно-яи :Тонучени: језу
аттакуия удареня и её отсутстиие в сезе-

пеего, она зависит от определенних фоне
тических ударение іе оттлглвается. значительно ча чем с кратких, 30 вторых, сильное влинние
 можно определить как тенденгипо в, колумнальной акцентуапии, напр.: результаты аттракции ударения в местоиммениях сущест именньх словех, поскольку многие местоимения являются целяком онситоническдми по своей природе; глагольные формы з-го лиц храняот конечное ударение, несомненно, под

 сердишься, рассердится"); неизмняемие
словие чолее часто соханяют нонечное ударение, чем изменяемье и т. п.
Еолышое (паже, может.
щее) значение для генезиса и оази решаю ап тракции имели интонапионные факторы. Уда. рение чапе всего не оптягивается в том цент, И осоенно, если оно произносится
 Іо- марнле, и ничего тут нё поделаешв ударения нача, пась з слабих позипиях фра-
 окончан затем этот продесс охватил И словоюорм, если они не имели определенного пополнительного стилистического оттенокситгричес, слльной элдазы). Наконеп, ни постепенно теряет дале стлистдтеску: леддо и вытесняется из всех позициа. льх чах северожемайтских говорах: в рахной части сохраненное оксдтоническое ударени аиента, в северожемайтских говорах ср ней полосы - сигналом экспрессивного (эмфатичеокого) логического акцента, а в сетическд теряется - оксатоническое ударе ние пояллется лишь иак крайне репное ииния (атракиязь, пешду нолебаниями ударе-

 вается, а ссепень аттранид такве тостепе

 аосолорно преоола даными. Аттранца упаре

 одном часто не оттяribaerca в тои случеe, когда слово нахомяся под логичесмим ак-

 ддном a то: ze дыс

 рак䒑и у yapeqza нe б
 но коде да самои дent armpar as yuapore menze.

 дочти во поех обследованни нами населе:і-

 не стајые, а, наоорот, наио оресстаздтет ementroro robopa, para

 з сзои очерегц, может способствовать боше усиление атт мании в настоящее врешя сти-

 тератдриону qз
атнамти

 вает наше исследование, на значительноп терытории жемайтского пиалекта аттракция ударения, вне всякого сомнения, предодніии этого процесса в самом центре его возникновения могут оить очєни дных куриско
 дать первичнй импульс дли аттракпии ударерия, однако его влияние вряд ли онло представляэт. Здесь важное значение могли мметь и различнне косвенные влияния. Напрхмер, вполне обоснованно считается, что
 дредстввляется совсем реальным, чио к ре дукция конца слова, которая, в свою очерепь, могла ввззать развитие аттракдии ддаренля. Также возиожно, что у куршей миннз
 muspere rar на reдyжци:о, так и на аттрак miv yay his ен. \because рая

 зати" ваниях по аналогии, характерных для зададнах говоров северовемаитского наречия. اоодіолагается, чт оооощение перекони

末ункиональном отношени ненелесоооразно－
 западнек говорах．Гиоопытно，что иочеззо－ зение этого чередолания，«ак и аттракгля
 Аея в виду эти ракты втолне оооснованно можно пједполагать，что и＂агрессивность＂ морғологичесих сакторов，тенения к ко－ лумнальной аппентуагия иогут обтлсняться теми＂е птичинами－упроменли мораноло－ гхчестой системы，свазанния с язвнозвии вонтантамл．

Сдедовательно，приолинеїно отбро сить влияние вурнского суоотэата на ат－ тракпин ударения никомм образом нельзя， опнако，если и принять＂пуровуи＂гипоте－ зу，то все ze следует поизиать，что аттра－ киия удајения в северотепаитеком иречии，
 распроотраненле，более просто 1 убедтени Но обияняются не язновіла вонтантами，а внутриязековвма мотивами，средт которнх
 сних，опреде генно то ролыические ракто－

／1／Rudzite N．Latvie：̆u dialelitolo弓ita， Riga， 1964.
$12{ }^{\prime}$ Ieon \dot{P} ．Patrons expressifs de I＇in－ tonation．－Acta Univ．Carolinae．Pila－ locica I．phonetica Iracensia III， 197 ？ 131 Bolinger D．L．Accent redictable．： iunsuage，1977，vol． 48, it 3 ．
／4／Dogil G．Kutosecmontel Phonology in Contrastive Linguistics．－In：Theoreti－ cal Issues in contrastive Linguistics， Amsterdem， 1900.
$15 /$ Benediktsson H ．The Hon－unicucness of Fhonemic 01utions．－Monetica， 1963 ，
vol．10，IV $3-4$.
161 Поливанов Е．П．отатыи по сбimeny лан－ вознанин，Москеа， 1969 ．
 Каипез，1891－1900．
／8／Girdenis A．亡̇emačiu dzukavimes：de－ oartine padetis ir istorija．－Batistica， 1980，t．16（1）．
／9／，Grinaveckis V．Dèl lictuviu albos tarmiu kircio atitraulimo kilmés．－Ifor darbai．Ser．A，1977，t．4（61）．
／10／Girdenis A．，Rosinas A．Keletas sam－ protavimu dinlektologines fonetilos slau－ simais．－Baltistica，1976，t．I2（2）． ／11／Girdents A．Kuršiu substrato pronle－ ma sizures zemaičiq texitorijoje－fn．：is lictuviu etnozenezés．Vilnius， 1081 ．
／12／Girdenis h．Batískitu tj，dj roflek sai 1759 m. ＂Žvate＂．－Baltistica， 1972 ，
t 8 （2）．
／13／Pabrèza J．Diachroninés pastabos apie kirčio atitraukime siaurés žemaičiu tarmeje．－Baltistica，1906，t．Z2（2）．

BBEILEHZ

Цельн этой статьй является рассматривание Функии словесного ударения в омограчах и в акцентологических вариантах, явллюиихся неотьемлемой частвю системы современного русского языка. Ударение, как просодический признак русского слова, по существу реаливуется в ввучащей речи и, как правило, в письменных текстах не обовначается. Впрочем, при звуковом оформлении русских письменных текстов нерусские в первую очередь сталкивактся с трудностями, связанними неноторым образом с постановкой ударения, от которой зависит весь звуновой образ слова, в том числе и его ритмика. Кзвестно, что ритмическая организация русского слова связана с сильноцентрализутним типом квантитативно-динамического разноместного и подвижного ударения и с редукцией гласних по силе и длительности двух степеней в безчдарных слогах. Итак, в основе ритмики русского слова лежит контраст ударности и безударности слогов и ритмическая структура в общем определяется ко-

личеством слогов и местом ударения. Вследствие разноместности и подвижности словесного ударения существует в русском языке и значительное количество омоградов. И с развитием языка тесно связано и развитие нормы акцентуации, вызыванщее сосуществование аипентологических вариентов в пределах норм современного литературного языка. Так например, развитие акцентуационной нормы иллюстративно можно поназать у существительного "душа". В Грамматике русского языка 1.952 г. / / нормативная рекомендация упарения в дат., пред. и твор. пад. мн. ч. на окончании, т.е. "душам душ'х - душ'ами. В примечании допускактся и "более новые" формы - "душам - душах душами" с ударением на основе. В словаресправочнике Аванесов и ожегов 1959 г. /2; уже кописицирована акцентуация существительного "душа́" на основе. И более старая форма акцентуации указана только в фразеологизме "говорить по душам". Акцентуация на основе существительного "душа" рекомендуется и в новой Академической грамматике 1970 г. /3/.

Русское словесное ударение，как суперсег－ ментное свойство слова，в силу своей раз－ номестности и подвижности выполняет и не－ которые функции．Так например，с точки зрения нерусского чтеца русских художес－ твенных текстов，как в плане выражения， так и в плане содержания，являются эажны－ ми следупщие функции словесного ударения： 1／функция ○ р гани а а ц и и или по－ строения ритмических структур／моделей или просодем／．ऽсно，что степени редукции без－ ударных гласннх зависят от места ударения в слове，это значит，что ударение органи－ зует весь его звуковой образ．Ср．，напр．， волото $=-\vee \vee$［зОлътъ］，болото $=\vee-v$ ［бллОты，полотно $=\sim \sim-[$ пълАтно $]$ и т．п． 2／Функция идентификации и－ ли определения，распознавания слова．Явно， что каждое слово отличается определенной ритмической структурой и ее нарушение при－ водит к неправильно\％ритмической реализа－ ции，что во всяком случае затрудняет иден－ тификацию слова．Ср．，напр．，золото \neq－ ［зАлОтъ］，болото $\neq-\cup \smile$［болътъ］，полотно $\neq \sim-$－плллотнъ］ит．п．
3／функция дифференциации или различения，проявлямцаяся в разннх планах языка，указывается в омографах и акцентологических вариантах．Таким обра－ зом，ударение может выполнять функцит диф－ Ференциации одновременно в разных планах языка：а／план ритмико－звуковой и семан－

тический．Напр．，атлас $=$ атлас - ¢онемная
 и：сборник географ̆иеских карт \neq сорт тка－ ни－ритмико－звуковая и семантическая диф－ ференциация или среду＝среду，но：$-v \neq$ －$\left[с p^{\prime}\right.$ эду $] \neq\left[с р^{\prime}\right.$ иду $]$ и：третий день не－ дели \neq окружение，обстановка и т．п． б／план ритмико－звуковой и лексико－стили－ стический．Напр．，молодец $=$ молодец $-\not о$－ немная идентичุикация，но：$\smile-\neq-\smile \smile$ ［мъл＾д＇Ои］$\neq[$ мОлэд＇иц］и：нейтральный стиль \neq народно－поэтическая стилистическап окраска или компас $=$ компас，но：－$\neq \smile$ $[$ компьс $] \neq[$ кАмпАс $]$ и：нейтральный стиль \neq профессиональннй стиль и т．п．Выбор то－ го или иного акцентологического варианта зависит от характера текста．Так например， при чтении русских былин，чтобы создать народно－поэтическую стилистическую окраску， надо выбрать и реализовать акцентологичес－ кие варианты с ударением на первом слоге： ＂молодец，девица＂．

б／план ритмико－звуковой и семантико－грам－ матический．Напр．，страны $=$ страны - фо－ немная идентификация，но：ц－$\neq-\smile$ $[$ стрлні $] \neq[$ стрАны $]$ и：род．пад．ед．ч． \neq им．пад．．мн．ч．，т．е．ритмико－звуковая и грамматическая дифференциация или насн－ пать $=$ насыпать，но：v－u $\neq u v-$
$\left[\right.$ НАсНпьт $\left.{ }^{\prime}\right] \neq\left[\right.$ нъсыпАт $\left.{ }^{\prime}\right]$ и：совершенный вид \neq несовершенный вид и т．п． г／план звуково－ритмический．Напр．，гна－ лось＝гналось，но：$-\neq-\longleftarrow[$ гнллос＇］ $\neq[$ гнАлъс＇］или творог $=$ творог－фонем－

нея идентичикация，но ：$\sim-\neq$－
$[\mathrm{TB} \mathrm{\wedge DOK}] \neq[\mathrm{TВСрък}]$－звуково－ритмическая пифференциация И в таких случаях сущес－ твует идентиффикация не только в фонемном составе слова，но также в семантике，сти－ листике и грамматике．
Интересно，что в русском современном язы－ ке находится значительное количество рав－ ноценных в отношении к норме акцентологи－ ческих вариантов，т．наз．дублетов．На основе словаря－справочника／4／мы соста－ вили список акцентологических вариантов и обнарущили，что из общего числа 1200 ак－ дентологических вариантов 580 дублетов． Дублеты чаще всего встречактся，напр．： а／в именах существительных в им．и род． пад．мн．ч．：ирифтты＝трифтыі－шрифттов $=$ чрифтов；флоты $=$ флотн－флотов $=$ фло－
 ит．д．
б／в именах прилагательных чаще всего в краткой форме ср．род．и мн．ч．：бело＝ бело－белы＝белы и в прилагательных， выражамщи пространственнне отношения длинно $=$ длинно - длины $=$ длины；внсоко $=$ внсоко－высоки＝высоки и т．д．
в／в глаголах д－го лица ед．ч．：кружишь $=$ кружишь；городишь $=$ городишь；запрудишь $=$ запрудишь．И больше всего дублетов встре－ чается в возвратных глаголах в ¢орме про－ шедшего времени ср．род．мн．ч．：назва－ ло́сь $=$ назвалось - назвались $=$ пазвались пробрало́сь $=$ пробраллось - пробрались $=$ пробрались и т．п．

г／в наречиях：внсоко＝внсоко’；на́бело＝ набело；＇ало $=$ ало и т．д．
Ели，например，в стихотворении встреча－ тся дублеты，мы должны выбрать и ироиз－ нести тот вариант，который требует зара－ ее автором заданная метрическая схема． Инвми словами／5／метр стпоотворения ре－ ает о выборе того или иного акцентологи－ ческого верианта．Итак，метр является в некоторой степени практической опорой чтеца при соблюдении правильного ритма． Например，в стихотворении В．Солоухина ＂яблоко＂в отрывке во втором стихе встре－ чается дублет：родилось＝родилось．И в таком случае ямбическая метрическая схе－ ма данного стихотворения решает о виборе варианта：родилось．Ср．，напр．

то＇яєлоко－дитя Земли и Солнца
い－ひぃ－－－－－－し

Родилось，

Выросло из завязи
ー－い－－

Созре́ло．．．
－－－

аким образом，ритм является конструктив－ ным фактором стихотворения и каждая не－ правильно построенная ритмическая модель повлечет за собой детормацик，искажение

Abstract

उвукового образa cлова if proma poobme．I тикой，стилистикой или грамматикои，не－ смотря на то，что кон＇пекет или ситуац㹸 содеиствукт правильному определения зна－ чепия и понятия внсказнвания．

ЗАКЛНчение

Очевидно，что в памяти челоеека храиятся некоторые ритмические структури и всвязи c этим надо уделять больне внимания $в$ пронессе обучения русскому языку，как и－ ностренному，выработке правильной ритми－ ки русского слова．И зеучивание ритмичос－ ких моделе华，по пашему практическому о－ пыту，полєвио и на основе смены，контрас－ та ритмических структур в омогражах и ак－ центологических 玉ариантах．

ЛИTEPATYPA
／1／Грамматика русского язнка，Москва， 1952.
／2／Русское литературное произношение и ударение，словарь－справочник，под ред． Р．И．Аванесова и С．И．Ожегова，Москва， 1959.
／3／Грамматика современного русского лиー тературного язнка，под ред．H．N．Lиведо－ вой，Москва， 1970.
／4／Трудности словоупотребления и вариан－ ты норм русского литературного язнка，слом

варь－справочиик，под ред．ii．З．Горбачеши－ ча，Ленингред，$\downarrow 575$. ／5／J．Iybak，lecitujeme po rusky，irgej－ slove， 1977.

ANTANAS PAKERYS

Dept. of Lithuanian Language
Vilnius State Pedagcgical Institute
Vilniue, Lithuania, USSR, 232034

AESTRACT
The relative importance of acoustic features for perception of word stress in Standard Lithuanien has been studied by method of artificial substitution using a computer.
Like in most lenguages, in standard Iithuanian rord stress is based on a rumber of acoustic features of sounda, i. e. duration (T), fundamental frequency (Fo), interisity (I), spectrum (S). Direct instrumental analysis of spcech, however, is unable to reveai relative importence of the above features. In our opinion, the relative importance of acoustic features for ferception of word stress may be effectively studied by method of artificial substitution. The method susgested may be defined as intersubstitution of acoustic features between members of an accentual opposition. Such modification of words makes it possible to reveal a certain competition of features. To this aim the words kitas ("other" nom. sing. masc.) and kità ("others", acc.pl. fem.) pronounced as statements by male speaker were fed into a BESM-6 computer via a digital converter (sampling fre-quency-50,000 cps). The prosodic features of both vowels in the word kitas were modified, according to the model of the word kitas and vice versa. The features were substituted one by one, in pairs and all the three together. In addition, the vowels of kitas were transferred to the word kitas and vice versa. The variants of natural and modified words were recorded in random order and presented to 45 listeners. These were asked to find which of the two words (kitas or kités) is heard and which of two intonations (statement or question) was used.
The results of auditory experiments are presented in Table 1 . The data obtained show that the feeding of the words into the computer followed by a reproduction do not distort the word stress: nonmodified words (kitas 1 , kitis I) were perceived adequately. When the stressed and unstressed natural syllable nuclei of the cuasi-homonyms were replaced paradig-

Table 1
Perception of stress and intoncition ($\%$, $\mathrm{N}=90$). Variants of stimuli: 1 - (T, Fo, I, S/-), 2 - ($\mathrm{FO}, \mathrm{I}, \mathrm{S} / \mathrm{T}$) $, 3-(T, \mathrm{I}, \mathrm{S} / \mathrm{FO}), 4-$ (T,FO,S/I), $5-(I, S / T, F O), 6-(F O, S / T$, I), $7-(T, S / \mathrm{FO}, \mathrm{I}), 8-(S / T, \mathrm{FO}, \mathrm{I}), 9-$ $(-/ T, F o, I, S)$, where in brackets unchanged features are presented before a slash (/) while the modified features are given after it. Statement is marked by a point (.) and question - (?).

Stimuli	Perception		Adoquate stress perception
	kitas	kitas	
	?	- ?	
kitas l	97.82 .2	3.6 .7	100.0
kitàs 1	- -	33.36 .7	
kitas 2	97.81 .1	$\begin{array}{ll}1.1 & - \\ 92.2\end{array}$	97.8
kitàs 2	1.12 .2	92.24 .4	
kitas 3	6.778 .9	$10.0{ }^{10} 4.4$	86.7
kitàs 3	7.84 .4	71.116 .7	
kìtas 4	$46.7 \quad 5.6$	$44.4 \begin{array}{ll} & 3.3\end{array}$	63.3
kitàs 4	6.718 .9	50.024 .4	
kitas 5	11.144 .4	$36.7 \quad 7.8$	44.4
kitas 5	58.97 .8	$27.8 \quad 5.6$	44.4
kìtas 6	25.67 .8	61.15 .6	37.2
kitàs 6	1.157 .8	27.813 .3	
kitas 7	- 18.9	57.823 .3	11.1
kità 7	92.24 .4	1.12 .2	
kitas 8	1.13 .3	88.96 .7	2.8
kitàs 8	91.17 .8	1.1	
kìtas 9	1.11 .1	93.3 4.4	1.1
kitàs 9	80.020 .0	- -	

matically, the perception of stress underwent a radical change:the listeners heard kitas instead of 立tas and vice versa. Consequently, we believe the main carrier of information on word stress to be the syllable nucleus.
Having changed the acoustic. features of vowels, the perception of stress varies to some degree.The percentage of auditory responses (i.e. in how many cases one or another feature is helpful in perceiving word stress) can be considered an inci-
cator of relative importance of those features. Thus, the decreasing seciuence of separate features was found to be:

$$
I>F O>S>T
$$

$36.7 \% 13.3 \% 2.8 \% 2.2 \%$
As in changing any separate feature the words were preceived adequately in more than 50% of cases, no individual feature can be considered as a relevant one since it is unable to rival the complex of other features. Much more effective are combinations of two features whose relative importance for perception of stress is as follows:
$(\mathrm{FO}, \mathrm{I})>(\mathrm{T}, \mathrm{I})>(\mathrm{T}, \mathrm{FO})>(\mathrm{I}, \mathrm{S})>(\mathrm{FO}, \mathrm{S})>(\mathrm{T}, \mathrm{S})$
$88.9 \% \quad 72.8 \% \quad 55.6 \% \quad 44.4 \% \quad 37.2 \% \quad 11.1 \%$
Especially effective are complexes of

$$
\left(T, F_{O}, I\right)=\left(F_{0}, I, S\right)>(T, I, S)>(T, F O, S)
$$

$$
97.8 \% \quad 97.8 \% \quad 86.7 \% \quad 63.3 \%
$$

The data presented in Table 1 also show that stress perception is related to perception of intonation. Yhen listening to the stimulus kitas 3, for instance, most subjects basing on the non-modified features (T,I,S) heard the :irst syllable stressed while the contour of the fundamental frecuency (Fo) transferred from the word kitas was evaluated as the indicator of interrogative (rising) intonation. The present experiment shows that it is combination of acoustic features with a different degree of relevance that makes a phonetic basis of Standard Lithuanian word stress. It has been also found that in the process of perception a distribution of features between word stress and intonation does take place.

A.DZHUNISBEKOV

The Institute of Linguistics of the Academy of Sciences Alma-Ata, Kazakhstan, USSR, 480021

ABSTRACT

The hypothesis of a mord-stress lack in the Turkic languages phonetic system is being put forward. The constitutive, culminative and word-distinctive functions of synharmonism as well as the role of synharmonic co-articulation both in Turkic syllable formation and in syllabation are being elicited. Synharmontsio predetermines the linear size of a morpheme, the latter being less than a syllable does not exist in the Turkic languages.

The Turkic word prosody has been completely reduced to the Indo-European wordstress, vowel-harmony being neglected as the result of thereof. Besides, vowel-harmony is a phonologically unjustified and phonetically inexact term. However, the idea of vowel harmony which presupposes the presence of at least 2 syllables in a word, has played its misleadiog role as far as research is concerned, monosyllabic words being excluded from the field of study.

It is inferred from the present situation in the Turkic prosody that synharmonism has been denied a proper place in the succession of known in general linguistics prosodic units. Beins theoretically the most thoroughly elaborated ones, stress and tone remain nowadays in general linguistics as the only generally recognized prosodic units.
"Europocentrism" has not solved and is not in a position to, cardinal problems of the Turkic phonetics, the reason there of being the transference of the accentual (non-synharmonic) languages phonological analysis principles and means to the nonaccentual (synharmonic) ones.

Accumulated experimental data have failed to lay down the basis for creating the Turkic phonological theory as it is, because of their "europocentriot" interpretation, the latter, in the final run, confirming the result obtained by traditional
acoustic methods.
Attempts to produce evidence for the existence or lack of Turkic stress and its place only by means of experimental phonetics' methods are bound to fail.

To our mind, the reasons thereof are as follows: all the linguistic functions of synharmonism are, this way and that, attributed to word-stress, the latter acquiring the status of an important linguistic unit in the eyes of researchers. The identity of both word-stress functions and synharmonism as the same level prosodic units presents illusive logic of such a substitution, and the hypnotic influence of word-stress ideas still remains an insuperable obstacle.

The problem seems to envisage a Turkic word either having accentual nature (and this means segment analysis being carried on phonemic level) or synharmonic one (thus, obliging us to find the predetermined by it, principles of division into functional synharmosegments and synharmosegments proper).

This problem still remains obscure as researchers fail to understand the fact that phrasal words and words in a phrase are intonationally alike as far as sentence prosody is concerned. However, reseachers differentiate phrasal words as isolated words proper, in contrast to the same words in a phrase. As a result, various manifestations of phrasal word intonation are interpreted as acoustic stress correlatives. Taking into consideration that both phrasal words and expanded phrases can be pronounced with various logical, emotional, expressive accessory intonation in dependence of the phrasal word contextual semantics, the difficulty of word-stress unambiguous interpretation is quite understandable. In effect, researchers are oblivious of the fact that isolatedly pronounced words, allegedly proving word-stress presence in the Turkic languages, are, in fact, contained in a syntactical unit with a more-thanword volume, and, thus, they bear partly this units' intonation. Hence, the Turkic "word-stress" does
not posses the Indo-European word proso-
dy's main characteristics of being the dy's main characteristics of being the
word acoustic image's oblligatory element. The analysis of results in various investigations into the Turkic languages
"word-stress" nature shows that one should speak of phrasal, rhythmic-syntagmatic, 10-gical-expressive prominence of this or that syllable in the word rather than of rence. Phonemic stress significance in the Indo-European languages and tone significance in the syllabic ones is known
to win recognition from all researchers. As far as synharmonism in the Turkic languages was concerned, phoneticians did mot pay special attention to it from the funcharmonism being recognised as a really existing acoustic phenomenon.
that turkologists-phoneticians to the fact already told cherished their pettheory of wordistress.
on of synharmonism pertains to keaping ho mogenious synharmotimbre of the Turkic word's whole image, this being the obliga tory element of its phonetic image. Viola
tion of homogenious character of timbre disrupts the word, grates upon the ears impedes percept.
unintelligible.
Thus., the constitutive function of synharmonism provides proper recognition of $[b a s],\left[b^{\prime} e s^{\prime}\right]$, [$\left.b^{\circ} o s^{\circ}\right]$ [[$\left.b^{\prime 0} \ddot{0} s^{\prime 0}\right]$
etc. arécharacterised not only by a ce tain linear combination of sound but also by unique quality of each word's synharmotibre, both vowis and consonants alike portance of synharmonism constitutive function is also proven by the fact that any synharmonically properly organised word
is easily and correctly pronounced by Tur kic languages native speakers. A word sounds familiar though its meaning may not be clear, such
Another function of similar importance is the culminative one, i.e. unification of word image forming sounds. Provided
the word is polysyllabic, ali syllables are organised accoriding to one of the synharmonic timbres. This function plays an phonetic image formation and it proves synharmonism being characteristic not only of polysyllabic oords but monosyllabic ones as well. It means that the terms "synhar-
monism" and "vowel harmony" are not synonyms, the latter being inexact both as a term and a phenomenon. Vowels play but guages without being "harmonisers" and,
moreover, without performing word-distinc-
ive function.
From the phonetic point of view, the set of synharmonic allophones (synharmosounds) proper is of great importance, der unfavourable phonetic conditions of ommunication, as in case of vowel devoi ing, depends on the audibility of the onism.
Word-distinctive function of synharmo ism is significant as well. One can proynharmonic pairs or quartettes of words idely used in the Turkic languages. (On can say that Turkic vocabulary contains systems of synharmonic pairs or quartet-
tes of words). For instance, the words $\left[\begin{array}{ccc}t y & s\end{array}\right]\left[\begin{array}{lll}t^{\prime} & < & s^{\prime}\end{array}\right],\left[\begin{array}{lll}t^{0} & u s^{0}\end{array}\right]$, $\left[\begin{array}{ll}t^{\prime 0} & u \\ S^{10}\end{array}\right]$ ynharmonism, but also by consonant one. articipation of all sounds comprising trictly obligatory. It is impossible for ny synharmonic variant of one consonant o be replaced by another one. In other ords, the above words should not sound tural sounding of profoundly Turkic words which become inconvenient to be pronounced by native speakers of the Turkic languages.
ounds comprising characteristics of ocoustic correlative of synharmonic timb res, and its general spectral picture is, in a certain way, retentionary and consof synharmonic timbres. These timbres are distinguished from one another by this or formants. A certain type of synharmonic timbre (its characteristic acoustic conour) begins with a consonant preceding a
vowel (if a syllable begins with a conso nant) and is expanded over to a consonant oncluding a syllable (if the syllable nds up with a consonant). Thus, synharmonic timbre is a property of the whole sylExistence of synharonic timbres is
roven by their functioning as proven by their functioning as word-disthus the difference between them being of phonological significance. Since synharmonic phonology allows to distinguish 4 synlabial), Turkic languages can be calied polytimbral ones.
in Thus, the language functions inherent tone of syllabic ones are found on the tur kic languages in synharmonism. This shows guistics plane and seems to represent imguistics plane and seems to represent im-
ting at principal differences rather than t imilarrities of these language groups Ifferences one should distinguish, in onsecutive order, phonetic (universal) oo-articulat a result of mutual influence of ajacent sounds, and phonological (paricular) one, where it is preconditioned by the Turkic languages synha of co-articulation in the first case is quite posible, while in the secon case shoul strictly observed, for each synhario a phonological unit. That is why, one should look for syllable division types, syliable boundary features in synharmonismounced language unit, acoustically strictly limited by one of synharmonic timbres. such limitation is sostable that synhar monic co-articulalutely impossible. The feature of syllabic synharmonic co-articuwing syllable-boundary.
To our mind, a morpheme less than a syllable does not exist in the Turkic lanat least, to a syllable. It is predetermined by the very nature of synharmonmo for timbral characteris nism can be realised only in a syllable. morphemes, while vowels comprise morphemes because they can form syllable lind
pendently. Traditional concepts of general lin-
guistics were unable to explain the fact guistics were unable to explain the ter-
that the words first syllable predeter mined the synharmonic access stable phone tical homogenity, $i . \theta$. strong position of the first syllable and recognised means another strong position at the opposite end of the word. This led to a comppomise: the existence in structure is recognised, i.e. word-stress and synharmo nism which allegedly complement each othe not have existed, if the Turkic word prosodic feature were scientifically justiPied and were not attribur We with it accentual prosody, principles:

1. Word-stress, word-tone and word-syn-别 te acoustic segments of words into the wholw. While word-stress is prosodical eans of a word unity on a phonetic, word is the same means for the syliabic
anguages, and word synharmonism - for ral-Altaic) languages. These means are qual in carrying out constitutive and ach of these means contains prosodic eature, characteristic for a certain anguage type. ${ }^{\text {all }}$ the 3 means, being prosodical fea ures of the word, regulat te phonetic gradation of syllable, i.e. word-stress-accentual (stressed, pretonic, counter-pre tone-tonal (low, medium, high, rising, falling and the like re (hard non-labial, yard labial, soft non-labial, soft labial . Each of the 3 means originally regulates articulation-acunds in a syllable. articuch of 3 means accomplishes specific word division into minimal (in functional
plane) sound segments, i. e. word-stressplane) sound segments, i.e. word-stressword synharinonism - into synharmosegments (syneires).
2. The common basic phonetic unit for all realisation a syllable, but
3. In our opinion, the existence of all or 2 identical in function but aifferent one language or a related languages group phonetic system is impossible Therefore, the word-stress existence in the rurk.
languages should be considered false.

ACOUSTIC Vs．LEXICAL JUDGEMENTS IN THE PERCEPTION of FALLING ACCENTS

VESNA MILDNER
LEIGH LISKER

University Computing Center University University of Zagreb 41000 Zagreb，Yugoslavia

Department of Linguistics
University of Pennsylvania University of Pennsylvania

abstract

 This paper concentrates on the differencein duration between the long falling and short
falling accent in Serbo－Croatian．Another aim of the study was to determine whether listeners of the stuay was to determine whether listeners
who do not speak the lenguge wourd be able to make acoustic distinction be twoen the two and
if they would，whether they wuld shift their if they would，whether they would shift their
judgements from Zong to short at the same point or along the same lines as the speakers of
or ant
Serbo Crot introduction

In Serbo－Croatian（SC）the word accent consists of three elements， bination of these elements inves four short falling（（ ））；long falling（ \cap ）；short ris－ ing（ 1 ）and long rising（ 1 ）．
There are some restrictions with regard to the dis－
tribution of the four accent types：In monosylabic words only the falling accent can occur；the last syllable is never accented；polysyllabic words can carry the falling accent only on the first syllabl
While tonal patterns（pitch）are associated stressed syllables，＂the quantity system is rela－ tively more independent，since quantity contrasts
also occur in unstressed syllables＂$/ 1 /$ ．Apart from numerous dialectal variations，two variations are acceptable in standard SC：optional short tonal distinction The fact that
monosyllabic words the falling accent can occur in $12 /$ to an Imprecise conclusion that＂monosyllabic prosodic words have no tone and accent，but can on－
ly have prominence in a phrase or a sentencelt very fact that a word has prominence（stress）．re－ quires that word to have one of the accents（hence
tone）．A more precise statement In monosyllabic words is is given by Lehiste and Ivić ／1／：＂Monosyllabic words do not show tonal con－ trasts．＂inis statement strikes closer to home，
since in monosyllabic words，bearing only falling accents，the contrast can be primarily found in their duration and，possibly，fundanental frequency
peak location $13,4,5,6 /$ and final fundamental fre－ quency value of the accented vowel $/ 7,8,9 /$ ．Lehiste and lvić $/ 1 /$ state the following：＂From the point of view of the system the short and long rising ac－
cents differ from each other in terms of duration； cents differ from each other in terms of duration；
in the same way，the two falling accents differ in
erms of duration．The cue value of the difference in the placement of fundamental frequency peak length．．．＇ Most authors studying SC accents have dealt malnly
with disyllabic or polysyllabic wards and trated on the distinctions between long falling and Yong rising or short falling and short rising ac－ ents，probably due to the fact that these distinc－ The main alm of this study was to concentrate on （Lhe difference and short falling（SF）between the long falling other parameters constant．That the question of du－ ration in these two types of accent is not trivial was shown by the studies of Magner and Mate jka／10／ tion of native speakers of SC＇in an attempt to de－ termine how much of the accentual system developed by V．Karadzíc in the early $19 t h$ century and adop－
ted as standard for sc，is in actual use and wheth－解 native speakers of the language who may not use all the distinctions in their own speech can still ments based on them．They found that not jull of their listeners could identify the distinction be－ tween the short and the long falling accent in the word pas when presented with the natural produc－ mo（Whose dog is that there）and diji je to pas ta－ mo（Whose bett is that there）．Unfortunately，the
authors do not provide any acoustic measurements， authors do not provide any acoustic measurements，
so it is not known from their reports what the du－ ration of the accented vowel in the target words was．However，their results show that speakers of
sc in most of the major cities can identify the Sc in most of the major cities can identify the vowel and conclude＂that in their speech accentual quantity is meaningfully utilized and appears as a found that even speakers who do not distinguish these two accents in their own speech（big cities）， ＇are capable of identifying distinctions which they materials and procedure

Preparation of test material：Two native speakers of SC from the city of Zagreb，who both
utilize the long－short distinction in their speech， recorded several tokens of the word pass（belt）and
päs（dog）In medial and
nd in isolation，via a Crown 700 series tapere 635A Dynamic Omnidirectional）
he tokens were then sampled via an analo－to－digl converter with a rate of 12,500 samples per econd．The samples were stored In a PDP－11 digita computer．A low－pass filter with the cut－off fre－ quency of 5000 Hz and a slope of -48 dB per octave Us used to fiter out the for acoustic analysis the tokens were displayed and the duration and funda－ nental frequency contour calculated and displayed Table 1 shows
of pas and pas．
Table 1．Duration of the five tokens of pas and
1．Duration of the five tokens of pas and
five tokens of $p \hat{a s}($ in msec$)$ in ascending order

Accent type	SF（N）	LF（
	90	170
	120	210
(msec)	130	220
	140	240
	140	250

As it can be seen from Table 1．，the longest vowel bearing the SF accent was these data are in agreement with those of len bear and lvic $/ 111$ for di－and polysyllabic words bear－
ing short and long falling accents．It shouid also ing short and long falling acuen ost authors have be repor ted here that，al though ment the fall of the
found a slight rise，peak and then tamples of falling fundamental frequency contour in samples of falling accents，no such movement of funcame．This can be
was found in any of the tokens here． was found in any of the tokens here．
explained by the fact that the consonat preceding
the examined explained by the fact
the examined vowel was a volceless stop（／p／）and
it it has been found（ $/ 12 /$ and an earlier
this author）that in that case the peak occurs im－ this author）that in that case the peak
mediately after the onset of voicing． One of the originally recorded sentences，ovo je krasan pass（This is a beautiful belt），was chosen
as the starting point for all the other test sen－ as the starting point for al the ote the vowel in the word pas had a duration of 185 msec ．Of these 85 msec 138 msec was the duration of the voiced
interval and 47 msec was the duration of the Whisper－like portion which could st 111 be identi－ fled as vowel（／a／）．In order to keep the relation－
ship between the initial and final fundemental fre－ quency value constant，the vowel was then shortened in such a way that individual complete pitch peri－ ods were removed from the stimalus．intervals，using
riods were extracted at regular riods were extracted at regular ic acolyst is，WENDY，
the in－house program for acoustic analyry，New Haven， on a VAX computer，at Haskins Laboratory，New has were chosen so as to be equally distributed over the voiced period．By this method all the parame－ ters except duration were kept constant．In this way 8 different tokens of pas were obtained，al
incorporated into the same carrier sentence ovo je rasan（This is a beautiful） 4 ．Each of these
sentences was then recorded 4 more times，which sentences was then recorded 4 more times，which ielded 40 test sentences．The sentences were
domized，with a silent interval of 3 seconds be－
tween subsequent sentences．Table 2．shows the 8 urations of the vowel in he whisper－like portion
Table 2．Durations of the vowel／a／in the word

pas	Duration（in msec）
Stimulus	185
1	174
2	163
3	158
4	117
5	137
6	131
7	119

The experiment：There were two groups of sub－
s． 0 ne group consisted of 6 native speakers of jects．One group consisted of 6 native speakers of
Sc．All the subjects in this group were born and
俍 raised in the city of Zagreb，and all of them uti ize the long－short distinction in their own－seven students and one professor of linguistics．None of them speak SC．
Nuat ve speakers of SC were asked to make lexical judgements．Each subject was provided with answer
sheet consisting of 40 palrs of words $\overline{z i v o t i n j a / p o-~}$ jas（animal／synonim for belt）and was asked to un－ derline or circle the one which，in their judgement corresponded to the stimulus used in the sentence The American subjects were asked to make acoustic test that all the sentences would be the same ex－ lest that all the sentences which the duration of cept vowel would vary．It was pointed out that they should only pay attention to the with an answer vowel．Each subject was provided with an answer
sheet consisting of 40 blank llnes on which he／she was asked to write L（for long）or S（for short）， depending on their judgement of the dure．
efore the test both groups were presented with two sentences containing the longest vowel in the word est vowel in the word päs．These four sentences served as a training session for the American sub－ jects and as control for the group of native speak－ rs istinction between the two extremes were not tested．
The sentences were presented to the listeners in a free space room via the Crown 700 series tapere－ free space room via the $Z-400$ Jans Zen electrostatic corder，con through the Crown D60 Model amplifler， meters from the listeners． neters from the listeners．
Figure 1．Shows pooled responses of native speakers Figure 1 ．Shows pooled responses of native speak
of SC in terms of percentage of lof long（pas）and
St short pas it can be seen from the Figure，the per－ ception of the long－short distinction is very near
俗 ly categorical for native speakers of w．The cross－over point is at stimulus 5 ，in which the du
ration of the vowel was 147 msec（ 43.33% pas and
56 and ration of revonses）．Stimulus 4 （vowel duration
56.67% pas respen
of 158 msec ）elicited 80% pãs and 20% pazs response

cited 86.67% pas responses and 13.33% päs responses.

Figure 1. Pooled responses of native speakers of SC to eight different vowel durations
($0-p a_{a} ; x-p a s$)

With respect to their responses American subjects can be divided into two groups. Five out of 8 Ame el duration. No pattern was found that might indicate at least a tendency to label the stimuli with
some consistency Three out of 8 American subjects were non-random in the ir responses. Figure ${ }^{2}$, shows pooled responses of these three listeners in terms of percentage of
long and short responses to a particular vowel du-
ration.

Figure 2. Pooled responses of 3 American subjects who had non-random responses to eight o-long; $x-$ short)
As it can be seen from the Figure, these 3 listen-
ers exhlbit a near categoricity art exh dit a near categoricity of perception. Two
things distinguish these listeners from the native peakers of SC. First of all, their responses are shows that their perception is not as categori as that of native speakers of SC. The vowel duratlon of these two stlimult (4 and 5) was 158 and 147
msec, respectively, with 53.338 "short" and 48.674 "long" responses in each. Obvioushort" and 46.67% cant shift in judgements from "long" to "short" oc curs at the same point as for native speakers of SC
random occurs earlier on the duration scale, than
for the native for the native speakers of SC
The other interesting detall that can be observed not entirely consistently shifting their judgement Several unexpected paeks and valleys can be seen in
Fig. 2. - 1000 "short" or "lon"l Fig. ${ }^{2}$ - 100% "short" or "long" judgements do not longest duration, respectively. Stimulus 1 elicit
 11 predominantly labeled as "short", the longest one, stimulus 6 , elicited 100% "short" responses,
whil the actually shorter stimuli 7 and 8 elticited
86.674 "short" 86.67% "short" responses each. Closer examination of the responses of these 31 isteners and the order
of stimuli presentation shows that all tokens of of stimuli presentation shows that all tokens of
stimulus 2 (100% "long" responses) and stimulus 6 (100% "short" responses") occur after the 12 th position on the test tape. It appears that these lits-
teners were actually in the process of estalishing some sort of a reference scale in the first quarter of the test and all the inconsistencles are found in responses to stimuli presented as the first 12
test stimuli. This indicates that the more categotest stlmuli. This indicates that the more categosult of thelr being more attentive to phonemic length which they use and hear in everyday conmun!-
cation. On the basis of these results and tions i^{t} can be expected that re-testing of the same 3 American subjects or providing them with a short pre-test session, which would include all durations, rather than just the extremes, would yield ers of SC.
It should also be noted that 3 out of 5 tokens of
stimulus 5 (vowel duration of 147 msec), to which random responses were given both my native thic ers of sc and the 3 Americans, occurred very early in the test (positions 3,8 and 9). Stimulus 5 was only slightly (7 msec) longer than the longest vow-
el bearing the SF accent, found in acoustical measurements preceding the experiment and in 11 terature. The fact that the stimulus of such "border ine" duration was presented so early in the tes sponses of the above mentioned subjects. It remains to be determined whether a pre-test session proided for the native speakers of SC would result in
clearer switch from pas to pàs judgements, withcle arer switch from pas to pas judgements, with-
out randomness of responses in between. The acousic measurements of natural productions of the tords pars and phst carriled out during the preparaI 1 terature, show that the vowels bearing the $L F$ accent are not shorter than 170 msec and that the 40 msec. The the 5 FF accent are not longer than the native speakers of sc are more apt to label shorter-than-natural durations of of vowels under LF accent as long than the longer-than-natural dura-
tlons of vowels under SF accent as short. Even the fact that the word pas is more common than the Dord pass (Whitch has become to be regarded as
IIghtly archaic and is sightly archaic and is not frequently used in modments of native speakers of the language.
conclusion
On the basis of the results of this pilot study the following conclusions can be drawn:
Native speakers of SC , who utilize the long-short distinction (between the LF and the SF accent) in their own speech, exhibit categorical perception of this distinction when presented with words (in
carrier sentence) which differ only in the durajudgements.
The cross-over point, at which the judgements of native speakers of SC shift from long (pas) to duration of 147 msec , which is slightly longer than the longest duration of the naturally produced vowe l bearing the SF, found in 11 teratur American subjects, who do not speak SC, exhibit two types of perceptual behavior in their acous-
tic judgements of t he duration of the target vowel - their responses are elther entirely random or show a pattern simllar to that
responses of native speakers of $S C$
American subjects whose responses are not random start to shift the ir judgements from "long" to
"short" earlier than the native speakers of sc, i.e. at a longer stimulus (158 msec) but the significant switch occurs at the same
native speakers of SC (137 msec).
There is evidence that native speakers of SC are more attentive to the long-short distinction than the American subjects, which can be attributed to the fact that vowel duration is phonemic in SC
and native speakers of this language utilize it and native speakers of this language utilize it
in their own speech and hear it in everyday communication.
Testing of larger groups of subjects is necessary Testing of larger groups of sebjectual behavior is
to determine which type of percet
more characteristic for the Americans who do not speak SC.

REFERENCES
/ 1/ Lehiste, I. and P. Ivić, "Interrelationship between word tone and sentence intenation In berbo-Croatian", In: Napoli, D.J. (ed.) ELe-
Sertor ments of Tone, St
/2/ Gvozdanović, J., Tone and Accent in Standard Serbo-Croation, Wien: Osterre
mie der Wissenschaften, 1980
/3/ Purcell, E.T., The Realization of Serbo-Croat ian Accents in Sentence Environments, Han ger Phonetische Beitrage, Hamburg, 4/ Purcell, E.T., "A model of word-tone sentence
intonation and segmental duration in Serbointonation and segmenter report", In: Kourbourlis, D. (ed.) Topics in slavic
/5/Purcell, E.T., "pltch peak location and the perception of Serbo-Croatian word
nal

6/ Purcell, E.T., "Two parameters in the perception of Serbo-Croatian
netics $9,189-196,1981$.
/7/ Lehiste, I., 'Some acoustic correlates of ac-114-147, 1961.
8/ Lehiste, 1., "Influence of fundamental frequency pattern on the perception of dur
Journaz of Phonetics $4,113-117,1976$.
/9/Lehiste, 1. and P. Ivić, "Experiments with synthesized
$26,1-15,1972$.
/10/ Magner, T.F. and L. Matejka, Word Accent in Mogern Serbo-Croatian, The Pennsylvania State University Press, Wiver London, 1971.
/11/ Lehiste, I. and P. Ivić, "Accent in Serbo-Croatian: An experimental study", Michigan Slavic
Materials 4 , University of Michigan, Ann Arbor, Mater
1963.
/12/ Ivic, P. and I. Lehiste, "Prllozi ispitivanju fonetske i fonoložke pri rode akcenata u suvre
menom srpsko-hrvatskom knjizevnom jeziku',
, 1963.

abStract

Abstract

The purpose of our study was twofold: (i) to define "tight" phonation in acoustic terms and (ii) to examine the acoustic dif: ferences between murmured and atight" phonation in Guarati. The analysis was based on the parameters: Fo contour, overbased on the parameters: Fo contour, over- bil intensity, amplitude of the ist and all intensity, amplitude of the 1 st and 2nd harmonic, the frequency of F1 and F2, and the bandidth of Fi and F2. The ampli- nude of the first two harmonics as well as ude of the first two harmonics as well as he bandwidth of F and Fi turned out to serve best in d tight phonation.

\section*{introduction}

Gujarati -an Indo-Aryan language- is usu- lly treated as a member of that group of anguages which contrast murmur phonation nd normal voicing. Both phonation types re used on the one side to separate mur ured from cilear voelsis. to sene other side hey serve to distinguish murmured stops rom voiceless, voiceless aspirated, and voiced ones. Acoustical analyses of murmur which have been carried out since the late Fifties revealed several acoustic parame ers by which murmur may be distinguished rom normal voicing. Murmur is characte- in the amplitude of the first hampnicin relation to the second one (Bickley in elation to the second one (Bickley 11), adefoged (4), Hurfman (31). broader forants (21, a later onset of higher formants 21, a iowering of the second formant ourse tid, and a lowering of the overall intensity acoustic studies one or the most extensive ondarati. and a quite early one, is that of E. Fischer-Jdrgensen 21, who examined the differences between 21, who examined the differences between murmured and clear vowels. It is apparent hat the seven subjects used in her invesignotion showed great variability in produ cing murmured vowels. As Fischer-Jørgensen oints out "all informants have murnured

The differences between the subjects seem to reflect different dialects, as RD and
PBP were bornin Saurashtra (western part (Surat), Guat), whereas PvB (Baroda), SS bad) originate from the northern and eas
tern part ences of Gujarati have been subjected to an extensive study by one of us (Modi, 5 , wh
employed the method of tomography in he analysis. It appeared that two dialect groups have to been treated separately ac
cording to the phonation types used. One group, which she calls murmur", shows ane
low iarynx mosit. low larynx position, whereas the other
group (\#tight") has a high larynx position
in order to avoid murmur phonation. As the term "tight" for the non-murmur dialect was introduced impressionistically by Modi
[5)
it still lacks definition in terms of acoustic features. The aim of our present
study was therefore to examine the influence of several acoustic parameters in mur rameters have been examined: following pa rameters have been examined: (i) the course
of the fundamental frequency (Fo), (ii) the
overall intensity fin overall intensity, (iii) the amount of en
ergy in the first (H1) and second (H2) harmonic, and (iv) the frequency of F1, F2 as ${ }_{B 1}$ well and $B 2$. ${ }^{\text {(}) ~ t h e i r ~ c o r r e s p o n d i n g ~ b a n d w i d t h ~}$
material and informants
Our analysis was based on a rather limited
material, and the results should be take as a preliminary report on the selectivity tion betwens murmurameters for the sight phonation. He based our analysis on murmured stops rather provide the most stringest test for the saliency of the single acoustic parameters.
Murmured stops occur in both dialects and are contrasted from the other stops bya distinctive release of the stop, which is characterized by an incomplete closure bet
ween the vocal folds during the phonatory cycle.
containing consisted of isolated words places of articulation (labial, dental
retroflex, palatal the vowel fal in word-initial position.
in the material. The material was recorded
on tape
in Baroda,
India. One
speaker On tape in Baroda, India. One speaker
(mate) from Rajkot and one from Ahmedabad served as informants for tight and murmure served as
procedure
The acoustic analysis of the data was run in Munich, where the words were digitized
(using a sample rate of 20 kHz) filtered with a cut off frequency of $8 \mathrm{kHz}^{\mathrm{kH}}$ an stored on a PDP11/50. The periodic portions
of the initial CV syllabies of all words of the initial cv syllabes of apriods by we nelp of a segmentation routine (for
the horther detail cf. (81) and stored for fur-
fut further detail of. (he fundamental frequency was calculated from the segmented material
and measured for the first 14 pitch period nd measured for the first it pitch per The intensity
fiter the burst of the stop. The was measured for the same vowel portion.
the same (segmented) material was used to The same (segmented) material was used to
calculate the contribution of H 1 and H to che overall intensity of all pitch periods
of the vowel. A second analysis was run on of the vowe vented data in order to gain F1, 2 data and their corresponding bandwidths
by the use of a LPC procedure. The followy the use of a LPC procedure.
ng adjustments were made: frame size $=512$
samples this is equivalent to a segment
 uration of 25 . 6 ms , degree $=22$, Hamming
filter samples, indowsize = 512 samples, preemphasis fac-
or $=0$. There was a limitation for bandwidth of the formants, which could not ex eed $2 / 3$ of the formant's value. Greater
bandwidth led to a rejection of the formant bandwidth led to a rejection of the frormant
proposed by the routine. As great problems
were involved in the calculation of Fi in were involved in the calculation of F1 in
murmur (for detail see below) this prelimimurmur (for detail see below this preltops
naryanalysis was run the velar stops
only. Separate multivariate two factorial only. Separate multivariate two factorial
analysis of variance were run for (i) Fo,

pesults
Cundamental frequency. The results are
given in figs. 1 to 3 and in Table 1. The
$\begin{aligned} & \text { differences in Fo between both speake in both } \\ & \text { small. Fo at vowel onset is low in in the }\end{aligned}$
$\begin{aligned} & \text { spakers and increases towards p14. In the } \\ & \text { mermured dialect a fo fall from po to p3 }\end{aligned}$
nurmured dialect abserved, which is obviously not
$\begin{aligned} & \text { dialects can be observed. } \\ & \text { speaker shows a quite regur pattern as } \\ & \text { for }\end{aligned}$
$\begin{aligned} & \text { speaker shows a quite fromp1 to p2/p3 can } \\ & \text { for all } \\ & \text { stops a fall } \\ & \text { froment }\end{aligned}$
be found and a quasi-linear rising tonset are
smaller than at the end of the contour. At
$\begin{aligned} & \text { the end of the (measured) vowe portant) } \\ & \text { higher fo values are assigned to the (tant) }\end{aligned}$
$\begin{aligned} & \text { ind } \\ & \text { jht and a falling-rising pattern (fromp } \\ & \text { to p4) after (gh dhdh/. The difference }\end{aligned}$

Table 1: Statistical results for fo, intensity, and harmonics H1 and H2
D=dialect, $\mathrm{P}=\mathrm{place}$ of articula ion, $\mathrm{H}=$ harmonics.

	F。	tensity	H1/ H 2
interactions			
$\mathrm{D}-\mathrm{P}-\mathrm{H}$			n. s.
$\stackrel{\mathrm{H}-\mathrm{P}}{\mathrm{D}-\mathrm{H}}$		---	<. 001
${ }_{\text {D-P }}$	<. 001	<. 001	n. s.
H1/ H2			<. 001
dialect	<. 01	<. 001	<. 001
place-of-artic	n. s	<. 001	

etween the stops at P14 is greater and F seems to depend on the apicality of the
its position: i-apic tops show slightly higher, [tapic) stops
ntensity. Fig. 4 displays the results for the intensity averaged over all places o influences of the place of articulation are
ind plotted separately for murmur and tight
Figs. 5 and 6 respectively. The statistit
rat Figs. 5 and , respectively. The statisti-
cal results are given in Table The The in-
tensity is lower in tight than in murmur ensity is Iower in tight than in murmur
phonation. In bothdialects the intensity
s lowest at vowel onset, incrases rapidly
 towards P3/P4, and increases slowly toward
the end of the contour in murmur, whereas in tight phonation the a amount of increase
is greater fromp8 to pl4, which indicates is greater frome underlying phonation pro cess. In murmur the influence of the place of articulation on the intensity is smane slightly towards the end of the contour is nearly the same for all stops. At P1 [tant stops show somewhat greater inten
sity than do dint stops. In tight phona sity than influence of the stop's place of articulation is greater at vowel onset as
well as at the end of the contour. The intensity is greater in $\{+a n t l$ stops and less
in $\{$-ant
ones. The intensity course after /gh/ differs significantly from the other ones as there is an abrupt increase in in tensity arter pg. This again can be ex
plained by a change in the underlying phonation type, as we believe that murmur
can be accompanied by a low larynx position.
Amplitude of H 1 and H 2 . Figs. 7 and 8 display the results for H1 and H2 for both
dialects. whereas the statistical results
are again giventin Table 1. He have meaare again given in Table ${ }^{1}$ he have mea-
sured the amount by which the single harsured the
monics contribute to the overall intensity of the single pitch periods. In tight
phonation the amount of energy is siightiy higher in H1 than in H2. This feature is associated, as mentioned above, with mur-
mur phonation. The difference remains relamur phonation. The droghout the vowel. In murmur on the other hand the difference
between H and H 2 is much greater. Whereas between H1 and H2 is much greater. Whereas
the course of H 1 and H 2 is nearly level in the course
tight photion, the amount of energy in H1
increases in murmur from P1 to P14. H2, on

the other hand, shows a rising-falling-
level pattern. The influence of the stop's the othertern. The influence of the stop's
level par anticulation is significant in
place of art place of articulation
both dialects.
where have somewhat higher values than (-ant
stops. stop
P1, F2, B1 and B2. As the LpC failed to
calculate F 1 precisely for about 250 ms of calculate F1 precisely for about 250 ms of
the vowel after the stop's release, F1 and
 tion only. The results for F1 differ ex-
tremely betwen the murmured and tight
treaker. F1, speaker: F1, averaged over 368 ms is 660.0
Hz in murmur and 906.5 Hz in tint phona-
tion (for details of. Table 2). The corres.
 Table 2: Table 2: Averaged formant-and bandwidth Hz; minimum and maximum values of
the formants and bandwidth; level the formants and bandwidth; level
of significance from the analysis
of variance for F1, F2, B1, and of variance for F1, F2, B1, and
B2.

creases slowly in murmur ($427.4 \begin{gathered}\mathrm{Hz} \\ \text { at the } \\ \text { beginit }\end{gathered}$ beginning and 34 . 0 Hz at the end of the
contour) and intight phonation, where B1

 whereas th
$(152.0 \mathrm{~Hz})$
$(125.1 \mathrm{~Hz})$
discussion
The acoustic parameters involved in this The acoustic parameters invol degree to the
stuuy contribute in different
separand separation between murmur and tight phona-
tion The overall Fo cannot be used to
distinguish between murmur and tight as it tion. The overall Fo cannot andight as it
distinguish between murmur and tige
is rather a feature of the speakers voice is rather a feature of the speakers voice
than of the underlying phonation type. On
the the other hand, there are great differences
in respect to the inluence of the stop's
in ise in respect to the influence of the stap in
place or articulation, which is small same
murmur, great in tight phonation. The same
is
 recording level, more than differences due
to the underiying phonation type. But
againe the place of articulation of the to the underiying phonation type. But
again, the place of articuation of the
stop influences the intensity course more

In tight than in murmur phonation. Taking oth parameters together, we argue that
they reflect $\begin{gathered}\text { different } \\ \text { degrees } \\ \text { of }\end{gathered}$
the phonation,
showing variability in the phonation, showing greater variabiary laty position and less
witha high laryny pherethe larynx povariability in murmur, where the
sitionistlow.
The results the analysis of H_{1} and $\mathbf{H} 2$ The results or the analysis of H1 and H2
show that in both dialects murmur" occurs.
sher min in Whereas the degree of murmur is high in
it murmured it is low in tight dialects. is re-
difference in the degree of murmur difference in the degree of murmur is re-
flected by the results from bandidths B1
and in both dialects the bandwidth of and B2. In both dialects the bandwidth of
F1
is much more greater than found in other F1 is much more greater than found in other
languages, a fact that accounts for 1ess sharp boundariis in the spectrum. On the other hand B1 remains great throughout the
contour in murmur, but decreases in tight contour in murmur,
phonation. The fits from B2 again re-
rin lect a higher degree of murmur in the mur-
mured speaker, as the bandwidth is smaller compared to the 'tight' speaker. In summary, the murmured stops are produced
with a murmur release in both dialects. But with a murmur rerences in the degree and du-
there are differ in
ration of murmur between the speakers. The ration of murmur between the speakers. Mhe
ampitude of the first and second harmon-
ins as well as the bandwidths of F 1 and F . ics, as well as the bandwidths of pa and are the most efficient acoustic parameters
to distinguish between tight and murmur
phonation in Gujarati.

apperences

Bickley, C.: Acoustic analysis and
perception perception of breathy vowels. Horking
papers, MIT Speech Communication, Voi 1 (1980)
 analysis of breathy (murmured) vowels
Indiantinguistics $28: 71-139(1967)$
Huffman, M. R.: Measures of phonation types in Hmong. University of Call
fornia horking papers in Phonetics ornia Horking
(4) Ladefoged, P.: The linguistic use of different phonation types. Unive
of California torking papers in
phonetics 54: $28-39$ (1982)
(5) Modi, Bh.: The laryngeal dimension in Modi. Bh.: The
Gujarati phonology. Fifth Intern
Phonology Meeting, Eisenstadt. Phonology Meeting, Eisenstadt,
Austria. Hiener Linguistische Gazette, Austria. Hiener Linguist
Suppl. 3 :
$167-171$ (1984)
(6) Ohala, M.: Phonological features of 1: $79-88$ (1979)
(7) Pongweni, A.J. C.: An acoustic study of

[8] Schiefer, L.: Fo in the production and Schiefer, L: Fo in the production ace
perception of brathy stops: evidence
from Hindi. Phonatica 43 : $43-69(1986)$

gROUPES D'OCCLUSIVES ET CLICS

ALAIN MARCHAL
Institut de phonétique, U.A. 261 CNRS
29 avenue Robert Schuman
13621 Aix-en-Provence, FRANCE

introduction

L'étude EPG de lenchainement des gestes articulatoires lors de la production de groupes docclusives double occlusion (1). Nous nous double occlusion (1). Nous nerons dans cette communication a examiner les mouvements de la langue associés au elàchement de Cl
Nos observations portent environ sur 200 cas de double occlusion releves anciation de phrases naturelles francaises repetees par trois locuteurs. Au delà de la grande variabilite des donnees articulatoires - il est possible d'identifier d'apres le principes
daiody generaux d'aerodynamiques (2) quatre type dévenements. Ceux-ci sont illustres par les exemples suivants.

1-Stabilité (?) de la double tenue
Le barrage median caracteristique du $/ \mathrm{k} /$ est etabli depuis 110 ms lorsque se produit limplosion de /t/dans la sequence /aktu/ (Fig . 1). Les images 139 et 140 montrent que locclusion anterieure et locclusion
posterieure sont tenues posterieure sont
simultanément pendant 20 ms . A en en juger par la stabilite des appuis linguo-palatins observee par la technique de lelectropalatographie il rest pas possible demettre dhypothese sur la nature du relachement de Cl . En effet le corps
de la langue a pu se creuser, se bomber ou demeurer im creusile nous n'avons pas de moyen direct de le verifier

2-Concatenation des tenues

La preparation de C2:/g/ consistant dans lelargissement des appuis dans la zone postpalatale amorce à limage $\mathrm{Cl}: / \mathrm{d} /($ images 102 a 108 , Fig 2). II s'agit de la manifestation du principe de coproduction (3). Il n'y aura pas à proprement parler de phase de double occlusion dans cet enchainement consonantique car lorsque le barrage du/g/ s'etablit on observe en mème temps le zone alveolaire. La simultaneite de ces deux évenements peut être liee à la frequence d'echantillonnage des données EPG (100 Hz). L'analyse acoustique montre effectivement que le bruit d'explosion du/d/ ne differe pas du "burst" caracteristique de cette consonne dans un contexte

3- Diminution de volume
On releve pour lenchainement de /d/ a /k/ dans /sedki/ une phase de double occlusion d'une duree de 70 ms (images 235 a 241 , Fig 3). Les deux occlusions delimitent une cavité dont le volume va varier Timplosion de C2, 47 electrodes sont C1. Le renforcement de lappui de la langue au. palais se produit essentiellement dans la zone palatale et entraine a partir des mesures prises sur un modele en plàtre une diminution de volume superieure à 3 $\mathrm{cm3}$. L'éévation de la masse linguale

(10ccor		(20ccoll				(1)
Ooo oo oo			-		\% \% \% \% \% \% \%	
(\%)	\% \% \%					\%
(1)		\% \%			\%	\%
			¢		\%	\% \% \% \% \% \% o o
	-					
OOO o o	\%				¢	
	Kooroo oo					

la pression de lair contenu dans cette cavite et au relachement de C1, Iair bouche. Ce courant dair egressif ne provient pas des poumons puisque locclusion velaire est complete ; il est donc initie par le mécanisme velique. Le relàchement de $\mathrm{C1}$ s'apparente donc à la production d'un clic inverse (3.4)

4- Augmentation du volume
La premiere image de la double lenue (image 244 , Fig . 4) de $/ 1 /$ et /k/ est caracterisee par l'activation de 42 electrodes. A limage 247 precédant immédiatement
celàchement de $/ \mathrm{t} /$, on constate que la langue sest abaisse puisque le nombre de contacts touchestraine une a 38 . Ce mouvement entraine une cm 3 , et par consequent une diminution de la pression de lair contenu dans la cavitée délimitee par la double occlusion. Nous avons affaire à la production d'une oclusive à dépression soit un clic.

CONCLUSION
Dans le cas de lenchainement dune occlusive anterieure suivie dune occlusive postèrieure caracterise par une phase de double occlusion. Ie relàchement de C1 s'apparente dans de nombreux cas a la production dun clic ou d'un clic inverse selon variations concomittantes de pression d'air intra-buccale. Ce phenomene un statut purement articulatoire en Francais : mais il serait interessant de verifier dans les langues qui connaissent les clics coms phonemes siceux-crives.

bibliographie

(1) Hardcastle W.J. ; Roach P.J. (1977) : :. An instrumental investigation of coarticulation in stop consonant sequences " Wrork Pr Phon. Lab. Lliv. Reading 1:27-44 (2) Catford J.C. (1977) Fundamental problems in phonetics Edinburgh
Edinburgh.
Marchal A. (1985)
(3) Marchal A. Lelectropalatographie : colude de la coarticulation dans le: groupes docclusives. These doct detat, Nancy.
(4) Ladefoged P. (1975) : A cours in phonetics Harcourt Brace Jovanovich . New-york

English Instruction Committee

SMBM Campus, Rajbira
Tribhuvan University, Nepal
abstract
In the present paper an attempt is made to put forward the results of an electroaspiration on vowel duration in Maithili a modern Tido-Aryan language spoken by a
total of about 21 million people both in total of about 21 million people both in
Nepal and India. The main aim of our stud was to investigate whether phonation type other than voicelessness and voicing also
affect the length of vowels preceding a consonant. Our results clearly show that the aspiration of the following consonant does affect vowel duration in Maithili. I
fact, in Maithili the features of both ract, in Maithilit the features of both ncrements of length to the preceding

Introduction

There have been in the past quite a few anguages of the world. One of the mas findings of most of these studies has been toweis are longer before voiced same, than before voiceless ones. This
phenomenon has usually been considered [o.g. 1; 2; 3] to be due to an inherent
property of the speech production mechanism. And a number of differen proposals have so far been made as to what prectise mechanism is responsible for this 3. 4;5] aim only to account for the lenethening of vowels before voiced oiceless consonants, while others also aim to account for such factors as: the ;7; 8]; place, manner and force of articulation [0.g.9; 10; 11] of the
following consonants; the strueture syilable in which the vowel occurs [e.g 2], the nature of the phonemic contrasts. 13], and the degree of glottal opening [$0 \cdot$
 g. is; 16] of the following consonants.
it has to be admitted that comparatively It has to be admitted that comparatively
little has so far been published on the litt1e has so far been published on the
offect of aspiration on vowel duration. Relatively recently, Maddieson and Gandour

Table I:

Vowels	Words with glosses
1/1	[bi:č] "centre"
	[bi:ch] "pick up (imp.)"
	[bi: $\}$] "seed"
	[bi: ${ }^{\text {h }}$] "rust"
/e/	[se:p] "saliva"
	[se:ph] "safe (n)"
	[se:b] "to serve"
	[se: ${ }^{\text {h }}$] "shave"
/a/	[sa:t] "seven"
	[sa:t ${ }^{\text {h }}$] "together"
	[sa:d] "longing"
	[sa:dh] "capacity"
1/1	[$\mathrm{ga}: \mathrm{p}]$ "talk"
	*[ga:ph] (a nonsense word)
	[go:b] "seedlings made ready for
	[ga:bh] "pregnaney -a meta-
10/	[so:k] "sorrow"
	[so:k ${ }^{\text {h }}$] "swallow"
	[so:g] "distress"
	*[so:gh] (a nonsense word)
/u/	[ku:t] "amount of grain given by tenants to landlorde"
	[ku: $\left.t^{\text {h }}\right]$ "push breath out of lungs
	[ku:d] "jump"
	*[ku:d $\left.{ }^{\text {h }}\right]$ (a nonsense word)

pparatus Use

Cach test utterance was afterwards put in a normal conversational sentence context, the frame of the sentence beine
pronounce again". Each test utterance was said in the same frame so as to make sur that the differences are not due to . The variations in the rate of uttoran and then spoken in a relaxed informal style at a
normal conversational speed, without putnormal conversational speed, without put-
ting any contrastive stress on the test utterances. The pronunciation represented in this work is entirely the author's Stxteen tokens of each test utterance,
rame, were recorded in a soundproor rame, were recorded in a soundio of Essex University. All recording were made on a Revox $\quad 77$ tape-recorder. The glottal signal was obtained using EG 830. Osctlilomink tracings of waveform and amplitude produced from the recorded eadings were obtainedions rolating to the Type EM 34 T . Calculations relating to the the 'coefficient of variation' (v) of all tokens of oach test utterance wer
using a Tektronix 31 calculator.

Duration Measurements of the sixteen tokens of each test utter-
ance, the first two as well as the last two tokens were ignored, and all the remaining twelve tokens of the middle wer
used to obtain the duration measurements of all the vowels investigated in this study. The rirst measurements of vowel duration were made from the start of the vowel in question to the closure of the foliowing conth voiced stops and even
beginning with
voiceless unaspirated stops and fricatives the measurement was begun at the
of the concerned initial stop or fricative.
Afterwards, a simple arithmetic mean of the actual measured values of all the 12 out. In order to ascortain the relifability of the arithmetic mean as a quantified ation of the speaker's intention, the range of the variability occurring in all the 12 tokns of every tost utterance was
also taken into account. For this, the standard eviation of each test utterance was worke out. To relate the variati botween in this papar, the duratio values of all test utterances were normalised by obtatining a coofficient of variation of each rest utterance, th
equation used being: $v=$ SD x ioo.

Results ind discussions
Since from a preliminary survey of some pubished sources [e.g. 19; 13; 10; 8;
$6 ; 7$ procedine consonants exhibit no
readily discernible patterns of readily discernible patterns of
environmental influence on the duration of environmental influence on the duration of
the following vowels, in the present study we have restricted ourselves to the influence of the following consonants on the duration of proceding vowels. Table II
presents the results of this study [seo presents the results of this study
20 , pp. $344-45$, for more details]. It shows the mean duration values of the six
oral vowels as obtained from the 12 tokens or each test utterance, the standard doviation of the 12 tokens of each tost doviation of the 12 tokens of each test

Table II: Mean duration values, standard $\frac{\text { deviation, cooffictent of }}{\text { dent }}$ $\frac{1}{\text { variation, and the duration- }}$
$\frac{\text { ratio of the six Maithili oral }}{\text { rat }}$
vowels followed by voiced and $\frac{\text { voiceless, aspirated and un- }}{\text { spirated consonants. }}$

Vowel	Word	Mean	sd	v	Ratio
/i/	[bi:č]	165	5	3	1.00
	[bi: x^{h}]	183	5	3	1.15
	[bi:j] ${ }^{\text {[}}$	210	5	3	1.27
	[bi: ${ }^{\text {br }}$]	224	5	2	1.35
/e/	[se:p]	174	5	3	1.00
	[se:ph]	195	5	3	1.12
	[se:b]	218	4	2	1.25
	[se:bh]	240	5	2	1.37
/a/	[sa:t]	202	6	3	1.00
	[sa:t ${ }^{\text {b }}$]	226	7	3	1.11
	[sa:d]	240	5	2	1.18
	[sa:d ${ }^{\text {h }}$]	275	6	2	1.36
121	[go: s]	104	4	4	1.00
	*[$\left.\mathrm{ga}: \mathrm{p}^{\mathrm{h}}\right]$	120	5	4	1.15
	[ga:b]	134	6	5	1.28
	[ga:bh]	159	4	3	1.52
10/	[so:k]	166	5	3	1.00
	[so:k ${ }^{\text {h }}$]	180	8	4	1.08
	[so:g]	204	8	4	1.22
	*[sc:gh]	239	6	3	1.43
/u/	[ku:t]	155	5	3	1.00
	[ku:th]	175	4	2	1.12
	[ku:d]	220	5	2	1.41
	*[ku:d ${ }^{\text {h }}$]	240	5	2	1.54

of every utterance as well as the ratio of of every uttorance as woll as the ratio and aspirated consonants to the duration consonants. A diagrammatic representation of the mean duration values of this table is given in Figure 1. The horizontal axis affricate consonants of various places of articulation, while its vertical axis of shows the duration of the six oral vowels Both Table II and Fip
that all the six vowels in clearly show this study have longer mean durations in as affricate consonants than before thoir
voiceless unaspirated counterparts. The diagrammatic illustrations and thoir II and Figure 1, respectively, amply show that the aspiration of the following consonant does affect vovel duration in
: aithili. The present data sufficiently reveals that the overall pattern found

figure 1: The mean duration of the
Ma1thili oral vowels as spoken in mono-
sylabic minimal word pairs each word of
the pair differing only in the final
etween the relative durations of the six althili oral vowels - each vowel preceding consonants of four different
phonation types - is very similar, and hat in this language:
vowels are relatively longer in
duration before voicelenger consonants than before voiceless unaspirated consonants;

- vowels preceding volced unaspirated consonants are relatively longer in
duration than those proceding oither voiceloss unaspirated or voiceless

3. vowels are relatively longer in duration before voiced aspirated consonants than before voiced un
aspirated consonants; and
in general, other things in general, other things being equal,
open vowels are relatively longer that close vowels.
our results of the present study suggest hat two rules, perhaps llow-1evel honetic rules operate in (1) bolow
(1) a. vowel adds 1 increment of length
before aspiration; and
b. vowel adds 2 increments of length
before voicing.
pplying these rules gives the results shown in (2) below:

$$
\begin{aligned}
& \text { vowel before voiceless } \\
& \text { vaspirates: } \\
& \text { unawe bofore voiceless }
\end{aligned} \text { increment }
$$

$$
\begin{aligned}
& \text { vowel before voiced } \quad 3 \text { increments } \\
& \text { aspirates: }
\end{aligned}
$$

These findings offer support for the
traditional grouping of the Maithili traditional grouping of the Maithili
obstruents - like perhaps the obstruents of most other Indo-Aryan languages - not only into voiced and voiceless categories
but also into aspiratod and unaspirated. but also into aspirated and unaspirated.
The most interesting aspect of our results is the challonge prosented to the various proposed ' 'xplanations' $[\theta . g .4 ; 5 ; 9 ; 1$
$21 ; 22 ; 23 ; 19]$ $21 ; 22 ; 23 ; 19$] of the cause of the in-
trinsic length of vowels before consonants of different phonation types [see 20, pp. $163-67$, for more discussions in this respect].

> CONCLUSION

To conclude, the present study clearly shows that phonation types other than voicelessness and voicing also affect the
rolative duration of the vowel proceding consonant. We have found that the features of both voice and aspiration in
dopendontly lend increments of length to the preceding vowels in Maithili. This cloarly means that the 'explanations
proposed in the 11terature so far to proposed in the 11 terature so far to
account for vowel lengthening before voiced and voiceless obstruents cannot be oxtonded to account also for vowel leng
oning bofore both voiceless and voiced aspirated obstruents. We therefore hope that the rosuits of our study wil
rothinking of recent and current rethinking of recent and current
explanations of the interaction of phonation type and vowel duration, and whil assist in the formulation of new theories predicting the influence of the on the relative duration of preceding vowels

Roferences

[1] H. Hollien, "On vowel registers", pournal of Phonetics, $125-143$.
[2] W.J.Hardcast1e, The Physiology of 1976.

3] J.Laver, The Phonetic Description of
4] $\frac{\text { Voice Quality, CuP, }}{\text { N.Chomsky \& M. Halle, The Sound pattern }}$
5] $\frac{\text { Of English, Howel length variation as a }}{\text { M. Chom, }}$ function of voicing of the consonant
pp. 129-159. ' Fairbanks, "The in-
6] fiuence of consonant onvironment upon the secondary acoustical character istics of vowels", Journal of the $\frac{1}{25(1953), ~ p p . ~ 105-113 . ~}{ }^{10}$. G. E. Poterson \& I.Lehiste, " Durr
of syllable nuclei in English", of syllable nuclei in English'
Journal of the Acoustical socioty of $\frac{A^{2}}{\text { America, vol. } 32 \text { (} 1960 \text {), pp. } 693-70}$ Engishn', Journal of the Acoustical pp. 1174-1177. S. Bolasco, "The influence of force duration", Journal of the Acoustical $\frac{\text { Society of America }}{\text { pp 1015-1016. }}$, vol. 25 (1953),
[10]
and the place of articulation", Zeitschrift fur Phonotik $\frac{\text { Sprachwissonschaft und }}{\text { Kommunikationsorchung }}$, vol. 17
[11] B.Mohr, "Intrinsic variations in the
speech signal", Phonetica, vol. 23 T.Balasubramanian, "Duration of vowels in Tamil", $\frac{\text { Journal of }}{(1981), \mathrm{Pp}} .151-161$.
Phonetics, vol.
[13] vovel duration senn cross
vorngistically", Acoustical Socioty of America, , vol.
[14] F.Ingemann \& R.Yadav, "Voiced aspirated consonants", In papers from $\frac{\text { the } 1977 \text { Mid-American Lingutstics }}{\text { Conference (D.M.Lance }}$ oditors), pp. ${ }^{3}$
[15] MAssourl, "On the autonomy of the
C-W.Kim,
tensity feature in stop classification", Word, vol. 21 (1965), pp. 16] P.Nihalani, Mair flow rate in the production of stops in sindhi",
Phonetica, vol. $31(1975)$, pp. $198-205$.
[17] I. Maddieson \& J . Gandour, "Vowel
Iength before aspirated consonants", $\frac{\text { UCLA Working Papers in Phonetics, }}{\text { Vol. } 31(1976), ~ p p . ~} 46-52$.
[18] I. Maddieson, "Further studies
vowel length before aspirated vowel longt
consonants", UCLA Working Papers in
phonetics,
[19] Phonetics, vol.38(1977) pp. 82-90. $\begin{aligned} & \text { Pattre, Nome factors of vowel } \\ & \text { duration and thoir cross-linguistic }\end{aligned}$ validity", Journal of the Acoustical

Society of America, Vol. 34 (1962), pp. 1141-11143.

[20] S.K.Jha, "A Study of Some Phonetic and Phonological Aspects of Maithili", Unpublished PhD thesis, University of Essex, U.K., 1984.
[21] M.Halle \& K.N.Stevons, "On the mechanism of glottal vibration for vowels and consonants", Quarterly P=ogress Report, No. 101 (1967), pp. 198-213, Research Laboratory Electronics, MIT.
[22] I.H.Slis \& A.Cohen, "On the complex regulating the voiced-voiceless distinction 1 ", Language and Speech, Vol. 12 (1969),' pp. 80-102.
[23] I.Lehiste, "Temporal organization of spoken language", Working Papers in $\frac{\text { Linguistics }}{\text { Vol }}$ (Ohio Stato University $)$, Vo1. 4 (1970), pp. 96-114.

AMALIA KiAACHATRYAN

Institute of Linguistics Armenian Academy of Sciences Yerevan, USSR, 375001
aleerf airapetyan

Depart. of Radioengineering
Polytechnical Institute
Yerevan, USSR, 375009

The purpose of this paper is to further examine the nature of aspirated and unaspirated stope and affricates of Armenian presenting new data and re-evaluating the VOT as the only cue for differentiating these two categories of sounds. Generalized VOT $+K I$ parameter is suggested for reliable distinction of both groups of sounds.

INTRODUCTION

During the last two decades aspiration has attracted the interest of phoneticians in many countries. This is partly due to the use new methods of articulatory investigation, such as electromyography, glottography, fiberscoping alongside with the more traditional acoustic ones, such as spectrography, oscillography.

This increase of interest is partly upheld by the cross-language study of aspiration in stops carried out by L.Lisker and A.Abramson, who have suggested a new cue - voice onset time (VOT) for discriminating the three categories of stops - voiced, voiceless and aspirated (I). Aspiration has been studied from different aspecta: its theory [2], mechanisms
of production (3), its glottal and supraglottal articulation timing [4], its relationship to other phonetic features, such as fortis/lenis [5], acoustic expression and perception.

It has been mentioned that in such languages as English and Swedish, aspiration being the expression of lenis/ fortis feature is concomitant and differentiates voiced and voiceless stops. In Danish it is the only distinguishing feature between the sets ptk and bdg.

It is worth mentioning that the first experiments in voice timing in stops were carried out by H. Adjarian at the Rousselot laboratory as far back as 1898 (7). His kymographic tracings were published in the journal "Revue internationale de Rhinolo gie, Otologie. Laryngologie et Phonétique expérimentale" in 1899 and were furnished with Rousselot's commentaries. Yet the pur. pose pursued by the author was somewhat different from nowadays studies. Adjarian intended to show thegradual development of devoicing (lénition) which in the long run brought to the shift of voiced stops and affricates of 0ld Armenian into voiceless ones in many modern dialecta and vice versa. Thus Adjarian paid attention to the fact, that in some dialects the voicing of $b, \underline{d}, \underline{g}, \underline{j}, \underline{y}$ may lag a little, in othersstill more, whereas in some others - too much, which has brought to the shift of voiced consorants into voiceless aspirat-
ed ones. Actually, from the phonological point of view this difference is one of the maijor phonetic differences existing between Eastern and Western dialect Armenian as well as between the two liter ary variants.

A new impulse to the study of this feature was given by Leigh Lisker and Arthur Abramson, who carried out cross-language experiments and a more detailed examination of this variable terming it VOT. This cue proved to be valid to distinguish the three main categories of stops; a) those with voice lead (fully voiced $\underline{b} \underline{d} g$), b) with short-lag voice (voiceless $\mathrm{p} \underline{\mathrm{t}} \underline{\mathrm{k}}$) and c) with long-lag voicing (aspirated $t k$). The authors showed the validity of this variable as compared to fortis/le nis or voiced/voiceless features used by most linguists. of particular interest for us is that the author's investigation included the data concerning Eastern Armenian literary language.

Our first spectrographic experiments in consonants of Armenian were carried out in late 60-ies in Tallinn at the Institute of Language and Literature. Even the limited data we got brought us to the conlusion that the distinction between asirated and unaspirated stops of Armenian was bound primarily to the duration of release, which later on came to be known as voice onset time - Vor. But since our primary pupose was to prove the monophonemic nature of aspirated stops as opposed to the traditional view that considered ther compound ones consisting of one stop and the glottal fricative (h), we were inter sted in other features as well, particularly the timing relationship between the losure and release and the total duraionof both series of consonants (6). A reverse relationship between closure duration and release time has been established.

LINGUISTIC MATERIAL

Unlike English and some WesternEuropean languages, in which aspiration is a redundant feature, in Eastern Literary Armenian it is an independent distinctive reature differentiating homorganic stops and affricates. Aspirated sounds form oppositional pairs with unaspirated voiceless cognates in all positions in monosyllabic and disyllabic words. Thus the Armenian stops and affricates can be presented in the following way:

In some dialects the fourth series has been claimed to exist by some linguists, but these sounds have been proved to have no phonological value, being only allophonic by nature and quite distinct from aspirated voiced sounds of Hindi.
In the first series of experiments monosyllabic or bisyllabic words with aspirated stops and affricates were used. They were presented to the speakers either in oppositional pairs or independertly embedded in the carrier sentence "Sa ...e" 'This is'. The list of words included such words as payt - $\mathrm{p}^{\text {c ayt }}$ 'horseshoe'

 'fly' - 'palm', etc.

In the second series of experiments wo chose words in which the phonemes under examination were in most unfavour able conditions for the realization of aspiration, such as unstressed syllables, words, in which aspirated stops were preceded by fricatives (s) or (s), in words with two or three aspirated sounds. The stimuli were pronounced at a normal rate.

NETHOD

A computor integrated distinctive feature analysing device was used with subsequent segmentation of speech signal into elemen tary segments corresponding to speech sounds. The accuracy of segmentation was being controlled visually on the screen of the display. The time quatization is equal to 10 milliseconds (ms). The release time (VOT) of stops was measured according to mpling intervala. The intensity of the sampling int 2000 Hz was measuredi on logarythic scale.

6 male and 4 female native untrained speakers of Armenian served as subjects for this experiment. The stimuli were into microphone being directly put into the analyser.
Results
We were mainly concerned with differ ences of VOT and intensity of noise in aspirated and unaspirated stops and affricates. Though we did not pay special sttontion to duration of burst, but certention to place of tain differences will be mentioned. Thus articulation the duration of burst in lal and is 5 - 10 ms , in dentals in velars - $30-35 \mathrm{~ms}$. In aspirated cognates this burst is followed by noise of considerable duration, which varies in dif ferent phonetic contexts. Thus it is the fers in the einal position, it is very longest ind inditily and short in strong and long ini

解 diagram of VOT
In fig. I the scatter digram presented values on a single timeline it for aspirated and unaspirated stopstiates shows that VOT as a whole differentia between the two categories of stops. is some overlapping of ranges in velar - k^{c} stops, which hampers the reliable

Fig. I The scatter diagram of VOT on a single timeline for unaspirated and as(a) labials $p-p$; (b) pirated stops (a) vablars $k-k$.
istinction of these stops - a matter of no less importance in automatic segmenta tion of speech sounds. Prom this point of view the overlap of the ranges of vor in aspirated and unaspirated affricates (in Armenian linguistic tradition terms) is very typical. In fig 2 the scatter is very typical. diagram of VOT in affricates shows the degree of overlap. It is quite evider that VOT alone is not aufficient for

Fig.2. The acatter diagram of vor on a single timeline for unaspirated and aspirated affricates: apical $c-c^{c}(a)$, palato-alveolar $\check{c}-\breve{c}^{c}(b)$.
their distinction. For reliable discrimination of these consonant categories an additional parameter is necessary. The intensity of friction roise which characterizes the release of stops and afficates may serve as such a parameter. In fig. 3 a two-dimensional scatter diagram of VOT and Intersity (I) for the aspirated and unaspirated affricates is plotted. The dots present unaspirated stops and the cir cles - corresponding aspirated ones. Though vor may serve as a cue for differentiation of these categories of stopsp,pth and $p^{c} t^{\circ} k$, which corresponds to the division of the planes by the line parallel to the abscisaa axis, there is a noticeable correlation between VOT and intensity, and an oblique line separating them increases the reliablity of differentiation.

If in the case of aspirated and unas pirated stops the intensity cue is redun dant or additional, in the case of affric stes it is indiapensable, as important

Fig. 3. A two-dimensional scatter diagram of VOT measurements and : intensity values of stops : $k-k^{c}(a), p-p^{c}(b)$ and $t-t^{c}(c)$. The dots indicate unaspirated sounds, circles - aspirsted ones
as VOT. In fig. 4 a two-dimensional plot distribution of VOT and intensity values of aspirated and unaspirated affricates is given. There is a clear-cut correlation with linear regression of VOT and intensity with the corresponding line separating the two areas. The equation of this correlation is as follows:

VOT $+K I=C$
where K and C are scale coefficients de-

Pig. 4. Two-dimensional scatter-diagram of $V O T$ and intensity values of affricates $c-c^{c}(a)$ and $\check{c}-\check{c}^{c}(b)$. The dots indica te unaspirated sounds, and cireles - aspirated ones.
fined by the sensitiveness and dynamic range of intensity measurement channel. In our experiments $K=0,05$, and $C=6$. The parameter VOT + KI may be considered as generalized cue characterizing the degree of aspiration in aspirated stops and affricates.

CONCIUSION
It is obvious that acoustic differences f aspirat and unaspirated stops are ound primarily with the parameter VOT. mong different local stops VOT is most valid for differentiating labials $p-p{ }^{c}$ valid for differentiating labials $p-p$ and dentals t - t. It is somewhat less
the variable vot is an ambiguous cue for discriminating the voiceless and aspirated categories. For differentiating them the parameter I (intensity of noise above 2000 Hz is as important as Vor. Moreover there is an essential correlation between both cues, and the use of only one of them is not sufficient for their differentiation. It has been shown that a reliable accura cy of discrimination between aspirated and unaspirated stops and affricates 28 ensured by the generalized VOT + KI cue The voiced correlates of both stops and affricates are distinct, since in their production P_{0} is mostly present.

REPERENCES

I. L.Lisker and A.Abramson: A Cross-Language Study of Voicing in Initial Stops: Acoustic measurements, Word 20,384-422 (I964).
2. Chin-Wu)Kim: Theory of Aspiration Phonetica 2I, IO7-II6 (I970).
3. M. Halle and K. Stevens; A Note on Laryngeal Feature, MIT Quart.Prog.Rep. Res. IX. Speech Communication (I97I). 4.B.Hutters: Vocal Fold Adjustments in Danish Stops. Phonetica 42, I-24 (I985). 5. Р.якобсон, Г.Фант и М.Халле. Введение в анализ речи. В кн.: Новое в лингвистике, вып. ІІ, М., Изд. иностр. литератури, 1962, c. 207-208.
6.А.А.Хачатрян и В.Н.Айрапетян. Экспериментальное исследование согласных фонем современного армянского язнка. Ереван, 197 I .
7. HoAdjarian, Les explcsives de l'ancien Arménien étudiées dans les dialecta modernes. Revue internationale de Rhinologie, Otologie, Laryngologie et Phonétique expérimentale, I899, Paris.

ABSTRACT

Data reported in this paper suggest that the phonetic output of a phonological rule may depend on small but systematic articulatory application of a progressive assimilation rule for the phonemic cluster $/ \mathrm{K} \mathrm{s} /$ in Catalan is conditioned by the degree of palatal constriction for $/ K /:$ the phonetic realization is $\left[K \int\right]$ in
dialects showing a high degree of palatal dialects showing a high degree of palatal constriction for $/ K /$ and $[K s]$ in dialects showing a lower degree of palatal
for the same palatal consonant.
introduction
It has been pointed out that the phonetic realization of a given phoneme may show systematic differences from one dialect to another. Thus, a higher $F 2$ for $[w]$ and a
lower $F 2$ for $[j]$ in Zuni vs Amharic and Yoruba suggest that the two approximants ought to be produced with a less constrained gesture in uni than in Anharic and Yoruba (Maddieson and differences may be related to contrasting degrees of coarticulatory resistance. Indeed, according to the data of Maddieson and Emmorey, zuni semi vowels appear to be less resistant than those of Amharic and Yoruba to coarticulatory effects from the adjacent vowels.
In the light of these observations, it is differences for the same production gesture may have an effect on the phonetic output of given phonological processes. The validity of this claim will be tested with reference to the presence vs absence of a progressive assimilation [K] in Catalan. Catalan dialects A (spoken in the Cirona region) and Б (spoken in the Tarrago Lleida and València regions) differ as to the availability of the phonological rule; thus, the
rule applies in dialect B but not in dialect A, as indicated by the fact that the realization of $/ K s /$ is $[K s]$ in dialect A and $[K(t) S]$ in dialect b . It can be suggested that the presence vs absence of progressive assimilation in Catal
dialects is related to two possible contextindependent factors. A possible conditioning factor would be the palatalized nature of $/ \mathrm{s} /$ in dialect B (i.e., $[\mathrm{S}]$) vs dialect A (i.e. [s]); in that case, an increase in the degree of palatal constriction for $/ \mathrm{s} /$ after a palatal consonant would result in alveolopalatal $\left[\int J\right.$ in dialect B and palatalized alveolar.[s]
in dialect A. An alternative factor may be that in dialect A. An alternative factor may be that
alveolopalatal $/ \kappa /$ is produced with a higher degree of linguopalatal contact in dialect B than in dialect A; in that case, the change of $/ \mathrm{s} /$ into $\left[\int\right]$ would be dependent on the degree of palatal constriction for the preceding $[\kappa]$ The purpose of the research reported in this paper is to find out whether dialects A and B
differ with respect to the degree of palatality differ with respect to the degree of palatality
for $/ \mathrm{s} /$ and $/ \kappa /$ If so, it follows that the progressive assimilation rule involving the feature palatal may be associated with small but systematic cross-dialect differences in the execution of the tongue-dorsum raising gesture towards the palatal region.

METHOD
Possible differences in the degree of palatal constriction for $/ \mathrm{s} /$ and $/ K /$ were inferred from acoustic measurements in VCV sequences. The tw mants $/ \kappa /$ and $/ \mathrm{s} /$ were uttered in symmetrical and asymmetrical VCV sequences for
$\mathrm{V}=/ \mathrm{i} /$ and $/ \mathrm{a} /$. All sequences were preceded and $\alpha=/ i /$ and $/ a /$. All sequences were preceded and followed by [t] in the Catalan carrier sentence $\frac{\text { Digues }}{\text { recording material was }} \frac{\text { sempre }}{}$ ("Say $\overline{\text { always"). The }}$ speakers of dialect $A\left(\mathrm{Pi}^{2}, \mathrm{Ca}^{2}\right)$ and two speakers speakers of dialect $A(\mathrm{Pi}, \mathrm{Ca})$ and two speak
of dialect B
$\mathrm{Re}, \mathrm{Ba})$ in a sound-proof room. Speecg data were digitized at a sampling rate of 10 kHz for acoustical analysis. Spectral analysis
was performed with a Brtuel and Kjaer 2033 spectrum analyzer.
Measurements for $/ \mathrm{s}$ / were based on frequency readings of the first spectral maximum at
midpoint of the fricative noise. Data were interpreted on the grounds that an increase in the degree of palatal constriction for the fricative causes a decrease in formant frequency values; according to acoustic theory of speech production, such a decrease is mainly due to an increase in front cavity size as the tongu
(Heinz and Stevens [2]). Heinz and Stevens
[2]). onsonantal period. Data on F2 articulations, F2 the grounds that, for palatal ticulations, F2 frequency varies directly with he degree of palatal constriction (Fant [1]). A comparison of F 2 frequency values across vowel ontexts for each speaker should constrictio: nformation about changes ind for the consonant. F3 readings are not given due to the fact that this formant was often cancelled or attenuated in the vicinity of a spectral zero. Another measurement of the degree of palatal constriction for / κ / was inferred from data
on C-to-V coarticulation. Values for $/ \mathrm{i} /$ and $/ a /$ the two formants are inversely related to changes in front cavity size and directly related to changes in the degree of tongue-dorsum raising (Fant [1]). Mirst, V1 and V2 formant frequencies were taken at thie vowel midpoint, separately for the sequ values fo $/ \mathrm{Vsv} /$ and $/ \mathrm{V} \kappa \mathrm{V} /$. Then, mean frequency valus from mean frequency values for the same vowel adjacent to $/ \mathrm{s} /$. Differences between vowel formant values in the contexts $/ \mathrm{v} \Omega \mathrm{v} /$ and $/ \mathrm{vsv} /$ across speaker were considered to reflect cross-speaker
differences in the degree of palatal constriction for $/ \mathcal{K} /$, in line with the fact that, as shown in the Results section, the phonetic realization of A and B. Thus, it was predicted that a higher degree of palatality for $/ K /$ ought to cause a larger departure from the F$/ 2$ and $F 3$ vowe 1 frequencies in the context / $\mathrm{vsv} /$.

Results
Degree of palatality for /s/
Data on the frequencies for the $/ \mathrm{s} /$ spectral maximum are shown on Figure 1 for all speakers. They are highly consistent with data reported Recasens [4] showing a first high amplitude
petral peak at about 4000 Hz . Cross-dialect differences are neglegible and inconsistent with the orizinary hypothesis that $/ \mathrm{s} /$ should be more a contrast, the $/ \mathrm{s} /$ peak in dialect B would presumably approach the first aplitude spectral peak for $/ \int /$ which lies around 3000 Hz (Recasens [4]). Therefore, for the speakers chosen in this study, the claim that the presen $/ K \mathrm{~s} /$ sequence is associated with differences in the degree of palatality for/s/must be rejected.

Degree of palatality for $/ \kappa$.

Figure 2 shows changes in F 2 across VcV contexts for all speakers. According to the figure, F2 of $/ K /$ increases with adjacent $/ \mathrm{i} / \mathrm{vs} / \mathrm{a} /$, more so for speakers of dialect B than for speakers dialect A. Thus, it can be suggested that the palatal gesture for $/ A$ is more constronsonant is adjacent to a high front vowel.
Figure 3 shows F2 and F3 frequency differences for $/ \mathrm{i}$ / in the symmetrical sequences $/ \mathrm{i} \mathcal{K} \mathrm{i} / \mathrm{vs} / \mathrm{isi} /$. Figure 4 shows F and F 3 frequency differences for $/ \mathrm{a} /$ in the symnetrical sequences $/ \mathrm{a} \Lambda \mathrm{a}$ / vs./asa/. In both figures, data are plotted separately each speaker, each dialect, $(C-t o-V 1)$ vs carryover (C-to-V2) effects. of all formant frequency differences plotted in the figure, those exceeding 50 Hz were found to be significant at the $p<0.05$ or $p<0.01$ levels, overall, c-to-V coarticulatory effects in /ici/ sequences are larger for speakers of da
particularly the case for speaker Re who, contrary to the other three speakers, shows larger C-to-V effects when $v=/ i /$ than when $V=/ a / . C-t o-V$ data for $V=/ a /$ in Figure 4 does not allow stating any contrasting coarticulatory two dialects.
concusions
Data on V -to- $/ \mathcal{K} /$ and $/ \mathcal{K} /$-to-V effects reported in this paper suggest that dialects A and B of constriction during the production of the entire /i κ i/ gesture. It may be that the same contrasting production strategy takes place for $/ \Omega /$ in the vicinity of other high front articulations. Therefore, it is plausible to maintain the view that the presence vs absence
of the progressive assimilation rule $/ \mathrm{s} / \rightarrow[]$], [$K] \quad$ in Catalan is dependent on
contrasting degrees of palatality for $/ K /$.

igure 1. Frequency values for the first spectral maximum of /s/ as a function of vowel context. Ba (dialect B), Pi and Ca (dialect A).

iKi
Figure 2. F2 frequency values for $/ \mathcal{K} /$ as a function of vowel context. Data are plotted separately for speakers Re, Ba (dialect B), Pi and Ca (dialect A).

Figure 3. Differences in F2 and F3 frequency values an V1 (C-to-V anticipatory effects; solid bars) and V 2 (C-to-V carryover effects; white bars)
between $/ \mathrm{i} \mathrm{K} \mathrm{i} /$ and /isi/. Data are plotted separately for speakers Re and Ba (dialeet B), and Ca and Pi (dialect A).

Figure 4. Differences in F2 and F3 frequency alues at V1 (C-to-V anticipatory effects; solid bars) and V2. (C-to-V carryover effects; white
 and Ca and Pi (dialect A).

It is believed that to account for these phonological facts, the phonemes $/ K /$ and $/ \mathrm{s} /$ should be specified for degrees of the featur palatal. Thus, $/ K /$ would be [1 palatal] in dialect A and $[2$ palatal] with contrasting degrees of the tongue-s/would be [- palatal] for speakers of dialects A and B in the present study, but possibly [1 palatal] for other speakers of dialect B. Progressive assimilation for catalan $/ K \mathrm{~s} /$ clusters would only apply in the following cases: (1) in dialect B , when C 1 and C 2 differ sufficiently in dialect B , when $\begin{aligned} & \text { degree of palatality, as for } / K / \text { being }\end{aligned}$
$[2$ palatal] and $/ \mathrm{s}$ / being [-palatal] ;
(2)
(2) possibly in dialect B as well, when C1 and $\mathrm{C2}$ agree (entirely or partly) in degree of palatality, as for / K/being [1 palatal] or [2 palatal] and $/ \mathrm{s} /$ being [1 palatal].
refrernces
[1] Fant, G. 1960 Acoustic Theory of Speech
Production, The Hague.
Heinas JM K.N. Stevens 1961 on the properties of voiceless fricative consonants, Journal of the Acoustical Society of America, 33, 5, 589-596
$[3]$ Maddieson, I. and K. Ennorey 1 ls
Relationship between semivowels and vowels: Cross-linguistic investigacions of acoustic difference and
Phonetica, $42,4,163-174$.
[4] kecasens, D. 1968 Estudis de Fonètica Experimental del Català Oriental Central Barcelona.

baikan-romance parallels in distribution of phongais

JACEK PERLIN
Dept. of Romance Philology
Warsaw University, POLAND

In our work concerning phonetic balkanisms we concentrated on the distribution of sounds. Here we present some conclusions resulting from a comparison of the distributional characteristics of segments which are not motivated by the direct context, but which are due to the position of segments in the syllable and in the word. Our investigation revealed the occurence of certain specific features in microregions extending beyond the territory of the Balkan Sprachbund. This caused the necessity of widening the scope of our study to include Romance material. Apart from Balkan and Romance languages, Serbo-Croatian and Turkish material has been taken into consideration.

Among Balkan languages, and generally in most European languages, certain similarities and common tendencies can be observed, while differences do not exceed certain limits. The similarities concern the phenomenon which could be called approximization to the symmetrical and sonorous syllable pattern. However, this should be treated neither as a Balkan fe-

IRENA SAWICKA
Inst. of Slavic Studies Polish Acad. of Sciences Warsaw, POLAND
ature nor as a universal tendency. By sonorous syllable pattern we understand here a pattern in which distribution of segments is based on the principle of increasing inherent loudness of sounds before the syllable peak, and falling loudness of segments after the peak. In languages in question this is reflected in the order of sonorants $/ \mathrm{S} /$ and obstruents $/ 0 /$ in consonant clusters. In the sonorous syllable pattern the sonorant must stand neither between two obstruents, nor between an obstruent and a juncture. In such positions it has to undergo syllabification or the cluster is simplified. Against the European background the Balkan languages are not distinguishable by anything special, except for one specific feature which consists in the presence of the NO- clusters / \mathbb{N} - nasal sonorant/ in word initial position in some of them. On the contrary, as far as the syllable problem is concerned, we observed here some differentiation, while similarities concern trivial features. With regard to syllable pattern, Balkan
languages can be divided in two ways: /1/ into languages with sonorous syllable pattern and languages in which there are considerable deviations from the sonorous pattern, and /2/ into languages with relatively symmetrical syllable pattern /i.e. ones in which initial as well as final consonant clusters are allowed/ and languages with nonsymmetrical syllable pattern. Among the Balkan languages we do not find two identical situations. In Bulgarian and Macedonian only the combinations of OS- at the beginning and -sO at the end of the word are allowed. In Macedonian, apart of this, fixed order of sonorants in multisonorant cluster is required, which is motivated by differences of loudness of subsequent segments and position in the syllable. These restrictions do not apply to Bulgarian. In Albanian and Roumanian, nasal sonorants partially belong to the distributional class of obstruents. In Albanian restrictions for nasal sonorants, as for other sonorants, remain at the end of the word, in Roumanian - at the beginning of the word. Thus, the NO- clusters are allowed in initial position in Albanian, and -ON clusters in final position are allowed in Roumanian. Greek has a sonorous syllable pattern, as has Macedonian, but it differs from Macedonian by relative asymmetry. Greek is the only Balkan language with
nonsymmetrical syllable pattern, where word final consonants and final consonant clusters are considerably reduced. The difference between languages with nonsymmetrical syllable pattern and the ones with symmetrical pattern slowly decays as a result of the introduction of symmetrical structures, mainly through borrowings. However, this fact does not seem to be connected with language contacts within the territory of the Balkans but mainly with invasion of Anglicisms which introduce consonants or consonant clusters in final position of the word. Thus, this dichotomy has a relative character - it results from comparison of the generalized ituation, from the impression we get while ignoring structures of the lowest frequency - various "untypical" structures. In Greek there are several loanwords with final consonants and final consonant clusters. Such foreign words still make up quite a swall part of the Greek vocabulary - in teris words with final consonant clusters ccour rareiy, and some native speahers assimilate them according to the native pattern. If this language periphery is left aside, then for Greek we observe the worid pattern with an open or relative ly open last syllable. However, some groups of borrowings with final consonant clusters of -SO type do not undergo assimilation, which is an evident proof of changes in the standing syllable pattern.

Thus, taking into account the complete lexical material, the differentiation into symmetrical syllable pattern vs nonsymmetrical pattern has no justification, and Greek belongs to the same type as the South Slavonic languages. Mutatis mutandis the same applies to the Turkish language in which consonant clusters appear in final but not in initial position/. However, differences in frequency of various syllable structures still remain, which creates some general view of the situation - impression of existence of restrictions which are already out of date.

All that has been said here about Greek also applies to several Romance languages in which, as in Greek, initial consonant clusters of scnorous structures occur, but, with the exception of several loanwords, final consonant clusters are not allowed. Words can end with vowels or single consonants, the inventory of which is very limited. Such situation is found in Spanish, Portuguese and Italian. In Por tuguese domestic words/s/, /r/ and / / / can stand at the end of the word; in the Andalusian dialect of Spanish - only / / / / /r/ and $/ \mathrm{n} /$; the same applies to Italian; in common Spanish also /s/ and / $\theta /$; in Greek - only $/ \mathrm{n} /$ and $/ \mathrm{s} /$. The differences between these languages concern mainly the combinations of obstruents which are due
to genetic difference. What is significant in these languages and especially in their
colloquial realizations, various interventions occur adapting the foreign structures according to the domestic pattern, cf. Port. Nova Iorque, clube, dial.Ital. lapisse /stand. lapis/, Greek grupllgrupa\| grupos, etc.

Final consonant clusters appear in Catalan and Occitan. They have simple sonorous structures and are less numerous than in French or Roumanian.

We are of the opinion that the stated similarity of syllable/word pattern is worthy of consideration as a typological feature. This feature consists in the nonsymmetrical syllable pattern with uncomplicated initial consonant clusters of sonorous structures and with open or relatively open syllable rhyme; the inventory of consonants which can stand at the end of the word in each of these languages is very limited. What is significant is that all these languages are concentrated in the basin of the Mediterranean and, with regard to syllable pattern, they stand in opposition to the Central and North European languages. The example of the Cakavian dialect of Serbo-Croat can also be instructive here. Compared with the standard Stokavian Serbo-Croat, Cakavian shows the tendency to simpify the structure of the syllable rhyme. Thus, with respect to the phonemic syllable pattern, one should speak of the Mediterranean community rather than of the Balkan Sprach-
we studia bałkanistyczne II, Wrocław 1987.
The only indubitable Balkanicm partia-
lly connected with the syllable problem is the occurence of consonant clusters of the type 'nasal sonorant + occlusive', which can occur in the same order in any position in a word on the limited territory of the Balkans. The situation is as follows: in contemporary Greek, in the colloquial variant of Demotic, there is a strong tendency for functional identification of the opposition: voiced vs voiceless occlusive with the opposition: occlusive with the nasal implosion vs occlusive without the nasal implosion, that is, cf. /p/vs $/ \mathrm{b} /=/ \mathrm{p} / \mathrm{vs} / \mathrm{mb} /$, /t/vs $/ \mathrm{d} / \mathrm{l}$ $=/ t / \mathrm{vs} / \mathrm{nd} /$, etc., with simultaneous reduction of the clusters with voiceless occlusives, which undergo voicing. Similar tendencies occur in Albanian, where additionally, unlike in Greek, the mo clusters occur also in word initial position. In standard Albanian the opposition /o/vs $/ \mathrm{mb} / \mathrm{vs} / \mathrm{p} / \mathrm{vs} / \mathrm{mp} /$, etc. is phonologically relevant, but in dialects the situation is obviously differentiated. In dialects we find such phenomena as: voicing of obstruents after a nasal sonorant, prenasalization of voiced occlusives, occasionaly adding an occlusive after a nasal sonorant, etc. More detailed informations and exemplification can be found in our study: Bałkańsko-romańskie paralele w zakresie syntagmatyki fonologicznej, Języko-

The schemes of syllable patterns can be featured using a line the level of which corresponds to the loudness of subseguent segments: Macedonian
Bulgarian Serbo-Croatian /Catalan, Cccitan, Cakavian/

Albanian

Greek
Italian
Portuguese
Spanish

Roumanian

Polish
Russian

Dept. of Applied Linguistics
Tartu State University

ABSTRACT The paradignatic as well as the syntag-
matic (positional) relations between the phonemic units of the Estonian language are examined from the quantitative point
of view. The results of the investigation are compared with analogical data from some other languages (particularly Finnish

THE INVENTORY

 guage contains 17 consonants $/ \mathrm{p} t^{t} t^{\prime} f \mathrm{~h} j 11 \mathrm{~m} \mathrm{~m}$ $n^{\prime} r s$ s $s v /[1 ; 2]$. All these phonemes may be short or long. The long monophthongs and long consonants are considered to be single phonemes, There are 36 diphthongs
in Estonian [3] but phonologically they are treated as sequences of two vowels. All nine Estonlan vowels contrast in stressed position but in unstressed
tion only four of them (/a e i $u /$) occur in the normal system (the literary language). The first component of an Estonian
diphthong may be any of the nine vowels but the second component has to be chosen out of the first five vowels /a e i $\mathrm{o} u /$,
not all of these combinations being acnot all of th
ceptable [3].
In orthography the long vowels are marked with two graphemes representing the sarked quality (e.g. maa /mā land, country).
The long consonants may be marked with The long consonants may be marked with
two graphes (e.g. linn $/ 1 \mathrm{in} /$ town $)$ or somettimes with one
/11nlane/ town-dweller'). All stops in Estonian are unvoiced, the Alistinction is made between short and long stops (1enis and fortis on the phonetical
level). The short stops may be marked with level). The short stops may be marked with
the graphemes b, d, g or p, t, k (e.g.
 order') The long stops are usually marked
with two graphemes (pp, tt, kk) or in with two graphemes (pp, tt, kk) or in
some positions Mith ony one grapheme
(pikk pik/ long and piklik piklik/
(pikiong ${ }^{\prime}$). For more detailed analysis the
quantity alternation of the Estonian language has to be considered (short, long The phonology of a language cannot be regarded as complete if it does not take in
to account some basic quantitative (statistical) features of the system and th functioning of its units in speech (text). For instance, the number of vowels in
phonemic system indicates the degree of phonemic system indicates the degree of regarded as a typological characteristic of a language [4; 5]. But even more impor
tant for the phonostatistical study of tant for the phonostatistical stuay of frequency of occurrence of phonemic unit in text.

TEXT FREQUENCIES
Our study is based on a corpus of texts of of fiction and 45% of non-fiction) with total of about 45% of non-fiction) with The results of the statistical investiga the will be given in a simplified form the frequencies of short and long phoneme and so are the frequencies of the nonpalatalized and palatalized forms of the consonants $/ \mathrm{t} 1 \mathrm{n} \mathrm{s} /$. In this case th If we group these phonemes according to their occurrence we can distinguish three main groups constituted by phonemes of relatively high frequency $(p \geqslant 6 \%)$,
$(6<p<2)$ and low frequency $(p<2)$:

In full accord with other linguistic levels text reveals the tendency of concentration and dispersion of its units: we can dis-
ystem, the intermediate part, and the "peris phery". The three most frequent pho-
nemes $/ \mathrm{t}$ / cover 35.1 \% of the Estonian ext, the eight most frequent ones 73.1%, and the ten most frequent phonemes
81.7%. The phenomenon of concentration and dispersion is well-known in lexical statistics unita may be expressed analytically by the so-called Zipf's law in the porm of a power function. ith a very large number of units the pho not submitted to Zipf's law but to logarithmic or exponential law of growth or experimental material (Fig. 1): there is evidently a linear relation between the logarithm of probability (relative fre-
quancy) of a phoneme and its place (rank) uency) of a phoneme and its place words, it means exponential dependence

$$
\begin{equation*}
p_{i}=a e^{-b i} \tag{1}
\end{equation*}
$$

where p_{i} is relative frequency, is - rank, natural logarithms. In our example a ≈ 1 and $b \approx 0.15$.

Fig. 1. Linear relation of rank (i) and the logarithm of occurrence
The concrete form and the values of the
constants in the formula approximating the empirical curve may serve as typologica characteristics of a language. It may b and dispersion of units in any concret manifestation is considered to express universal lam which is peculiar to certa selp-regulating systems in social life. of
Another method of estimating the state of
the functioning system as a whole is the the functioning system as a whole is the

The entr
fined as

$$
\begin{equation*}
H=-\sum_{i=1}^{K} p_{i} \log _{2} p_{i} \tag{2}
\end{equation*}
$$

where H marks entropy, p_{i} is the probability (in the empiricalicase - the relaof k phonemes; $\log _{2}$ means logarithm with base 2 .
For the simplified Estonian system with 22 phonemes we get $H=3.9063$. In terms of the entropy per phoneme, occurrence is entropy measures the degree of "equidistribution" of the phonemes in text. For comparison with other resul

$$
\mathrm{H}_{\mathrm{reI}}=\frac{\mathrm{H}}{\mathrm{H}_{0}}
$$

where $H_{i}=\log _{2} \mathrm{k}$. It is necessary in cases where the compared systems have dif
ferent numbers of elements. For instance, we can compare our results with the re-
sults of other investigations [6] (Table 1).

Entropy				
Language	k	H	H_{0}	H_{r}
Estonian	22	3.9063	4.4594	0.8760
Hungarian	39	4.6028	5.2854	0.8709
German	33	4.4435	5.0444	0.8809
English	39	4.7098	5.2854	0.8911
Russian	41	4.8257	5.3576	0.9007

The smaller the value of ${ }^{\text {H}}$, the more against that of equidistribution. In this respect Estonian and Hungarian, having relatively amination. However, if we compare the statistical distribution of the Prequencies of con-
crete phonemes e.g. in Estonian and crete phonemes e.g. in bsth resemblances
Hungarian, we may find both and essential differences. In Hungarian
the eight most frequent phonemes in texts the eight most frequent phonemes in texts
of fiction are /e a t n I k In If [7]. Five
of them coincide in Estonian and Hungarian of them coincide in Estonian and Hungarian same (/a e t/). But there are differences in the distribution ond in phoneme systems on the whole.
h it must be noted that there As to Finnish it must be noted that there are some pecularinnish texts that make the difference between the two close cognates The most frequent phonemes in Finnish
 most striking difference the phoneme freIn Finnish it occupies the second place
with the relative frequency of about 10%
(in Estonian /n/ is on the 9th place with great extent due to the high frequency of occurrence of final $1-n /$ in common word where Estonian has 10 st the final conso-
nant in the course of historical development, e.g. Finnsh nin - Estonian nii
 e. G. Finnish jalan, jalkgan - Est tonian jol dependence wich exists emong separate language hevels where a quantitative change or motivated by the structural needs and
demands of some hi her level of the same demands of some higher level of the same
language, viz. of its morphological level ${ }_{(c f}^{\text {langus }}$ [9]).
phoneme classes
At the first stage of
phonemes are
classification the
into phonemes are are
classes: vowels (V) and consonants
(C) In phonostatitistical works the ratio Civ
is considered to be on important typologiIs considered to be an important typologi-
cal oharecteristic or in onguges
Estonian texts the ratio is $54.5: 45.5$
 the vowels by 20% This value (1.20) can be compared with the correspondin

As to the
further divide them into
p
phonemes
several
we can
classes according to their phonetic properties. according to their
The frequencies of
occurrence classes in Estonian texts are given in

The	Front	Back	Total (\%)
	unr ro	unr ro	
High	$\begin{array}{cc}10.8 & { }^{\text {u }} \\ 20\end{array}$		38.9
Mid		8.8	31.4
Low	2.9.9	$\stackrel{\square}{26.8}$	29.7
$\begin{gathered} \substack{\text { Total } \\ (\%)} \end{gathered}$	$\frac{47.9 \quad 2.4}{50.3}$	$29.7{ }_{49.7} \mathbf{2 0 . 0}$	100.0

As can be seen, the front and back vowels

In Estonian texts are equally distributed (about $50: 50$ \%). In Finnish and Hungerian talian, but for instance in slovak it it 43:57, and in Sanskrit texts 20:80. ne relation of the frequency of short
rowels to the frequency of long vowels stonian texts is 92 to 8% The same relation characterizes Finnish texts, whereas in Hungarian the long vowels occur 30:20 (\%). The classification of consonant nd are brought together in the synoptic Table .
The consonant system: frequencies in ${ }^{\text {Table }}{ }^{3}$ tex

	Tabi	Alveodent	alatal		
Stops	${ }_{4}^{\mathrm{p}} 8$	$t^{t} 1.8 t^{\prime}$	-	${ }_{13.4}^{k}$	40.0
Fricat	0. ${ }^{\text {P }}$	${ }^{s}{ }_{16.5} \mathrm{~s}^{\mathrm{s}}$	0.1	h 3.1	19.8
Nasals	7.3	${ }^{n} 8.5^{n^{\prime}}$	-	-	15.8
erals	-	${ }^{1}{ }_{11.4} 1^{\prime}$	-	-	11.
Trills	-	5.3	-	-	5.3
Semivowels	$\stackrel{\mathrm{v}}{4.2}$	- -	3.5	-	7.
$\underset{\substack{\text { Total } \\(\%)}}{ }$					

Two parallel sets of alveodentals (except /r/) can be distinguished: non-palatailized and paianized consonants. it has been
ascertinine that except in case of auto
matic palatalization before $/ 1 /$ and, $j / /$
 cover only 0.15% of all running phonemes The Estonian texts ${ }^{\text {in }}$ [11] ${ }^{[1 / i f i c a t i o n ~ l o n g ~ c o n s o n e n t ~}$ honemes in a running text is proboematio
in some cases. We estimate that about 17% of consonants are long and 83% short. As a whole, the quantitative distribution. of phonemes in Estonian texts ce
trated in the following manner:

Vowing manner:
Vowels 45.5$\}^{\text {Resonents" }}$

	Sonorants	
45.5)	Sbs	

100.0 (\%)

POSITION ANALYSIS
The phonemes occur with different frequenies in different positions of the word. In principle, initial, medial
positions can be distinguished.

In the Orthological Dictionary of the the most frequent in it i al phoneme
 r/ 5.4 , /h/ 4.2. Among the ten most fre(/a/). On the whole, the vowels make up
15.5 and the consonants ali initial phonemes in the dictionary, on the text level the most frequent ini

 "foreign phonemes ind and phequent initial phonemes are all consonants and they cover about 50% of all word initial phonemes in the text. The over-all distribution of phoneme classes in
in Trable 4.

100.0

In Finnish the vowels cover 20% and th sitions in the text. The most prequent initial phonemes are $/ \mathrm{s} \mathrm{skh} \mathrm{k} \mathrm{m} \mathrm{movp} \mathrm{e} / \mathrm{d}$ and $/ \mathrm{h} / \mathrm{are}$ with Estonian the phonemes currence in initial positions.
As the structure of the stressed syllable is somewhat different from that of the unamine the frequency distribution of vowels rately nuclei of stressed syllables sepa labic words) inding the nuclei of monosyl short and 11:5 \% long) and diphthongs (i.e. -vowel sequences) 12.0%. The frequencies
of single vowels: $/ \mathrm{a} / 20.3$, /e/ $19.0,10$

 The distribution of word final phonemes reflects the morphological structure of the language and therefore the frequen-
cies of final phonemes are considered to texts the ic for each language. phonemes are texts the most frequent final phonemes are:
/a/ 11.1% (of all final phonemes in the
 12.9. These five phonemes cover . lowed by the less frequent phonemes: $/ 1 /$,
in the $0.6 / \mathrm{v} / 0.4$. Due to the restrictions in the distribution of vowels in unstressed tremely rare in word endings (total 0.3 ex and so are the phonemes $\mathrm{h} /$ and $/ \mathrm{f}$ s/ (the last two occur only in foreign or recent loan words); the three phonemes have a total frequency of 0.1%. The distribution struents 38.0%, sonorants 9.7%, and vowels 52.3%.
In Finnish the most frequent phonemes in word final position are: /n a a it es all word final /n/ covers almost 30% o On the basis of the frequexcies of phonemes in thitial and final positions their relative Prequencies in medial positions ca be calculated.
Some other traditional problems in phono-
statistics, such as the valency fields of phonemes, phonotactic features and fre quencies of phoneme sequences and sylla-
bles, word length, etc., as well as a more detailed quantitative analysis of phono logical data - incluadng and quan tity - require special discussion.

REFERENCES
[1] T--R. Viitso. Läänemeresoome fonoloogia [2] A. Eek. Kivantiteet ja rơnk eesti keeles A. Eek. Kvantiteet ja rôk eesti keeles
(II). Seisukohavôtt.
Keel ja Kirjandus ige7, nr. 3, 153-160.
H. Piir. Acoustics of the Estonian diphthongs.-Estonian Papers in Pho-
netics 1982-1983. Tallinn: KKI, G-96. Aitmann, W. Lehfeldt. Allgemeine Sprachtypoingie. Prinzipien und $\begin{aligned} & \text { fahren. Winchen: W. Fink Verlag, } 1973 .\end{aligned}$
[5] U. Strauß. Struktur und Leistung der vol...4. Bochum: Brockmeyer, 1980 .
[6] P. Zörnig, G. Altmann. The entropy of brot law. In: Glottometrika 6./Quantitative Linguistics, vol.
[7] jazyk. - Acta et Commentationes 1 venski jazyk.-Acta et commentationes Univer-
sitatis Tartuensis, vol. 518, Tartu. 1980, 15-37. Helsinki: SKS, 1972 . (9]. Vachek. Prague phonological studies today. - Travaux Academia, 1966, 7-20.
[10] Yu Tambovcev. Konsonantnyj Koeffici-

in] Vigekeelsussônaraamat, /Toimet, R.Kull,
E. Raiet. Tallinn: Valgus, 1976.

Phonotartische gesetzmasigreiten im ronsonantismus des tremjugan-
ostuakischen - ein beitrag 2 O Phonetischen universalien

erhard f. SChiefer
 Lieselotte schiefer

RESÜMEE

Mit vorliegender Arbeit werden zwei Ziele
verfolgt. Zum einen wird eine aus der combination analusis' witerentwickelter pono-
taktische Methode vorqestellit. die erlaubt die Kombinationsfähigkeit jedes Ronsonanten
diner Sprache füriede position innerhals einer Sprache für iede positioninnerhalb
einer Konsonantenverbindung zu bestimmen. Die Kalkulation basiert auf der phonetischen klasse des Konsonanten (2. B. Plo-
siv. Frikativ. labial. alveolar). der klassengröße. der theoretischen und der
tatsächlichen Kombinierbarkeit. Zum anderen Wird diese Methode an Material aus dem
Tremugan-Dialekt
ostiakischen demonstriert. einem
medialer Hortposition
Dialekt.
nur medialer hortposition nur zweigliedrige
Ronsonanten-verbindungen duldet.

einleitung

Obwohl an der Notwendigkeit phonotaktischer Analusen zumindest seit Trubetzkoy $\{4\}$ kei
ne Z weifel bestehen. sind Arbeiten aur die ne Zweifel bestehen. sind arbiten auf die
sem Gebiet nach wie vor eher selten. Die
verdienstolle verdienst volle Arbeit von Ian Maddieson und
Mitarbeitern (UPSID. (1]) beinhaltet zwar Mitarbeitern (UPSID. (1)) binhaltet zwar
Phonemsysteme und die klassifizierende Auswertung derselben aus 317 sprachen, die
entsprechenden phonotaktischen Untersu-
 auch noch lange auf sich warten lassen:
dabeisind Arbeitenauf phonotaktischem Gedabi sind arbetten auf phonotaktischem Ge-
biet durch die Mö́lichkeit des Einsatzes
von computern lanast nicht
 zeitaufwendig wie zuvor. Eine der umfang-
reichsten phonotaktischen Arbeiten wurde von B. Sigurd 131 fur das Schedische
vorgelegt, in der ofeichzeitig die damals bekantesten und erfolgversprechendsten phonotaktischen Methoden referiert warden
Diese seien hier kurz charakterisiert In der position analysis wird die posi-
tioneinzelner Phoneme innerhalb bestimmter Grenzen (etwa der Silbe) thematisiert. (21
Die Orduna der Phoneme in Gruppensteht. Die urdnung der Phoneme in Gruppen stehtim
 den und deren M1tolider nur mit Gliedern
anderer klassen. aber nicht mit Gliedern anderer klassen. aber nicht mit Gliedern
der eigenen klassezu gruppen kunbiniert.

Institut für Phonetik und Sprachliche Rominunikation der
Ludiq-Maimilians Universität
Gunchen München. FRG

Werden können. (3) Die combination analy werden konnen. Hauptinteresse der Kombina-
sis '. deren
tionsfähigkeit der Phoneme unterinander und damit der bestehenden Restriktionen
weniger der Ordnung innerhalb der Konsonan tengruppen gilt. Die Anwendung dieser
Methoden hängt zum einen wesentlich vonder Methoden hängt zum einen wesentlich von de
zu untersuchenden Sprache und deren Gesetz zu untersuchenden aprache und deren zugrunde gelegten Rahmeneinheit (Silbe, Morphem Lexem; initiale; mediale, Anale konsonat sisher Vorgeschagenen Methoden erforder
uviel Aufwand und ist daher meist nur
and schwerzu praktizieren. Andererseits soll en phonotaktische Ergebnisse mit denen an
derer Sprachen vergleichbar sein. Und es sollten dabei
ponotaktische sowohl phonostatistische wie
Gesichtspunkte
beruck honotaktische Gesichtspunkte berück Die hier angewendete Methode wurde an Vach-

 Sbernahme von Gesichtspunkten aus der
position analysis' dar. Das Hauptinteresse position analysis' dar Das Hauptinteresse
gitt der kombinationsfanigkeit (combinaiity, von Phonemen zu Grupen und de
dabei zu beobachtenden Restriktionen.
di dabei zu beobachtenden Restriktionen, die
on Ostakischen von großem Interesse sind. Die Methode beriucksichtigt neben der Kombi nationsfähigkeit die positionsabhängigkeit,
die phonetische Klasse des phonems, di

 erhaltenen, als Zahlenfolgen darstellbaren
Ergebnisse werden mit denen aus anderen Ergebnisse werden mit denen aus andere
Sprachen direkt vergleichbar und können in Form von hierarchisch
Rombinationsregeln formuliert werden. In Rombinationsregeln formuliert werden. Im schritteise an Material aus dem Trj
phonotartische analyse des trjo
Der Konsonantismus des (Trjo) ist durch
 In initialer Position sind kein
Konsonantenverbindungen (Kv) zulassiq. (2) Verbindungen von mehr als zwei Konsonanten
verden nicht Verbindungen von mehr als 2 wei Konsonante
werden nicht geduldet. Unsere Analyse be
ruht daher ruht daher auf den zweiglierdigen medialen
KV des
Trjo. Als Rahmeneinheit warde das

	labial	al veolar	retroflex	mouill.	palatal	velar
Plosive		t		t		k
Nasale	m	n	n	n		n
Laterale		A	1	κ		
Trill		r				
Frikative		s			j	r
Glides	w				j	

exem gewählt, das die geringsten Restrik- sition nicht für alle Konsonanten gleich ionen aufweist. Das Trjo besitzt 18 Konso-
antenphoneme, die in Tab. 1 nach artikuaionsmodus (AM) und Artikulationsstelle AS) geordnet aufgefürt sind.
ine tabellarische Erfassung ne tabellarische Erfassung der KV basiert egebenheiten der zu analysierenden Sprahe) auf den phonetischen Klassen des AM AM he) auf den phonetischen R1assen des AM
und der AS der Ronsonanten. Sie wird hier
s. Tab 2) für die AS dargestellt, da deren s. Tab. 2) für die AS dargestelit, da deren Trio größer ist als der anderer phone-
ischer parameter.
sieliefert die Basis tischer Parameter. Sie lie
fur alle weateren analysen.

Die Kombinationsfähigkeit (KF) der einzel-
nen figkeitinces Auftretens (a) in den KV
 Härigkeit Daraus dänt Auftretens für jeden Konsonanten berechnen (s. Tab. 3). Diese Nata-
figkeitstabelle ist vor allem von phonoshlul tistischem Interesse. Heiteren Aufschlub
erhäit man, wenn man die Differenzenzwischen der 1. und ${ }^{2}$ position berechnet, worauf hier aus platzorunden verzichtet wer-
den mub.
Es sei jedoch festgenalten, den muß. Essei jedoch festgenale
die Unterschiede zwischen der 1. und 2, Po-

1.	Posi	1on	2.	Pos	tion	gesamt		
m^{-}	-11	9.	${ }^{-}$	14	11.8	t		$\overline{9}$.
s	10	8.8	γ	12	10.1	γ	21	8.8
Y	9	8.4	n	11	9.2	A	20	8.4
A	9	7.6	¢	10	8.4	m	19	8.4 8.0
r	9	7.6	k	9	7.6	s	19	8
n	8	6.7	s	9	7.6	p	16	6.7
n	7	5.9	m	9	7.6	k	14	5.9
n	7	5.9	1	8	6.7	r	13	5.5
j	7	5.9	n	6	5.0	n	13	5.5
p	6	5.0	¢	4	3.4	,	11	4.6
n	6	5.0	$\stackrel{\text { n }}{ }$		3.4	¢	11	4.6
		4.2	r	4	3.4	j	10	4.2
${ }_{8}^{5}$	4	3.4 3.4 3	5	3	2.5	$\stackrel{¢}{6}$	8	3.4
w	3	2.5	n	1	0.8	,	7	2.9
1	3	2.5	\%	1	0.8	K	3	1.3
κ	2	1.7	w	-		w	3	1.3

 tionsabhängigkeit liegt bei den Retroflexe Die kF da. elnzelnen konsonanten bzw. de
 bick auf inr Auftreten generell sowie aur
die positionsabhangigkeit betrachtet.
berucksichtigt blieb dagegen der berücksichtigt blieb dagegen der 2 , konso
nant der kv. Diese Abängigkeit wird inden
 Wobei die Zahlen die Ausnutung der theo
retischen xf wiedergeben. In Bezug auf den AM sind drei wenerelle Restriktionen fest
stellibar. Stellibar: (1) Restriktionen bestehen nur i Bezug auf die ${ }^{2}$. Position, (2) Restrik
ionen bestehen im Hintick auf die Glides Und den Trill und ((3) Verbindungen inner-
halb der einelnen Kiassen sind selten
ausgenommen Frikative) halb der einzelnen Klassen sind selten
hausgenomen Frikative). Bezuglich der AS
lassen sich folgende generelle Restriktiolassen sich folgende generelle Restriktio
nen formulieren: (1) Restriktionen bestehe
bezüglicital nen formulieren: (1) Restriktionen bestehen
ezüglich der Klassen Mouililiert. Retroflex
ind Palatal Und (2) Verbindungen innerhalb
der labialen der
ten.

Tab. 4	Kombinationsfähigkeit (KF) der Artikulationsmodi: Klassengröße, theoretische RV , existierende KV , KF in Prozent													
	1.	sit	on				Sit					gesa		
FRIK	(2)	36	19	52.8	frik		36	21	58.3	FRIK		2	40	55.6
trit	(1)	18	9	50.0	PLos	(5)	90	40	44.4	NAS	(5)	180	0	38.
NAS	(5)	90	39	43. 3	f.at	(3)	54	20	37. 0	plos	(5)	180	68	37.
PLos	(5)	90	28	31.1	! is	(5)	90	31		tril			13	36.1
GLID	(2)	36	10	27.8	TAIL	(1)	18	4	22.2	lat	3)	-	34	
Lat	(3)	54	14	25. 9	GLID	(2)	36	3	8.3	GLID	(2)	72	13	

1.	Position			2. Position					gesamt				
ALV (5)	90	45	50. 0	aLV	(5)	90							
VEL PAL (3) (1)	54 18	${ }^{21}$	38.9 38.9	VEL		54	27	50.0			108	48	54. 4
LAB (3)	54	20	37. 0	RET		54	13	35. 24			108	10	36. 1
Mou (3)	54	13	24. 1	pal	(1)	18		16.7			36		
	54	13				54					108	21	19.4

Verzertes Bidd von der KF der einzelnen
klassen, da die Klassengrößen nicht beruick Sichtigt wurden: die kF müßte bei berükBerechnung zwangsläufig mit der klassen-
oröße zunehmen.
Berücksichtigt man diesen Gesichtpunkt, und setzt man die theore-
tische kF in Beziehung zu der tatsächlich
 inzelnen klassen, wie in Spalte 4 der Tab.
4 und 5 zu sehen ist. Die Ausnutzung der 4 und 5 zu sehen ist. Die Ausnutzung der
theoretischen KF ist bei den Frikativen in
beiden positionen am qrönten (52.8:58.3).

 Trill (50. $0: 2$ 2. 2) in der 1. Position grös-
sere
die KF aufeisen. Am geringsten ist jedoch

Die ubrigen phonotaktischen Reqularitaten解 Ausnahmen von den Regeln stehen in klam mern. Die Regeln sind folgendermalien z a) $\mathrm{C} 1=\mathrm{LAB} \rightarrow \mathrm{C}=\mathrm{ALV}$ bedeutet: wenn der onsonant ein Alveolar ist, muß der 2 b) C2 w Der 2. Konsonant darf nicht (c) $\mathrm{C} 1=\mathrm{LAB}, \begin{aligned} & \mathrm{C} 2=\mathrm{RET} \\ & \mathrm{C} 2\end{aligned}$

Menn der 1 , Konsonant ein Labial und der 2.
Konsonant ein Retroflex ist. so darf dieser kein Nasal sein.
(d) C1 $=$ ALV. $C 2$
Hemn ALV
Kenn der ${ }^{\text {ald. Konsonant ein Alveolar ist, so }}$ kann der
lar sein. Konsonant ein belivebiar ist, sor Alve (e) $C 1.2=$ ret, $C 1,2=\mathrm{ALV}$

Tab. 6: Kombinationsfäniqkeit der Rlassen unter-

| einander (Artikulationsmodi) | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| - PLOS | NAS | LAT | TRIL | FRIR |

Tab. 7: Rombinationsfahigkeit der Klassen unter

	lab	alv	RET	pal	mod	vEL
Lab	22.2	73.3	33.3	--	11.1	33.3
ald	66.7	80.0		40.0	6.7	80.0
Ret	11.1	6.7	55. 6	---	11.1	55.6
pal	66.7	60.0	33.3			33.3 51.6
Hov	11.1	20.0		33.3	44.4	55.6
vel	33.3	73.3				11.1

Kenn der
st, so
darf der ${ }^{2 .} \begin{gathered}\text { Ronsonant ein Retroflex } \\ \text { andere }\end{gathered}$ A1veolar sein.
 der 2 R Ronsonant

REGELSYSTEM

Die Abkürzungen bedeuten:
R RLR RIR=Frikativ, NAS=Nasal, LAT=Lateral, LA

21) $\mathrm{C} 1=\mathrm{ALV}, \quad \mathrm{C}_{1}=\mathrm{VEL} / \mathrm{CAT}$ (FRIK, $\mathrm{C} 2=\alpha \mathrm{VE}$
(22) $\mathrm{C} 1=\mathrm{ALV}, \mathrm{C}_{1}=\mathrm{VEL}$ C1
(23) $\mathrm{C} 1=\mathrm{ALV}, \begin{gathered}\mathrm{C} 2 \\ \mathrm{C} 1=\mathrm{VEL}, \mathrm{NAS}, \mathrm{C} 2\end{gathered}$ PLOS
$\mathrm{C}_{\text {(24) }}=$ MOUILLIERT
$=$ PLOS, $\mathrm{C} 2=\mathrm{FRIK}$
(25) C1 = MOU, $\begin{aligned} & \mathrm{C} 1=\mathrm{C} 2=\mathrm{PLOS}, \mathrm{CL}=\mathrm{AL} \\ & \mathrm{C} 2=\mathrm{PLOS}, \mathrm{C} 1=\mathrm{NAS} / L A T\end{aligned}$
(26) $\mathrm{C} 1=$ MOU,
(27) $\mathrm{C} 1=$ MOU,
$2=\mathrm{VEL}$
$1=\mathrm{LAT}$
$2=\mathrm{VEL}$
$=$ VEL,
$=$ NAS, C2 - NAS
$\mathrm{C}_{1}=\mathrm{RETROFLEX}$
$(28) \mathrm{C} 1=\mathrm{RE}$
$\mathrm{C} 2=\mathrm{RET}$
$\mathrm{C} 2=\mathrm{NAS}$
$\mathrm{C} 2=\mathrm{RET}$

c1 = palatal
C1 $=$ PALAL
(32) $\mathrm{C} 1=\mathrm{PAL}, \quad \mathrm{C} 2=\alpha \mathrm{LAB}$
(33) $\mathrm{C} 1=\mathrm{PAL}, \quad \mathrm{C} 2=\mathrm{ALV}$
$\mathrm{C1}=\mathrm{VELAR}$
(35) $\mathrm{C1}=\mathrm{VEL}, \mathrm{C}_{1}=\mathrm{CAB}$
(30) $\mathrm{C1}=\mathrm{VEL}, \mathrm{C}_{1}=\mathrm{LAB}, \mathrm{C} 2-\mathrm{PLOS}$
37) $\mathrm{C}_{1}=\mathrm{VEL}, \mathrm{C}_{2}=\underset{\mathrm{RET}}{ }=\mathrm{FRI}(\mathrm{ks})$

itteratur

1) Maddieson, I.: UPSID: the UCLA PhonoUCLA Horking Papers in Phonetics, Vol UCLA Horking Pap
$50: 4-120(1980)$
(2) Schiefer, L.: Phonematik und Phonotaktik des Vach-ostiakischen. Verörfentichungen des Finnisch-Ugrischen
Seminars ander Universitat München. Seminars ander Universitat Munchen.
Serie B: Beitrage zur Erforschung der Serie
obugri
$1975)$
2) Sigurd, B.: Phonota structures in
3) Trubetzkoy, N.S.: Grundzüge der Phono

ABSTRACT
The paper deals with phonetic mechanisms of Chukchi, Koryak and Itelme
vocalic word structure. It prents vocalic word structure.
a new it presents
interpretation of
Chukchi-Koryak vowel harmony. The paper also describes an original type of morpheme inter-

The languages of Chukchi-Kamchatkan group (Chukchi, Koryak, Itelmen) possess common vocalic system of five element and manifest the rise gradation that is ny". Following W.G. Bogoraz, the vowels are usually classified into 3 groups: strong vowels $/ \mathrm{a} / \mathrm{l}, \mathrm{le} / \mathrm{l}, \mathrm{ol}$, weak vo-
wels $/ \mathrm{i} / \mathrm{l} / \mathrm{e} / \mathrm{u}$, and the neutral vo-
 within the word with strong ones: if there is in the word a morph (a prefix, a suffix, or a stem) that contains a
strong vowel, all the weak vowels alter nate with the strong ones. The neutral /a/ is indifferent to synharmonic alter-
nations. The phonetic mechanism of the vowel rise alternation in the Chukchi-Kamchat kan languages was specified by the authors of the present paper as a resul
of field work. Some acoustic analysis data was also made use of. It allowed us to interpret the processes that take place in derivation and in the following way.
The three vocalic sub-systems have a common phonetic base, namely, the rang
of the phonetic variativity of vowels. of the phonetic variativity of vowels. tiativity. The degree of variativity of
weak voweis is big enough for their syn warmonic variants to approach or even coincide with the allophones of strong vowels. The neutral vowel /o/ has maxitely dissorved in the phonetic structure of the word, is dependent on its vocalic structure and on surrounding vowels. The
that are identical with allophones of any vowel of the systems. ny" can be of two kinds: the symharnonic or can belong to two different phonemes. For the neutral vowel the synharmonic variants are always its allophones. For
 are synharmonic variants. In Koryak and
Itelmen the synharmonic variants repreItelmen the synharmonic variants repre-
sent corresponding strong vowels and are sent corresponding strong vowels
the alternants proper: $/ \mathrm{I} / \mathrm{\sim} / \mathrm{e} /$; /e/ov/a/; /u/ No/o/.
The conditions for alternations can be of three types: phonetic context (where
the morphemic structure of the word the morphemic structure of the word has (where the phohetic structure of the mor-
phemes that constitute the word is imphemes that constitute the word is (morphological context (wilere the phonetic structure of the word and of the constituting morphemes loses its
value). It is the second type, the morvalue). It is the second type, the morsynharmonic alternations: the rules of the vocalic word structure are deduceable
from the phonetic structure of morphemes from the phonetic structure of morphemes not include strong vowels, cf. Chukchi muri 'we'- mora=ka 'us'. In Itelmen the synharmonic alternations ignore the pho stituents. Alongside with cases like qic̆ = enk 'in possession of the wife', wačank
'on the stone' (marker of localic case is represented by synharmonic variants =enk/ =ank that depend on the vocalism of the stem) and cases like neč=anke, 'to the
wife', wact=anke 'to the stone' (the vocalism of the stem depends on the vocalic type of a "strong" suffix of terminalis), there are cases like gič $=$ kit 'because of where the vocalism of causal case suffix seems to be independent of the vocalism, of the stem, and cases like iw=lah 'long'
ict '=al 'birch grove', where "strong" suffixes =lah'adjective marker' and =al 'generic number' do not trigger the vothere are stems like i'naq 'ermine' and

			strong		neutral			
			R$\substack{\text { an'ç } \\ \text { teach }}$	m	R	m		
			$\begin{gathered} \text { anke } \\ \text { terminalis } \end{gathered}$	$\begin{aligned} & \text { a'asx } \\ & \text { nest } \end{aligned}$	$\begin{gathered} \text { al } \\ \text { generic } \end{gathered}$ number	$\begin{gathered} \text { lah } \\ \text { adjective } \end{gathered}$		
	R	$\operatorname{lic}_{i=1}^{i c k}$			eč $=$ anine to the birch		$\begin{aligned} & \text { birch } \\ & \text { grove } \end{aligned}$	
m		$\begin{aligned} & \text { enk } \\ & \text { localis } \end{aligned}$			$\begin{aligned} & \text { a'asx=ank } \\ & \text { in the } \\ & \text { nest } \end{aligned}$			
		III infinitive	$\begin{aligned} & \mathrm{k}^{\prime} \mathrm{an}^{\prime}{ }^{\prime} \mathrm{čp}={ }^{\prime} \mathrm{an} \\ & \text { he taught } \\ & \text { him } \end{aligned}$					
		iwl					$\begin{gathered} \mathrm{iw}=1 \mathrm{lah} \\ \text { long } \end{gathered}$	
E		$\begin{array}{\|l\|l\|} \text { long } \\ \hline \begin{array}{l} \text { niču } \\ \text { wife } \end{array} \\ \hline \end{array}$		$\begin{aligned} & \text { nex }=\text { anke } \\ & \text { to the } \\ & \text { wife } \end{aligned}$				
${ }_{\text {H.fun }}^{\text {H }}$		Ip.sg. Ob.	$\begin{aligned} & \text { an'čp=min } \\ & \text { he taught } \\ & \text { me } \end{aligned}$					
号		$\begin{aligned} & \text { kit } \\ & \text { Causal case } \end{aligned}$			a'asx=kit because of the nest			

iyaq 'dreadful' where strong and weak vowels co-occur in onr word. Morphemes notion of existence of vowel synharmonism in Itelinen.
An interpretation of phonetic incon-
sistency of Itelmen synharmonism is siven in Table Imen synharmonism is table contain modifier: stems and affixes that contain strong vowels and can synharmonically modify other morphemes in the word. Modifiers can be divided into strong and neutral according to
whether they trigger obligatory synhar whic change of other morphemes. Horisontal lines in the table contain modifiables: stems and affixes that can into strong one. Modifiables are also divided into strong and neutral according to whether their synharmonic chantersection show obligatory, optional, and non-ob-
ligatory synharmonic modification of
morphemes. ${ }^{\text {Phe }}$ following information about of morphemes that constitute an Itelmen word is necessary to determine whe the place:
I) phonetic structure class of the morpheme: stem or affix 3 3)
3) morphonological class
within one word and even one morpheme or Wtrong and weak vowels shows that frer
stelmen it is more appropriate to speak Itelmen it is more appropriate to speak
morpheme harmony rather than of
vowel marmony: the analysed alternation definitely take place on the morphologica
level. found out when we analysed the words that formerly were transcribed with i / u. In words ${ }^{\circ}$ sis 'grass' $\left[s^{\circ} Y_{s}{ }^{\circ}\right]$
 $o_{k i c}$ 'ox' $\left[k^{0}{ }^{\circ} c^{\circ}\right]$ etc. all vowels and consonants are labialized; "These, words have quasi-homonyms [kIc]. An interesting feature of the labialized words is the marker or labialization can be placed outse the the bracket": arila the and labialization is their only distinction from
Alongside with the cases when the word equals the stem, that were illustrated above, there are cases when labiaof the word: ${ }^{\text {sisisal }}$ 'thick grass'
 ause of the grass' [$\left.s^{0} Y_{s}{ }^{0}=\mathrm{k}^{0} Y t^{\circ}\right]$ $\circ_{s I s=k I t]}{ }^{\circ}{ }^{\text {seseanke }}$ 'into the grass'

Affixes that are attached to a labialized stem become labialized too. No affixes were found that would show indifference to the influence of a labialized stem. On the other hand, there are two affixes that can labialize a non-labialized stem: ${ }^{\circ} \mathrm{pk}{ }^{\prime}$ ul - a derivational marker of singleness, and $={ }^{0} 1$ win - suffix meaning 'himself etc.', cf. k'aač 'back'
 kamma 'I' - ${ }^{\circ} \mathrm{kmi=lwin}$ 'I mystlf' $\left[{ }^{0} \mathrm{kmI}=1 \mathrm{BIn}\right]$.

In isolated pronunciation, especially with high vowels, the lips of speaker visually move forward and stay round through the whole word, or, more precisely, they get round slightly before the beginning of the utterance and stay round a little bit after it has finished. This fact was noticed before but got no linguistic interpretation.

Tentative estimation gives about 20\% of inbialized stems of the total amount of Itelmen stems. No phonetic or lexical distribution was found.

The possibility of the Itelmen stems to labialize the affixal part of the word is, no doubt, unique for the Chukchi-Kamchatkan languages and distinguishes Itelmen sharply from the group.Alongside with other features, this fact prompts one to look for the genetic roots of Itelmen outside the Chukchi-Kamchatkan areal.

YUMIKO FUKUDA

Research Institute
National Rehabilitation Center for the Disabled
Tokorozawa-shi, Saitama-ken, 359 Japan

ABSTRACT

Using an electro-glottographic device, the electro-glottogram was displayed on a cathode ray tube along with the speech sound waveform, and the possibility of utilizing the display as visual cue for laryngeal adjustment of quality of voice in the speech training of hearing-impaired was investigated. As the results of a series of trials, it was ascertained that this visual cue was useful as a feedback for modifying the mode of vibration of vocal folds. By combining this method with various others for visual display of speech, an integrated program of speech training for hearing-impaired was proposed.

INSTRUMENTAL AID FOR TRAINING VOICE QUALITY

Nowadays, various instrumental aids for visual display of speech are widely used in speech training of hearing-impaired, but they are mostly designed for the training of articulatory gestures or control of pitch and loudness of voice [1]. As for improving voice quali.ty, there has been no training aid effectively utilized for this purpose, although it is considered to be the most basic requirement for speech intelligibility of hearing-impaired to achieve natural quality of voice.

Since it has been reported by E . Abberton and others that electro-glottography served as a visual feedback for laryngeal control in voicing [2], the possibility of applying the method to improving voice quality of hearing-impaired should be investigated.

ELECTRO-GLOTTOGRAPHY

The device used in this study was "Portable Laryngograph" which was designed according to A.J. Fourcin's principle of electro-glottography [3] and manufactured by Laryngograph Ltd. in England.

In this device, a pair of electrodes (30 milli-meters in diameter, 9 milli-meters in thickness, and weight of about 7 grams) are attached to the outer skin surface of both lateral sides of the larynx, holding by an elastic band around the neck. By applying high frequency
electric current (frequency: 3 MHz , and voltage: 10 volts), the change in the current (less than 10 milli-ampare) due to the change in electrical impedance across the larynx synchronized with vibration of the vocal folds, or opening and closing of the glottis, was detected (Figure 1). The electronic circuitries including the carrier signal generator and amplitude demodulator are battery operated, so that they are insulated from the displaying and recording units. The device is small and light weighted, and easy to be handled.

The waveform of the output signal (6 volts peak to peak), the electro-glottogram, was displayed on the cathode ray tube of a synchroscope, and recorded on a data recorder in order to minimize low-frequency phase distortion.

HORIZONTAL SECTION OF THF LARYNX

frontal section of the glottis beginning

WAVEFORM OF THE ELECTRO-GLOTTOGRAM

Figure 1. Description of basic components involved in the device of electro-glottography and the waveform of electro-glottogram.

For detailed inspection, the waveform of the electro-glottogram was printed out on a visi-
corder along with that of speech sound recorded simultaneously, then the ir frequency spectrum were nature of wavefornm of the electro-glottogram

The relationship between the vibration of the vocal fords and nature of the electro-glottogram
had been investigated by the researchers on the lectro-glottography through simultaneous recordings of opening and closing of the glottis
observed by the fiber scope and the optical glottography, and also through modelling of the vocal fold vibration [4,5 and 6]
examined that the higher and narrower it was examined that the higher and narrower peak (or
lower flat valley) in each fundamental period of
the waveform of the electro-alot the waveform of the electro-glottogram which corresponds to the tighter and shorter contact
the glottis, and the steeper rise of the curve which correspond to the quicker increase of the of the higher harmonic components of the voice of the higher harmonic components of the voice
source in the training of voicing (Figure 2). The lack of the higher harmonic components in
the range of lower formant frequencies results in the range of ower formant frequencies results in one of the most difficult aspects in the articulatory training of the hearing-impaired
process of improvement of the voice quality
In order to find a subject for the preliminary experiment of applying the electroflottography to the speech training as a visual feedback. firstly, eight hearing-impaired among
forty (aged 19 and 20 years) who were staying in the Department of Vocational Training, Training Center of the National Rehabilitation Center for the Disabled were selected. They met the
condition of; having hearing level of over 100 dB , poor speech quality, and consequently being required of integrated speech training. After
analyzing their speech, a female, aged 19, who had analyzing their speech, a female, aged
defective voice quality but rather good articulation was chosen as the subject.
Before the training, the voice of the subject in daily conversation was abnormally high pitch soft and close to falsetto. For these reasons. the phonemic aspect of speech was not acceptable, even though her articulation was fairly good as
she had had speech training in the school for the

Figure 2. A pair of examples of the electroglottograms and their power spectrums for a normal and a defective voicing, which was simulated by a female adult, and sound spectrogram of the speech sequence.
waveform of the electro-glottogram

TIME (ms)
POWER SPECTRUM OF THE ELECTRO-GLOTTOGRAM

AMPLITUDE (dB)

waveform of the electro-glottogran

TIME (ms)
POWER SPECTRUM OF THE ELECTRO-GLOTTOGRAM
freuency (kHz)

AMPLITUDE (dB)
(a)

(b)

(c)

Figure 3. A set of examples of the electro glottogram and power spectrum in the process impaired subject.
deaf where she stayed for the previous twelve deaf where she stayed for the previous twelve
years. As for the prosodic aspect, the subject spoke in slow tempo with ambiguous word accent,
sentence intonation and emphasis of phrase. The waveform of the electro-glottogram did not show wide flat valley or steep rise in each fundamental period, consequently, the harmonic components were found only in the low frequency range (F igure 3). of the speech of hearing-impaired.
In the preliminary experiment of training of vowel phonation by monitoring the electrolottogram on the display, and to imitate the instructor's typical waveform especially marking steepness of the rise of the curve in eac
fundamental period. And the process of
2sed ori the decree of richness of the higher arimnic components of the voice source through a pectrographic analys is of both the electrolottogram and speech sound.
Soon after beginning the training, the subject was able to change the nature of the waveform of electro-glottogram by laryngeal adjustrient. One way to produce a steep rize of
the cuive by ther subject was abnormally tensed the cuive by ther subject hisher harmonic components became richer, the voice qual ity was
unnatural for speech sound (Figure 3b). This is
und unnatural for speech sound (Figure 3b). This is
3 also common to the voicing of hearing-impaired,
however. this needs to be checked by the tests other than the sound spectrogram.

TIME (y 100 ms)
sessions a week, a session being about one hour long, was conducted. After several sessions, the waveform of electro-glottogram become almost normal. resulting in the improved voice quality (Figure 3c). The fundamental frequency became lower towards normal range.

The improvement was achieved for the open vowels [o] and [a] first, but it took another several sessions to stabilize the result, and to achieve a similar improvement for other vowels, particularly for [i] which was the most difficult among the five Japanese vowels.

APPLICATION TO INTEGRATED SYSTEM OF TRAINING

In this study, it was ascertained experimentally that the hearing-impaired subject was able to adjust her voice quality through the electroglottographic display. Parallel with this training of voice quality, a series of training for refining the articulation was conducted in sequence of vowels, semi-vowels, nasals, flapped, voiced plosives, and other Japanese consonants. Training to achieve a reasonable pitch control for such as Japanese word accent and sentence intonation began when the range of voice pitch of the subject became normal after the series of training of voice quality.

In this way, the electro-glottography for training of voice quality and various other methods for training, for control of pitch and loudness of voice through displays of changes in fundamental frequency and intensity of speech sound, and articulatory training by use of displays of lip movement [7] and lingual contact to palate [8 and 9], were assembled into an integrated program.

It is planned to combine this program of speech training with a system of objective evaluation of speech quality based on acoustical analysis [10], and to extend the range of application to hearing-impaired children in the future.

REFERENCES

[1] A. Boothroyd and M. Decker: "Control of voice pitch by the deaf: An experimental study using a visible speech device," Audiology, 11, 343-353. 1972.
[2] E. Abberton, A. Parker and A. J. Fourcin: "Speech improvement in deaf adults using laryngographic displays," Speech, Hearing and Language, Department of Phonetics and Linguistics, University College London, 1976. [3] A. J. Fourcin and E. Abberton: "First applications of a new laryngograph," Medical and Biological Illustration, 21. 172-182, 1971.
[4] R. J. Berry, R. Epstein, A. J. Fourcin, M. Freeman, F. MacCurtain and N. Noscoe: "An objective analysis of voice disorders. I," British Journal of Disorders Communication, 17. 67-76, 1982.
[5] R. J. Berry, R. Epstein. M. Freeman, F.

MacCurtain and N. Noscoe: "An objective analysis of voice disorders. II," British Journal of Disorders Communication, 17, 77-85, 1982.
[6] D. Childers: "A critical review of electroglottography," Biomedical Engineering, 2, 131161. 1985.
[7] S. Hiki and Y. Fukuda: "Mouth shape in the production of $[w]$ and [o] sounds in Japanese," Proceedings of the 9 th International Congress of Phonetic Sciences, Section 1, 188, August, 1979. Copenhagen.
[8] S. Hiki and H. Itoh: "Influence of palate shape on lingual articulation," Speech Communication, 5, 141-158, 1986.
[9] S. Yamashita, S. Shibata and N. Murata: "Computer assisted therapeutic package for articulation control (CATPAC)." Logopedics and Phoniatrics: Issues for Future Research, Proceedings of the XXth Congress of the International Association of Logopedics and Phoniatrics, 204, August, 1986, Tokyo.
[10] Y. Fukuda: "Objective evaluation of the prosodic aspects of speech of hearing-impaired children based on acoustical analysis," Logopedics and Phoniatrics: Issues for Future Research. Proceedings of the XXth Congress of the International Association of Logopedics and Phoniatrics, 520-521, August, 1986. Tokyo.

HANS GEORG PIROTH

Institut für Phonetik und Sprachliche Kommunikation der Universitat München
Schellingstr. 3, 8000 München 40 . F. R. G.

ABSTRACT

A method for electrocutaneous speech synthesis was developed using pulse train sequences with variable intervals that are delivered to 16 electrode pairs along the forearm. The coding was quasiarticalatory' in that places of articulation (front - back. high - low) were mapped quasi-isomorphically to the forearm (distal - proximal. dorsal volar).
By varying the repetition rate of the pulse bursts (faster - slower) a tactile fortis-lenis equivalent was incorporated and, additionally. a plosive-fricative distinction was defined. So the inventory or tactile consonants was expanded to cover the whole range of the obstruent system of a language such as German. Exp. I uses tactile fricative-vowel equivalents. Exp. II plosive-vowel equivalents to test the learnability of such patterns.

INTRODUCTION

There is a long history of experimental investigations in the field of tactile speech transmission (e.g. $\{2,3,4,8]$). Most of them used mechanical or electrical stimulation devices to transform the acoustic parameters of the speech signal into tactile patterns. The fact that most of these systems failed to reach the level of practical use. demands general reconsideration. According to our point of view in all these investigations the role of articulatory gestures for speech perception seems to be underestimated. Since tactile and proprioceptive reafferent control is present during the period of language acquisition. one may assume that normal speech perception is at least partially governed by the perception of articulatory guestures [1.9]. So it may be argued that a transformation of articulatory rather than acoustic information to the skin would provide a better opportunity to develop a successful tactile speech transmission system [6, 7. 10].
In its final state a quasiarticulatory system for tactile speech transmission would consist of four components:
(1) Registration of a speaker's acoustic
signal.
(2) Analysis of the articulatory paraineters from the speech wave.
(3) Transformation of the articulatory information into quasiarticulatory coded tactile patterns.
(4) Presentation of tactile patterns.

The investigation reported here is concerned with the development of the quasiarticulatory coding of tactile stimulus patterns. To yield an approximately geometric mapping of the places of articulation the forearm was selected as the tactile stimulation area. The experiments were executed with the system for Electrocutaneous Stimulation' (SEHR-2) presenting current-controlled bipolar pulse train sequences. of the basic form shown in Piroth/Tillmann 1984. Fig. 1 [5]. The sixteen channels of the stimulation device (cf. Tillmann/Piroth 1986 [101) were connected with 16 pairs of round gilded brass electrodes (9 mm in diameter). The smallest distance between the electrodes of a pair was 1 mm . The electrode arrangement and the order of successive stimulations was defined according to a set of basic criteria for the coding method. First. complete tactile patterns are syllable analogues, i.e. each syllable is in one-to-one correspondence to a complete pattern. Second, a complete pattern is composed of partial patterns representing the consonant and vowei phonemes. In general, vowel patterns move longitudinally along tine arm. consonantal patterns circumferentially. (Fig. 1 shows the arrangements of electroaes as well as the stimulation area of the central vowel / $/$ /.) ihird. places of articulation are mapped to the place of tactile stimulation so

that front articulations (of vowels and patterns near the wrist and back articuations to proximal patterns near the elbow. High vowels are mapped to the dor-
sal side. low vowels to the volar side of the forearm. Intermediate places of arti-
culation are coded by stimulating the in culation are coded by stimulating the in
termediate tactile areas. Fourth. as the
starting point of thas starting point of areas. Fourth. as the the circumerentially
moving consonant patterns depends on the moving consonant patterns depends on the
stimulation area or the preceding or fol-
lowing vowel. an rudimentary form or cowing vowel, an rudimentary form of coding method. Fifth, in the present ex
periments the temporal duration of the periments the temporal duration orespon to those of extremely slow and very ex
pincitly
pyltered
natural plicithess. patterns are constructed in
Neverthelest
a way that overall durationcan be shor a way that overall duration can be shor
tened by omitting pulses from the puls train sequences without hereby alterin the phenomenal gestalt' of the patterns.
Former investigations have shown that vowel patterns are easily identified eve
vornand untrained subjects and that consonan by untrained subjects and that consonan
tal places of articulation -although
 training. The following experiment
include the fortis-lenis- and the plosive-fricative distinction into the
system of consonantal patterns to yield a
construction method for the complete system of consonantal patterns the complet
construction method for obstruents, and they use
system of of fication results by training.
experiment i
According to the basic oriteria a system
of tactile fricatives and the vowel $/ \not \partial /$ was constructed and combined to form syl-
 their
learning learning test to reveal whether
identification of cV-equivalents can be improved by learning. A show whether a control test was run to show whe skills enhances the dentification of the VC-patterns.
experiment it
 was used consisting of tactile opa
to:/, /ka:/, and /ba:/, da:/,/ga:/.

general method
timulit ulse ${ }^{\text {and }}$ (taps') of three pulses aving the form described above with
onstant
pulse width of 200 ms.
ms ariable amplitude, a constant inter variable auplinterval of 2.5 ms and an
pulseonsent
overall duration of 5.2 ms were used as
 quences in which the places of stimula
tion are changed according to the basi tion are changed according to the basic
criteria cited above. so. the tatile
syllable equivalents consisting of frica-
 tive patterns and ar taps, intertap
structed. Number or top
intervals (ITI). tap-duration and overall intervals (ITI), tap-duration and overal
duration of the patterns are given b duration of the patterns are or tiven by
fab of stimulus. The
local shifts alongthe first or first and fiocal shifts along the first or first and
electrode rings ine. the distal
 / $\mathrm{v} / \mathrm{fiare}$ shown in Fig. 2 , of $/ \mathrm{s} /$ and $/ z$
in

Se 19.2.2

13/. Since z/ and /j/ are presented by
stimulation of 8 loci this was not pos-
 overall duration. The neutral vowel iai
is transformed into an 8 tap pattern
moving alongthe mid pairs of radial and moving along the midpairs of radial and plosives are built as patterns sweeping
between neighbouring electrode pairs as shown in Fig. 4 which represents /P' and /b/. Analoguously, /t/ and /d/ surround

Regaraing the basic criteria information of the starting point of the vowel pat ferent pattern at the same electrode row
where the following vowel pattern starts.
The velocity The velocity of the pattern ($5 \mathrm{~ms} / \mathrm{ITI}$) is
clearly below the threshold for discrimi-
nation of sucessive taps and is not used nation of successive taps and is not used
to carry the fortis-lenis information. to carry the fortis-lenis information.
Instead. this feature is encoded in the nighbouring half of the vowel-pattern as

Subjects and procedure.
Subjects and Procedure.
Four unexperienced Ss participated in
Exps. unendiI. All Sswere tested singly and were informed about the details of
the dearning test series and the coding
the method. tensity adjustment. Each test ses-
started with a calibration procesion started with a calibration proce-
dure. Ss were asked to adjust subjective intensity to a mid value between absolut place of and unplasentness for each
ptimulation. rese resulting
values were taken as implse amplitude values were taken as impulse amplitude
values in the immediately following test runs.
2.
vesentation of the patterns. The inpresented of the times in a systematic or der to the s as following for each pat
tern a phonological transcription was

Table 2				
- $\begin{aligned} & \text { Number } \\ & \text { of Taps }\end{aligned}$		ve yowe system ${ }_{\text {overall }}$		
		tion (ms)	(ms)	ration (ms)
FP	15			163. 2
LP	16	5. 2	5	163. 2
fp+V	V 16	5. 2	8×15	403. 2
			$+8 \times 2$	
V	V	5. 2	4×35	402.
V : Vowel. fr: fortisplosive (burst). Lp. Lenisplosive (burst).				

presented via terminal followed by the
tactile
pattern corresponding to this syllable. After an interval of to this
transcription of the next syllable was transcription of the next syllable wa 3. Feedback tests. For a single FB-test
the 8 CV-patterns were presented 6 times the 8 CV-patterns were presented 6 times
in Exp. 1 and the 6 CV-patterns in Exp. were presented 8 times in completely ran domized order to yield 48 presentations
By pressing a key on the computer key board the S started the presentation of
pattern.
 via keyboard. Then the transcription of
the syllable that was presented was given the syllable that was presented was given
to inform the S Whether his answer wa correct or not. After the presentation o 5 equal test runs (i. .e. 30 or 40 repeti-
tions of each pattern the test session
ond was finished. The ss underwent 5 equal
 Finally, in a sith (control-) session
structured in the same way the whole in structured in the same way the whole in
ventory was presented in vC-ordering. Two of the four Ss first underwent Exp.

resuits and discussion

fig. 5a presents the average identifica
tion ratefor all subjects in Exp. tion rate for all subjects in Exp. I.
Fig. 5 in gives the computed resultsithat show the recognition of the fortisisienis
feature (Ientification of fortis-pat eature. CIdentification of a rortis-pat
tern was assumed to be correct when the S after presentation or a fort
answers with a fortis consonant.

(a)

Fig. 5: Results of Exp. I (a) Syllable

Fig. 6: Results of Exp. II (a) Syllable (b) Fortis-Lenis Identification
 Exp. II in the same way. To evaluate the
effects arter a transformation of the dependent variable by

$$
y=\arcsin (x ; 100)^{1 / 2}
$$

a one-factrorial univariate analysis of yariance was calculated. first as a trend analysis of sessions 1 to 5 by the method of orthogonal polynomials. then the analysis was expanded to 6 sessions to determine the relevant a priori contrasts. since the analysis was repeated with fortisflenis results the level of significance $\alpha=0.05$ was lowered to α^{*} by $\alpha^{*}=1$ -$(1-a)^{4}$ A highly significant variation over the 5 CV -sessions was found in all cases yielding a linear trend in Exp.I and a cubic one in Exp.II (Tab. 3). For the analysis of contrasts the comparisons of 1 st and 5 th . 1 st and 6 th and 5 th and 6th stission were chosen. According to Tab. 3 the contrasts between the 1 st and the 5 th $C V-s e s s i o n ~ a r e ~ a l w a y s ~ s i q n i f i c a n t ~$ and show a consistent learning effect. But the results indicate that there is no transfer of learning from the CV-series to the vc-session: in all cases the contrast between the rirst $C V-s e s s i o n ~ a n d ~$ the $V C-s e s s i o n ~ i s ~ n o t ~ s i g n i f i c a n t . ~ W i t h ~ a ~$ simple exception, the results of the 5 th cV-session and the VC-session differ significantly. This may be due to the fact that only one control-session was run. A series of experiments is in preparation to show whether a transfer of learning is possible if the S has to manage more trials in the altered condition.

Table 3
Results of Exps. I and II
Trend analysis by orthogonal polynomials (sessions 1-5):
Exp. I Syllables $F(4.95)=4.421 p<0.005 * *$ Exp. Linear trend $F(1.95)=17.076$ p<0.005** Exp. I Features $F(4.95)=6.187 \mathrm{p}<0.005 * *$ Linear trend $F(1.95)=23.982 \mathrm{p}<0.005$ **

Exp. II Syllables $F(4.95)=9.869$ p<0. 005×1 Cubic trend $F(1,95)=10.288 \mathrm{p}<0.005 * *$
Exp. II Features $F(4.95)=10.366$ p<0.005** Cubic trend $F(1,95)=18.379 \mathrm{p}<0.005 \times 2$

A priori contrasts (sessions 1-6):

```
Exp. I Svllables
1 vs. 6: t=-0.725 df=114 p=0.4=0 n.s.
1 vs. 5: t=-3.829 df=114 p=0.000 **
5 vs. 6: t= 3.104 df=114 p=0.002 **
Exp. I Features
1 vs. 6: t=-0.762 df=114 p=0.4+7 n.s.
vs. 5: t=-4.102 df=114 p=0.000 k*
5 vs. 6: t= 3.440 df=114 p=0.001 **
Exp.II Syllables
vs. 6: t=-1.552 df=114 p=0.124 n.s.
vs. 5: t=-3.253 df=114 p=0.002 **
5 vs. 6:.t=1."01 df=114 p=0.092 n.s.
Exp.I[ Features
1 vs. 6: t=-0.013 dt=114 p=0.989 n.s.
1 vs. 5: t = -2.418 df=114 p=0.01% *
5 vs. 
peduced level of sioniflcance:
p<0.00501 iA p<0.025.32 x
```


REFERENCES

[1] C.A. Fowler. "An Event Approach to the Study of Speech Perception from a Direct-Realistic Perspective". J. Phon. 14. 1986. 328.
[2] R.H. Gault. "An Experiment on Recognition of Speech by Touch", J. Hash. Acad. Sci. 15. 1925. 14.
[3] M. H. Goldstein. R.E. Stark. Modification of Vocalizations of Preschool Deaf Children by Vibrotactile and Visual Display". J. Acoust. Soc. Am. 59. 1976. 1477-1481.
[4] R. Lindner, "Physiologische Grundlagen zum elektrischen Sprachetasten und ihre Anwendung auf den Taubstummenunterricht". Zeitschr. f. Sinnesphysiologie 67, 1937.
[5] H. G. Piroth. H. G. Tillmann, "On the Possibility of Tactile Categorical Perception". M. P.R. V.d. Broecke. A. Cohen, Proc. 10 th ICPhS, Dordrecht 1984, 764-768.

Piroth. Silbenerkennung artikulatorisch komplexen
"Elektrokutane mit quasikodierten zeitlich-räumlich strukturierten Reizmustern". Forschungsberichte des Instituts für Phonetik und Sprachliche Kommunikation der Universität München 22, München, 1985.
[7]
H. G.

Piroth,

"Electrocutaneous Syliable Recognition Using Quasiarticulatory Coding of Stimulus Patterns" (Abstr.). J. Acoust. Soc. Am. 79. 1986. 573.
[8] D. H. Sparks et al.. "Investigating the MESA (Multipoint Electrotactile Speech Aid): The Transmission of Segmental Features of Speech". J. Acoust. Soc. Am. 63. 1978. 246-257.
[9] H. G. Tillmann. "phonetik und Phonologie sowie die natur- und geisteswissenschartliche Erforschung der gesprochenen Sprache", FIKPM 19, 1984, 9-32.
[10]
H. G. Tillmann. H. G. Piroth. "An Order Effect in the Discriminability of Pulse Train Sequences" (Abstr.), J. Acoust. Soc. Am. 79: 1986. S73.

ACKNOHLEDGEMENTS

This investigation was supported by the German Pesearch Council (DFG-grant Ti 69 25;
Statistical advice was given by Dr. Alexander Yassouridis. Department of Biostatisties. Max-Planck-Institute for Psychiatry. Munich F.R.G.

DIRK-JAN POVEL

Psychological Department
University of Nijmegen
P.O. Box 9104

6500 HE Ni jmegen, The Netherlands

ABSTRACT
Substantial improvement of speech of the deaf can only be obtained if we succeed in providing them with additional information concerning speech through other than auditory channels. Since there have been many attempts at developing visual aids but very little success [2], we consider some basic issues involved in the development of visual aids for speech training and propose a number of assumptions that guide our undertaken to construct an effective visual aid.

INTRODUCTION

Currently we are involved in a project in which we are developing computer controlled visual aids displaying acoustic information of speech to be used in speech acquisition of the deaf. The basic motivation behind the project is the belief that the only way to substantially improve the results of speech training of the deaf is by introducing (visual) aids that supply additional information and feedback about speech, which can be incorporated in a speeech training program. We belief that the deaf child can only form an adequate and stable internal representation of speech if we supply them information that shows what speech looks like and provides them with an opportunity to examine the results of all sorts of articulatory gestures and to check the successfulness of attempts to produce specific speech acts. Because of the enormous growth in recent years of computational power and graphics facilities, it is now possible to design all sorts of visual aids, evaluate them in a training situation and subsequently adjust the design on the basis of this evaluation, in a most flexible way.

However, the more possibilities there are, the more decisions have to be taken about different design aspects of the aids. Therefore, we present in this paper a preliminary framework that allows to see the different dimensions of the problem and indicates the type of questions that should be asked (and answered).

BEN MAASSEN

Interdisc. Inst. of Child Neurology
University of Nijmegen
P.O. Box 9101

6500 HB Nijmegen, The Netherlands

TWO BASIC QUESTIONS

To develop a visual aid means to answer two questions: WHAT information to display and HOW to display it. Attempts to answer these questions lead to the most fundamental aspects of speech perception and production as well as to basic questions concerning the essential differences between the processing performed by the ear and the eye. The answer to these questions is in part also determined by the view one holds with respect to the method of speech education of the deaf. Although educational aspects will undoubtedly play an important role in the ultimate form of the aids, in this paper we will not deal with these aspects but confine ourselves to the more fundamental issues relating to how relevant aspects of speech can be made visible for speech training purposes.

THE ULTIMATE GOAL: THE IDEAL SPEECH VISUALIZER

What would be the ultimate goal of a project like this? As we see it, the ideal speech visualizer for speech training should completely take over the missing auditory function of the deaf child.

In order to attain this ideal two problems should be solved. First, we must find ways to present the acoustic information about speech in a form which is digestible by the eye. In view of the great differences between the way information is processed by the ear and the eye, it will be necessary to do a lot of preprocessing that transforms the acoustic information into a form suitable for the eye. Secondly, we will have to find ways to inform the child how the visual display relates to speech. For the deaf child acquiring speech needs to understand how different visual dimensions and combinations of these dimensions are related to speech production. Even more importantly, information must be supplied about how these dimensions are used to produce different speech-related acts. This means that the display must also present normative information. We will return to this point below.

To what extent this ideal can be realized is at present unpredictable.

But even a superficial study of the differences
between visual and auditory perception on the one between visual and auditory perception on the one
hand and of the coding of speech in the acoustic signal on the other, makes clear that this is a most complicated undertaken.
more practical approach: some basic assumptions
In order to make the problem somewhat more manageable we will conceive of the speech signal as describable in terms of a limited number of param-
ters that are related to basic aspects of speech ters that are reatiod to asle used parameters associated with intensity, fundamental frequency, iming and spectral composition seem most use,
because they can, after some transformations, be because they can, afser sor of speech production: respiration, phonation and articulation. As a
first step towards developing a theoretical frame first step towards developing a theoretical frame
we will formulate some assumptions with respect to we will formulate some assumptions with respect mapped in the visual mode. These assumptions forn
together the starting-point for our approach fol together the starting-point for our approach fol-
lowed this project. As such, the assumptions cowed in this project. As such, ene as as aids to be developed.

Assumption 1 There must be a unique and fixed relation between acoustic and visusideration that a stable internal representation can only be formed if different dimensions of the process are uniquely connected to that one should not use the same diagram to display different acoustic parameters. that if a certain acoustic feature is once associchanged later.

Assumption 2

The visually presented information concerning speech should be as complete as possible. The fol-
 valiable concerning a skill to be developed is the natural situation, independent of the question hether the subject uses all the practical argument the time. Secondy, there is a practical argument display only one feature. In working with a devicy
that displays for instance fundanental frequency
one will inevitably be confronted with the child that does produce the required pitch or intonation
contour but only at an intensity of 110 dB or with a very bad voice quality. This problem is inherent of mono-feature displays and conation simultaneously.

Assumption 3

The visual aid should display the information in an integrated fashion rather than in a parallel one The main argument for this assumption is
the information is displayed in parallel, for in stance in different windows on the screen, somewhat like the dials on the dashboard of a car, the sub
ject will probably have great difficulties to moniject will probably have great difficulties then mon-
tor all the information simultaneously. Therefore we believe that we should try to develop a system that displays all relevant information in one multi-dimensional form, making use of different in-
dependent visual dimensions like form, colour, texture, size etc. A considerable body of research has shown that information presented in independen dimensions (such as those just mentioned) are pro-
cessed almost in parallel. That is, with two dimensions one can convey almost twice as much information as with one [11.

the design of an aid

In this way we approach the ideal formulated before, in the sense that all relevant information is isplayed in a form that is easily accessible to
the eye. But, as mentioned above, this is still only part of the answer, because displaying the inormation in itself does not say anything abour how the information is related to speech. It should be noted though that a straightforward display of
speech related information, without any normative speech related information, without any normative
function, can be a most useful aid since it can unction, can be a most useful ald the deaf child to learn the correspondence etween visual and articulatory dimensions.
When those relations are acquired the pupil has
earned to control specific aspects of the visual earned to control specific aspects of the visual
display and thus may be said to have developed some aptitude in controlling articulatory structures relevant for speech production. But the child
still does not know the relation between the visual image and speech. So now the pupil must be shown how the different visual dimensions are used in the formation of specificic speech acts. Here we can
think of giving information about the range of think of giving information about the range the range of acceptable intensity, fundamental frequen-

ine inoduction of normative information

One way to introduce a norm is by using a split areen and showing an example or a mited by the put pil on the lower half. The models can either be produced on the spot by the teacher or can be buil the the attractive in the sense that it fits within the usual teacher-pupil interaction, in the case of speech training it has several limitations. or instance in displaying intensity-related asiecrophone is crucial, but difficult to control especially if the child uses a headphone-mi crophone ombination. Other aspects like fundamental tre quency and timbre are even more problematic these diensions differ greatly between adults and children. To normalize these differences does not seem easy to accomplish. Therefore at present we con-
centrate at displaying internally stored criteria of acceptability.
Suppose we display intensity of speech as the rightness of the display on the screen. Then, speaking too softly or too loudly would be indicat-
by the display becoming almost invisible, espectively unpleasantly bitight (with well chosen
elation between intensity and brightness). This elation between intensity and brightness). This sion, the normative information can be presented in most natural way.
For other aspects of the speech signal this may not be readily feasible. Consider for instance the
way normative information is build into the Vowel Corrector developed by Povel [4] and Povel \& Wansink [5], an aid for teaching vowels to the deaf. lation or in mono-syllabic words, as light spots on screen such that different vowels project at diferent areas of the screen. When vowels are en-
tered into this screen roughly in accordance with the momentary value of F1 and F2 that respectively determine the and Y coordinate of the spot. In this mode the the spectrum, but does not indicate the relation etween location of the spot on the screen and speech characteristics. This information is presented by indicating on sheets fixred to the
screen the outlines of the areas that correspond to different vowels.
It should be noted that this way of displayin
combines the two functions mentioned above: it Shows relevant parameters of speech in a way that
h easily interpretable by the eye, and at the same time it shows the relation between the displayed information and certain speeh acts, thus ling its normative function.
motivation
Besides the two functions just discussed, there is yet another aspect that is probably very important
in displaying visual information for speech training purposes. This concerns the desirability that the information be presented in a for the child at-
tractive way, for instance in the form of interesting games, thus maintaining motivation during
training. Although we believe that this aspect training. Although we believe that this aspect
needs attention, we feel that it is even more important to construct a curriculum incorporating the portant to which tasks are defined that the child can

To summarize we believe that in displaying visual information for speech training purposes, one should aim at displaying as much relevant informa-
tion as possible in an integrated visual display tion as possible in an integrated uniquely related to speech parameters. Further the device should incorporate norms as to how the
different dimensions are used in forming specifi speech acts. All these aspects should be part of a training curriculum in which attention is given t factors stimulating motivation, Apart rom the specific problems to display the separate param be to
ters, we think that the main challenge will be In the first one we develop aids for separate as pects of speech. Here we concentrate on displaying tion on the basis of the results of the work of tion on the basiel [3] which has shown that an im-
Maassen provement of intelligibility is mainly found after correcting segmental aspects of speech. In the
second line we are building aids that combine different aspects in one complex multidimensional display. Examples of displays will be shown during
perform successfully, thus
motivation to learn to speak.
conclusion combine the different require visual aid.
currentiy
In the first disp presentation.
[1] Attneave, F. (1959). Applications of information theory to psychology. New York, Holt, Rinehart and Winston.
[2] Lippmann, R.P. (1982). . A Review of Research on Speech Training Aids for the Deaf. In: N.J. Lass (Ed.). Speech and Language Advances in Basic Research and Practice. Vol. 1. New York, Academic Press.
[3] Masssen, B., \& Povel, D.J. (1985). The Effect of Segmental and Suprasegmental Corrections on the Intelligibility of Deaf Speech. Journal of the Acoustical Society of America, 78, 877-886.
[4] PoveI, D.J. (1974). Development of a Vowel Corrector for the Deaf. Psychological Research, 37, 51-70,
[5] Povel, D.J., \& Wansink, M. (1986). A Computer Controlled Vowel Corrector for the Hearing Impaired. Journal of Speech and Hearing Research, 29, 99-105.

GLOTTAL DETERMINANTS OF DEAF VOICE QUALITY

BEN MAASSEN

Interdisc.Inst.of Child Neurology University of Nijmegen
P.O.Box 9101

6500 HB Nijmegen. The Netherlands

DIRK-JAN POVEL
Dept. of Experimental Psychology
University of Ni jmegen
P.O.Box 9104

6500 HE Nijmegen, The Netherlands

ABSTRACT

Vocal fold vibration of nine deaf children was recorded with help of an electro-laryngograph. Analysis of the laryngographic waveforms yielded several parameters that can be used as an objective measure of instability of voice and deviating voice quality characteristics like breathiness, hoarseness and cul-de-sac. The analysis algorithms will be implemented in a visual speech training aid for the deaf.

INTRODUCTION

Even highly trained, experienced phoneticians exhibit great variability in their evaluations of deaf speech characteristics. This is especially true for suprasegmental aspects and voice quality $[8,4,13]$. As indicated by the labels typically used in descriptions of deaf voices, such as "too high, monotonous, breathy, nasal, cul-de-sac", voice quality is conceived of as the overall auditory colouring of an individual speaker's voice, to which both laryngeal and supralaryngeal features contribute. The latter refer to long-term muscular adjustments or "settings" of the articulatory organs [9]. For instance, cul-de-sac or pharyngeal focus of resonance [2] is caused by a tendency to retract or "back" the lingual body. Differentiating aspects of voice quality and articulation is complicated by the differential susceptibility [9] of individual speech segments to the biasing effect of a given supralaryngeal setting. That is, a nasalized voice has a different effect on nasal sounds ($/ m, n, \eta /$) than it has on vowels, plosives, fricatives and affricates. Also the decomposition of voice quality i glottal pulse shape and supralaryngeal effects is problematic, especially when the description is based on perceptual judgment.

To analyze the purely laryngeal aspect of voice quality we have used the electro-laryngograph (ELG) [5]. The ELG is an instrument that measures the electrical impedance of the vocal cords, thereby providing information about opening and closure durations. The laryngographic signal has been validated as a measure of vocal fold contact area by comparing the signal with registrations of subglottal air pressure, and measurements of glottal opening by means of photoglottography and high-speed filming $[1,3]$. The most stable characteristic of the LX signal is the steep slope
corresponding to the beginning of the closure phase [10], which provides an easy reference point for determining glottal pitch period (see Figure 1). Apart from the fact that a simple algorithm suffices to extract fundamental frequency, a major advantage of using the Lx signal instead of the acoustic speech signal is that period-to-period fluctuations in the waveform can be detected. Thus, measures of jitter (period-to-period frequency fluctuations) and shimmer (period-toperiod amplitude fluctuations) are easily obtained, thereby providing information on regularity of voice.

In this paper we present a study of nine deaf children that were selected by a speech therapist to represent a broad range of vocal abnormalities. Laryngographic recordings of these children were analyzed in an attempt to extract perceptually and articulatory relevant parameters. The analysis algorithms will be implemented in a visual speech training aid to be used in therapy [15].

VOICE QUALITY ANALYSIS

Recording Procedure

Nine congenitally deaf children were selected by their speech therapists to represent a broad range of voice abnormalities. These children, 7 boys and 2 girls, ranging in age from 9 to 15 years, with a hearing loss of more than 100 dB (Fletcher Index) in the better ear, read aloud a series of phonetically balanced sentences and words. The acoustic speech signal together with the Lx signal were recorded on two tracks of a Revox tape recorder. Since recording on tape introduces phase distortions, especially in the low frequencies, the Lx signal was re-recorded while running the tape in reverse. (The acoustic speech signal was also rerecorded to preserve temporal alignment on a single tape.) After low-pass filtering (cutoff frequency 4 kHz , slope $24 \mathrm{~dB} /$ octave) both signals were fed into a stereo A/D convertor (sampling rate 10 kHz for both channels) and stored in computer memory. In the present study only Lx signals were analyzed, but the figures also show the corresponding acoustic speech signals.

Apart from the nine deaf speakers, two adult, hearing speakers, one male and one female, were recorded and analyzed. These speakers differed only with respect to fundamental frequency. An excerpt of the male voice is presented in Figure 2a for comparison purposes.
$\frac{\text { Determining }}{\text { All analyses of }} \frac{\text { Periods }}{\text { the }}$ All analyses of the Lx signal were performed in the time domain. Isolating individual pitch
periods started by calculating the first derivative
 was about one tenth of the Lx amplitude, that point
was taken to correspond to a steep slope at the was taken to correspond to a steep slope at the
beginning of a new pitch period (see Figure 1) and beginning of a new pitch per od seep slope was found, a positive zero-crossing was taken instead. By setting a minimal spacing between period markings
of 16 sample points (which corresponds to a maximum of 16 sample points (whimately 600 Hz) and a maximum spacing of 120 sample points (corresponding to a minimal frequency of about 80 Hz), and at the same
time have steep slopes take precedence over time have steep slopes take precedence over
positive zero-crossings, a reliabie pitch detection algorithm was obtained. In a comparison of the outcome of the algorithm (the period markings) and
the original Lx signal no errors could be detected. the original Lx signal no errors codd be detected. frequency-components were removed by subtracting
from each sample point the mean value of the period from each sample point the mean value of the period
it belongs to. The thus adjusted waveforms were further analyzed to obtain an objective description of deviations in voice quality.
$\frac{\text { Types }}{\text { We }} \frac{\text { of }}{\text { willice }}$ Quality Deviations now $\frac{\text { present }}{}$ the different types of deviating giottal pulse waveforms that occur in our speech samples, $\frac{1 .}{\text { Instability }}$ of $\frac{\text { voice. }}{\text { The accessibility }}$ of stability of voicing and laryngeal articulation instable voice is displayed in Figure 2b. Here, within a single period, fundamental frequency drops from 280 Hz to 135 Hz . The example is taken from a 14 year old boy, who typically produced such
patterns at the beginning of voiced segnents patterns at the

In Figure 2 c an articulation error is displayed. Another 14 year old boy attempted to say the Dutch
word/bana:n/("bananan), but produced /banda:n/ word bana:n/("bananan), but produced /banda:n/ instead. During the / d / vocal fold vibration drops pressure build-up during the erroneous complete closure of the vocal tract, or by an incorrect abduction-adduction gesture of the vocal folds.
 periods is expressed by high jitter and/or shimner palues. Jitter is calculated by dividing two
valing
sucessive period durations, shimmer by taking the successive period durations, shimmer by taking the
logarithm of amplitude ratios. Whereas for normal logarithm of amplitude ratios. Whereas for normal
voices under sustained phonation $0.5 \%-1.0 \%$ and shimmer values below 0.20 dB are obtained $[7]$, in the example of Figure 2 d , produced by an unintelligible 9 year old boy, jitter and
shimmer rise to 25% and 11 dB respectively, giving shimmer rise hoarse quality. In addition, Figure 2 shows a low-frequency component, indicating
vertical displacement of the whole larynx. This may be caused by retraction of the tongue during cul-de-sac voicing.
3. Deviations of $\frac{\text { isolated }}{\text { aveforms. Figure }} 3 \mathrm{la}$ relative a breathre duration (duty cycle), defined as the relative position within the pitch period of the negative zero crossing (i.e. Ch, see Figur $1)$, and the relative area below the positive curve
$\left(A /\left(L^{\prime} P\right)\right.$, see Figure 1). Like Hasegawa et al. $[6]$, we took the cosine of the duty cycle, to magnify the important range around 0.5 . In normal voicing the cosine of the duty cycle centers around 0 , the
relative positive area around 0.25 ; in this breathy relative positive area around a.25; in respectively. Figure $3 b$ displays a different type of
the insufficient steepness of the positive slope Relative closure durations were calculated by Rividing the number of samples between the onset of the period (in most cases not far from the onset of
closure) and the waveform peak by the pitch duration. Whereas a value of 0.10 is typical (se also [10]), in Figure 3 b a relative closur duration of 0.25 was found.
In Figure 3 c a terribly hoarse voice is displayed. To capture the irregular character of
these waverorms, the number of times the second derivative (Lx'') exceeded a criterium value, has
counted. During normal voicing, very few pitch counted. During normal voicing, very few pits contained direction changes exceeding the criterium; in the example of Figure 3 c a mea number of 2 per period was obtained.
Finally, in Figure 3 d a falsetto voice is presented. Note the sinusoidal character of the
waveform. A falsetto voice is not only of very high pitch (540 Hz in this example) but also breathy according to the rela
criterium (mean value 0.20).
dscussion

Analyses of glottographic signals obtained from nine deaf children yielded several parameters that are related to voice quality. Fourcin (personal
armunication) displays "raw" Lx waveforms to dea communication) displays "raw" Lx waveforms to dea
children for training purposes. Since we believ that interpretation of the Lx waveform is problematic, especially for the youngest age groups, we are currently implementing the analysi algorithms described above in a speech tran b
device [15], such that voice quality can b displayed in a simplified visual trace. Fo
 dimension texture.
The speech training curriculum proposed by Ling
[11], in and [11, in which teaching of respiration and importance prede articulation, stresses and
of displays for young children. Moreover, in previous experiments [12] we showed that voice quality and
articulation - rather than temporal structure and articulation - rather than temporal structure and
intonation contour are the most important determiners of deaf speech intelligibility.

Figure 1. One period of a normal $L x$ waveform. Indicated are: 0,0': start of closure at the onset of pitch periods; L : 1 ength (number of samples) of
one period; Z : zero-line; P : maximal positive value; $\mathrm{C}:$ closure duration (until negative zerocurve.

 MMNMMNN

24

(b)

(c)

MMMWMAWHWMMMHWWWW
(d)
Mharaminharmarar

Figure 2. Sample registrations of Lx signals (lower traces) together with the acoustic speech signal
(upper traces). Registration (a) id from a normal male voice; (b), (c) and (d) represent incorrect period-to period fluctuations.
(b)

MMMAMMWMWMWA

(c)
wunumavaman
maranconanar

Figure 3. Sample registrations of Lx signals (lower traces) together with the acoustic speech signals (upper traces). In these examples the most nottceable deviation
individual Lx periods.

[^7] Netherlands.

REFERENCES

[1] Baer, Th., L४fquist, A. \& McGarr, N.S. (1983). Laryngeal vibrations. A comparison between high speed filming and glottographic techniques. J.Acoust.Soc.Am., 73, 1304-1308.
[2] Boone, D. (1966). Modifications of the voices of deaf children. Volta Review, 68, 686692.
[3] Boves, L. (1984). The phonetic basis of $\frac{\text { perceptual }}{\text { Doctoral dissertation }}$, University of $N i \frac{\text { running }}{\text { jmegen. }}$.
[4] Calvert, D.R. (1961). Some Acoustic Characteristics of the Speech of Profoundly Deaf. Unpublished doctoral dissertation, Stanford University.
[5] Fourcin, A.J. \& Abberton, E. (1976). The Laryngograph and the Voiscope in Speech Therapy. In: E. Loebell (ed.) XVth International Congress of Logopedics and Phoniatrics, Basel: Karger.
[6] Hasegawa, A., Mashie, J., Herbert, E., Brandt, F., Metzler, M. M., Pickett, J. (1984). Real-time extraction of vocal quality parameters from electroglottographic signal. Paper presented at the 107 th meeting of the Acoustical Society of America, Norfolk, Virginia, May 784.
[7] Heiberger, V. L. \& Horii, Y. (1982). Jitter and shimmer in sustained phonation. In: N.J. Lass (Ed.) Speech and Language: Advances in basic research and practice (vol.7). New York, Academic Press.
[8] Hudgins, C. V.. \& Numbers, F. C. (1942). An investigation of the intelligibility of the speech of the deaf. Genetic Psychology Monographs, 25, 289 - 392.
[9] Laver, J. (1980). The phonetic description of voice quality. Cambridge University Press, London.
[10] Lecluse, F. L. E. (1977). Elektroglottografie. Doctoral Dissertation, University of Rotterdam.
[11] Ling, D. L. (1976). Speech and the Hearing-Impaired Child: Theory and Practice. Washington, D.C.: The Alexander Graham Bell Association for the Deaf, Inc.
[12] Maassen, B. \& Povel, D.J. (1985). The effect of segmental and suprasegmental corrections on the intelligibility of deaf speech. J.Acoust.Soc.Am., 78, 877-886.
[13] Markides, A. (1970). The speech of deaf and partially-hearing children with special reference to factors affecting intelligibility. British Journal of Disorders of Communication 5_{1}, 126 - 140 .
[14] Metz, D. E., Whitehead, R. L. \& Whitehead, B. H. (1984). Mechanics of vocal fold vibration and laryngeal articulatory gestures produced by hearing-impaired speakers. Journal of Speech and Hearing Research, 27, 62-69.
[15] Povel, D.J. \& Masssen, B. (1987). Visual information and speech acquisition of the deaf. (This volume).

STANFORD UNIVERSITY

The open CV syllable is the basic, 'unmarked' syllable type in the world's languages and in the phonological development of children. This paper charts the course of acquisition of final consonants by children acquiring a language rich in such consonants and proposes four major characteristics: (1) The number of different consonant phone types in final position is equal to or less than the number in initial position; (2) fricatives and liquids are more likely than stops and nasals to be acquired first in final position; (3) final velars are more likely to be attempted than non-final velars or final non-velars; and (4) final voiced consonants pose a special problem for children, and some children may make use of nasals in attempting to produce them. These characteristics are systematically related to the occurrence of final consonants in children's babling, to the distribution of final consonants in the world's languages, and to strength hierarchies proposed for consonants.

INTRODUCTION

The open CV syllable is the basic, 'unmarked' syllable type in the world's languages ind in the phonological development of children. ieflecting on the vocalizations of their l3-month-old subjects, Kent and Bauer [1] comment on the "primacy" of the CV syllable shape, which may be viewed as a "simplest form...or a kind of atom in the formulation of speech" (p. 527). Although many languages have syllable-final and word-final consonants and even consonant clusters, these final consonants are much less frequent than initial consonants (both types and tokens). Also, final consonants are of very low incidence in babbling, regardless of the language spoken around the child. The acquisition of final consonants can thus be expected to pose a phonological challenge for children, from either a linguistic-universal or a biological-developmental perspective.

The identification and explanation of constraints on types of consonants occurring in final position in the world's languages constitute a significant part of the total characterization of the phonological structure of human languages ('phonological universals'), and analysis of the phenomena of final consonant acquisition can contribute to this 'universal phonology' ([2]).

Word-initial position is typically the position of greatest consonantal diversity in phonological inventory, though medial position in some languages for some classes of segments may be greater; final position is typically the position of least diversity, though preconsonantal position may be even more limited. These constraints may be expressed in terms of strength hierarchies of optimal syllable-initial segment classes and their mirror image for syllable-final position: stops, fricatives, nasals, liquids, glides, vowels ([3], ch. 10). Such hierarchies are intended to show universal relations, but admit of some language-specific variation. Whatever perceptual, articulatory, cognitive processing, and social/conventional constraints account for those hierarchies may be expected to result also in developmental patterns of order of acquisition and types of substitution and assimilation. Thus it may be expected that final fricatives, nasals, and liquids will not only be more frequent than final stops and occur in languages without final stops, but will also be acquired earlier. The present paper explores the actual phenomenon of acquisition of final consonants in the light of this expectation. English is an especially appropriate language for the investigation since the incidence of initial, medial and final consonants in running text is virtually identical (36% initial vs. 32% each medial and final: [4]). We will restrict ourselves here to the analysis of word- (or vocalization-) final consonants, since syllable-final consonants which are not also word-final are extremely rare in children's early productions.
Final consonants in babbling
Several careful accounts of the phonetic characteristics of babbling have documented the relative rarity of final consonants $[1,5-8]$. On the other hand, in an analysis of consonant frequency in the babbling and word production of 10 English-learning subjects, Vihman, Ferguson and Elbert [8] found the mean proportion of final consonants to increase gradually with growth in the children's use of words, ranging from a mean of 6% final consonants early on to 17% when 25 or more words could be identified.

Differences have also been reported in the incidence of different manner categories in initial vs. final position in babbling. oller et al. [5] reported a 10 to 1 ratio of stops to fricatives and affricates in inftial position and a 3 to 1 . ratio of final fricatives to stops (based on tokens).

Similarly, deBoysson-Bardies et al. [6] reported a 9 to 1 ratio of initial stops to fricatives and affricates and an 8 to 1 ratio of final fricatives
to stops in the babbling of their French subject. In inventories of consonant types used in babble only a slightly higher proportion of fricative and liquid segments were found in final position
(29%) as compared with initial position (22%), based on the true consonant categories of stop and nasal (non-continuant) and fricative and liquid (continuant): [8]. Overall, only 19% of all ini-
tial consonants were continuant, while 32% of all tial consonants were continuant, while 32% of a 11
final consonants were continuant. As increasing numbers of final consonants began to be used in words, the slifht initial bias towar
in final position was strengthened.
Recent work on the transition from babbling to in phonetic tendencles across that transition $[5,9,10]$. Accepting Locke's assertion that the beginnings of phonological development antedate
the child's first use of adult-based words [9], it is important to consider the process by which final consonants are incorporated into the system In the course of acquiring a language
ized by heavy use of final consonants. Final consonants in early word use
In general, final consonants are rare in early words, as the finding of continuity from bab-
bling to speech leads us to expect, and the range bling to speech leads us to expect, and the range
of occurring segments is correspondingly small. In her longitudinal study of the phonetic inventories of early words for 33 children StoelGanmon
initial phones tended to be about twice as large as the typical inventory of final phones.
The total incidence of initial and fin The total incidence of Initital and final consonant segment types in words and babble reported
in Vihman et al. [8] for two lexical points is given in Table 1. Only 10% of the inventory consonants occurred in final position. While the verall proportion of consonants occurring in wor
was smaller (40%) than the proportion occurring in babble, a somewhat higher proportion of all final consonants occurred in words (48%). Some
growth of consonant use as the children "enter into" growth of consonant use as the chidren ent in the breakdown by lexical stages: At the earliest stage of word use final consonants accounted for only 9% of all consonant segments used, while at the later stage analyzed
they accounted for 11%. There are no data available at present comparing consonant incidence in babble and words for other languages. However, the emergent influence of an adult language rich in
final consonants appears to underlie these tendenfinal
$\frac{\text { Focus }}{\text { Recec }} \frac{\text { word-final }}{\text { nt }}$ work in $\frac{\text { consonants }}{\text { child phono }}$
Reent work in child phonology has emphasized the individual differences among children learning
the same language (e.g.; 12 l). Differential attention to consonants in final position is one such
individual characteristic. Menn [13] described individual characteristic. Menn [13] described
her son Daniel's early phonological strategy as a her son Daniel's early phonological strategy as a
decision "to disregard almost all information about the initial segments of a stop-f final monosyllable" (p.226). Daniel seemed to select his eariiest words so as to avoid those with contrasting initial and
final consonants; after the first 30 words, he attempted many more words with such a contrast but

Table 1. Incidence of initial vs. final consonant
types in babbling and words (based on $[4]$, Table 5).

Initial consonants		
stage ${ }^{1}$	babble	words
4 -word	123	59
15-word	94	79
Total	217	138
Final consonants		
$\text { stage }^{1}$	babble	words
4 -word	11	7
15-word	10	12
Total	21	19

$1_{\text {"Stage" }}=4$-word point ($4+$ words used in one session: 10 subjects) and 15 -word point ($15+$ words:
7 subjects). The figures represent the sum of different consonants used 4 or more times by any child in any one of three weekly half-hour sessions.
applifed regressive consonant harmony, adapting the applied regressive consonant harmony, adapting the
initial consonant to the place of articulation of the second. A very similar pattern of development is described for one of
Ganmon and Cooper [14].
Vihman and Hochberg [15] found that of 550 early words used by 7 children, a mean of 25% were
sometimes produced with a final consonant. Only sometimes produced with a final consonant. Only
two children exceeded the mean. An analysis of the two children exceeded the mean. An analysis of the
early phonological patterning of one of those children, Molly, is presented in Velleman and Vihman
[16] . 16], supported by acoustic data. At 12 months Molly began to produce a number of obstruent-final
words with heavily aspirated final stops or even wifds with heavily aspirated final stops or even
offricates (e.g., oops, up, hot, book, peek, teeth)
In the following In thates (e.g., oops, up, hot, book, peek, teeth
In the foing month she began $\frac{\text { bo }}{\text { to produce nasal- }}$
final words final words as well, developing an idiosyncrat1c
pattern in which the final nasal of the adult form pattern in which the final nasal of the and
was lengthened and followed by $[i]$ or $[\rho]:$ bang
$[$ ben : i] was engthened and followed by
Cwn $0: i]$, down
to $t \mathrm{t} \boldsymbol{x} \mathrm{n}: a]$. This pattern appeared
to oo represent a phonetic rapprochement between the
obstruent-final words, with their heavy aspiration, and the nasal-final words. Both word patterns subsequently proved highly productive, even attracting
new words with nasals or affricates in other posinew words with nasals or affricates in other posichildren described in $\frac{\text { cheese }}{[13 j \text { and }[14] \text {, Molly focused }}$ her attention on final consonants, developed a workable production strategy or "word recipe" and
then used the patterns arrived at to add large numbers of new words to her lexicon. At present it is not possible to estimate the proportion of normally
eveloping children who focus on final position, but it is probably not large. $\frac{\text { Continuants and }}{\text { final position }}$
ricatives is easiest to acquire in post-vocalic, final position or intervocalically, and may precede
the acquisition of stops in these positions" (p. 661) the acquisition of stops in these positions" (p.661).
We have seen that there is some association of conWe have seen that there is some association of
tinuancy with final position in babble. In an exhaustive longitudinal study of fricative acquisition by 6 subjects (aged $1 ; 5$ to $2 ; 3$ at the outset)
ddwards $[18]$ found that, as in earlier studies, the fricatives were generally acquired relatively the fricateves were generalls. Most of her subjects tended to produce fricatives. correctly most often in final position (especially the interdentals,
voiceless sibilants, and $/ v /$), though there was considerable individual variation.
Similarly, Stoel-Gammon [11] noted that the
nventories of her 15-to 21 -month old subjects inventories of her 15 - to 21 -month old subjects
typically included stops, nasals and glides only with fricatives and liquids appearing only in the 24 -month inventories. Comparing initial and final phones within each manner class, Stoel-Gammon found tory implied the presence of an initial stop or nasal. Fricatives and afiricates showed great individual variation. Nine subjects had inventories while 7 subjects had inventories with final fricatives preceding initial ones. However, liquids showed a clear-cut association with final position. only 5 had a licquid in initial position before they had one in final position.

In summary, the evidence (from English data) suggests that lquids are thely to be acquired
first in final position, that stops and nasals are likely to be acquired first in initial position, and that fricatives may be too variable for a definite statement
$\frac{\text { Velars }}{\text { Velar }} \frac{\text { and }}{\text { final }} \frac{\text { position }}{\text { obstruents tend to }}$ to acquired later than labials and dentals by most children. A few children make relatively high use of velars in their early words, however, and these same children may
favor final position. Ingram [19j hypothesized that consonants appearing early in a (chili's) word are likely to be anterior, while consonants
occurring later in the word will be back. Vihman and Hochberg [15] examined this hypothesis on the basis of data from 7 children. They found that one child used a high proportion of both velar and
consonant-final words bat consonant-final words, but there was no overall
correlation between velar and consonant-final word correlation between velar and consonant-final word
use. Considering stops and nasals only, the children as a group were found to favor initial posifor labials and alveolars, though in veneral the Child bials and alveolars, though in general the
chavor of initial consonants was very strong. Lastly, the children were found to attemp more word-final velars than labials or alveolars,
and also more velars in medial and final position and also more velars in medial and final position
than in initial position. However, fully 73% of the adult word-final velars targetted were either produced in non-finai position (e.g., $\frac{\text { dog }}{}\left[\mathrm{g}^{\text {r: }}\right]$)
or were spread to non-final position as well by
onsonant harmony (e.g., book[kuk]). Word-final labials and alveolars were less often subject to
these changes. Vihman and Hochberg concluded that "while children are attracted perceptually to particular preference for producing velars word-
finally" (p. 46).
Stoel-Ganmon [11] found that while the presence Stoel-Gammon [11] found that while the prese
of labials or alveolars in an inventory of final phones implies their presence in initial position in 7 out of 31 cases (25\%) velars were present onl in final position. As in the case of fricatives among manner categories, velars were found to
involve the most indvidual differences among place ategories.
Final voiced steps The acquisition of voicing appears to present problems for children in general $[20,21]$. Some
unusual production strategies have been identified unusual production strategies have been Identified
for voiced stops in final position. Clark and for voiced stops in final position. Clark and Bowerman [22] noted that a typical progression in
the acquisition of final consonants is (1) omission, (2) production of voiceless stops and nasals, and only later (3) production of voiced stops. Viced tops may be devoiced in early production attempts ometimes with distinctive lengthening of the pros eding vowel. Clark and Bowerman documented for 3), in which final voiced stops were systematica followed by the corresponding voiceless stop: rug $\mathrm{r} \wedge \mathrm{nk}]$, bib $[\mathrm{bIm}]$ (Damon, aged $1 ; 8-1 ; 10) ; \frac{\mathrm{egg}}{\mathrm{got}}$
 both initial and final position and at all three places of articulation before making use of this trategy. It is perhaps worth noting that both o velaí-final words, Damon so producing only vel-ar-finais for the firs. three weeks thal egy was recu:ded.
Fey and (Gandorr [23] reported that their twoed betwes:i, voteed and voiceless obstruents only in the cass of finai stops. Final voiceless stops
wire consistentiv produced with an aspirated rewire consistentiy produced with an aspirated re
lease, withe final voiced stops were regularly promees witin anasal release: bad [badn], pig and [fitgil Poy ard candour nnte further that the Wy worcont inuants to ofcyr finally were nasals,
nat that the cuitrasts between stops and fricatives nd hetween alvenless and velars were first made word-finally. Thus Lasan p.ovides another example icn as he expanded his system of contrasts. It is striking that nasals or nasal release should be used as part of a strategy for producing final voiced stops. This lends further support to in a given syllabic position. That is, nasals may in a give "natural" in final position than stops,
hough less so than the
SUMMARY AND CONCLUSIONS
Study of the acquisition of word-final
Sng izations.
(1) Word-final consonants are acquired later than initial consonants. At any point in development, the number of different consonant phone types in final position is equal to or less than the number in initial position. However, a few children utilize a strategy of making final position more salient than initial for consonant variety and stability.
(2) Continuants are more likely than noncontinuants to be acquired first in final position. Of the continuants, liquids are most likely to be acquired first in final position; fricatives are more variable.
(3) Velar consonants have a special affinity for final position. Final velars are more likely to be attempted than non-final velars or final non-velars.
(4) Final voiced consonants pose a special problem for children, and some children adopt unusual strategies for producing them (e.g., nasai and stop clusters, nasal offglides, vowel lengthening.

These characteristics are sytematically related to the occurrences of final consonants in children's babbling, to the distibution of final consonants in the world's languages, and to strength hierarchies proposed for consonants. This systematic relationship is the essence of Jakobson's influential model of phonological development [24,25]. The child language data give further specification to the relationship and also in effect extend the Jakobson model to pre-speech: where he denied its relevance, and to final position, which he did not consider. The evidence for final consonants also strongly suggests that where there is relative infrequency and variability in phonological systems world-wide we may expect to find corresponding patterns of individual variation among children acquiring a particular language.

REFERENCES

[1] Kent, R.D. \& H.R. Bauer, "Vocalizations of one-year-olds." Journal of Child Language, 12 (1985), 491-526.
[2] Perts, D.L. \& Bever, T.G. "Sensitivity to phonological universals in children and adolescents." Working Papers on Language Universals, 13 (1973), 69-90.
[3] Hooper, J.B. An Introduction to Natural Generative Phonology. NY: Academic Press, 1976.
[4] Mines, M.A., Hanson, B.F., \& Shoup, J.E. "Frequency of occurrence of phonemes in conversational English." Language and Speech, 21 (1978), 221-241.
[5] Oller, D.K., Wieman, L.A., Doyle, W.J. \& Ross, C. "Infant babbling and speech." Journal of Child Language, 3 (1976), 1-11.
[6] De Boysson-Bardies, B., Sagart, L. \& Bacri, N., :Phonetic analysis of late babbling: a case study of a French child. " Journal of Child Language, 8 , (1981), 511-524.
[7]. Oller, D.K. \& Eilers, R.E. "Similarity of babbling in Spanish- and English-learning babies." Journal of Child Language, 9 (1982), 565-578.
[8] Vihman, M.M., C.A. Ferguson, \& M. Elbert. "Phonological development from babbling to speech:

Common tendencies and individual differences. " Applied Psycholinguistics, 7 (1986), 3-40.
[9] Locke, J.L. Phonological Acquisition and Change. NY: Academic Press, 1983.
[10] Vihman, M.M., Macken, M.A., Miller, R., Simmons, H. \& Miller, J. "From babbling to speech: A re-assessment of the continuity issue. " Language, 61 (1985), 397-445.
[11] Stoel-Gammon, C. "Phonetic inventories, 15-24 months: A longitudinal study. " Journal of Speech and Hearing Research, 28 (1985), 505-512.
[12] Leonard, L.B., Newhoff, M. \& Mesalam, L. "Individual differences in early child phonology." Applied Psycholinguistics, 1 (1980), 7-30.
[13] Menn, L. "Phonotactic rules in beginning speech: A study in the development of English discourse. "Lingua, 26 (1971), 225-251.
[14] Šoel-Gammon, C. \& Cooper, J.A. "Patterns of early lexical and phonological development." Journal of Child Language, 11 (1984), 247-271.
[15] Vihman, M.M. \& J.G. Hochberg. "Velars and final consonants in early words." In J.A. Fishman et al. (Eds.), The Fergusonian Impact, I: From Phonology to Society. Amsterdam: Mouton de Gruyter, 1986.
[16] Velleman, S. \& Vihman, M.M. "Phonological reorganization: A case study. " In preparation.
[17] Ferguson, C.A. "Fricatives in child language acquisition.". In V. Honsa \& M. H. Hardman-Bautista (Eds.), Papers on Linguistics and Child Language. The Hague: Mouton, 19.78.
[18] Edwards, M.L. Patterns and processes in fricative acquisition: Longitudinal evidence from six English-learning children. Jnpublished PhD thesis. Stanford University, 1979.
[19] Ingram, D. "Fronting in child phonology." Journal of Child Language, 1 (1974), 233-241.
[20] Smith, B.L. "A phonetic analysis of consonantal devoicing in children's speech." Journal of Child Language, 6 (1979), 19-28.
[21] Macken, M.A. "Aspects of the acquisition of stop systems: A cross-linguistic perspective." In G.H. Yeni-Komshian, J.F. Kavanagh, \& C.A. Ferguson (Eds.), Child Phonology, vol. 1. NY: Academic Press, $1 \overline{980 .}$
[22] Clark, E.V. \& Bowerman, M. "On the acquisition of final voiced stops." In J.A. Fishman et al. (Eds.), The Fergusonian Impact, I: From Phonology to Society. Amsierdam: Mouton de Gruyter, 1986.
[23] Fey, M.E. \& Gandour, J. "Rule discovery in phonological acquisition." Journal of Child Language, 9 (1982), 71-81.
[24] Jakobson, R. Child Language, Aphasia and Phonological Universals. A.R. Keiler (Tr.). The Hague: Mouton, 1968. (Original title, Kindersprache, Aphasie und allgemeine Lautgesetze. Uppsala: Almqvist \& Wiksell, 1941).
[25] Hawkins, J.A. "Implicational universals as predictors of language acquisition." To appear in Linguistics, 25.

ON THE TONOSYNTAX OF A HUNGARIAN CHILD'S EARLY QUESTIONS

ILONA KASSAI

Institute of Linguistics Hungarian Academy of Sciences Budapest, Hungery

ABSTRACT

The paper reports on the process of question acquisition from the perspective of prosody. The analysis of prosodic errors observed between 1 and 3 years reveals that the child has not acquired yet certain syntactic structures.

INTRODUCTION

Questions are an important means of cognitive development. Therefore the evolution of the verbal means of questioning highlights the intellectual development of the child on the kne hand and its linguistic, especially syntactic development on the other.
) In the present paper I give an account on a tentative analysis of questions gathered from the spontaneous speech of one child (a girl) produced in interaction with adults and regularly recorded from 1 to 3 years of age. I was particularly interested in the acquisition of the prosodic shape of questions, a topic largely neglected in child language research across the world.

THE SYSTEM TO BE ACQUIRED

In the process of language acquisition Hungarian children are faced with the following basic question types differing in form.

Wh questions. They require a question--word and a specific word order characteristic of emphatic sentences in which the emphasized element (here the question--word) is obligatorily followed by the unstressed verb. The remaining constituents can either follow the unit formed by the focus and the verb as part of the comment or precede it and constitute the topic of the sentence. In case the ques-tion-word stands for the predicate it can even be the last element of the sentence. If, in the neutral sentence, the predicate contains at its head some modifier, this latter must be postponed to the verb inthe emphatic sentence [1],[2]. As in the case of wh questions the type of utterance is signalled both morphologically and syntactically, prosodically they are not autonomous in the sense that they do not have a specific intonation. They show the same falling contour as statements, with, however, a somewhat wider frequency range. This is a fourth or a fifth while that of statements is a third. This slight Fo-difference seems to contribute to the reeognition of questions [3]. As for stress patterns, this question type is usually realized with a single heavy stress located on the ques-tion-word. (In the Hungarian language word stess affects the first syllable.)

Yes/no questions. This question type ha two varieties. The one is constructed by an interrogative particle added to the verb or the nominal predicate. Due to verb morphological marking the prosodic shape does not differ essentially from that of emphatic statements. Moreover, in pre-sent-day Hungarian this variety occurs rarely as main clause. Its use is more and more restricted to subordinate clauses. The other, amost exclusively used voriety is expressed by means of intonation. The basic form from which all the remaining forms can be derived seems to be the rise-fall movement appearing on the last three syllables in questions containing only one trisyllabic or multisyllabic word. The magnitude of the rise is about a musical third while that of the fall is a fourth (Fig. la,b).

In questions containing a bisyllabic word both the rise and the fall take place on the last syllable (Fig. 2). Finally, in monosyllabic questions only the rising part of the pattern is realized (Fig. 3).
\qquad
Fig. 2
Fig. 3.

This fairly simple picture becomes more complicated in case the question contains more than one word and more than three syllables. The intonation of such question is determined by the number of syllables of the last stress group regardless of the number of words it contains. The rule is as follows. If the last stress group is monosyllabic it displays the contour of monosyllabic questions. If the last stress monosy it skiows the pattern characteristic of bisyllabic questions. And, lastly, if in the last stress group there are three or more syllables, the intonation pattern is that of the corresponding one-word question. In other words, the prosodic shape of a morphologically unpore question consisting of more marked yes/no question consisting of more than one word and more than three syllables strongly correlates with its topic--comment structure. For the word order the following holds. The constituent bearing the main stress is usually the first element of the sentence but it can also be loceted in sentence-medial or sentencelocated position. If the focussed element -final position. If the focussed element is other than the verb, wherever is stands in the sentence, it must be followed, as a rule, be the verb.
Tag questions. They are constructed from a statement and the interrogative morhpeme ugye 'isn't it' added to either the beginning or the end of the statement. In the first case the intonation con only be falling, while in the second there is a choice for the interrogative morpheme to be realized as a statement or a bisyllabic question. The phonetic difference conveys an attitudinal one: the falling contour means that the speaker expects a positive answer. The ise-fall pattern refers to the speaker's desire to elicit a positive answer.

Elliptic questions. This question type shows a rising contour. Syntactically it is elliptic, i.e. only one port of the intended content is expressed. The ellipted part can be completed from the nonverbal context as either a wh question or a yes/no question.
THE PROCESS OF QUESTIION ACQUISITION
Within the recorded material I analysed questions in order to find out how the interrogative system of the adult language emerges and evolves in the child The examination has revealed first of all that the productive use of "questions is preceded by the imitation of adult models. Imitation has two Forms. Part of adult questions was rehearsed by using the prosodic component only: the child hummed the intonation of the question. The other and greater part of imitative questions had an accurate intonation but only approximate segments. The first form of imitation decreases as the child's phonological competence progresses but the second form remains for long enough and occurs whenever the child does not understand or cannot answer the ques tion addressed to her. The main function of imitation seems to be the learning of the verbal means of questioning. Besides, imitative questions may serve to maintain contact with the adult, thus they can per form a discourse function.
As for the order of emergence of the question type treated above the following may be assumed. First appear yes/no questions expressed by means of intonation $(1 ; 6,22)$. Wh questions come next in the developmental order (1;9,18). Tag questions do not appear before 2;4. Elliptic questions come last of all, at $2 ; 7,20$.
The yes/no question constructed with particle, as expected on the basis ofits adult use, did not appear as main clause in the periode examined.

The analysis of the formal aspect of quesion acquisition has revealed the following prosodic and syntactic tendencies. Prosodically wh questions do not cause any problem to the child as their intonation is almost identical with that of statements already acquired. However, from 2;2 in certain utterances one can hear an extra stress on the last syllable, which is in contrast to adult realizations but very characteristic of Hungarion children's performance. At closer examination it turns out that extra stress occurs mainly in longer, multivord utterances beginning with the stressed question-word. Another characteristic of the child's Wh on tolication of stressed constituents which results in shifting the question-word towards the end of the sentence. These different strategies have the same goal: to give the end of the sentence perceptual prominence. The explanation for it might be the child' s desire to provoke an answer or to get the partner's attention by all means. From among word order changes required by this question type verb-object ordering takes place at once but postposition of the verbal modifiers shows inconsistencies and does not stabilize until the end of the periode examined. The observed diference in the application of the inversion rule concerning subject and verbal modifiers may be given a multiple cue explanation. One seems to be handled by the structure of the Hungarian language which, according to recent research on syntax, is identified as a "topic prominent" language [1]. Another explanation might be the generally observed fact that children between 2 and 3 years, independently of the word order rules of their mother tongue, are inclined to place the verb at the beginning of the sentence. Accordingly, all the child has to do is to add a question-word to statements.

Yes/no questions expressed by intonation, though they appear first, are found to cause the child more difficulties than any other type. As demonstrated above, this question type shows three distinct intonation patternsaccording to the number of syllables contained in the word constituting the question by itself. This basic distributional rule seems to be acquired early and accurately. Nevertheless when the question contains more than one word its intonation patterning becomes dependent upon the location of the emphatic stress which, in turn, is dependent on the topic-comment articulation of the question. In multiword questions one can often detect intonational mistakes: the child uses a pattern contradictory to the topic-comment structure signalled by one or several of the following factors: stess assignment, word order, nonverbal context. The analysis of prosodically mistaken questions has shown some regularities in the seemingly chaotic patterning. There are utterances in which the child uses the pattern required by the number of syllables of the last word independently of its stressed or unstressed nature. In a few examples the intonation mistake can be considered as the consequence of misplaced stress. A part of the mistakes is supposed to be triggered by the non-application of the obligatory word order of emphatic sentences. On the other hand, it often happens that the child corrects herself within the same discourse turn and produces the appropriate prosodic solution. For tag questions the source of trouble is the sentence-initial position of the question morpheme prescribing a falling contour contradictory to the semantic content of the question morpheme. Elliptic questions are produced correctly.

DISCUSSION

The findings strongly suggest the concIusion that children below 3 are in the process of learning the complex rule-system governing the prosodic articulation and the topic-comment articulation. However two facts allow some other explanation too. Self corrections and the marked tendency in all erroneus items to shift the stress or the intonation peak to the last syllable make one think of an unconscious endevour to ensure continuity in discourse.
(For a more detailed version of this paper see Hungarian Papers in Phonetics, vol. 17)

REFERENCES

[1] K.É. Kiss, Topic and focus: The operators of the Hungarian sentence. Folis Linguistica 15, 1981, 305-330.
[2] F. Kiefer, On emphasis and word order in Hungarian. Bloomington, 1967.
[3] I. Fónagy, K. Magdics, A megyar beszéd dallama [The melody of speeck in Hungarian], Budapest, 1967.

Lehrstuhl für Pädagogik
Republikanisches Institut fur Lehrerweiterbildung Tallinn, Estn. SSR, UdSSR, 200105

ANNOTATION

Die Quantität gehört zu den ersten Komponenten der Wortstruktur, die sich das Kind aneignet. Der Aneignungsperiode ist eine Fluktuation zwischen allen Quantitätsstufen charakteristisch. Analoge Abweichungen bei den Kindern mit allgemeiner sprachlicher Unterentwicklung sind häufig, schwer uberwindbar und gehören zu den Merkmalen der Sprachstörung.

EINFÜhRung

Unter den theoretischen und angewandten Zielen der Kindersprachenforschungen interessiert uns die Rolle der alters mäßigen Besonderheiten bei der Diagnose und Uberwindung der Sprachstörungen: die Abweichungen in der Sprache können als Merkmale der Sprachatörungen nur im Vergleich zur Norm festgestellt werden: die Bericksichtigung der sprechlichen Ontogenese ist eines der Grundprinzipien der Logopädie /7/.

Bei der Untersuchung der Kinder mit der ausgeprägten sprachlichen Unterentwicklung konnte man neben den Störungen des Silben- und Lautstruktur auch Ab weichungen in der Quantitätsstruktur der Wörter feststellen, uber die in der Fachliteratur keine angaben zu finden waren.

Auch in der logopädischen Praxis waren bis dahin diese Fehler nicht behandelt worden. Von besonderer Bedeutung dabei ist die Tatsache, daß die Quantität ein Universalmerkmal aller estnischen Wörter ist und in der Sprache eine phonologische Funktion ausübt.

Man unterscheidet drei Dauerstufen der Segmentalphoneme, die die Wortbedeutung und die grammatischen Formen differenzieren. Die Phoneme mit verschiedener Quentität können im Wort auf verschiedene Weise kombiniert werden: [vili] (das Getreide), [viľlī](die Blase,Gen.Sing.), [villi] (die Blase, Akk.Sing.), [vili] (die Feile, Gen.), [Vili] (Akk.); [sek] (die Ermte), [sâG](die Säge), [sak] (die Zacke); [valè] (die Lúge, Nom. Pl.), [valet] (die Liige,Akk.Sing.).

Phonetisch unterscheiden sich die Laute der 1. und der 2.Quantität voreinander durch Dauer, der Kontrast zwischen der 2. und der 3.Quantität ergibt sich vielmehr aus der gespannten Koartikulationsverbindung./ $1 / \mathrm{Mit}$ der Vergrößerung der Quantität in der ersten Silben, verkurzt sich die phonetische Dauer des Vokals in der zweiten Silben: folglich verbreiten sich die Quantitätsmerknale auf das gesamte Wort (auf die 1...3-silbige Einheit)/3/,

Laut E. Oksaar eignen sich die Kinder das Quantitätssystem der Sprache sehr frih an - im Alter von 26... 27 Monaten, früher als das ganze Lautsystem. Seit dem

Itervon 28 Monaten sind keine Abweichun en mehr zu finden. Bis zu diesem Zeitpunkt betraffen die Abweichungen, die es gibt, nur die 2. und 3. Quentitätsstufe und kommen nie zwischen den beiden anderen Stufen vor.
E. Oksaar erklärt den Früherwerb der Quantität durch deren wichtige Rolle in phonologischen System der Sprache und die Bedeutung fur die Kommunikation./4/

In unserer Arbeit wollen wir die Untersuchungsergebnisse uber 328 Kinder im Alter von 1.5 (17 Monaten) bis 7 Jahren darlegen. Bei der Charakteriaierung der Aussprache der Kinder von 17 Monaten bis 2 Jahren verwenden wir die Notizen aus en von Muittern gefuhrten Sprachtagebuichern. Bei 325 Kindern im Alter von . 77 Jahren untersuchter 160 Einzelwörtern mit ver schiedenen Quantitätsstrukturen.Die Kinder sollten das Spielzeug oder die auf en Bildem dargestellten Gegenstände nennen.

ALTERSMÄSSIGE BESONDERHEITEN BEI DE ANEIGNUNG DER QUANTITIÄTSSTRUKTUR: DER WÖRTER
Bei zwei der drei Kinder, deren Sprache die Muitter (Sonderpädagogen) aufgeschrieben hatten, waren nur vereinzelte Fälle inkorrekten Gebrauchs der Quentitä zu finden. Beim dritten Kind (Evelin) war der Prozeß der Aneignung der Quantität buer zuen. Die Mutter hat regelmäBig Notizen gemacht. Wir haben dort 37 Wörter mit verschiedenen Quantitiatsersetzungen gefunden: entweder wurde das Wort mit einer nichtadäquaten Quantität ausgesprochen, oder es traten nur Verwechslunen der Quantität der Laute in den ersten Silben auf, und die Quantität des Wortes lieb unverändert. Man konnte verschiedene Varianten der Verwechslung der Quantität finden: [tuiliè] pro [tule], [Kaîlıa pro [kalà, [kikuu] pro [tiaul, [akke]pro [ăk-
ǩ̀n], [ămmè] pro [ràmàt], [nöp] pro [nóp]. Es überwog die Vergrößerung der Quantität und sie trat oft bei den Wörtern der 1. Quantität, seltener den Wörtern der 2. Qtität auf $(Q 1 \rightarrow Q 2-21$ Fälle, $\mathrm{Q} 2 \rightarrow \mathrm{Q} 3$ 5 Fälle). In allen Wörtern vergrößerte ich die Quantität der Konsonanten.

Es ist möglich, die stufenweise Aneig nung der Quantitätsstruktur der Wörter zu beobachten. Häufig verwendete das Kind dabei in kurzer zeit die falschen und die richtigen Varianten nebeneinander.

Am 6. März, im Alter von 17 Monaten sprach Evelin zweimal das Wort tita Q2 (die Puppe oder das Kleinkind) richtig und einmal in der 3.Quantität: [titta]. Weiter: am 13.März - [tiDà $]$ Q1; am 26.März - [tiDà Q2; am 7.April - [tiDal Q1; am 8 . April - [tit'tata] Q3; am 3. und dem 10.Mai - [tittio Q2 (richtigl); am 10.Sept.-zweimal richtig, einmal mit der Q3: [titta]

Am 10. Mai -[mañal (vanaema - die Grob mutter) ; am 26.Mai -[mańnalQ2; am 30.Mai - [mainina] Q2; am 16.juuni - vanà,

Am 16.Mai. Evelin: ai -ai [put'tu]-die Mutter: ei [puttu]-Evelin: [alal put'tu\}

Die letzten Notizen haben wir vom 10. tober im Alter von 23 Monaten. An diesem Tag hat die Mutter 59 Phrasen aupgeschrieben (ingesamt 100 Wörter). Wir fanden folgende Ersetzungen der Quantitat: [íssì tuilili] pro [izà tuli], [is̆si kappal [sokki pro sokkid], [tit̀ta pro [iZà maGab], sokki pro sokkiD] ,titta kaìli] pro [titta kaílí], [akke pro ak-

Alle Wörter in der Sprache des Kindes waren ein- und z weisilbige, man konnte auch die Vereinfachung der Wortstruktur feststellen: Assimilation und Auslassen der Laute; Palatalisierung, statt $\underline{\underline{x}}$ der Laut 1 .

Es konnte auch das Auslassen der silben beobachtet werden, in einigen Wörterm waren beide Silben gleichbetont. Wahr-scheinlich gehört Evelin zu dieser Gruppe
der Kinder, denen beim Spracherwerb die Reduktion der Silben charakteristisch ist

Bei den Kindern im Alter von 2 Jahren konnten wir bei 15 die Verwechslung der Quantität feststellen im Durchschnitt 1... 8 Falle pro Kind. Sie traten sowoh in den ersten als auch in den nichtersten Silben auf und waren in den Wörtern mit größerer Silbenzahl zu finden

Tabelle 1
Zahl der Kinder mit Quantitätsersetzungen in jeder Altersgruppe

Alter	2	3	4	5	6	7
Gesemtzahl	25	18	50	60	70	102
Zahl der Kin- der mit Quanti- tëtsersetzungen	11	6	6	3	1	

Weil bei den 2jahrigen Kindern im Verleich zu den anderen Kindern die Quantitätsverwechslungen relativ zahlreich und verschiedenartig waren, bringen wir hier slle Ersetzungsarten mit Beispi.elen
(Q1 \rightarrow Q2 bedeutet Veränderune der Quantität des Wortes, Q2=Q2 - Verwechslung der Quantität der Laute in der ersten Silbe, die Quantität des Wortes bleibi unver'an-
dert; K - kurze Klusile in der nichterster: Silben; K - lange Klusile in den nichtersten Silben).

1. Q1 \rightarrow Q2 [hop̆pune] pro hobùne] 1 ăppiDas] pro [1aBiDas], [mommi] pro [omèt tì pro [tädi]
2. $Q 1 \rightarrow Q 3$ - [tat'ti] pro [teadi].
3. $Q 2 \rightarrow Q 1-[k i z u \bar{u}]$ pro $[\bar{k} \bar{i} Z \dot{u}]$, [niriukkeZeD] pro [IinnukkeZeD], [suZat] pro [süzen] 4. $Q 2 \rightarrow Q 3$: [tuittur] pro [tubruk], [kîzu] pro [kizu], [ilveZ] pro [ilvèz], [1amBaZ]pro [ammàz].
4. Q3 \rightarrow Q2: [lă̆maǨke] pro [lamBă̌ke]. 6. $\mathrm{Q} 2=\mathrm{Q} 2, \mathrm{Q}=\mathrm{Q} 3$ - [kissiu] pro $[\mathrm{ki} Z \mathrm{u}]$,
[porkkan̆D] pro [porĞaǹD], [sappa] pro [saBà], [hili] pro [hir], [ronki] pro [roǹ G]
5. $\mathrm{K} \rightarrow \mathrm{K}$-[kuǩkèGe] pro [kuǩèkke], [sēlìG] pro [sēlik].
6. $K \rightarrow K$ - [narikkut] pro [jariǩkud]
[kàpsà̀t] pro [kạ̀saD], [suZait] pro [sūZàD] Die Ersetzungen Q2 \rightarrow Q3 (ein gespanntenes Artikulieren derlangen Laute) traten bei $2,1 \%$ aller Wörter der 2.Quantität auf. Von den wörtern der 1.Quantität wurden $1,9 \%$ durch die wörter der 2 . und 3. Quantität ersetzt. Die anderen Abweichungen zeigten sich noch seltener.

Bei den 3jährigen Kindern war die relative Häufigkeit der Ersetzungen nicht niedriger ($2,1 \%$). Wir fixierten auch die zufalligen Ersetzungen $K \rightarrow K$ und $Q 2 \rightarrow Q 1$, insgesamt 1... 2 Fälle. Man kann sagen, daß die dreijahrigen Kinder die Artikulation der Wörter der 1. und 2. Quantität vollständig erworben haben. Stabiler sind die Abweichungen beim Artikulieren der Wörter mit der 2.Quantität, aber sie kamen nicht bei allen Kindern vor.

Auch bei den 4 - und 5 jährigen Kindern zeigten sich einige Abweichungen: $Q 2 \rightarrow Q 3$ und $k \rightarrow K, 1 \ldots 3$ Fälle in der Aussprache eines jeden der 6 Kinder.

Die 6-und 7jährigen machten in der ersten Silben keine Fehler mehr, die zufalligen Abwedchungen betrafen nur die laneen Kivsile in Mortauslaut

Unsere Augaber zougen davon, daB die QuantitEtsetrustur der wörter wircklich fohe röh exmorte wird; die Häufigkeit cn: quatitüwrorencorungen bei den Kinwor mar geride, ai vieien Kindern konnwher kene avelohungen fixiert werfin Melycisamise fiel bei innen die wamuvesrerices in ein friheres Alter.
im allgemeinsn bestatigen unsere Angaber die Ergebnisse von E. Oksaar, daruber hinalis werden einige Einzelheiten präzisiert: die Abweichungen betreffen nidht nur die 2. und 3. Quantität, sondern können sehr verschieden sein, allerdings hat die Fluktuation zwischen der 2. und der 3. Quantität thergewicht (es gab eine Ausnahme - Evelin im Alter von 1.5...1.11). Es tritt deutlich die Tendenz zutage, Wörter mit den größeren Quantität auszuspre
chen, dabei vergrößert sich meistens die Quantität der Konsonanten. Weil vor allem bei den Wörterm der 2. Quantität Schwierigkeiten auftraten, können wir diese Wortstruktur als die "kritische" bezeichnen. Obwohl die Quantitätsstruktur im allgemeinen sehr frih erworben wird, gibt es Kinder, die auch noch später d. h. im 3. und 4. Lebensjahr Abweichungen haben.

Die Aneignung der Quantitätsstruktur der Wörter fällt zeitlich mit der Aneignung der Rhythmus- und Silbenstruktur zusammen. Aus den Untersuchungsergebnissen geht hervor, daß der Ton zu den ersten Komponenten der Wortstruktur gehört, die sich das Kind aneignet /6/. Die seltenen Abweichnungen von der Norm kommen nur im 2. Lebensjahr vor. Auch der Aufbau der Silbenstruktur fallt in das 2. Lebensjahr /6/. Die Quantität, die eng mit dem Ton und der Silbenstruktur verbunden ist,eignet sich das Kind zusammen mit allen diesen Strukturelementen des Wortes an. So erwirbt das Kind die Quantitätsstruktur tatsächlich bevor bei inm alle Laute vorhanden sind. Die weitere Ergänzung und Vervollkommnung der Segmentalstruktur baut sich auf das erworbene Quantitätsschema auf.

> ZUR ANEIGNUNG DER QUANTITÄTSSTRUKTUR DER WÖRTER BEI KINDERN MIT ALLGEMEINEN UNTERENTWICKLUNG DER SPRACHE

Allgemeine Unterentwicklung der Sprache wird als Sammelbegriff verwendet und kann bei den Kindern mit verschiedenen Sprachstörungen (Alalie, Aphasie, Dysartrie) in verschiedenen Ausprägunsgraden auftreten.

Beim Aussprechen der Einzelwörter traten dieselben Abweichungen zutage, die bei den Kindern mit der normalen Sprachentwicklung zu beobachten waren./5/Der Unterschied bestand vor allem in der Häufigkeit dieser Fehler. Es wurde festgestellt, daß der Charakter und die Häufig-
keit der Fehler neben den Stufen der sprachlichen Entwicklung auch von einigen linguistischen Faktoren abhängen. Zu den schwierigsten Strukturen gehören die zweisilbigen Wörter der 2.Quantität mit dem langen Klusil oder dem langen Vokal in der ersten Silbe, die Wörter der 1. Quantität mit kurzem Klusil in der nichtersten Silbe, die Wörter der 3. Quantität mit langem Klusil in der nichtersten Silbe, einige einsilbige Strukturen (paat, laud, saag). Es hat sich ergeben, daß die Abweichungen, die bei den normalentwickelten Kindern häufiger auftraten,bei den sprachgestörten Kindern zu den schwierigsten gehörten $(Q 2 \rightarrow Q 3, K \rightarrow K)$.

Bei der Formierung der Sprache bei sprachlosen Kindern muß man berücksichtigen, daß die Quantität eines der ersten Merkmale der Wortstruktur ist, das erworben wird. Deswegen ist es notwendig in ersten Linie die Hauptstrukturen (einund zweisilbige Einheiten) auf der Basis der vorhandenen Laute "aufzubauen". Dabei sind die Schwierigkeitsstufen der Wörter zu beruicksichtigen.

LITERATURVERZEICHNIS

1. A.Eek,M.Remmel.Eesti keele foneetika uurimise tulemusi. - Keel ja Kirjandus 1971, nr. 12
2. A. Eek. Observations on the duration of some word structures: II. - Estonian Papers in Phonetics, Tallinn, 1975
3. K.Karlep, L.Vesker. Mǒningaid emakeele algopetuse probleeme logopeedi pilguga. - Noukogude Kool 1972, nr. 5
4. E. Oksaar. Zum Spracherwerb des Kindes in zweisprachiger Umgebung. - Folia Linguistika IV 3/4 1970. The Hague
5. L. Vestyer. Häalkku ja sǒnavälte asendustest kone uldise alaarenguga. lastel.

- Emakeele Seltsi Aastaraama.t 22, 1976

6. А. Гвоздев. Усвоение ребёнком звуговой сторони русского языка. Посква-Јенинтрад, 1948.
7. F. Јевина. Наука о парушениях речевого развнтия у петей. - Советскал педагогика
(I), Москва, I974.

Katia McClain
Department of Slavic Languages and Literatures
University of California
Los Angeles, California 90024
USA.

The paper treats the acquisition of palatalization for dental and labial stops in prevocalic environments in Russian using data from the 1927
longitudinal study of A.N. Gvozdev which describes the early stages of phonological acquisition by his son. The initial goal was a reanalysis of Gvozdev's data to provide a description of the phonemic as well as phonetic facts in the data. That is, not merely to describe the acquisition of individual sounds, but to describe the child's pre-adult phonological system(s).

To provide a general framework for the acquisition of palatalization by the child, Gvozdev's own explanations, as well as previous explanations in the early stages of phonological acquisition in Russian[7], as well as studies of palatalization in Slavic languages are examined.

Finally, it is shown that the facts and issues in the child's acquisition of palatalization can best be explained by showing which phonemic contrasts have been acquired and by relating the child's acquisition to specific phonetic properties and ambiguities, eg. formant frequencies of vowels, of the adult system.

INTRODUCTION

This paper treats the acquisition of palatalization for dental and labial stops in prevocalic environments in Russian. The data used is from the 1927 longitudinal study of A.N. Gvozdev[7], in which he describes the early stages of phonological acquisition by his son, Zenja.

I will argue that in order to best explain the facts and problems of the acquisition of palatalization, it is necessary to understand the child's pre-adult phonological system. That is, one must not only examine the phones in isolation, as Gvozdev did, but also the development of phonemic contrasts and syntagmatic contraints. Furthermore, the child's developing system must be examined within the context of the relevant facts, phonemic and phonetic, of the adult system. Phonology of Russian

The Russian phonological system includes five vowel phonemes, the front vowels /i e/, the back vowels /a o u/, and a series of consonants which fall into classes according to place and manner of articulation. These consonants may utilize palatalization either contrastively or as an nbligatory feature. This paper will examine the dental stops /t $\mathrm{d} n /$ (and their palatalized counterparts $/ t^{\prime} d^{\prime} n^{\prime} /$) and the labial stops $/ \mathrm{p} \mathrm{bm/}$
(and their palatalized counterparts /p' $b^{\prime} m^{\prime} /$). Palatalization functions distinctively for dental and labial stops in Russian before the phonemes /i a $o u /$ and in final position. Before the phoneme /e/ in native Russian words the phonemic distinction is neutralized. Only the palatalized variant of the consonant appears. There is therefore an asymetry in the distribution of phonemic palatalization before different vowel phonemes in Russian.

The effect of palatalization on vowel phonemes in Russian is very strong. Even though there are only five vowel phonemes, it is traditional to distinguish at least two phones for each phoneme conditioned by the presence or absence of palatalization of the surrounding (especially preceding) consonants.[4] [15]

DATA

The source for the data in this paper is the diary of Gvozdev, a Russian philologist who observed his son from the age of one year and seven months until eight years of age. I will be concerned with data relevant only to the acquisition of dentals and labials in prevocalic position, for the time period one year seven months $(1,7)$ to two years four months $(2,4)$. Behaviour of the segments in final position was not considered because final segments are often treated in a special way or omitted in the early stages of acquisition. [9] The data will be presented in phonetic transcription.

At the stage $1,7-1,9$, sequences where a nonpalatalized labial should appear before a phonemic back vowel are produced correctly by the child [mas'a] ([máslə] 'butter',) [pat'] ([spat'] 'to sleep'). Where a palatalized labial should appear before the vowels /i/ and /e/, the child pronounces the sequences correctly [p'is'i] ([p'isti] 'write!'). For nonpalatalized labial before phonemically front /i/ (phone [i]), the child produces a palatalized labial and the front allophone ([m'is'ka] for [mísko] 'mouse' (dim.)) For palatalized labial before phonemic back vowel the child produces the palatalized labial and a front vowel [p'et'] for [p'et'/p'at'/ 'five'. Palatalized dentals before phonemic back vowels are produced correctly [t'ot'a] ([t'ót'z] 'aunt'). None of the sequences of nonpalatalized dental and phonemic back vowel are correct. The palatalized dental occurs instead [t'am] ([tam] 'there'). Palatalized, dentals before/i/ or /e/ are correct: [d'i] ([id'i] 'go!'). Nonpalatalized dentals
 he child. T'i] sequences appear
bad'i] (indí] water' gen. sg.). e back vowels are all produced correctly by the child [s'abaka] ([sAbakak] 'dog'). Examples of the palatalized labial before phonemic front vowel
are produced correctly [kup'il'a] (Ikup'fla] 'she re produced correctly [kup in a] (the adult $\left[\mathrm{P}^{\circ} \mathrm{i}\right]$, producing [m'ijal for ([m£la] 'washed' neut. sg., The word requiring a palatalized labial before a
 Sequences of palatalized dentals before back vowel alternate palatalized and plain phones [s'en'a][s'ena] ([\{̌in'a]'zenja'). Most examples of noncorrectly [noga] ([mnóga] 'many'). Some forms alternate hard and soft dentals [paduka]-[pad'uka] ([pdiúskol 'pillow'). Some have only the incor
palatalized dental [d'und'uk] ([sundúk] 'box') palatalized dental [d'und'uk] ([sundúk] 'box') palatalized dentals and front vowels ale correct
$\left[\mathrm{n}^{\prime} \mathrm{is} \mathrm{s}^{\prime} \mathrm{ka}\right]$ (kn ' I sk k] 'book' dim. Adult [dim] 'smoke' is produced as [d'im].

2,0 sequences of plain labial At the stage $1,111-2,0$ sequences of Plain labial
and back vowel are produced correctly. Palatalized nabials before $/ \mathrm{i}$ e/ are also correct. Adult [$\mathrm{P}^{\circ} \dot{ }{ }^{\circ}$, are still incorrect [mam'i] ([mámi] 'mama'gen.sg;)
Adult [p'ret'] 'five' occurs incorrectly as [p'ec'] Adult [p'xt'] 'five' occurs incorrectly as
Host of the palatalized dentals and back vowel sequences are now produced correctly [d'ot sequences are new prod'). Most sequences of plain
(Iid'ot $]$ he/she goes) are correct. All cases of
dental and back vowel al dental and back vowel are correct. An arect. Adult
 shows alternating forms [d'im]-[d\&m] 'smoke'. system of palatalization moves towards the adult system.
At the first pre-adult stage ($1,7-1,5)$, for the labials, palatalization: is istributed according
to the following vowel: $\left[P^{\prime}\right]$ before $/ \mathrm{i} \mathrm{e} /$ and $\left[\mathrm{P}^{\circ}\right]$ before /a ou/. In contrast to this distribution, dental stops occur as [['] before all vowels. no change. $\left[\mathrm{P}^{\prime}\right]$ appears before $/ \mathrm{i} \mathrm{e} /$ and $\left[\mathrm{P}^{\circ}\right]$ beno change. [P ${ }^{\prime}$] appears before $/ \mathrm{i}$ e/ and P^{C}, be
fore /a o oul. The system for the dentals has changed and looks Iike the system for the labials. $\left[\mathrm{T}^{\prime}\right]$ occurs automatically before
occurs before $/ \mathrm{a} o \mathrm{u} / \mathrm{in}$ most cases
At the third pre-adult stage ($1,11-2,0$) there is no change for the labials: [P'] before /i e/
and $\left[P^{0}\right]$ before $/ a \quad \mathrm{u} /$. The system for the dentand $\left[P^{\circ}\right]$ before $/$ a $o u /$. The system for the dent-
.
 before $/ \mathrm{i}$ e/. However, now
fore $/ \mathrm{a}$ o $\mathrm{u} /$ as well as $\left[\mathrm{T}^{\circ}\right]$. The child has begun to distribute palatalization according to adult phonemic constraints
context. Furthermore, the appearance of alternation in $\left[\mathrm{d}^{\prime} \mathrm{im}\right]-[\mathrm{d} \dot{\mathrm{m}} \mathrm{m}]$ suggests that the dentals will soon adopt contrastive palatalization before
\qquad Gvozdev claims that by the end of the stage , $1,-1,9$) both plain and sharp labials and sharp not acquired until 1,10 . The data at this stage shows that Indeed, both
ard and soft labial phones have appeared. However hard and soft labial phones have appeared. howeve
[P'] before $/ \mathrm{i}$ e/ and $\left[\mathrm{P}^{\circ}\right]$ before $/ \mathrm{a} \circ \mathrm{ou} /$. Tli, fore, it cannot be said that the phonemic
of palatalization has been acquired for the of palatalization has been active adult phonemes and $/ P /$ are truly present in the child's syste: The same situation obtains for the dentals i:
period $1,9-1,10$. Any hard dentals which are p period $1,9-1,10$. Any hard dentals which are pl
duced appear before $/ \mathrm{a} \circ \mathrm{u} /$. Only soft dental appear before $/ \mathrm{i}$ e/.
The need to distinguish the two levels in aç, ition (phonetic and phonemic) has been recognizu.
in earlier works. Menn notes that there is a difference between "the ability to hit a phonetic ta get accurately and the more "cognitive" acquisiof the information that
phonologically." 14$]$.
An interesting fact arising from the data is that the marked palatalized dental phones appea earlier that their unmarked plain chint may be miss-
Gvozdev indicates only that the child ing a particular articulatory function and therefore cannot pronounce the plain phones
Jakobson[11] offers a possible explanation. Part
of his theory of language acquisition is the prinof his theory of language acquisition to the prin
ciple of maximal contrast. According to this theory, the first sound a child acquires is an "a type vowel. uired because it provides for a maximum contrast with that vowel. Because a labial is a grawe con sonant, one of the next consonants to be acquired will be a dental, providing the opposition $[+$ alatalized $]$ is not a problem, and indeed is crucial to this theory: "...the initial inclina tion of children to palatalize dentals can also
be accounted for. Dentals are opposed to the labials by their distinct lightness and since pal labials by their distifies the lightness of the consonant, the palatalized dental sound offers the optimal degree of lightness." Jakobson indicates
that the early appearance of palatalized dentals has been noted not only for Russian, but also in French, Polish, Estonian and Japanese. Further the accuracy of Jakobson's hypotheses. Further Discussion of Dentals and Labials
There is a paradox in the acquisition of palatalization in the early stages. Although nondis-
tinctive variation arises first in the labials, the distinctive opposition occurs first in the dentals. Interestingly, these facts correlate well with the facts of adult Russian and other Slavic languages
in which palatalization occurs more for dentals. In adult Russian, dentals show the use of dis tinctive palatalization more than labials. Data fom Avanesov shows that in final position, soft labials are becoming hard while dentals are not
showing that in final position dentals show more contrast.
As mentioned above, all dentals and labials are hatalized before /e/ in native Russian words. he situation in foreign borrowings is different. Before /e/ in these lexemes a consonant may appear as [-pal.]. However, as noted by Holden [8], the
tendency to appear as [-pal.] is not equally utitendency to appear as [-pal.] is not equally (re-
lized by all consonants. Labials assimilate turn to their neutralized state) before $/ e /$ /, while the dentals maintain the distinctive contrast.
Thus Holden suggests that, "...the opposition of
palatalization vs. nonpalatalization is most weak1y developed for velars, more developea for the
labials, and most developed for the dentals." $\frac{\text { Vowel }}{\text { Ear }} \frac{\text { Context }}{1 \text { ier we }} \frac{\text { and }}{\text { showed that }}$ Asymmetry
Earlier we showed that in the child's pre-adul systems the application of palatalization works
differently in the environment of different vow ([+pal] before/i e/, [+ pal] before /a ou/). is not clear. Back vowels allow distinctive pal is not ciear. Back talization works differently.
There are facts about other Slavic languages that emporary standard Bulgarian distinctive palatali-
zation is found only before back vowels. Another example of this asymmetrical application of palatalziation before the two types of the dispalatalization of Ukrainian. The developnent, as noted by Jakobson [10], was that all palatalized consonants were dispalatalized before the front vowels, while they retained their palatali-
zation before $/ \mathrm{a}$ a $\mathrm{u} /$. Since hard consonants also existed before /aou/, Since hard consonants also - palatalization
explanations for palatalization patterns
Factors affecting acquisition noted in the litgical procese articulory constaints, phonoloadult system and others. This section will explore two kinds of explanations for the child's aquisition of palatalization: ambigulties in the which cause assimilation or allow contrast. This honetic model seems to most accurately explain he acquisition of palatalization in this child $\frac{\text { mbiguities }}{\text { In a }}$ mode $\frac{\text { in }}{1} \frac{\text { the }}{\text { of }}$ sound chan Vowels
ambiguities in the utterances of adults Andersen ay to possiole reanalysis by a new generation of lage learner, who has to two features, "the lang manifestations [must] make a number of decisions. ow many phonological oppositions are involved. which of the constituents is superordinate and child may make different choices notes that the choices made plausible by ambiguities in what he As.
As stated by Ladefoged, "vowels can be described or consonants..."[12]. A continuum that needs true be vided into meaningful units is inherently ambigof the continuum the child is what kind of division this case, can Zenja's division of the mowels in into the groups $/ \mathrm{i} \mathrm{e} / \mathrm{vs}$. /aou/ be given a phonetic explanation?
Fant (1970)
ory classification which bermis for an articulaf vowels into the two groups [ie] and [a o ul. ant shows that the distance of the maximum confiction from the front of the vocal tract is one distance may be seen in Table I (from (5l).

Table 1: Distance of $\frac{\text { the }}{\text { Main }}$ Constriction fron
the Front End of the $\frac{\text { vocal }}{}$ Tract (in cent.)
[i] [e] [i] [u] [o] [a]

It is clear from Table I that/i e/ can be grouped together, apart from the rest of the vowels.
Fant also utilizes the front to back cavity vo ume ratio which he shows separate [uoal from the ther vowels. [5]
Palatalization
palatal region, precisely where the vowels $/ i$ in the have their maximum constriction
Looking at the acoustic shape of Russian vowels,
Table II: Formant Frequencies
$2 \quad 2250 \quad 1800 \quad 1480$
Here again, a division of vowels into the two groups It e/ and /a ou/ is possible according to he height of the seco or palatalization. Vowels with a high second cue formant might well be expected to function in'a The child's pattern of palatalization for the
The wition abial stops in all three stages is thus easily explained. He palatalized before /i e/e, vowels that sound like and are articulated like palata
sounds, and does not palatalize before other vowels.
Dentals have a high second formant transition
similar to the high second formant trajectory poduced by palatalization, and that is trasity produced by palatalization, and that is easily
confused with palatalization. For example, Ander sen [2] has suggested that this kind of confusion as led speakers of certain Czech dialects to reinterpret palatalized labials as dentals. The
child might, in a similar way, re-interpret all dentals, which have a high second formant characteristic of palatalization, as palatalized. In the first stage, the child palatalizes
11 dentals. This is consistent with the high second formant transition of the dentals, and seems particularly likely re-interpretation given
that he is hearing a language in which palatalized entals occur. It seems that the palatalization
some dentals is overgeneralized to include all f them.
At the second stage the dentals have changed ront vowels, both the consonant and the vowe have a front tongue constriction and a high second
formant, forming a gesture and an acoustic shape formant, forming a gesture and an acoustic shape
similar to palatalization. In the environment similar to palatalization. In the environment
before front vowels, the distinction between pal talized and nonpalatalized dentals is quite ubtle acoustically, palatalized. The child has thus begun producing
dentals in two different ways, but does not use palatalization distinctively. The acoustic and articulatory characteristics of the following vowel, rather than the acoustic and articulatory characteristics of the consonant, now come to determine whether dentals are palatalized or not. The pattern for the dentals at the second stage is therefore the same as that for the labials.

In the third stage, there is no change for the labials or dentals before front vowels. Dentals before back vowels now may occur as palatalized or nonpalatalized. Palatalization causes a high second formant, while back vowels have a low second formant. Palatalization will therefore cause a steep downward glide of the second formant. In the absence of palatalization this very steep glide will not occur. Therefore, the distinction between palatalization and nonpalatalization should be highly audible before back vowels. It thus seems logical for the child to develop the contrast first for dentals before back vowels. The fact that back vowels allow more phonemic palatalization, and that dentals utilize phonemic palatalization to a greater degree than labials, is true also of adult Russian and other Slavic languages. The adult asymetries and the child's acquisition patterns are both subject to the same phonetic constraints. (For further discussion of parallels in child and adult systems see [6].)

To return to our original question, given that the vowels are potentially ambiguous, what would lead Zenja Gvozdev to divide the vowel continuum into the groups front/back. Fant's analysis, utilizing maximum constriction and second formant height, shows that the Russian vowels really can be divided naturally into these groups. Therefore, it is not surprising that the child does so.

The substitutions made by the child become clear within Fant's framework. The child hears the adult sequence [Ci] and produces [C'i]. As indicated in tables I and II above, [i] can be grouped with [i e] on the basis of both articulatory and acoustic factors (the point of maximum constriction and the height of the second formant). Furthermore, [i] is and allophone of /i/ in the adult language. This apparently leads the child to reinterpret [i] as [i].

The problem with palatalized labials before back vowels is more complex. As pointed out in literature on child language, children of ten deal with difficult combinations by avoiding them. [13] Kenja produces only one example of / $\mathrm{P}^{\prime} /$ before the back vowels [p'ec'] ([adult [p'et'] from/p'at'/). He maintains the correct palatalization but fronts the vowel. Although Fant does not include [x] in his tables, he does say that "the contralization of /u/ /o/ /a/ phonemes in positions between two sharp [+pal] consonants resulting in the allophones [$\ddot{\mathrm{u}}]$ [ö] and [\mathscr{x}] is manifested by a higher F2."[5]. Since a raised F2 is a cue for front vowels and palatalization, it is not surprising that the child reinterprets the combination of a palatalized labial and the front allophone of a back vowel as palatalization plus a front vowel.

CONCLUSION

This paper has presented the facts of acquisition of palatalization for dental and labial stops in prevocalic environment for one Russian child. It showed that the general facts of acquisition can best be explained not only by showing which phones have been acquired, but by showing which phonemic contrasts and syntagmatic constraints are relevant to the child's system. The child's development of palatalization has been shown to be related to the articulatory and acoustic properties of the adult system.

REFERENCES

[1]Andersen, H. 1973. Abductive and deductive change. Language 49: 765-793.
[2]Andersen, H. 1978. Vocalic and consonantal languages. In H. Birnbaum, L. Durović, et al, (eds.), Studia Linguistica Issatschenko, 1-12.
[3]Aronson, H. 1968. Bulgarian inflectional morphophonology. The Hague.
[4]Avanesov, R. I. 1972. Russkoe literaturnoe proiznosenie. Moscow.
[5]Fant, G. 1970. Acoustic theory of speech production. The Hague.
[6]Greenlee, M. and J. Ohala. 1980. Phonetically motivated parallels between child phonology and historical sound change. Language Sciences, vol. 2, no. 2: 283-308.
[7]Gvozdev, A. N. 1961. Voprosy izučenija detskoj reči. Moscow. (Originally published as Usvoenie rebenkom rodnogo jazyka. In Detskaja Reč'. 1927, and Usvoenie rebenkom zvukovoj storony russkogo jazyka. Moscow. 1948.
[8]Holden, K. 1976. Assimilation rates of borrowing and phonological productivity. Language 52: 131-147.
[9]Ingram, D. 1979. Phonological patterns in the speech of young children. In P. Fletcher \& M. Garman (eds), Acquisition: Studies in First Language Development. 133-148. Cambridge.
[10]Jakobson, R. 1962. Remarques sur 1^{\prime} évolution phonologique du russe comparée à celle des autres langues s-laves Selected Writings II. 7116. The Hague. (Originally published in Travaux de Cercle Linguistique de Prague, II. 1929.)
[11]Jakobson, R. 1968. Child language, aphasia, and phonological universals. The Hague. (Originally published as Kindersprache, aphasie und allegemeine Lautgesetze. Uppsala Universitets Arsskrift i-83. 1941.
[12]Ladefoged, P. 1971. Preliminaries to linguistic phonetics. Chicago.
[13]Menn, L. 1978. Phonological units in beginning speech. In A. Bell \& J Hooper (eds.), Syllables and segments. 157-171. Amsterdam.
[14]Menn, L. 1980. Phonological theory and child phonology. In G. Yeni-Komshiam, J. Kavanagh, \& C. Ferguson (eds.), Child Phonology, vol. 1. 23-41. New York.
[15]Oliverius, Z. F. 1967. Fonetika russkogo jazyka. Prague.

EMOTIONALLY EXPRESSIVE PREREQUISITES OF LANGUAGE UNITS IN RUSSIAN SPEECH

E.N. VINARSKAYA

Maurice Torez Moscow State Pedagogical Institute of Foreign Languages Ostozhenka 38, Moscow, USSR, 119034

ABSTRACT

Innate emotionally expressive reactions: baby cries, cooing and babbling influenced by the social environment are transformed into language specific intonational signs of emotional expressiveness: vocalizations, increasing sonority segments, pseudo-words and pseudo-sensegroups. They are further transformed in Russian language environment into stressed and unstressed vowel allophones, CV syllables, syllabic rhythmic structures and communicative types of sensegroup.

The material presented here is a result of the synthesis of natural and humanitarian studies of emotions on the one hand and of speech in relation to child early development in Russ ian culture and language environment, on the other |1,2,3,4,5,6,7,8|.
The quality of innate emotional states and their intensity change simultaneously according to the zone principle. The zone of low values of emotional excitement level is qualitatively indefinite. The zone of its moderate values is emotionally positive while the zone of its high values is emotionally negative. Baby cries appear as part-of emotionally negative states caused by the baby's biological discomfort: hunger, thirst, cold, overheat, etc.
Social regulation and normalization of baby cries begin with the decrease of their intensity. This is achieved by the baby by the age of 2 months as a result of the imitation of his mother's voice in the process of their emotional interaction. Intensively moderate baby voice reactions as signs of communicative-cognitive behaviour, start to be opposed to intensive cries as signs of defensive behaviour. The emerging of innate intensively moderate reactions of cooing are beginning to correspond to the dynamic range of spoken speech intonation. cooing sound tambres have zone characteristics which are conditioned by the zone structure of periodically developing emotional states related to the baby's communicative-cognitive behaviour. In the zone of relatively low values of emotional excitement level the tambre quality is indefinite (a-tambre), in the zone of moderate values the tambre quality is differentiated according to the tendency in the emotional excitement development. Its growth and consequent increase in the tone of speech tract muscles call forth the advanced movement of the tongue and the spreading of the lips as in smile; this results in the occurrence of emotionally positive " 1 "-tambre. On the contrary, the decrease of
emotional strain and consequent decrease of muscular tone lead to the retraction of the tongue and the protrusion of the lips as in cry, which results in the occurrence of emotionally negative "y"-tambre.
Imitating his mother's voice in the course of their emotional interaction, the baby transforms universal biological tambres of cooing into the tambres of language-specific vocalizations. A, u, y, γ vocalization tamberes and their emotionally expressive zone transitions: э, $о$, ы as well as $\mathrm{b}, \mathrm{b}, \Lambda$ in further development give rise to basic positional allophones of Russian vowels. The characteristic opposition of stressed-unstressed vowels in Russian |9| can be understood from tambre emotionally expressive regularities: unstressed vowels are language derivatives of the vocalizations that express states of low emotional and, consequently, muscular tone (detachment, disinterest).
A further step in the development of emotionally expressive speech means is ensured by the emergence of the baby's innate reactions of crying and laughter. Crying sound elements caused by the decrease of emotional excitement - sobs - can be defined as decreasing sonority segments (VC). While laughter elements caused by the increase of emotional excitement can be defined as increasing sonority segments (CV). The manifestations of great emotional excitement - burst of laud laughter and sobbing (which, as is well known, turn easily into each other) are segments of increasing-decreas ing sonority (CVC). Laud laughter and sobbing are opposed to light sobs and gigles with no obvious structure.
Being able to cry and laugh, i.e. to produce sound segments of changeable sonority, the baby starts imitating similar sound complexes in his mother's speech: her laughter, crying as well as syllabic speech units. Syllables consisting of vowels and consonants are, in fact, segments of changeable sonority. Babbling, appearing at the age of 6 months, give favourable grounds for such imitation efforts.
Babbling segments of changeable sonority are quite variable; they are normalized under the influence of Russian speech standards perceived by the baby from his mother's speech. Since the basic structural unit of Russian speech is the CV syllable |4,5|, already with a year-old baby the predominant babbling units are CV segments $|10|$. These segments are further normalized according to the degree of contrast between their composite initial noisy and final vocal elements. Social normalization of noisy maxima in CV segments is over when they are transformed into CV syllables which are characterized by
a number of syllabic contrastive features.
a number of syllabic contras tive features.
The baby's physiological bias toward repeating every babbling segment until it has faded, emspeech, an abundance of words with choree structure - al these factors favour the trans formation at the age of $9-10$ months. Their social normalization is realized in various ways $110 \mid$. Choree pseu-
do-words (CVcv) which prevail in the beginning, by the age of $13-14$ months become quantitatively equa to jambus pseudo-words (crcV); by the age of 18
months jambus pseudo -words become prodominant. months jambus pseudo-words become prodominant.
Such pseudo-word structures are in full accord with the baby's emotional state, when of primary importance are moderate emotions of the positive zone, characterized by the increase of emotional strain.
The number of CV segments, making up a pseudo-word, The number of CV segments, making up a pseudo-word
is normalized as well: by the age of 8 months a pseudo-word comprises $4-5$ segments on the average, while by the age of $12-16$ months the ir number is
reduced to 2,5 segments which is close to the avereduced to 2,5 segments which is close to the ave-
rage number of syiliatess in Russian word-forms 2,3 . Finally, the qualitative structure of pseudo-words is normal ized. The prominence of a segment is achie ved by its duration, laudness or pitch. The older
the baby is, the more often segment prominence is the baby is, the morex by a complex of several means among which duration is dominant. This fact conforms to the nature of word stress in Russian.
abbling pseudo-words have various zone structures which preaetermine their emotional expressiveness. Jambus emotionally positive pseudo-words (cvCV excitement while choree emotionally negative pse xcitement, wh) are related to its decrease. Pseudowords of indefinite temporal structure represent a relatively low level of excitement in the development of emotional states while pseudo-words of the
cvCVCv type represent a relatively high level. In cVCVCr type represent a renatively high leve. In
the course of emotional interaction with the baby tadults constantly attract his attention to various objects, thus "marking" them by their own emotion
|11|. The baby masters the rhythmic patterns of Russian words as normative variants of pseudo-word zone characteristics.
In later melodic babbling a second year old baby
uses sequences of babbling pseudo-words which coruses sequences of babbling pseudo-words which cor
respond to the phonetic structures of sensegroups in the speech of adults. Of fundamental significance in these pseudo-sensegroups are melodic paral
meters. The increase of the speaker's emotional meters. The increase of the speaker s emotional tain emotional information, calls forth the occurrence of pseudo-sensegroups of rising pitch move-
ment. The absence of such a wish is marked by the decrease of emotional excitement and ressults in the occurrence of pseudo-sensegroups of falling pitch
movement. The first, emotionally positive, type of movenent. The first, emotionally positive, type of pseudo-sensegroup ins reaivings, encouragements and so on. The second, emotionaliy negative, type of
pseudo-sensegroup occurs in the transmission of in-pseudo-sensegroup occurs in the transmission of in-
formation to the listener (various kinds of nominaformation to the listener (various kinds of nomina-
tions, statements and so on). Pseudo-sensegroups of emphasized rising-falling pitch movement are typical of affect-volitional states, they are opposed
to pseudo-sensegroups with vague melodic structure
(these are pseudo-sensegroups of high and, corre-
spondingly, low zone levels of emotional excitement).
seudo-sensegroups according to the character of pseudo-sensegroups accorditch movement transforms them into Russian normative communicative types of sensegroups: complete, incomplete, interrogative, exclamatory. emotionally expressive intonational signs and the corresponding phonetic forms of native (Russian) larguage
ment.

Ertionally Expres intonation Signs and Russian Phonetic Forms Intonational signs of phonetic forms of language emotional expressiveness stressed and unstressed
ncreasing sonority
segments
Pseudo-words
seudo-sensegroups

Rhythmic syllabic word structures Melodic contours of communicatips
sensegroups \qquad
Thus, emotionally expressive intonational means ca Thus, emotional y expressive intonational means language only under the influence of normalizing affects of the social environment
Masterng phon their meaning. Hence forms themselves have two functions in speech:
mastered linguistic function and a prior one- emo masterly expressive.

REFERENCES

|1| л.С.- Выготский "Проблемы развития психи-
 $\mid 3$ В.К. Еимонас 'Тоихоногия эмоинюнальных явлений (4) MY, 1976. . Ях якобсон. "Звуковые законы детского языка Прогресс", 1985 .
|5| H. Truly, J. Lind. "Cry sounds of the newbor 163 , 1965 . Acta paediatrica scand "Development of the acoustic pat-
tern of the voice and speech in the newborn and tern of the voice and speech
infant". Academia, Praha, 1967
17| "Talking to children". Ed. by C. Snow and Ch.
Fergusson. Cambridge University Press, 1977.
$|8|$ Е.и. Исенина. "Дословесный перид разви-
18| Е.И. Исениа. "Дословесный перид разви
тия речи у детей". Саратов, СГу, 1986.
тия речи у детей". Саратов, СГУ, 1986
|10| школа, 1979.
|10| школа, Винарская "Раннее речевое развитие
[1] А.Н. Леонтьев. "Деятельность, сознание, личность", Политиздат, 1975.

[^0]: * Supported by Deutscher Akademischer Austauschdienst and Der

 Bundesmininster fïr Forschung und Technologie.

[^1]: **The author is currently with the Continuous Speech Recognition Group. Dept. of Computer Sci-
 ences. IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA

[^2]:

[^3]: \qquad

[^4]: 4.1 Synthesis Method

 Based on the analysis-synthesis
 system described above, several formant-modified speech

[^5]: - This paper was previously published as a pre-conference lecture paper for ICASSP 86 held in Tokyo, Japan, in April 1986.

[^6]:

 the Turkish nominal wis
 $134 . \dot{\mathrm{G}}$. Bergsträsser. Hebräische Grammatik.
 Leipzig, I9I8.
 Gramine and anictrics. Wtudies in Semitic

[^7]: Acknowledgement
 Institute for mas mossible by a grant from the

