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]. Introduction 

One of the problems we meet in the study of speech production models is how 
we can describe the relation between vocal tract and generated sound. More 
specifically, for vowellike sounds, the question is: given a vocal tract shape, 
what are the formant values, and conversely‚ given a certain set of formant 
values, which shapes can produce these formants. The latter problem of 
determining shapes from formants will be referred to as the inverse problem. 

In this paper we will sketch the relation between formants and shape of a 
model of the vowel tract. Finally, we will give an outlook on further research 
on this issue. 

2. The n-tube model 

The starting point in the description of the relation between formants and 
articulation is the modelling of the vocal tract as a lossless n-tube, 1.e. a 
COncatenation of n cylindrical tubes of equal length l, but different cross-sec- 
tional area (Dunn, 1950). The cross-sectional area of segment iis denotedby 

Si (i=l‚....,n). Further, we define the so-called k-parameters ki, by puttmg 
ki=Si/si+l (i=l‚...,n-l). . 

° Propagation of sound through such a tube is described mathemattcally 
by the one-dimensional wave equation. The pressure and the volume veloc1ty 
are considered continuous at the junctions of the segments. If we put together 
the n—tube model, the one-dimensional wave equation, and the contmu1ty 
conditions, we get the so-called n-tube formula, a closed form expressron 

relating Shape to formants, and vice versa (Bender, 1983a). 

3. Properties of the n-tube model 

As we have seen, the model has three important features: continurty of 
pressure and volume velocity, om-dimensionality, and its lossless nature. 
Beside these features there are some interesting consequences of the model 
(cf. Bonder, 1983a). 

_ 
First, there is the modelling of the vocal tract in a non-contmuous way as 

an n-tube. The consequence of this non—continuity is that, from an acoust1c 
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point of view, only the first [%n]* formants of an n-tube can be taken 
seriously; the pattern of the higher formants is merely a repetition of the 
lower ['/,n] formants. 

Secondly, the formant frequencies of an n-tube will not change if the n 

cross-sectional areas Si are multiplied by the same factor. So one of the Si can 
be taken as a reference for the other Si. This means that an n—tube can be fully 
described by the n-l parameters ki=Si/Si+l (i=l,..., n-l). The description of 

an n-tube in terms of its n-l parameters ki enables us to view such a tube as a 
point in the (n- l)-dimensional space spanned by these parameters. An n-tube 

P with k—parameters k „  ...,k„_! is denoted by P=(k,...,k„_,). The space span— 

ned by the k-parameters will be called ‘articulation space‘. In Fig. 2 the 

location of the straight 4-tube in the 3-dimensional space of k „  k„ It, is 

shown. As all Si have the same value, it follows that k.=k‚=k,=l. So, the 

straight 4-tube is denoted by (1,1,1). 
Thirdly‚ when calculating n-tube shapes from formant frequencies there 

are [V,(n-l)] degrees of freedom. This means that we can choose free the 

values of ['/‚(n—l)] parameters ki. For example, 4-tubes have one degree of 
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”Sure 2. The 3—dimensional articulation space of 4-tubes spanned by the parameters “" k“ “” 
and the location of the straight 4-tube (MJ) in it- 

. _ l 
' ['/a ts defined as the greatest mteger number not greater than /zn- 
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freedom: ['/‚(n-l)]=l. We observe that the inverse problem does not have a 

unique solution for n-tubes with more than two segments. 

4. The lnverse Problem 

The greatest contribution to the research on the inverse problem is from 

Atal, Chang, Mathews and Tukey (1978). They treated the subject numeri- 

eally, and showed that there are many vocal tract shapes having the same 

formant frequencies. A disadvantage of their numerical inversion is that it 

does not show the structure of the relation between shape and corresponding 

formant pattern. We will briefly indicate when and how we can handle the 

inversion analytically (Bonder, 1983b). 

The n-tube formula is the starting point for the attack on the inverse 

problem. The main step in our method of  inversion is the decomposition of 

the n-tube formula, i.e. the replacement of the n-tube formula, which is an 

equation of degree n, by a set of l/2n equations relating explicitly formants to 

shape of the tube. By means of these l/2n equations we can solve the inverse 

problem analytically up to lO-tubes, but, the more segments, the more 

involved the calculus. For n-tubes consisting of more than 10 segments the 

inverse problem is no longer analytically solvable, in which case the problem 

has to solved numerically. ' 

For 4-tubes the inversion is rather simple. The analytical inversion yields 

the following expressions from which the k-parameters‘ can be determined if 

the formants F' and F, are known: 

k2 = (-czk{+clkl-l)/((1+kl)(i+czkl)) (l) 

“3 : 1/Czki 
where 

C1 = tanz-rF1 + tan2‘rF2 

O
 

N
 ll tan21'F1 ° tan2‘rF2 

211L/4c .
.
 

ll 

c being the velocity of sound, L (=4.1) the overall length of the 4-tube. It is 

obvious from equations (l) that we have one degree of freedom for 4-tubes: 

one parameter, it., has to be given a value in order to be able to  compute the 

other two parameters k2 and k,. Expressions (I) can be used to calculate 

equivalent 4-tubes, i.e. tubes with the same formant frequencies, to a given 

length L. Each equivalence class consists of an infinite number of 4-tubes, all 
of them having the same length L. In the articulation space, an equivalence 

class turns out to be a continuous trace. In Fig. 3 we show the equivalence 

class of the straight 4-tube with formants F,=500 Hz and F,=1500 Hz. All 

equivalent tubes have the same overall length L=l7.5 cm (which is about the 
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Figure 3. The equivalent class of the straight 4-tube (1,1,l) With F‚-—500 Ha and:‚ bel 55(1)103H15a:n 

length L=l7.5 cm (solid curve). At the right hand side the correspondtng u pe 

shown. 

average male vocal tract length). Of course‚we_eannot show the whole class 

but this finite subset gives us a good View of lt. 

5. lnversion Applied to the Vowel Triangle 

In the way mentioned above we can calculate a trace in the artneulatron sp;g; 

for each point in the formant space. All traces in the artneulatrznäpä°iraces 

very much the same as the one in Fig. 3- In Fig. 4we have Sl.(etc. ef the vowel 
in the articulation space corresponding to the three vertrces ofthe vowel 

triangle /u/, /i/, /a/. As we may see ff°“‘ F‘%' 4’ the Strucwre 0 t echoice 
triangle is rather alike in both spaces. From thus we conclude thät ourte The 

of the k—parameters as parameters of articulatton seems to_be a equa . lex 

structure of the articulation space of Atal et al. (1978) is more con;p h.  

Besides, one of their dimensions is not contained in our space, na“i°.y toi 

length L of the tube. From an acoustical P°im Of Vlew' the lengthf lS—? ll 
essential, as it is no more than a scaling fac‘°r in the formant space( Oltibr?al 
the segment lengths are multiplied by the same factor “' the efcäi:ezorres- 
areas being unchanged, the overall length Will change to GL an ° 

ponding formant frequencies F, t0 Fi/°)' 

6. Outlook on Further Research 

. _ icula- 
After this rough sketch of the relatton between formant space ansta;;me to 

tion space by means of the n-tube model of the vocal tract we mtge and how 

the question if there are preferential areas in the artneulatron spac ‚ 

" l ‘ l  
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segment ! 2 . . . n-l 

area S I  52  . . . sn-l n 

k-parameters k !  k2 .  . "‘n—2 kn-l 

glot t ie S ‘  lips 

eegment iength 1 

‘ overall length L (-n.1) 

Figure 4. The vowel triangle in both formant space and articulation space. The solid curves in the 

articulation space are the equivalence classes of the vowels /u/ , /i/,/a/, / c/ . In the articulation 

space we have drawn an arbitrary cross-section (solid dots) of the bundle formed by the 

equivalence class curves of vowel sounds. The curve corresponding to the /3/ intersects this 

cross-section. ‘ 

we can describe this phenomenon in terms of our k-parameters kr AS a 

starting point in this direction we use the paper by Lindblom and Sundberg 

(1971). They suggested, on the basis of numerical experiments, that a princi- 

plc of minimal articulatory antagonism between tongue and jaw might play 

an important role in the realization of isolated vowels. If we want to translate 

this mechanism into the language of our model we obviously have to define 

some measure with which we can quantatively indicate the resemblance of 

two n-tube shapes. As a measure of comparison between two n-tubes. 

P=0<3P’,...‚k3ä) and Q=(k<lq>‚.„‚kggll) 

we introduce in a forthcoming paper (Bonder: the MAD model) 

n-1 
( )  2 % i=zl (kip - ki(q)) ; 

dP.Q = 

which is the euclidean distance between the two tubes P and Q in the 

(n-1)-dimensional articulation space. 

The translation of the suggestion by Lindblom and Sundberg (1971) im° 

our model seems to be that we have to look, in the articulation space, for the 

point on the trace corresponding to a vowellike sound that has minimum 

distance to the straight tube, the point with coordinates (1,1,1) in the 3-di- 

mensional articulation space of k „  k;, k,. This is the so-called MAD model, 

where MAD stands for Minimal Articulatory Difference. 
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