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]. Introduction 

The problem of pitch determination counts among the most delicate pro— 
blems in speech analysis. A multitude of pitch determination algorithms 
(PDAs) and devices have been developed; none of them works perfectly 
(Rabiner et al., 1976). A survey of the state of the art was presented in an 
earlier paper (Hess, 1982). In this survey the PDAs have been categorized 
into two gross categories: ]) time—domain PDAs, and 2) short-term analysis 
PDAs. The time-domain PDAs determine pitch (this term stands for funda— 
mental period, fundamental frequency, or the elapsed time between two 
consecutive pulses of the voice source) directly from the signal as the elapsed 
time between consecutive laryngeal pulses. The short-term analysis PDAs, 
after subdividing the signal into a series of frames, leave the time-domain by 
a short-term transformation in favor of some spectral domain whose inde- 
pendent variable can be frequency or again time (in the latter case the 
independent spectral variable is called lag in order to avoid confusron). 

The short-term analysis PDAs are further categorized accordmg to the 
Short-term transform they apply (Fig. 1). The main possibilities are correla- 
tion, ‘anticorrelation' (i.e„ the use of distance functions), multiple spectral 

"“"—WM: (cepstrum), harmonic analysis (frequency-domain PDAs), and 
maxMum-likelihood analysis. In the following we will deal only With three 

examl>les: l) autocorrelation (pertaining to the the correlation PDAs), 2) 
maximum-likelihood, and 3) harmonic analysis. 

2. Basic Computational Effort, Spectral Representation and Measurement 
Accuracy 

In general the short-term analysis algorithms perform a short-term transfer- 
mation of the form 

X = W x, (1) 

In this equation, X is the spectral vector, x is the signal vector and Wis the 
transformation matrix which represents the properties of the short-term 
transformation. For a frame of N samples (the transformatron mterval) the 
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basrc computational complexity of the short-term transformation is in the order of N2 if the number of multiplications serves as the basic reference In prmcrple the computational complexity given in (1) is valid for all three types of algorithm we are going to deal with. The discrete Fourier transform which IS applied in frequency-domain PDAs and (not necessarily but possi- 
bly) m autocorrelation PDAs, clearly follows ( l). Of course one always tries to use the fast Fourier transform (FFT) whose basic complexity is in the order of N .IdNI, where Id represents the dual logarithm. If the autocorrelation function IS directly evaluated (without using the Fourier transform) it can also be brought into the form (1). The maximum—likelihood PDA ir; squarmg operations with the same basic complexity. 

The question is now how to decrease the computational load when imple- mentmg these algorithms. With very complex hardware on-line performance can be obtained even if the algorithms have not been optimized. On the other 

volves 
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hand, if the same results can be achieved with reduced effort, it is always 

worthwhile to think about such implementations. This shall be done in the 
following, first from a rather global point of view, later in more detail for the 
three algorithms cited. 

The following actions to reduce the computing effort appear possible. 

1. Replace multiplications and divisions by additions or table lookups; 

2. Replace multiplications by logical operations due to sophisticated pre- 

processing; 

3. Decrease the sampling rate in order to reduce the length N of the transfor- 

mation interval; 

4. Discard redundancies and irrelevance before the spectral transformation, 

again in order to reduce N; _ 

5. Confine the operating range of the calculation to samples that are actually 

needed; and 

6. Adaptively change the frame length K depending on the current funda- 

mental frequency F0 and/or the actual value of the trial period p within 

the short-term transformation. 

Actions 5 and 6 are not possible when a FFT is applied; there all spectral 

samples are computed simultaneously from a constant-length transforma- 

tion interval. 

With respect to the representation of the relevant information on pitch in 

the spectral domain, the spectrum (in the following the output signal of the 

short-term transformation will always be labeled ‘spectrum’ regardless of 

whether it represents a Fourier spectrum, an autocorrelation function, or a 

maximum-likelihood estimate) is heavily oversampled. If we limit the measur- 

ing range to 50-1000 Hz, then for the PDAs which operate in the lag domain 

(autoeorrelation, maximum-likelihood) a sampling rate of 2 kHz in the 

spectrum would be sufficient in order to correctly represent the information 

on pitch, i.e. to satisfy the sampling theorem. For a frequency-domain PDA 

a Spectral resolution of less than 25 Hz would be necessary in order to 

correctly represent all the harmonics of a signal at the lower end of the 

measuring range as separate peaks. These crude sampling rates, if applied, 

would be sufficient to represent the relevant information on pitch in the 

spectral domain, but they are not at all sufficient to measure pitch accurately 

enough. The most critical judge with respect to measurement accuracy is the 

human ear; data by Flanagan and Saslow (1958) as well as the prevailing 

theories on pitch perception (e.g., Terhardt, 1979) suggest that errors of less 

than 0.5% are still perceived. To satisfy this requirement, we Would thus need 

a spectral resolution of less than l Hz for a frequency-domain PDA and a 

sampling rate of more than 50 kHz for a lag-domain PDA. Since all these 

PDAs involve nonlinear processing (usually squaring and averaging), it is 

not sure whether interpolation in the spectral domain after the nonlinear step 

will yield correct results. Hence, in order to obtain a reasonable spectral 

resolution, frequency-domain algorithms usually perform voluminous FFTs 
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on long transformation intervals (more than 200 ms) which consist of a short 
frame (30-40 ms) appended with zeros, and a number of autocorrelation 
PDAs compute the autocorrelation function with the full sampling rate of, 
say, 10 kHz although they compute it from a speech signal that has been 
low-pass filtered with a cutoff frequency of 1 kHz. So the basic problem is to 
find solutions that allow for the spectral resolution necessary for an accurate 
measurement, but cut down the computational effort as far as possible. 

3. The Autocorrelation PDA 

The breakthrough in the autocorrelation PDA came when Sondhi (1968) 
discovered that adaptive center Clipping greatly improved the performance 
of this PDA which hitherto had suffered from a strong sensitivity to domi- 
nant formants. Dubnowski et al. (1976) then found that an adaptive three-le- 
vel quantization did not significantly degrade the performance compared to 
““ Signal that was only center clipped. With this three—level quantization, 
hOWever, it became possible to evaluate the ACF without any multiplications 
since the input signal of the so quantized signal can only take on values of +], 
0, and -l. It became even possible to replace the adder in the ACF evaluation 
10810 by a simple up-down counter so that for this PDA the problem of 
computational CompleXit)' can be regarded as solved. Actions 4 and 6from 
the above-mentioned list, which appear possible and promising, are “° longer necessary under this aspect. 

4. The Maximum Likelihood PDA 

The maximum-likelihood PDA (Noll, 1970; Wise et al., 1976) emerged from the task to optimally separate a periodic component x(n) from Gaussian none gn(n) in the signal a(n) = x(n) + gn(n) with the finite duration K. The mathemat1cal formulation leads to a comb filter with the trial period P, and the best estimate of pitch is given when p optimally matches the harmonic structure; in this case the energy of the output signal of the comb filter is maxrm12ed. Computing the energy of this signal however, involves squaring‚ and the number of the pertinent multiplications is in the order of s„‚ when Pmax is the longest period possible within the measuring range. To reduce the computational effort, one can exploit the fact that the only multiplications needed are squaring operations, which can easily be implemented by 3 table—lookup procedure. Since the maximum-likelihood PDA is rather noise resrstant, the input signal can be crudely quantized, and the table can be ke?t rather small. Another possibility of reducing the computational effort is obtamed when one succeeds in replacing the squaring operations by Other' less costly arithmic operations 
' 

. , such as the eak—to- eak am litude ofthe output1 Signal of the comb filter. This is indee P ? p mstea 0 the energy hardl aff 
. ‘ a -  

jah et al_‚ 1980), y ects the performance of the PDA (Ambfl‘alr 
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5. Harmonie Analysis, Frequency-Domain PDAs 

All frequency-domain PDAs (e.g. Schroeder, 1968; Martin, 1981) need a 

Fourier transform to enter the frequency domain. This is preferably done 

using the FFT although, for special applications, it might be profitable to use 

the conventional DFT and to compute only a few spectral samples (Du1fl’lllls 

et al., 1982). In the following, the considerations will be confined to the case 

where the FFT is used. Let an arbitrary frequency—domain PDA need a 

spectral resolution of 5Hz. This usually meets the requirements With respect 

to accuracy since it is mostly possible to obtain the est1mate of FO from a 

higher harmonic and thus to reduce the inaccuracy of the_measurernent due 

to quantization by the harmonic number of that harmomc._The ea51est way 

to implement such a PDA is to take a segment of the input Signal (30-40 ms), 

apply a suitable time-domain window, extend the segment by zeros, and 

apply the corresponding FFT to obtain the spectral resolut10n(a 2046-pornt 

FFT would be necessary when the sampling frequency of the input Signal is 

10 kHz). This procedure however, is in no way optimal With respect to_the 

Computational effort. Table I shows the different possibilities of Optimiza- 

tion. The basic computational complexity of the FFT is in the order of N Id N 

(line ‘no optimization’ in Table I). Using sophisticated programmmg that 

avoids multiplication for such samples where the real and imaginary parts of 

the complex exponential values used in the transform are zero or have a 

magnitude of 1, the number of multiplications can be reduced by almost 

30%. A reduction of 50% is achieved when one takes account of the fact that 

the input signal is real (and not complex). With programmmg alone one can 

thus save 64% of the multi lications. _ _ _ 

Further reduction of the ämputing effort is only possible With additional 

digital filtering. First, the relevant information on pitch in the speech Signal is 

contained in the frequency components below 2.5 kHz. In contrast to 

lag—domain PDAs the accuracy of the frequency-domain measurement rs n;t 

influenced if the sampling frequency of the time-domam signal is reduced y 

a factor of 2. The computational complexity, however, IS reduced by more 

than 50%. . . 

A last possibility of optimization is given by interpolatwn in the frequencly 

domain. There are two possibilities of increasing the spectral resolu;ron. 2) 

appending many zeros to the input signal and applymg a long FF ' (?ble) 

al—’P€nding few zeros to the input signal, applymg the shortest FFT pass;l , 

and interpolate in the frequency domain using a digital filter with zero p asel 

response (Le. a linear-phase nonrecursive interpolatron filter m a ;;ncausa 

realization) until the required spectral resolution is achieved. äse :::: 

Possibilities are equivalent as long as the interpolaüon rs perforhme Q:; “_ 

complex spectrum, but they are rather different with respect t o t  eir cc;xapm_ 

tational complexity. Applying all these optmtzatmns together, in ourcl r in 

PIC, brings down the computational effort by as much as one er e 

magnitude. 
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Table I. Comparative evaluation of the effort necessary to compute an FFT spectrum for frequency-domain pitch determination under various aspects of possible 

algorithmic optimization. Assumed sampling rate: 10 kHz, frame rate: 100 Hz, required Spectral resolution: 5 Hz 
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Optimizing operation FFT Number of multiplications Saving %: 

Length (%) &? 

FFT Other Total g 

Operations &. 

@ 
No optimization 2048 45056 - 45056 0 33: 

Optimized FFT Programming . 2048 32776 — 32776 29 0% 

Exploit the fact that the input signal is real: perform spectral rotation, shift imaginary part of the @“ 

signal against time, and decompose spectrum 1024 _ 20480 2048 22528 50 U) 

All programming optimizations 1024 14344 2048 16392 64 R 

Downsampling to 5 kHz 1024 20480 200 20680 56 R 

Downsampling and programming optimizations 512 5942 1224 7166 84 =" 

Limit transformation interval to 51.2 ms and upsample spectrum by factor 4 in the frequency 

domain . 512 9016 6144 15160 66 

Time-domain downsampling, limitation of transformation interval, and frequency-domain 

upsampling 256 4096 3272 7368 83 

All optimizations applied together 128 1032 3528 4660 89 
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6. Conclusions 

A number of proposals to efficiently implement the short-term transforma- 

tion in short—term analysis PDAs have been reviewed. The problem of 

computational effort arises from the fact that, for reasons of measurement 

accuracy, the spectral function (autocorrelation function, Fourier spectrum 

etc.) must be heavily oversampled. The pr0posals range from efficient pre- 

processing (combined center and peak clipping in an autocorrelation PDA), 

which avoids multiplications, to the use of signal amplitude instead of 

energy, and from the use of table-lockup procedures to the optimal combina— 

tion of the FFT and interpolation by digital filters. If the PDA is carefully 

implemented, the gain in computing speed can be considerable. 
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