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NEW METHODS OF ANALYSIS IN SPEECH ACOUSTICS

Hisashi Wakita, Speech Communications Research Laboratory Inc.,
806 West Adams Boulevard, Los Angeles, California 90007, U.S.A.

Chairperson: Hans Werner Strube

Introduction

The recent development in digital techniques has brought sub-~
stantial innovations to methods and techniques for acoustical ana-
lysis of speech sounds. The advantages of using digital computers
over the conventional analog techniques are that the analysis pro-
cesses can be repeated precisely and that the control of the
parameters is relatively easy. The use of the digital computer
also permits the processing of a large amount of data within a
relatively short period of time with satisfactory accuracy. Be-
cause of the above advantages, digital techniques are playing a
more and more important role in speech research. As this tendency
becomes stronger, proper care has to be taken when the digital
techniques are applied to speech research. This paper, thus, con-
cerns primarily the recent digital techniques in the acoustic ana-
lysis of speech, particularly the linear prediction method, with
special attention to its advantages and disadvantages, and also
to the limitations involved in the technique.

The concept of linear prediction was first applied to speech
analysis by Itakura and Saito in Japan (1966) and by Atal and
Schroeder in the United States (1967). Since then the linear pre-
diction method has been fairly thoroughly studied theoretically
and experimentally (see Makhoul 1975; Markel and Gray 1976; Wakita
1976), and the method is currently being used as a powerful tool
for acoustical analysis of speech sounds.

Linear prediction of speech

A very simplistic model of speech production as shown in
Figure 1 (a) is assumed in the linear prediction of speech. The
excitation source is an impulse and the filter, which mainly rep-
resents the vocal tract, has the frequency characteristics of res-
onances only, without any anti-resonances. The model thus exclu-
sively represents the voiced and non-nasalized sounds.

For an analysis model, an inverse filter is assumed, which
maintains the precise inverse relation between the input and the
output of the production model, as shown in Figure 1 (b). Thus,
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the problem in linear prediction analysis is to determine the char-

acteristics of the inverse filter from a given input speech wave.
Since the linear prediction method is a digital technique,

all the data, and parameters to specify the filter characteristics,

are handled in a discrete sampled format instead of as continuous

quantities. The main task of linear prediction is to predict the

current speech sample ﬁn in terms of a linear combination of the

past M samples. Letting the predicted current sample be ﬁn, ﬁn

is given by

+ ...+ (1)

“M*n-M
In equation (1), the ai‘s are called predictor coefficients. They
play a role of "weighting" the past samples to predict the current
one. The problem in the linear prediction method is to determine
these predictor coefficients in such a way so as to minimize the
error between the current sample and the predicted one, and to
relate the predictor coefficients to the parameters of the inverse
filter. 1In this case, the sum of the squared errors over a certain
period,

(2)

is minimized. Because of this, speech samples during this period
are assumed to be sufficiently stationary so that the predictor
coefficients do not change during this period.

How are the predictor coefficients thus determined related to
physically meaningful parameters, that is, to the inverse filter
in Figure 1 (b)? 1In general, the frequency characteristics of a
filter can be determined by observing its impulse response when
an impulse signal is applied to the filter as shown in Figure 2
(a). In the discrete case, the impulse response of a filter is
then given as shown in Figure 2 (b). The amplitude at each sampled
point in the impulse response is given by a; and the period between
the two sample points is given by the sampling period T. From
this impulse response, the transfer function, A(z), of the filter

is given by use of "z-transform” notation as

Alz) =a. +a.z t +az 2+ ...+ aMz'M (3)

)g .
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Equation (3) represents not only the transfer function of the
filter but also the impulse response in the time domain. The
ai's in equation (3) are called filter coefficients. It is easily
seen from Figure 2 (b) that the interpretation of the "z-transform"
notation is that z_l represents a unit delay in the time domain
in terms of the sampling period T. Thus, the power of z_l in
equation (3) denotes the number of time delays.

Since z=exp(j2mfT), where j is the imaginary unit (3=+/-1)
and f is frequency, equation (3) itself represents the discrete
Fourier transform of the impulse response. Thus the frequency
domain representation of equation (3) is given by applying the
Fourier transform to the filter coefficients. In this case, the
impulse response is truncated at t=MT and normally sufficient
zeroes (e.g. 256 minus M zeroes) are added to the ai's to ensure
sufficient frequency resolution before the Fourier transform is
applied. An example of a power spectrum obtained from the output
of the Fourier transform is given in Figure 2 (c). Note that the
frequency band is bounded at FS/Z where FS=1/T is the sampling
frequency. Note also that when the amplitude of the frequency
components is represented on a logarithmic scale, the frequency
characteristics of the inverse filter as shown in Figure 2 (c) be-
come those of the vocal tract filter in Figure 1 (a) just by re-
labeling the negative sign of the ordinate with a positive sign.

One of the important features of the linear prediction method
is that the predictor coefficients in linear prediction of speech
can be shown to be identical to the filter coefficients with
a0=l. Consequently, minimizing the overall error in linear pre-
diction is equivalent to finding the transfer function of the
inverse filter of the analysis model in Figure 1 (b).

Analysis condition

Proper analysis conditions for the 1ineér prediction method
are important to ensure satisfactory results. The analysis con-
ditions to be noted are (1) sampling frequency, (2) the number of
coefficients, (3) time window and length, (4) window shift, and
(5) preemphasis. The sampling frequency determines the frequency
range of interest. The frequency range must be less than or equal
to half the sampling frequency {normally the latter is chosen) .
The number of coefficients is dependent on the frequency range to
be chosen. When the frequency range is exactly half the sampling
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frequency (Fs kHz), a good rule of thumb for the number of filter
coefficients is from Fs+2 to Fs+4. The reason for this appears

to be that there will be about FS/Z resonances in the frequency
band limited by FS/Z, provided that Fs is given in units of 1 kHz.
Each resonance requires 2 coefficients for its representation,

and so about Fs coefficients will be needed to account for the
expected resonances in the analysis band. In addition, 2-4 co-
efficients are normally used for approximating the spectral slope
due to the excitation source.

The analysis conditions (3) and (4) vary depending upon
which of two different methods of linear prediction is used, the
autocorrelation method or covariance method (e.g. Markel and Gray
1976). The two methods use different definitions for computing
the coefficients from sampled speech. The autocorrelation method
requires a window length of at least 1.5 pitch periods and a
Hamming window is recommended to suppress the spectral disturbances
in the high frequency region due to the edge effect of the time
window. The covariance method, on the other hand, does not re-
quire any particular time window, and the window length can be
less than a pitch period. Thus this method can be used for pitch-
synchronous analysis of speech sounds. When a window length of
less than a pitch period is chosen, care must be taken since the
analysis results vary depending upon what portion of the pitch
period is chosen for analysis. This method is particularly use-
ful for extracting the true vocal tract characteristics by choos-
ing the glottis-closed portion of the speech waves. The major
disadvantage of the covariance method is that there is theoretical-
ly no guarantee for obtaining a stable transfer function for the
inverse filter, and thus a more sophisticated algorithm is required
to automatically process the cases of instability. Also a more
sophisticated algorithm is needed for automatically windowing the
speech wave into pitch-synchronous intervals.

The window shift in the covariance method, thus, involves a
more complicated procedure than it does in the autocorrelation
method. 1In the latter‘method, the window shift is rather arbitrary,
depending upon the speech samples to be analyzed. The shift can
be greater than the window length for steady-state sounds, where-
as, for speech sounds in which the formant frequencies are rapid-
ly changing, a smaller window shift will be better for obtaining

the smooth contour of the formant frequencies.
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A 6 dB/octave preemphasis is recommended for formant analysis.
This is accomplished by taking the backward differencing of the
sampled speech. The purpose of the preemphasis is to enhance the
spectral peaks in the high frequency region. The 6 dB/octave pre-
emphasis also roughly compensates the -12 dB/octave glottal source
characteristics and the +6 dB/octave lip radiation characteristics.
Estimation of formant frequencies

As mentioned before, the Fourier transform of the predictor
coefficients gives the frequency characteristics of the inverse
filter, the inverse of which are the frequency characteristics of
the vocal tract filter. Thus the procedure for obtaining the
smooth spectral envelope by use of the linear prediction method
is given by the block diagram shown in Figure 3. The speech sig-
nal is first digitized at some sampling frequency after being
passed through a lowpass filter to limit the frequency band ac-
cording to the sampling frequency. Linear prediction analysis is
then performed using predetermined analysis conditions, and re-
sulting in a set of filter coefficients for each speech segment
analyzed. Smooth spectral envelopes are computed from the output
of the Fourier transform of the filter coefficients with added
zeroes. As a result of linear prediction analysis, the residual
signal, which is an error signal given by equation (2) is saved
for detecting pitch periods as will be described later.

An example of analysis results is shown in Figure 4. This
example is a part of a sentence "Near the boat ..." and the spec-
tral envelope estimation for /n/, /./, /x/, and /8/ are shown in
the figure together with the direct Fourier transform of the cor-
responding speech waves. It is seen that spectral peaks are well
| approximated by the extracted spectral envelope. However, the
spectral dips due to anti-resonances as in.the sound /n/ are
ignored in the linear prediction method, in which the nasal tract
is not considered. It should be noted that the linear prediction
method was developed as a method for efficient speech analysis-
synthesis telephony on the basis of the fact that the human ear
is insensitive to spectral dips. Thus ignorance of spectral dips
is not a major problem as far as analysis-synthesis telephony is
concerned. However, if one is interested in more accurate estima-
tion of spectral dips as well as peaks, a new model has to be
developed, which is currently being investigated by some researchers.
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The formant frequencies are estimated from the smooth spectral
envelope by finding the locations of the spectral peaks by a peak-
picking method. Although this method is simple and worthwhile,
it presents problems when two peaks are close together or merged
into a broad peak. Another method is to compute the exact loca-
tions of the peaks by solving for the roots of the transfer func-
tion, A(z), of the inverse filter. 1In both methods, the spectral
peaks do not always correspond to the formant frequencies, and
thus a certain algorithm to automatically select formant peaks has
to be designed (e.g. McCandless 1974). For both methods, a care-~
ful inspection of the analysis results is recommended before fur-
ther processing of the formant frequencies is initiated.

Accuracy of formant estimation

It is rather difficult to determine the accuracy of formant
estimation for natural utterances, since there is no way of ac-
curately measuring the vocal tract configuration to compute its

resonances while a sound is being produced. Chandra and Lin
(1974) made an evaluation of the autocorrelation and covariance
methods of linear prediction by using synthetic vowels. 1In their
study, vowels in the 'h-d' context were synthesized by a simulated
formant synthesizer, and the two linear prediction methods were
applied to analyze those synthetic vowels. As analysis conditions
in this case, the sampling frequency was 10 kHz and the number of
coefficients was 12. The results of their study are shown in
Figures 5 and 6. Figure 5 shows the estimation error (in Hz) of
the first three formant frequencies for both methods applied pitch-
synchronously and pitch-asynchronously. For the pitch-synchronous
case, the window length coincided with the segment position be-
tween the two pitch pulses. For the pitch-asynchronous case, the
window length of 24 ms was arbitrarily chosen on the speech waves.
The results indicate that the pitch-synchronous covariance method
gives better accuracy than the others. 1In the pitch-asynchronous
case, when the window length becomes greater than one and a half
pitch period, the two methods give similar accuracy. The pitch-
synchronous autocorrelation method resulted in the worst accuracy.
This is more so in estimating formant bandwidths as shown in
Figure 6.

For natural utterances, it is anticipated that the accuracy

of estimating formant frequencies and bandwidths becomes worse
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than for the synthetic sounds. Especially, it is anticipated that
the result of the pitch-synchronous case will become worse, because
the condition at the glottis varies during one pitch period for
natural utterances, whereas the glottal condition for this partic-
ular synthesizer was constant. When the glottal condition varies
during a chosen analysis segment, the resulting formant frequencies
will probably be the average of the instantaneous formant frequen-
cies. The result obtained by Chandra and Lin (1974) indicate that
the pitch-synchronous covariance method gives more accurate esti-
mates of formant frequencies and their bandwidths than the pitch-
asynchronous autocorrelation method. Although the estimation ac-
curacy of the formant bandwidths is not well known, it is known
that the bandwidth estimates are sometimes too narrow or too broad.
If the bandwidth information is needed, it has to be carefully
checked against the direct Fourier transform of the corresponding
sampled speech.

Problems in formant estimation

Since the estimation of formant frequencies is made from the
envelope estimation of speech spectra, the accuracy of estimation
is highly dependent on harmonic density. The more sparse the har-
monic density becomes as pitch goes up, the more difficult the
estimation of formant frequencies becomes. This is a rather in-
herent problem in the estimation of vocal tract resonances from
given speech waves, irrespective of method. 1In many cases, the
linear prediction method works well for speech sounds with funda-
mental frequencies of up to approximately 250 Hz. For female
speakers and children with fundamental frequencies higher than
250 Hz, difficult cases of formant estimation are frequently ob-
served. Formant estimation becomes impossible as the pitch be-
comes extremely high, in which case harmonics are picked up as
spectral peaks.

In case the exact vocal tract resonances need to be known,

some other methods may have to be used. One approach to this is

to use external excitation with a low fundamental frequency such

as an artificial larynx buzzer. One such example is shown in

Figure 7 (a). This example is a female vowel /a/ with a funda-

mental frequency of 250 Hz. The linear prediction spectral enve-

lope has one broad peak in the low frequency region instead of

the first two formant frequencies. The peak-picking method de-
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finitely fails to detect two peaks for Fl and F2. Instead it will
detect the broad peak as the first formant frequency.

The root-solving method will give two roots to approximate
the broad peak. It has not been ascertained, however, that the
two roots obtained by the root-solving method for such cases as
above correspond accurately to the first two formant frequencies.
For the above case, the use of a commercial artificial larynx
buzzer with a low fundamental frequency gives a good resolution
for the formant frequencies as shown in Figure 7 (b), which is for
the same vowel and the same speaker as in Figure 7 (a). In this
case, the buzzer had undesirable sharp peaks in its own frequency
characteristics. The monotonous frequency characteristics of a
buzzer are desirable for this purpose.

Fundamental frequency estimation

In inverse filtering in the linear prediction method, most
of the vocal tract characteristics are filtered out into the pre-
dictor coefficients. The residual signal, the output of the in-
verse filter, still contains the information on the excitation
source, A typical residual signal is shown in Figure 8. It is
seen that large errors synchronous with pitch periods occur. A
typical approach to computing the periodicity from this kind of
waveform is to computé the autocorrelation function as shown in
Figure 9. Two conspicuous spikes are found in the autocorrelation
function, one at the origin and one at a distance of one pitch
period from the origin. The fundamental frequency is then given
by the reciprocal of the pitch period.

Problems in fundamental frequency estimation

It has been shown that the linear prediction method is quite

efficient and effective for estimating the formant frequencies.

However, how accurate and reliable the extraction of fundamental
frequency is is an intriguing question, since there are many other
techniques for estimating the fundamental frequency. Rabiner et al.
(1976), in their study of the comparative performance of several
pitch detection algorithms, point out the following major problems
in detecting the fundamental frequency: (1) glottal excitation is
not perfectly periodic; (2) defining the exact beginning and end

of each period is difficult; ¢3) the distinction between unvoiced
portions and low level voiced portions is difficult; (4) there is

an interaction between the vocal tract and the glottal excitation.
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The above problems are intrinsic in any of the pitch detection
methods. However, evaluation of several pitch detection methods
indicates some differences in their performance.
Accuracy in fundamental frequency estimation

Let us take the following pitch detection methods from the
(1975) =
clipping (time domain method); (2) cepstrum method (frequency
and (3) rs1FT' L
The types of errors can be categorized into

study by Rabiner et al. (1) autocorrelation method with

domain method) ; linear prediction method (time-
frequency method) .
(a) voiced-to-unvoiced error, {(b) unvoiced-to-voiced error,
(c) gross error in which the error in detecting the pitch period
is greater than a certain threshold; and (d) fine error in which
the error in detected pitch period is less than the threshold.
The above three methods were tested against six speakers
(3 males, 2 females, and a child) by using four monosyllabic non-
sense words and four sentences. The analysis results were com-
pared with the standard pitch contours which were carefully
measured by using a semi-automatic pitch detector. The results
for the first three types of errors are shown in Figures 10, 11,
and 12. The results are shown both for unsmoothed (raw data) and

smoothed cases. In the smoothed case a nonlinear smoothing tech-

nique was applied to the raw data (Rabiner et al., 1975). It is
seen that the nonlinear smoothing generally improves the accuracy:
particularly, the gross errors are substantially improved. It is

also seen that all three methods are somewhat speaker dependent.
For the voiced-to-unvoiced errors, the error rate of the cepstrum

method is much higher than the others except for the child speakenl

For the unvoiced-to-voiced errors, on the other hand, the error
rate of the cepstrum method is better than the others except for
one of the female speakers for the smoothed case. In overall per-
formance evaluation, there seems to be not much difference between
the performance of the autocorrelation and linear prediction meth-
ods, except that the linear prediction method resulted in an ex-
ceedingly poor performance for the child speaker for the unvoiced-
to-voiced and gross errors.

Other related topics

The filter box in the linear prediction model in Figure 1
contains the contribution from the glottal characteristics and
the radiation effect at the lips as well as the vocal tract

1) Simplified Inverse Filter Tracking
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characteristics. Since the model assumes a linear system, those

factors can be separated and changed in order as shown in Figure

13.
by a proper preprocessing of the speech, the true vocal tract ]

If the glottal and radiation characteristics can be eliminated

characteristics can be obtained by the linear prediction method. |
One of the important features of the linear prediction method is :
that in computing the prediction coefficients, another parameter

which is called "reflection coefficient"

"PARCOR coefficient") 1s obtained.

(or "k-parameter", or
A set of reflection coefficients
obtained for a éiven speech segment gives an acoustic tube shape
which has a frequency characteristic identical to the vqcal tract
characteristics extracted from this speech segment. In this case,
the acoustic tube is represented by a concatenation of cylindrical
sections of different cross-sectional areas. A reflection coeffi-
cient is defined at the boundary between two neighboring sections.
Consequently, if the analysis conditions are properly chosen after
preprocessing sampled speech to eliminate the glottal and radia-
tion characteristics, the acoustic tube representation thus ob-
tained is expected to be a good approximation to the vocal tract
area function which denotes the cross-sectional areas along the
vocal tract from the glottis to the lips (Wakita, 1973, 1979).
Another interesting topic is the use of the linear prediction
parameters for speech synthesis. The synthesizer could be the
synthesis part of the linear prediction analysis-synthesis teleph-
ony (see Markel and Gray 1976; Wakita 1976). ‘

frequencies and bandwidths constitute the roots of the inverse

Since the formant

filter transfer function, they can be related to the filter co-
efficients. The reflection coefficients, which give an acoustic
tube representation of the vocal tract, are also related to the
filter coefficients in the mathematical formulation of linear

prediction.

changeable for each other, and any of these parameters can.be used

Thus, those parameters mentioned above are inter-

for the linear prediction synthesizer.
Application examples

The linear prediction method has mainly been used in the
area of analysis-synthesis telephony. The method is particularly
effective for low bit-rate speech coding.
is equally useful for acoustical analysis of speech.
cluding this tutorial paper, several examples taken from the

author's past studies will be given below.

However, the technique

In con-
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characteristics by eliminating the glottal and radiation effects.
was applied to analyze the vowel portions (sampling frequency

10 kHz; number of coefficients 12; window size 25 ms with Hamming
window and +6 dB/octave preemphasis). The formant frequencies
i were estimated by use of the root-solving method. The formant

3000

frequencies which were averaged over the most steady-state five

frames were used to represent each vowel.
j Figure 16 is an example in which the linear prediction area
‘ functions were used to automatically segment speech into vowel-
like and nonvowel-like intervals. The linear prediction area
functions, combined with the speech energy function (root mean
square of sampled speech), give sufficient cues for the first
stage of segmentation without obtaining spectral information which
is more time consuming. In this case, the autocorrelation method
was also used for analysis. The sampling frequency was 10 kHz,
the number‘of coefficients 14, and window size 15 ms with a
T Hamming window and +6 dB/octave preemphasis. The relatively
400 800 1200 short analysis window length was used in this study for detecting

F:I lpd filz ‘the bursts of plosives, and the window shift was 12.8 ms.
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Figure 16. An example of segmenting the vowel-like intervals for
the sentence * Near the boat, Emma gave blue-gills away."
Conclusion

The concept and evaluation of the linear prediction method
were described in this paper. Because of its tutorial nature,
the descriptions in some cases may be inadequate from the theo-
retical point of view. Readers interested in more advanced knowl-
edge are encouraged to read the original papers or other materials
listed in the references.
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DISCUSSION
Gunnar Fant, Wiktor Jassem and René Carré& opened the discussion.

Gunnar Fant: I think that at the moment LPC analysis is more
useful for communication engineering purposes, but it is certain-
ly gaining importance in phonetic analysis: the fact that you can
re~-synthesize speech with rather good quality with LPC methods
is a great advantage in synthesis, and LPC also makes it possible
to manipulate e.g. fundamental frequency, independently of other
parameters, which makes it well suited for prosodic investigations.

Formant frequencies and bandwidths describe the vocal filter,
but what about the vocal source? In LPC analysis, it is treated
as a constant function, more or less, but in the future we should
pay more attention to.the.time dynamics of the source, to obtain
valuable information for prosody studies. We should make dynamical
matches not just to formants but also to source characteristics.

(This we can do at present by carefully scrutinizing period after
period of the signal, extracting presumed vocal source character-
istics.) The fact that LPC is confined to an on/off, or voiced/
voiceless, distinction creates some undesirable compensation
effects: to compensate for a more steeply falling voice source
spectrum, like we get e.g. in open syllables, the system will in-
crease the bandwidths somewhat, which can give a consonantal effect.

Another critical problem is assessing formant frequencies
with high pitched voices and in cases where Fo and Fl are close
together, which is problematic in any kind of analysis.

Hisashi Wakita: mentioned a comprehensive LPC analysis of 900
vowels by a female speaker (30 vowels x 30 repetitions) where (50)
unlikely analysis items were discarded by visual inspection of
the vowels in F1-F2, and F1-F3 plots [see "Application Examples”,

Example 1 in Hisashi Wakita's paper], but admitted that we do not
yet have valid data'that tell us how accurately we can estimate
formant frequencies, especially when Fo and Fl, or two formants,
are close together.

If we analyse a little more than one pitch period, using a
very small time window and the covariance method we can, from the
error signal, determine that point where the interaction between
sub~ and supraglottal systems is minimum (corresponding to the
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closed glottis portion), and if the signal has been carefully
recorded, directly from the microphone into the computer storage,
so as to avoid phase distortion, we can fairly well recover the
glottal wave shape from this portion.

Wiktor Jassem: What is the perspective for phonetics of
these methods? First, there is the segmentation problem which can
probably be solved, as suggested by professor Fant and others, by
determining the maximum rate of change of the spectrum and of the
time function. Secondly, there is the extraction of parameters:
those extracted for automatic analysis need not be identical to
those used by a human being. Thirdly, there is the problem of
normalizing for individual speaker characteristics. The fourth
problem is concerned with the identification of entities, which
is an intricate one, because we do not know how many entities
there are. The theory is that they should be sufficient to spec-
ify the output in such a way that synthesizing it we would get
a normal native accent. The perceptual experiments needed to
settle the question are not simple, because the adults' responses
will be heavily influenced by phonemic considerations, and with
very young children there will be great psychological problems.
Fortunately, mathematical methods are developing that will allow
us to determine, given a number of data, how many objects or
entities we are dealing with. What I want to point out is that
if we can get the computers to do phonetic transcriptions they
will be better than transcriptions by a human being because they
will be more objective.

René Carré&: There are two kinds of work in speech analysis.
One is the analysis of a small number of speech sounds. Formant
frequencies are no problem, but to determine bandwidths we need
to consider pre-emphasis, the order of the predictors, the analysis
window, and the magnitude of the prediction error. All these
operations take time, and such a procedure cannot be adopted in
the other kind of study, of a large corpus, where a (semi-)auto-
matic procedure has to be set up. It seems that in that case the
procedure must be normalized. Is the autocorrelation method
accurate enough for bandwidth measurements? Must we change (auto-
matically or not) the order of the predictor to adapt the system
to the speech sound under analysis, e.g. to nasalized vowels?

What sampling rate shall we choose? How many frames should be

analyzed? And so on. Finally, among the set of pole values we

have to choose (automatically Or not) the right formants.

) recognition, but also in acoustic phonetic studies of e.g. the
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Hisashi Wakita: The RMS-function is generally not sufficient
to segment a chain into vowel-like and non-vowel-like sounds. But
from the pseudo vocal tract area function, generated by the LPC
analysis, we can calculate the ratio of the volume of the back
(pharyngeal) cavity to the total volume of the vocal tract and
this will generally tell us whether a segment is vowel-like or not.
It will detect nasal consonants which is difficult to do from the
waveform: LPC does not assume any nasal tract, but does produce a
sort of equivalent acoustic tube representation, and nasal seg-
ments are fairly well detected from the back-to-total ratio of
that tube.

We have also worked on the elimination of inter-speaker
variability, which is of interest not just to automatic speech

vowel systems of languages. With LPC we can estimate the vocal
tract length for each speaker and each vowel category (tract length
is not constant over different vowel qualities), and then normalize
to a certain length, e.g. 17 cm, a normalization which reduces the
overlap in F1-F2, and F1-F3 plots and results in compact vowel
distributions.

Adrian Fourcin: The LPC system represents the complexities
of the vocal tract and its excitation by an exceedingly 'simple
model: a vocal tract with no side-branches and a sharp impulse
for an excitation, and yet it produces speech of very high quality.
When we synthesize we have to pay attention to the zeros intro-
duced by nasality, and the time dependence of the excitation func-
tion is also apparent if we have a standard model of the vocal
tract. Is there something that we can learn from this with regard
to how we hear speech? .

If we knew when the point of excitation occurred and for how
long a time the glottis is closed, to what extent would you be able
then to improve the phonetic utility of the LPC analysis? '

Hisashi Wakita: The ear is insensitive to spectral zeros,
and a model which has poles and zeros in it (which is much more
complicated computationally) does not perceptibly improve the
quality of the speech. I have run an experiment, where various
musical instruments as well as speech were passed through an arti-
ficially generated pole-zero system, and it turned out that the
ear was insensitive to dips in the spectrum as large as 35 dB z

et

-
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(a fact which explains why HiFi loudspeakers may have even very
sharp dips).

If we can determine that segment of speech where the glottis
is closed, i.e. the force-free oscillations, we can apply the
covariance method, which assumes that the speech waves can be ap-
proximated by a combination of damped sinusoids, and thus compute
the exact vocal tract characteristics.

Gunnar Fant: A reply to Dr. Fourcin is that LPC speech sounds
good because it resembles natural speech, although its source and
transfer functions do not resemble those of real speech. The
source function is stylized, but then there is a compensation in
terms of the transfer function chosen to get the overall result
correct (something which invalidates the data we get on formant
frequencies and bandwidths).

Another characteristic of LPC analysis is that all the losses
are concentrated at the glottal end of the system. How much does
that invalidate the bandwidth data?

Hisashi Wakita: It is true that the LPC method approximates
the spectral envelope, without any regard to formant frequencies
and bandwidths. All the energy losses are lumped into one single
resistance at the glottis end. By means of this single resistance
we represent all the bandwidths of the spectrum. If we want to re-
late it to a particular speech production model, in terms of
formant frequencies and bandwidths, it is quite useless, I think,
so either we have to build more realistic models, both production
and inverse transform models, or we can try to relate the simple
LPC model to a more realistic, complicated model.

Jdohn Clark: There seems to be no great difference in the
intelligibility levels quoted in the recent literature for pre-
dictor coded and formant coded speech. For formant coded speech,
some of its phonetic weakness appears (when tested with CV-nonsense
syllables) in the fricatives. 1Is this also the case for predictor
coded speech, and what sort of evaluation have you done of the
perceptual weaknesses of the system as a means of synthesizing
speech?

Hisashi Wakita: Normally, with the LPC analysis-synthesis
we use the extracted coefficients as they are, but we replace the
residual signal with a pulse train which makes the voiced/unvoiced

decision very critical, and missing just one frame can be per-

e
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ceptible. We can, however, restore the original signal by using

the residual signal for excitation. For phonetic evaluation pur-
poses I think we have to choose the excitation source carefully,

- maybe not the residual signal itself, but one with which we do

not loose too much information about the source.




