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NEW METHODS OF ANALYSIS IN SPEECH ACOUSTICS 

Hisashi Wakita, Speech Communications Research Laboratory I nc . ,  
8 0 6  West Adams Boulevard, Los Angeles, California 9 0 0 0 7 ,  U . S . A .  

Chairperson: Hans Werner Strube 

Introduction 

The recent development in digital techniques has brought sub- 

stantial innovations to methods and techniques for acoustical ana- 

lysis of  speech sounds. The advantages o f  using digital computers 

over the conventional analog techniques are that the analysis pro— 

cesses can be repeated precisely and that the control o f  the 

parameters is  relatively easy. The use o f  the digital computer 

also permits the processing o f  a large amount o f  data within a 

relatively short period o f  time with satisfactory accuracy. Be— 

cause o f  the above advantages, digital techniques are playing a 

more and more important ro le in speech research. As  this tendency 

becomes stronger, proper care has to be taken when the digital 

techniques are applied to speech research. This paper, thus, con— 

cerns primarily the recent digital techniques in the acoustic ana- 

lysis o f  speech, particularly the linear prediction method, with 

special attention to i t s  advantages and disadvantages, and also 

to the limitations involved in the technique. 

The concept o f  linear prediction was f i rs t  applied to speech_ 

analysis by Itakura and Saito in Japan (1966) and by Atal and 

Schroeder in the United States ( 1 9 6 7 ) .  Since then the linear pre— 

diction method has been fairly thoroughly studied theoretically 

and experimentally (see Makhoul 1975; Markel and Gray 1976; Wakita 

1 9 7 6 ) ,  and the method is currently being used as  a powerful tool 

for acoustical analysis of  speech sounds. 

Linear prediction o f  speech 

A very simplistic model of  speech production as shown in 

Figure 1 (a )  i s  assumed in the linear prediction o f  speech. The 

excitation source is an impulse and the filter, which mainly rep- 

resents the vocal tract, has the frequency characteristics of  res— 

onances only, without any anti-resonances. The model thus exclu- 

sively represents the voiced and non—nasalized sounds. 

For an analysis model, an inverse filter is assumed, which 

maintains the precise inverse relation between the input and the 

outPut of the production model, as shown in Figure 1 ( b ) .  Thus, 
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Figure  1. Models f o r  the l i near  p red i c t i on  method:  ( a )  
Product ion model ;  ( b }  Analys is  model .  
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Figure 2. Determination o f  f i l te r  character is t ics:  (a) a model: (b) discrete impulse res nse- c - 
( t r a n s f e r  funct ion)  o f  the lfi l ter.  ( ) frequency charac te r i s t i cs  
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the problem in linear prediction analysis is to determine the char— 

acteristics of the inverse filter from a given input speech wave. 

Since the linear prediction method is  a digital technique, 

all the data, and parameters to specify the f i l ter character ist ics,  

are handled in a discrete sampled format instead o f  as  continuous 

quantities. The main task o f  linear prediction is to predict the 

current speech sample fin in terms o f  a linear combination o f  the 

past M samples. Letting the predicted current sample be in, â 

is given by 
n 

A = + 

X (XJ-X 0'. n-l 2xn-2 

In equation ( 1 ) ,  the a i ' s  are called predictor coefficients. They 

play a role o f  "weighting" the past samples to predict the current 

one. The problem in the linear prediction method is  to  determine 

these predictor coefficients in such a way so as to minimize the 

error between the current sample and the predicted one, and to 

relate the predictor coeff icients to the parameters o f  the inverse 

f i l ter. In this case,  the sum o f  the squared errors over a certain 

period, 

N 
E = Z ( x  — x ) ( 2 )  

is minimized. Because o f  th is,  speech samples during this period 

are assumed to be suff iciently stationary so that the predictor 

coeff ic ients do not change during this period. 

How are the predictor coeff ic ients thus determined related to 

physically meaningful parameters, that i s ,  to the inverse f i l ter 

in Figure l ( b ) ?  In general, the frequency characteristics o f  a 

f i lter can be determined by observing i t s  impulse response when 

an impulse signal is applied to the f i l ter as shown in Figure 2 

( a ) .  In the discrete case,  the impulse response o f  a f i l ter is 

then given as shown in Figure 2 ( b ) .  The amplitude at each sampled 

point in the impulse response is given by a1 and the period between 

the two sample points is given by the sampling period T .  From 

this impulse response, the transfer function, A ( z ) ‚  o f  the f i l ter 

is given by use o f  "z-transform" notation as 
J 

A ( Z )  = a + a “ l  + azz-2  + . . .  + aMz—M ( 3 )  o 1z 
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Equation (3) represents not only the transfer function of  the 
f i l ter  but also the impulse response in the time domain. The 
a i ' s  in equation (3)  are called filter coeff ic ients.  It is easily 
seen from Figure 2 (b) that the interpretation o f  the "z-transform" 
notation is  that z " l  represents a unit delay in the time domain 
in terms of  the sampling period T .  Thus, the power of 2—1 in 
equation ( 3 )  denotes the number o f  time delays. 

Since z=exp( j2nfT),  where j is the imaginary unit (j=+/:Î) 
and f is frequency, equation ( 3 )  i t se l f  represents the discrete 
Fourier transform o f  the impulse response.  Thus the frequency 
domain representation o f  equation ( 3 )  is given by applying the 
Fourier transform to the f i l ter coef f ic ients .  In this case,  the 
impulse response is  truncated at  t=MT and normally sufficient 
zeroes ( e . g .  2 5 6  minus M zeroes) are added to  the a i ' s  to ensure 
suff icient frequency resolution before the Fourier transform is  
applied. An example o f  a power spectrum obtained from the output 
o f  the Fourier transform i s  given in Figure 2 ( c ) .  Note that the 
frequency band is  bounded a t  FS/Z  where FS=l/T is  the sampling 
frequency. Note a lso that when the amplitude o f  the frequency 
components is  represented on a logarithmic scale,  the frequency 
characteristics o f  the inverse f i l ter  a s  shown in Figure 2 ( c )  be- 
come those o f  the vocal tract f i l ter  in Figure 1 ( a )  just by re -  
labeling the negative sign of  the ordinate with a positive sign. 

One of  the important features o f  the linear prediction method 
is  that the predictor coef f ic ients in linear prediction of  speech 
can be shown to be identical to the f i l ter coeff ic ients with 
aoé l .  Consequently, minimizing the overall error in linear pre- 
diction is equivalent to  finding the transfer function o f  the 
inverse fi lter of the analysis model in Figure l ( b ) .  
Analysis condition 

Proper analysis conditions for the linear prediction method 
are important to ensure sat isfactory resul ts.  The analysis con- 
ditions to be noted are ( l )  sampling frequency, ( 2 )  the number of  
coef f ic ients,  ( 3 )  time window and length, ( 4 )  window s h i f t , _ a n d  
( 5 )  preemphasis. The sampling frequency determines the frequency 
range o f  interest.  The frequency range must be less than or equal 
to hal f  the sampling frequency (normally the latter is  chosen) .  
The number o f  coefficients is dependent on the frequency range to 
be chosen. When the frequency range is  exactly half the sampling 

_ _ _ —  
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frequency (Fs k H z ) ,  a good rule o f  thumb for the number of  f i l ter  

coeff ic ients is from Fs+2 to Fs+4.  The reason for this appears 

to be that there wi l l  be about F s / Z  resonances in the frequency 

band limited by FS /Z ,  provided that FS is  given in units o f  1 kHz .  

Each resonance requires 2 coeff ic ients for i ts  representation, 

and so about FS coef f ic ients  wil l  be needed to account for the 

expected resonances in the analysis band. In addition, 2—4 co- 

efficients are normally used for approximating the spectral slope 

due to the excitation source. 

The analysis conditions ( 3 )  and ( 4 )  vary depending upon 

which o f  two d i f ferent  methods of  linear prediction i s  used, the 

autocorrelation method or covariance method ( e . g .  Markel and Gray 

1 9 7 6 ) .  The two methods use d i f ferent definitions for computing 

the coeff icients from sampled speech. The autocorrelation method 

requires a window length o f  a t  least 1 .5  pitch periods a n d . a  

Hamming window is  recommended to suppress the spectral disturbances 

in the high frequency region due to the edge e f f e c t  o f  the time 

window. The covariance method, on the other hand, does not re- 

quire any particular time window, and the window length can be 

less than a pitch period. Thus this method can be used for pitch- 

synchronous analysis o f  speech sounds. When a window length of  

less than a pitch period is chosen, care must be taken since the 

analysis results vary depending upon what portion o f  the pitch 

period i s  chosen for analysis. This method is particularly use— 

ful for extracting the true vocal tract characteristics by choos- 

ing the glottis-closed portion of  the speech waves.  The major 

disadvantage o f  the covariance method is that there is theoretical- 

ly no guarantee for obtaining a stable transfer function for the 

inverse f i l te r ,  and thus a more sophisticated algorithm is  required 

to automatically process the cases o f  instability. Also a more 

sophisticated algorithm is  needed for automatically windowing the 

speech wave into pitch-synchronous intervals. 

The window sh i f t  in the covariance method, thus, involves a 

more complicated procedure than i t  does in the autocorrelation 

method. In the letter method, the window shi f t  i s  rather arbitrary, 

depending upon the speech samples to be analyzed. The shif t  can 

be greater than the window length for steady-state sounds, where- 

a s ,  for speech sounds in which the formant frequencies are rapid- 

ly changing, a smaller window shift will be better for obtaining 

the smooth contour o f  the formant frequencies. 

. 
'

-
w

-
.

_
u

.
-

.
-

_
-

;
 

‚
_

_
-

‚
u

.
.

.
.

:
.

_
-

 
.

.
.

.
-

.
 

a
.

.
.

-
d

a
.

.
.

.
.

.
‘

h
p

u
m

'
u

b
-

 
.

.
:

 
- 

,
.

o
_

 
.. , 

.
-

x
_

*
.

-
_

 
_

.
_

_
 



.
.

.
 

_
_

_
-

:
;

 
. 

' 
. 

156 SPECIAL LECTURE _ WAKITA 157 

A 6 dB/octave preemphasis is  recommended for formant analysis. 

This is  accomplished by taking the backward differencing o f  the 

sampled speech. The purpose of the preemphasis is to enhance the 
Amußß spectral peaks in the high frequency region. The 6 dB/octave pre— 
CONDITIONS 

emphasis also roughly compensates the -12 dB/octave glottal source 

SŒŒH ŒBWMLSŒML characteristics and the +6  dB/octave lip radiation characterist ics. LOHPASS AID LP 
“UH CWWWH‘ amass __' Estimation of formant frequencies 

SAMPLING 
Häflt As mentioned before,  the Fourier transform o f  the predictor 

FREQUENCY [ ] ŒH$mmms coefficients gives the frequency characteristics o f  the inverse 

f i l ter, the inverse of  which are the frequency characteristics o f  

WT the vocal tract f i l ter .  Thus the procedure for obtaining the 

smooth spectral envelope by use o f  the linear prediction method 
SPECTRAL 
E…flflæ is given by the block diagram shown in Figure 3 .  The speech sig— 

nal is f i rs t  digitized at some sampling frequency a f ter  being 

53333”:'ofhsäigfiksofiiäg'fiß„5213253393;ijgfiä't‘hoä'f‘m“ passed through a lowpass f i l ter to limit the frequency band ac- 

cording to the sampling frequency. Linear prediction analysis is 

then performed using predetermined analysis conditions, and re- 

sulting in a set  o f  f i l ter coeff ic ients for each speech segment 

analyzed. Smooth spectral envelopes are computed from the output 

_ of the Fourier transform o f  the filter coefficients with added 

n I r ö ? zeroes. As a result of linear prediction analysis,  the residual 

-4?HflfflanmmWWhn~n~y É signal, which is  an error signal given by equation ( 2 )  is  saved 

l: à À) £ É for detecting pitch periods as wi l l  be described later .  

An example o f  analysis results is shown in Figure 4 .  This 
(A) (B) 

uua 
example is a part o f  a sentence "Near the boat . . . “  and the spec— 

tral envelope estimation for /n/, / g / ,  / r / ,  and /6 /  are shown in 

the figure together with the direct Fourier transform o f  the cor— 

responding speech waves. I t  i s  seen that spectral peaks are well 
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% approximated by the extracted spectral envelope. However, the 

Hmmmmwwma % spectral dips due to anti—resonances as in the sound /n/ are 

©) ' ( m  ; ignored in the linear prediction method, in which the nasal tract 

…“ …” 1 ; is not considered. It should be noted that the linear prediction 

€“ 3 method was deve10ped as a method for e f f i c ien t  speech analysis— 

; synthesis telephony on the basis o f  the fact that the human ear 

. . . is insensitive to spectral dips. Thus ignorance o f  spectral dips 

Hæmæmwum) ? is not a major problem as far as analysis-synthesis telephony is 

concerned. However, i f  one is interested in more accurate estima- 
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F igure 4 .  An example o f  l inear pred ic t ion anal s i s .  S l i n  frequency 10 k H z ;  number o f  c o e f f i c i e n t s  14;ywindow siZEPZOmg 

i 
tion of  spectral dips as well as peaks, a new model has to be 

w t h  a Hamming window and +6dB/octave preemphasis.) developed, which is currently being investigated by some researchers. 
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The formant frequencies are estimated from the smooth spectral 

envelope by finding the locations of the spectral peaks by a peak- 

picking method. Although this method is simple and worthwhile, 

i t  presents problems when two peaks are close together or merged 

into a broad peak. Another method is  to compute the exact  loca- 

tions o f  the peaks by solving for the roots o f  the transfer func— 

tion, A ( z ) ,  o f  the inverse f i l ter .  In both methods, the spectral 

peaks do not always correspond to the formant frequencies, and 

thus a certain algorithm to automatically select formant peaks has 

to be designed ( e . g .  McCandless 1 9 7 4 ) .  For both methods, a care- 

ful inspection o f  the analysis results is  recommended before fur- 

ther processing of the formant frequencies is  initiated. 

Accuracy o f  formant estimation 

It i s  rather di f f icul t  to determine the accuracy o f  formant 

estimation for natural utterances, since there is  no way o f  ac- 

curately measuring the vocal tract configuration to compute i t s  

resonances while a sound is  being produced. Chandra and Lin 

(1974) made an evaluation of  the autocorrelation and covariance 

methods o f  linear prediction by using synthetic vowels. In their 

study, vowels in the ’h-d' context were synthesized by a simulated 

formant synthesizer, and the two linear prediction methods were 

applied to analyze those synthetic vowels. A s  analysis conditions 

in this case, the sampling frequency was 10 kHz and the number o f  

coeff icients was 12.  The results o f  their study are shown in 

Figures 5 and 6 .  Figure 5 shows the estimation error ( in H z )  of  

the f i rs t  three formant frequencies for both methods applied pitch- 

synchronously and pitch—asynchronously. For the pitch-synchronous 

case. the window length coincided with the segment position be- 

tween the two pitch pulses. _For  the pitch-asynchronous case. the 

window length o f  2 4  ms was arbitrarily chosen on the speech waves. 

The results indicate that the pitch-synchronous covariance method 

gives better accuracy than the others. In the pitch-asynchronous 

case,  when the window length becomes greater than one and a half 

Pitch period, the two methods give similar accuracy. The pitch- 

synchronous autocorrelation method resulted in the worst accuracy. 

This is more so in estimating formant bandwidths a s  shown in 

Figure 6 .  

For natural utterances. i t  i s  anticipated that the accuracy 

of estimating formant frequencies and bandwidths becomes worse 
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than for the synthetic sounds. Especially, it is anticipated that 

the result of the pitch-synchronous case will become worse, because 

the condition a t  the glottis varies during one pitch period for 

natural utterances, whereas the glottal condition for this partic- 

ular synthesizer was constant. When the glottal condition varies 

during a chosen analysis segment, the resulting formant frequencies 

will probably be the average of  the instantaneous formant frequen- 

c i e s .  The result obtained by Chandra and Lin (1974)  indicate that 

the pitch-synchronous covariance method gives more accurate esti- 

mates o f  formant frequencies and their bandwidths than the pitch- 

asynchronous autocorrelation method. Although the estimation ac- 

curacy o f  the formant bandwidths is  not well known, it is known 

that the bandwidth estimates are sometimes too narrow or too broad. 

I f  the bandwidth information is needed, it has to be carefully 

checked against the direct Fourier transform of  the corresponding 

sampled speech. 

Problems in formant estimation 

Since the estimation o f  formant frequencies is made from the 

envelope estimation o f  speech spectra, the accuracy o f  estimation 

i s  highly dependent on harmonic density. The more sparse the har- 

monic density becomes as pitch goes up. the more di f f icult  the 

estimation of  formant frequencies becomes. This is a rather in- 

herent problem in the estimation o f  vocal tract resonances from 

given speech waves, irrespective o f  method. In many cases, the 

linear prediction method works well for speech sounds with funda- 
mental frequencies o f  up to approximately 250  H z .  For female 
speakers and children with fundamental frequencies higher than 
250 Hz, difficult cases of formant estimation are frequently ob- 
served. Formant estimation becomes impossible as the pitch be- 
comes extremely high, in which case harmonics are picked up as 
spectral peaks. 

In case the exact vocal tract resonances need to be known: 

some other methods may have to be used. One approach to this is 
to use external excitation with a low fundamental frequency such 
as an artificial larynx buzzer. One such example is shown in 
Figure 7 ( a ) .  This example is a female vowel /a/ with a funda- 
mental frequency of  250 Hz.  The linear prediction spectral enve- 
lope has one broad peak in the low frequency region instead of 
the f irst two formant frequencies. The peak-picking method de- 
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Figure 7 .  An example o f  d i f f i c u l t  c a s e  o f  fo rmant  es t ima t ion .  

' ' ' he v o w e l  / a /  by a 
a Linear p red ic t ion  spec t ra l  envelope fo r  t _ 

female speaker w i t h  a fundamental f requency  o f  250 Hz (sampl1ng 
° ' ° ' dow s i z e  25.6ms 

f r e  uenc 10kHz; number o f  coe f f1c1en ts  12, w i n  _ 

w i t :  a Rimming window and +6dB/octave preempha51s) .  ( b )  L inear  

predic t ion spect ra l  envelope f o r  the vowel /a /  by  the same 

' ° fundamental s e a k e r  exc i t ed  by an e x t e r n a l  buzzer  w1th a . 

fEequency o f  80H: (ana lys is  cond i t ions  a r e  the same a s  l n  ( a ) ) .  

(a) 

(b) 

Figure 8 .  

'TlhflE “*** 

( a )  Speech waves; (b)  the res idua l  s ignal a f t e r  l inear  

pred ic t ion analysis.  
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To 

Figure 9 .  
F igure 8 .  

(a) 
UNSM. 

(b) 
SM. 

Figur 10. Voiced—to—unvoiced e r r o r s  methods :  

TIME -———+ 

Autocorre lat ion funct ion o f  

f o r  ( a )  unsmoothed‘ (b) smoo 
. 

th  . M1,M2. males: F1,F2: females;  C l :  chi ld?d percentage e r ro r  ra te  against to ta  . 

the  residual  s ignal  in 

three p i t ch  detect ion 
(LM: low-pi tched male:  

The o rd ina te  shows the 
1 number o f  voiced in terva ls .  
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finitely fai ls to detect two peaks for Fl and F 2 .  Instead i t  wi l l  

detect the broad peak as the first formant frequency. 

The root-solving method will give two roots to approximate 

the broad peak. I t  has not been ascertained, however, that the 

two roots obtained by the root—solving method for such cases as 

above correspond accurately to the f i rs t  two formant frequencies. 

For the above case,  the use of  a commercial a r t i f i c ia l  larynx 

buzzer with a low fundamental frequency gives a good resolution 

for the formant frequencies as shown in Figure 7 ( b ) ,  which is  for 

the same vowel and the same speaker as in Figure 7 ( a ) .  In this 

case, the buzzer had undesirable sharp peaks in i ts own frequency 

characterist ics. The monotonous frequency characterist ics o f  a 

buzzer are desirable for this purpose. 

Fundamental frequency estimation 

In inverse filtering in the linear prediction method, most 

of the vocal tract characteristics are f i l tered out into the pre- 

dictor coef f ic ients.  The residual signal, the output o f  the in- 

verse f i l te r ,  st i l l  contains the information on the excitation 

source. A typical residual signal is shown in Figure 8 .  I t  is 

_ seen that large errors synchronous with pitch periods occur. A 

typical approach to computing the periodicity from this kind of  

waveform is to compute the autocorrelation function as shown in 

Figure 9 .  Two conspicuous spikes are found in the autocorrelation 

function, one a t  the origin and one at a distance o f  one pitch 

period from the origin. The fundamental frequency is then given 

by the reciprocal o f  the pitch period. 

Problems in fundamental frequency estimation 

It has been shown that the linear prediction method is quite 

eff icient and ef fect ive for estimating the formant frequencies. 

However, how accurate and reliable the extraction o f  fundamental 

frequency is is an intriguing question, since there are many other - 

techniques for estimating the fundamental frequency. Rabiner et  a l .  

( 1 9 7 6 ) ,  in their study o f  the comparative performance o f  several 

pitch detection algorithms, point out the following major problems 

in detecting the fundamental frequency: (1) glottal excitation is 

nOt perfectly periodic; ( 2 )  defining the exact beginning and end 

of each period is diff icult; 63) the distinction between unvoiced 

portions and low level voiced portions is difficult; (4 )  there is 

an interaction between the vocal tract and the glottal excitation. 
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o o. ' (°) GROSS 
(UIEJSM. I Î uv-v UNSM. 

l AUTO. ; AUTO- 

CEP ? CEP % 

l SIFTEJ à 
SIFT 

MI F2 Cl i 
is.: 1 M ; . , 

s 20_ ; “( 

f 5 . 

fl '- o Æ L” 
F2 cu ; LM Ml M2 Fl F2 cn 

Figure ll. Unvoiced-to-voiced error for three pitch detection È Figure 12' Gross errors for three pitch detection methods: (a) 
unsmoothed; (b) smoothed. (LM: low-pitched male:  M1,M2: males; 

F1,F2: females: C1: c h i l d ) .  The ord inate shows_ the average 

number o f  samples. 
methods: ( a )  unsmoothed; (b) smoothed. (LM: low—pitched male ;  
M1.M2: males;  F1,F2: females;  C1: ch i l d ) .  The ordinate shows the 
percentage e r r o r  ra te  against to ta l  number o f  unvoiced in terva ls .  
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The above problems are intrinsic in any o f  the pitch detection 

methods. “  However, evaluation of several pitch detection methods 

indicates some di f ferences in their performance. 

Accuracy in fundamental frequency estimation 

Let us take the following pitch detection methods from the 

study by Rabiner e t  a l .  ( 1975 ) :  ( l )  autocorrelation method with 

clipping (time domain method); (2)  cepstrum method (frequency 

domain method); and ( 3 )  linear prediction ' S I F T ' l  method (time- 

frequency method). The types of  errors can be categorized into 

( a )  voiced-to-unvoiced error ,  (b) unvoiced-to-voiced error, 

( c )  gross error in which the error in detecting the pitch period 

is  greater than a certain threshold; and (d)  fine error in which 

the error in detected pitch period is  l ess  than the threshold. 

The above three methods were tested against six speakers 

( 3  males, 2 females, and a child) by using four monosyllabic non- 

sense words and four sentences. The analysis results were com- 

pared with the standard pitch contours which were carefully 

measured by using a semi-automatic pitch detector. The results 

for the f i rs t  three types o f  errors are shown in Figures 10, 11. 

and 12. The results are shown both for unsmoothed (raw data) and 

smoothed cases.  In the smoothed case a nonlinear smoothing tech- 

nique was applied to the raw data (Rabiner et a l . ,  1 9 7 5 ) .  It is 

seen that the nonlinear smoothing generally improves the accuracy: 

particularly, the gross errors are substantially improved. It is 

also seen that all three methods are somewhat speaker dependent. 
For the voiced-to-unvoiced errors, the error rate o f  the cepstrum 

method is much higher than the others except for the child speakeng 

For the unvoiced-to-voiced errors,  on the other hand, the error 

rate o f  the cepstrum method is better than the others except for 

one o f  the female speakers for the smoothed case.  In overall per“ 

formance evaluation, there seems to be not much difference betweäl 

the performance o f  the autocorrelation and linear prediction meflr 
ods, except that the linear prediction method resulted in an ex- 

ceedingly poor performance for the child Speaker for the unvoiced' 

to—voiced and gross errors. 

Other related topics 

The filter box in the linear prediction model in Figure l 
contains the contribution from the glottal characteristics and 
the radiation e f fec t  at  the lips as well as the vocal tract 

1) Simplified Inverse Filter Tracking 
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characterist ics. Since the model assumes a linear system, those 

factors can be separated and changed in order as shown in Figure 

13. I f  the glottal  and radiation characteristics can be eliminated 

by a proper preprocessing o f  the speech, the true vocal t ract  

characteristics can be obtained by the linear prediction method. 

One of the important features o f  the linear prediction method is 

that in computing the prediction coef f i c ien ts ,  another parameter 

which is called "reflection coeff icient" (or "k-parameter", or 

"PARCOR coef f i c ien t " )  i s  obtained. A set  o f  ref lect ion coeff ic ients 

obtained for a given speech segment gives an acoustic tube shape 

which has a frequency characterist ic identical to  the vocal t ract  

characteristics extracted from this speech segment. In this case ,  

the acoustic tube is  represented by a concatenation o f  cylindrical 

sections o f  d i f ferent  cross—sectional areas.  A ref lect ion coe f f i -  

cient is  defined at the boundary between two neighboring sect ions. 

Consequently, i f  the analysis conditions are properly chosen af ter  

preprocessing sampled speech to eliminate the glottal and radia- 

tion characterist ics, the acoustic tube representation thus ob- 

tained is expected to  be a good approximation to the vocal t ract  

area function which denotes the cross-sectional areas along the 

vocal t ract  from the glott is to the lips (Wakita, 1973,  1 9 7 9 ) .  

Another interesting topic is the use o f  the linear prediction 

parameters for speech synthesis. The synthesizer could be the 

synthesis part o f  the linear prediction analysis-synthesis teleph— 

ony (see Markel and Gray 1976;  Wakita 1 9 7 6 ) .  Since the formant 

frequencies and bandwidths constitute the roots o f  the inverse 

filter transfer function, they can be related to the fi lter co- 

eff ic ients.  The ref lection coef f ic ients,  which give an acoustic 

tube representation o f  the vocal t ract ,  are also related to the 

filter coeff icients in the mathematical formulation o f  linear 

prediction. Thus, those parameters mentioned above are inter- 

changeable for each other, and any o f  these parameters can be used 

for the linear prediction synthesizer. 

Application examples 

The linear prediction method has mainly been used in the 

area of  analysis-synthesis telephony. The method is  particularly 

effective for low bit—rate speech coding. However, the technique 

is equally useful for acoustical analysis of  speech. In con- 

cluding this tutorial paper, several examples taken from the 

author's past studies will be given below. 
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Figure 14. F1—F d is t r ib  
produced by a %ema u t ion DE 17 d e v i a t i o n s .  

l e  speaker.  
unrounded 

l200 

vowel types 
El l ipses represent  two standard 

__
_-.

 

WAKITA 169 

§§§m21§_1 (Broad and Wakita, 1978 ) .  

Figure 14 shows the Fl—F2 distribution for 17 unrounded 

vowel types produced by a female phonetician in order to study 

the variability of formant frequencies. In this study, 30  repe- 

titions of  30  dif ferent isolated vowel utterances ( 9 0 0  in total) 

were analyzed by the linear prediction autocorrelation method 

(sampling frequency 10 kHz;  number o f  coeff icients 12 ;  window 

s ize  2 5  ms with Hamming window and +6  dB/octave preemphasis) and 

formant frequencies were estimated by using the root-solving meth- 

od. The analysis results were carefully inspected by displaying 

the results vowel by vowel on the display terminal. Approximately 

5% of  apparently wi ld data were excluded for further processing. 

Egg-131.93 (Wakita , 19 77) 
The example in Figure 15 shows the Fl—F2 distribution o f  

nine American English vowels spoken by 2 6  speakers (14 males and 

12 females) in order to  study the variability o f  formant frequen- 

cies among male and female speakers. Vowels were produced in the 

context o f  'h—d' and the linear prediction autocorrelation method 

was applied to analyze the vowel portions (sampling frequency 

10 kHz;  number o f  coef f ic ients  12 ;  window s i ze  2 5  ms with Hamming 

window and +6 dB/octave preemphasis). The formant frequencies 

were estimated by use o f  the root-solving method. 

frequencies which were averaged over the most steady-state five 

The formant . 

frames were used to represent each vowel. 

Eggmp;§_§.(Kasuya and Wakita, 1979) 

Figure 16 i s  an example in which the linear prediction area 

functions were used to automatically segment speech into vowel- 

like and nonvowel-like intervals. The linear prediction area 

functions, combined with the speech energy function (root mean 

square o f  sampled speech),  give suff ic ient cues for the f i rs t  

stage o f  segmentation without obtaining spectral information which 

is more time consuming. In this case,  the autocorrelation method 

was also used for analysis. The sampling frequency was 10 kHz,  

the number of  coeff ic ients 14, and window s ize  15 ms with a 

Hamming window and +6 dB/octave preemphasis. The relatively 

short analysis window length was used in this study for detecting 

the bursts of  plosives, and the window shift was 12.8 ms. 
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Figure 16. An example o f  Segmenting the vowel-like Intervals fo r  
t he  sen tence  " Near t he  b e a t .  Emma gave b l u e - g i l l s  a w a y . "  

Conclusion 
. (kHz) 
- E „ . fi  (um The concept and evaluation of  the linear prediction method 

were described in this paper. Because of  its tutorial nature, 

the descriptions in some cases may be inadequate from the theo— 

.) A 
qu i  retical point o f  view. Readers interested in more advanced knowl- 

: _  . edge are encouraged to read the original papers or other materials 

43‘. _ ‘ \ \  listed in the references. 
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DISCUSSION €); 

Gunnar Fant, Wiktor Jassem and René Carré opened the discussion. 

Gunnar Fant: I think that at the moment LPC analysis is  more 

useful for communication engineering purposes, but i t  is certain- 

ly gaining importance in phonetic analysis: the fact  that you can 

re—synthesize speech with rather good quality with LPC methods 

is a great advantage in synthesis, and LPC also makes i t  possible 

to manipulate e . g .  fundamental frequency, independently o f  other 

parameters, which makes i t  well suited for prosodic investigations. ( 

Formant frequencies and bandwidths describe the vocal f i l te r ,  ' 

but what about the vocal source? In LPC analysis, it i s  t reated 

as a constant function, more or less ,  but in the future we should 

pay more attention to. the time dynamics o f  the source, to obtain 

valuable information for prosody studies. We should make dynamical 

matches not just to formants but also to source characteristics. 

(This we can do at present by carefully scrutinizing period a f te r  

period of  the signal, extracting presumed vocal source character- 

is t ics.)  The fact that LPC is confined to an on/off, or voiced/ 

voiceless, distinction creates some undesirable compensation 

e f f e c t s :  to compensate for a more steeply falling voice source 

spectrum, like we get e .g .  in open syllables, the system will in- 

crease the bandwidths somewhat, which can give a consonantal e f f e c t .  

Another critical problem is  assessing formant frequencies 

with high pitched voices and in cases where Fo and F1 are close 

tOgether, which is problematic i n _ a n y  kind o f  analysis. 

Hisashi Wakita: mentioned a comprehensive LPC analysis o f  9 0 0  

vowels by a female speaker (30 vowels x 30 repetitions) where (50) 

unlikely analysis items were discarded by visual inspection o f  

the vowels in Fl-FZ, and Fl-F3 plots [ s e e  "Application Examples", 

Example 1 in Hisashi Wakita's paper], but admitted that we do not 

yet have valid data that tell us how accurately we can estimate 

formant frequencies, especially when Fo and F1, or two formants, 

are close together. 

I f  we analyse a l i tt le more than oneapi tch period, using a 

very small time window and the covariance method we can, from the 

error signal, determine that point where the interaction between 

sub- and supraglottal systems is  minimum (corresponding to the 
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c losed glott is por t ion) ,  and i f  the signal has been careful ly 

recorded, directly from the microphone into the computer storage, 

so as  to avoid phase d is tor t ion ,_we can fair ly well recover the 

glottal wave shape from this portion. 

Wiktor Jassem: What is the perspective for phonetics o f  

these methods?‘ First,  there is the segmentation problem which can 

probably be solved, as suggested by professor Fant and others, by 

determining the maximum rate o f  change o f  the spectrum and of  the 

time function. Secondly, there is the extraction o f  parameters: 

those extracted for automatic analysis need not be identical to 

those used by a human being. Thirdly, there is  the problem of 

normalizing for individual speaker characteristics. The fourth 

problem is concerned with the identification o f  ent i t ies, which 

is  an intricate one, because we do not know how many entities 
there are. The theory is that they should be suff icient to spec- 

i f y  the output in such a way that synthesizing it we would get 
a normal native accent. The perceptual experiments needed to 
set t le  the question are not simple, because the adults' responses 
will be heavily influenced by phonemic considerations, and with 
very young children there will be great psychological problems. 
Fortunately, mathematical methods are developing that will allow 
us to determine, given a number of  data,  how many objects or 
entities we are dealing with. What I want to point out i s  that 
i f  we can get the computers to do phonetic transcriptions they 
will be better than transcriptions by a human being because they 
will be more object ive. 

Renë Carré: There are two kinds of work in speech analysis- 
One is  the analysis of a small number of speech sounds. Formant 
frequencies are no problem, but to  determine bandwidths we need 
to consider pre-emphasis, the order of the predictors, the analYSis 
window, and the magnitude of  the prediction error. All these 
operations take time, and such a procedure cannot be adepted in 
the other kind o f  study, o f  a large corpus, where a (semi-)auto- 
matic procedure has to be set up. It seems that in that case the 
procedure must be normalized. Is the autocorrelation method 
accurate enough for bandwidth measurements? Must we change (auto- 
matically or not) the order o f  the predictor to adapt the system 
to the speech sound under analysis, e .g .  to nasalized vowels? 
What sampling rate shall we choose? How many frames should be 
analyzed? And so on. Finally, among the set o f  pole values we 
have to choose (automatically or not) the right formants. 
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Hisashi Wakita: The HMS-function is generally not sufficient 

to segment a chain into vowel-like and non-vowel-like sounds. But 

from the pseudo vocal t rac t  area function, generated by the LPC 

'analysis, we can calculate the ratio o f  the volume o f  the back 

(pharyngeal) cavity to the total volume o f  the vocal t ract and 

this will generally te l l  us whether a segment is  vowel-like or not.  

It will detect nasal.consonants which is diff icult to do from t h e .  

waveform: LPC does not assume any nasal t ract,  but does produce a 

sort o f  equivalent acoustic tube representation, and nasal seg- 

ments are fairly well detected from the back-tcutotal ratio of 

that tube. . 

We have also worked on the elimination o f  inter-speaker 

variability, which i s  o f  interest not just to automatic speech 

' recognition, but also in acoustic phonetic studies o f  e . g .  the 

vowel systems o f  languages. With LPC we can estimate the vocal 

tract length for each speaker and each vowel category ( t rac t  length 

is not constant over di f ferent vowel qual i t ies),  and then normalize 

to a certain l e n g t h , f e . g .  17 cm, a normalization which reduces the 

overlap in Fl-FZ, and Fl—F3 plots and results in compact vowel 

distributions. 

Adrian Fourcin: The LPC system represents the complexities 

of the vocal tract and i ts  excitation by an exceedingly simple 

model: a vocal tract with no side-branches and a sharp impulse 

for an excitation, and yet it produces speech o f  very high quality. 

When we synthesize we have to pay attention to the zeros intro— 

duced by nasality, and the time dependence o f  the excitation func- 

tion is also apparent if  we have a standard model o f  the vocal 

t ract .  _ I s  there something that we can learn from this with regard 

to how we hear speech? - 

If we knew when the point o f  excitation occurred and for how 

long a time the glot t is is closed, to what extent would you be able 

then to improve the phonetic utility of the LPC analysis? 

Hisashi Wakita: The ear is  insensitive to spectral zeros,  

and a model which has poles and zeros in i t  (which is  much more 

complicated computationally) does not perceptibly improve the 

Quality o f  the speech. I have run an experiment, where various 

musical instruments as well as speech were passed through an arti- 

ficially generated pole—zero system, and i t  turned out that the 

ear was insensitive to dips in the Spectrum as large as 35 dB 
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( a  fact  which explains why HiFi loudspeakers may have even very 

sharp d ips ) .  

I f  we can determine that segment o f  speech where the glottis 

i s  closed, i . e .  the force-free oscillations, we can apply the 

covariance method, which assumes that the speech waves can be ap- 

proximated by a combination of  damped sinusoids, and thus compute 

the exact  vocal tract characteristics. 

Gunnar Fant: A reply to Dr.  Fourcin is that LPC speech sounds 

good because it resembles natural speech, although i ts  source and 

transfer functions do not resemble those o f  real speech. The 

source function is styl ized, but then there is a compensation in 

terms of  the transfer function chosen to get the overall result 

correct  (something which invalidates the data we get on formant 

frequencies and bandwidths). 

Another characteristic of  LPC analysis is that all the losses . 

are concentrated at the glottal end of the system. How much does É 

that invalidate the bandwidth data? 

Hisashi Wakita: It  is true that the LPC method approximates ’ 

the spectral envelope, without any regard to formant frequencies 

and bandwidths. All the energy losses are lumped into one single 

resistance a t  the glottis end. By means o f  this single resistance 

we represent all the bandwidths of the spectrum. I f  we want balm- 

1ate i t  to  a particular speech production model, in terms o f  

formant frequencies and bandwidths, it is  quite useless, I think: 

so either we have to build more realistic models, both production 

and inverse transform models, or we can try to relate the simple 
LPC model to a more real ist ic, complicated model. 

John Clark: There seems to be no great difference in the 

intelligibility levels quoted in the recent literature for pre— 
dictor coded and formant coded speech. For formant coded speeCh: 

some Of i ts Phonetic weakness appears (when tested with CV-nonsenä! 
syllables) in the fricatives. Is  this also the case for predictor 

coded speech, and what sort of evaluation have you done of the 
perceptual weaknesses o f  the system as a means of  synthesizing 
speech? 

Hisashi Wakita: Normally, with the LPC analysis-synthesis 
we use the extracted coefficients as they are, but we replace the 
residual signal with a pulse train which makes the voiced/unvoiced' 

decision very critical, and missing just one frame can be Per” 
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ceptible. We can, however, restore the original signal by using 

the residual signal for excitation. For phonetic evaluation pur- 

poses I think we have to choose the excitation source carefu l ly ,  

- maybe not the residual signal i tse l f ,  but one with which we do 

not loose too much information about the source. 


