THE ESTIMATION OF INTRINSIC FO: A COMPARATIVE STUDY
D.J. Hirst, A. Di Cristo and Y. Nishinuma, Institut de Phonétique, Université de Provence, France

A large number of studies have been devoted to the question of the intrinsic frequency $\left(\mathrm{FO}_{i}\right)$ of vowels in various different languages. These studies consistently indicate a strong inverse correlation between Fo_{i} and the first formant of the vowel. The coefficient of determination $\left(R^{2}\right)$ between $F l$ and Fo_{i} for the data given by Peterson and Barney (1952) is 0.85. Calculating the regression line from Fl to FO_{i} consequently gives a reasonably close estimation of $E O_{i}$. This estimation can be considerably improved if we take into account the second formant (F2), since we obtain an R^{2} of 0.922 . An even better correlation is found between Fo_{i} on the one hand and F1, F2 and $\overline{F o}$ (the mean Fo for each subejct) on the other hand, $\left(R^{2}=0.976\right)$ for the data from 11 different authors on 6 different languages. The estimation from the multiple linear regression on these data is very close to the original data ($r=0.988$) and, although the correlation varies from author to author, in most cases the difference between the estimation and observed values rarely exceeds 2%.

A linear function $F O_{i}=a_{0}+a_{1} \overline{F O}+a_{2} \mathrm{Fl}+\mathrm{a}_{3} \mathrm{~F} 2$
where $a_{0}=20.166, a_{1}=0.975, a_{2}=-0.034, a_{3}=-0.002$ provides a very reliable estimation of the intrinsic frequency of vowels which can consequently be used both in prosodic analysis and in automatic speech synthesis and recognition.

Reference

Peterson, G.E. and H.L. Barney (1952): "Control methods used in a study of vowels", JASA 24, 175-184.

